

32-bit Graphics Applications MCUs (up to 2 MB Live Update Flash, 640 KB SRAM, and 32 MB DDR2 SDRAM) with XLP Technology

Operating Conditions

- 2.2V to 3.6V, -40°C to +85°C, DC to 200 MHz
- 2.2V to 3.6V, -40°C to +105°C (Planned)

Core: 200 MHz / 330 DMIPS MIPS32[®] microAptiv™

- 32 KB I-Cache, 32 KB D-Cache
- MMU for optimum embedded OS execution
- microMIPS™ mode for up to 35% smaller code size
- DSP-enhanced core:
 - Four 64-bit accumulators
- Single-cycle MAC, saturating and fractional math
 Code-efficient (C and Assembly) architecture

Clock Management

- · Programmable PLLs and oscillator clock sources
- Dedicated PLL for DDR2
- Fail-Safe Clock Monitor
- Independent Watchdog and Deadman Timers
- · Fast wake-up and start-up

Power Management

- Various power management options for extreme power reduction (VBAT, Deep Sleep, Sleep and Idle) Deep Sleep current: < 1 µA (typical)
- Integrated POR and BOR
- Programmable High/Low-Voltage Detect (HLVD) on VDDIO and High-Voltage Detect (HVD) on VDDR1V8

Memory Interfaces

- DDR2 SDRAM interface (up to DDR2-400)
- SD/SDIO/eMMC bus interface (up to 50 MHz)
- Serial Quad Interface (up to 80 MHz)
- External Bus Interface (up to 50 MHz)

Graphics Features

- 3-layer Graphics Controller with up to 24-bit color support
- High-performance 2D Graphics Processing Unit (GPU)

Audio Interfaces

- Audio data communication: I2S, LJ, and RJ
- Audio control interfaces: SPI and I²C
- Audio master clock: Fractional clock frequencies with USB

High-Speed Communication Interfaces (with Dedicated DMA)

- USB 2.0-compliant High-Speed On-The-Go (OTG) controller
- 10/100 Mbps Ethernet MAC with MII and RMII interface

Security Features

- Crypto Engine with a RNG for data encryption/decryption and authentication (AES, 3DES, SHA, MD5, and HMAC)
- Advanced memory protection:
 - Peripheral and memory region access control

Direct Memory Access (DMA)

- Eight channels with automatic data size detection
- Programmable Cyclic Redundancy Check (CRC)

Advanced Analog Features

- 12-bit ADC modules:
 - 18 Msps with up to six ADC circuits (five dedicated and one shared)
 - Up to 45 analog input
 - Can operate during Sleep and Idle modes
 - Multiple trigger sources
 - Six Digital Comparators and six Digital Filters
- Two Comparators with 32 programmable voltage references
- Temperature sensor with ±2°C accuracy
- Charge Time Measurement Unit (CTMU)

Communication Interfaces

- Two CAN modules (with dedicated DMA channels):
 - 2.0B Active with DeviceNet™ addressing support
- Six UART modules (25 Mbps)
 - Supports LIN 1.2 and IrDA® protocols
- Six 4-wire SPI modules (up to 50 MHz)
- SQI configurable as additional SPI module (up to 80 MHz)
- Five I²C modules (up to 1 Mbaud) with SMBus support
- Parallel Master Port (PMP)
- Peripheral Pin Select (PPS) to enable function remap

Timers/Output Compare/Input Capture

- Nine 16-bit and up to four 32-bit timers/counters
- Nine Output Compare (OC) modules
- Nine Input Capture (IC) modules
- Real-Time Clock and Calendar (RTCC) module

Input/Output

- 5V-tolerant pins with up to 32 mA source/sink
- Selectable open drain, pull-ups, and pull-downs
- Selectable slew rate control
- External interrupts on all I/O pins
- · PPS to enable function remap

Qualification and Class B Support

- AEC-Q100 REVG (Grade 2 -40°C to +105°C) (Planned)
- Class B Safety Library, IEC 60730
- Back-up internal oscillator

Debugger Development Support

- In-circuit and in-application programming
- 4-wire MIPS® Enhanced JTAG interface
- · Unlimited software and 12 complex breakpoints
- IEEE 1149.2-compatible (JTAG) boundary scan
- Non-intrusive hardware-based instruction trace

Integrated Software Libraries and Tools

- C/C++ compiler with native DSP/fractional support
- MPLAB® Harmony Integrated Software Framework
- TCP/IP, USB, Graphics, and mTouch™ middleware
- MFi, Android™, and Bluetooth® audio frameworks RTOS Kernels: Express Logic ThreadX, FreeRTOS $^{\text{TM}}$, OPENRTOS $^{\text{®}}$, Micriµm $^{\text{@}}$ µC/OS $^{\text{TM}}$, and SEGGER embOS $^{\text{®}}$

Packages

Туре	LFE	LQFP	
Pin Count	169	288	176
I/O Pins (up to)	120	120	120
Contact/Lead Pitch	0.8 mm	0.8 mm	0.4 mm
Dimensions	11x11 mm	15x15 mm	20x20 mm

TABLE 1: PIC32MZ DA FEATURES COMMON TO ALL DEVICES

(KB)		Remap	pable	Perip	herals		Is	ş															
Boot Flash Memory (k	Remappable Pins	Timers ⁽¹⁾ /Capture/ Compare	UART	SPI/I ² S	CAN 2.0B	External Interrupts ⁽²⁾	12-bit ADC Channel	Analog Comparator	СТМU	USB 2.0 HS OTG	1 ² C	ССС	GPU	EBI	ЬМР	SQI	SDHC	RTCC	Ethernet	I/O Pins	JTAG	Trace	
160	47	9/9/9	6	6	2	5	45	2	Υ	Υ	5	Υ	Υ	Υ	Υ	Υ	Υ	Υ	Υ	120	Υ	Υ	ĺ

Note 1: Eight out of nine timers are remappable.

2: Four out of five external interrupts are remappable.

TABLE 2: 169-PIN LFBGA PIC32MZ DA

FEATURES						
Devices	Program Memory (KB)	Data Memory (KB)	DDR2 Controller Interface (Internal/External)	DDR2 SDRAM Size (MB)	Crypto/RNG	DMA Channels (Programmable/ Dedicated)
PIC32MZ1025DAA169		256			N	8/24
PIC32MZ1025DAB169	4004	250	No		Υ	8/26
PIC32MZ1064DAA169	1024	640			Ν	8/24
PIC32MZ1064DAB169					Υ	8/26
PIC32MZ2025DAA169		256	No		N	8/24
PIC32MZ2025DAB169		640			Υ	8/26
PIC32MZ2064DAA169	2048				N	8/24
PIC32MZ2064DAB169					Υ	8/26
PIC32MZ1025DAG169		256			N	8/24
PIC32MZ1025DAH169		256			Υ	8/26
PIC32MZ1064DAG169	1024	040			N	8/24
PIC32MZ1064DAH169		640	Yes		Υ	8/26
PIC32MZ2025DAG169		256	(INT)	32	N	8/24
PIC32MZ2025DAH169		256	ŕ		Υ	8/26
PIC32MZ2064DAG169	2048	640			N	8/24
PIC32MZ2064DAH169		640			Υ	8/26

TABLE 3: 176-PIN LQFP PIC32MZ DA FEATURES

ILAIUNLO						
Devices	Program Memory (KB	Data Memory (KB	DDR2 Controller Interface (Internal/External)	DDR2 SDRAM Size (MB)	Crypto/RNG	DMA Channels (Programmable/ Dedicated)
PIC32MZ1025DAA176		256			N	8/24
PIC32MZ1025DAB176	1	256	No		Υ	8/26
PIC32MZ1064DAA176	1024	640			N	8/24
PIC32MZ1064DAB176					Υ	8/26
PIC32MZ2025DAA176		256			N	8/24
PIC32MZ2025DAB176					Υ	8/26
PIC32MZ2064DAA176	2048	640			N	8/24
PIC32MZ2064DAB176		640			Υ	8/26
PIC32MZ1025DAG176		256			N	8/24
PIC32MZ1025DAH176	1024	200			Υ	8/26
PIC32MZ1064DAG176	1024	640			N	8/24
PIC32MZ1064DAH176		040	Yes		Υ	8/26
PIC32MZ2025DAG176		256	(INT)	32	N	8/24
PIC32MZ2025DAH176	00.40	200			Υ	8/26
PIC32MZ2064DAG176	2048	640			N	8/24
PIC32MZ2064DAH176		640			Υ	8/26

TABLE 4: 288-PIN LFBGA PIC32MZ DA FEATURES

Devices	Program Memory (KB)	Data Memory (KB)	DDR2 Controller Interface (Internal/External)	Crypto/RNG	DMA Channels (Programmable/Dedicated)
PIC32MZ1025DAA288		256		N	8/24
PIC32MZ1025DAB288	1024	250		Υ	8/26
PIC32MZ1064DAA288	1024	640		N	8/24
PIC32MZ1064DAB288		040	Yes	Υ	8/26
PIC32MZ2025DAA288		256	(EXT)	Ν	8/24
PIC32MZ2025DAB288	2048	230		Υ	8/26
PIC32MZ2064DAA288	2040	640		N	8/24
PIC32MZ2064DAB288		0-70		Υ	8/26

Device Pin Tables

TABLE 5: PIN NAMES FOR 169-PIN DEVICES

Ball/Pin Number	Full Pin Name
A1	No Connect
A2	VBUS
A3	RPF2/SDA3/RF2
A4	EBID1/AN39/PMD1/RE1
A5	AN21/RG15
A6	TDI/AN17/SCK5/RF13
A7	EBIWE/AN34/RPC3/PMWR/RC3
A8	EBID12/AN10/RPC2/PMD12/RC2
A9	EBID10/AN4/RPB8/PMD10/RB8
A10	AN8/RPB3/RB3
A11	EBIA5/AN7/PMA5/RA5
A12	AN2/C1INB/RB4
A13	AN1/C2INB/RPB2/RB2
B1	D-
B2	Vusbava
В3	EBID4/AN18/PMD4/RE4
B4	VDDCORE
B5	AN30/C2IND/RPG8/SCL4/RG8
В6	VDDIO
B7	EBID5/AN12/RPC1/PMD5/RC1
B8	EBIOE/AN19/RPC4/PMRD/RC4
B9	PGEC1/AN9/RPB1/CTED1/RB1
B10	AN3/C2INA/RPB15/OCFB/RB15
B11	VREF-/CVREF-/AN27/RA9
B12	EBIA7/AN47/HLVDIN/RPB9/PMA7/RB9
B13	AN6/RB12
C1	D+
C2	Vss
C3	INT0/RH14
C4	EBID0/PMD0/RE0

Ball/Pin Number	Full Pin Name
C5	EBIA2/AN23/C2INC/RPG9/PMA2/RG9
C6	TDO/AN31/RPF12/RF12
C7	EBID7/AN15/PMD7/RE7
C8	AVss
C9	VDDCORE
C10	VREF+/CVREF+/AN28/RA10
C11	CVREFOUT/AN5/RPB10/RB10
C12	PGED1/AN0/RPB0/CTED2/RB0
C13	SOSCI/RPC13 ⁽⁶⁾ /RC13 ⁽⁶⁾
D1	TRD3/SDDATA3/SQID3/RA7
D2	TMS/SDCD/RA0
D3	USBID
D4	AN20/RH4
D5	AN13/C1INC/RPG7/SDA4/RG7
D6	AN26/RPE9/RE9
D7	PGEC2/RPB6/RB6
D8	AVss
D9	AVDD
D10	Vват
D11	AN45/RPB5/RB5
D12	PGED2/C1INA/AN46/RPB7/RB7
D13	SOSCO/RPC14 ⁽⁶⁾ /T1CK/RC14 ⁽⁶⁾
E1	TRD2/SDDATA2/SQID2/RG14
E2	TRD0/SDDATA0/SQID0/RG13
E3	TRD1/SDDATA1/SQID1/RG12
E4	TRCLK/SDCK/SQICLK/RA6
E5	AN14/C1IND/SCK2/RG6
E6	AN25/RPE8/RE8
E7	AN49/RB11
E8	GD20/EBIA22/RJ3

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 and Table 2 for the available peripherals and 12.4 "Peripheral Pin Select (PPS)" for restrictions.

- 2: Every I/O port pin (RAx-RKx) can be used as a change notification pin (CNAx-CNKx). See 12.0 "I/O Ports" for more information.
- 3: Shaded pins are 5V tolerant.
- 4: This pin must be tied to Vss through a 20k Ω resistor in devices without DDR.
- 5: This pin is a No Connect in devices without DDR.
- **6:** These pins are restricted to input functions only.

TABLE 5: PIN NAMES FOR 169-PIN DEVICES (CONTINUED)

169-PIN LFBGA (BOTTOM VIEW) PIC32MZ1025DAA169 PIC32MZ1025DAB169 PIC32MZ1064DAA169 PIC32MZ1064DAB169 PIC32MZ2025DAA169 PIC32MZ2025DAB169 PIC32MZ2064DAA169 PIC32MZ2064DAB169 PIC32MZ1025DAG169 PIC32MZ1025DAH169 PIC32MZ1064DAG169 PIC32MZ1064DAH169 A13 PIC32MZ2025DAG169 PIC32MZ2025DAH169 Polarity Indicator PIC32MZ2064DAG169 PIC32MZ2064DAH169

Ball/Pin Number	Full Pin Name
E9	AN22/RPD14/RD14
E10	AN29/SCK3/RB14
E11	TCK/AN24/RA1
E12	OSC1/CLKI/RC12
E13	OSC2/CLKO/RC15
F1	SDCMD/SQICS0/RPD4/RD4
F2	SQICS1/RPD5/RD5
F3	EBIA6/RPE5/PMA6/RE5
F4	DDRV _{REF} (5)
F5	Vss
F6	EBID6/AN16/PMD6/RE6
F7	AN48/CTPLS/RB13
F8	GD18/EBIBS1/RJ10
F9	GD9/EBIBS0/RJ12
F10	EBIRDY3/AN32/RJ2
F11	AN33/SCK6/RD15
F12	HSYNC/EBICS1/RJ5
F13	VSYNC/EBICS0/RJ4
G1	SCK1/RD1
G2	GD10/EBIA14/RPD2/PMA14/PMCS1/RD2
G3	GD11/EBIA15/RPD3/PMA15/PMCS2/RD3
G4	VSS1V8
G5	Vss
G6	Vss
G7	Vss
G8	Vss
G9	VDDIO
G10	GD8/EBID11/PMD11/RJ14
G11	GCLK/EBICS2/RJ6
G12	GD0/EBID13/PMD13/RJ13
G13	GEN/EBICS3/RJ7
H1	GD2/EBID15/RPD9/PMD15/RD9

Ball/Pin Number	Full Pin Name
H2	SCK4/RD10
H3	RTCC/RPD0/RD0
H4	VSS1V8
H5	VDDR1V8 ⁽⁴⁾
H6	VDDR1V8 ⁽⁴⁾
H7	Vss
H8	Vss
H9	VDDIO
H10	GD13/EBIA18/RK4
H11	EBIA3/AN11/PMA3/RK2
H12	SDWP/EBIRP/RH2
H13	EBIA0/PMA0/RJ15
J1	GD7/EBIA12/RPD12/PMA12/RD12
J2	GD22/EBIA13/PMA13/RD13
J3	RPF8/SCL3/RF8
J4	VSS1V8
J5	VDDR1V8 ⁽⁴⁾
J6	VDDR1V8 ⁽⁴⁾
J7	Vss
J8	Vss
J9	VDDIO
J10	GD14/EBIA19/RK5
J11	EBIA1/AN38/PMA1/RK1
J12	EBIA4/AN36/PMA4/RH7
J13	AN35/RH3
K1	MCLR
K2	GD16/EBID8/RPF5/SCL5/PMD8/RF5
K3	GD5/EBIA10/RPF1/PMA10/RF1
K4	VSS1V8
K5	VDDR1V8 ⁽⁴⁾
K6	VDDR1V8 ⁽⁴⁾
K7	Vss

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 and Table 2 for the available peripherals and 12.4 "Peripheral Pin Select (PPS)" for restrictions.

- 2: Every I/O port pin (RAx-RKx) can be used as a change notification pin (CNAx-CNKx). See 12.0 "I/O Ports" for more information.
- 3: Shaded pins are 5V tolerant.
- 4: This pin must be tied to Vss through a 20k Ω resistor in devices without DDR.
- 5: This pin is a No Connect in devices without DDR.
- **6:** These pins are restricted to input functions only.

TABLE 5: PIN NAMES FOR 169-PIN DEVICES (CONTINUED)

Ball/Pin Number	Full Pin Name
K8	Vss
K9	VDDIO
K10	EMDIO/RJ1
K11	ETXEN/RPD6/RD6
K12	GD23/EBIA16/RK0
K13	EBIRDY2/AN37/RH11
L1	GD6/EBIA11/RPF0/PMA11/RF0
L2	GD21/EBIA23/RH15
L3	GD17/EBID9/RPF4/SDA5/PMD9/RF4
L4	VSS1V8
L5	VSS1V8
L6	VDDIO
L7	VDDIO
L8	VDDCORE
L9	VDDIO
L10	ETXERR/RJ0
L11	GD1/EBID14/PMD14/RA4
L12	SCL2/RA2
L13	GD12/EBIA17/RK3
M1	ERXERR/RPF3/RF3
M2	GD4/EBIA9/RPG1/PMA9/RG1
M3	EBID3/RPE3/PMD3/RE3
M4	ERXD1/RH5

Ball/Pin Number	Full Pin Name
M5	ERXDV/ECRSDV/RH13
M6	ECOL/RH10
M7	ETXD3/RH1
M8	ETXD2/RH0
M9	ETXD1/RJ9
M10	ETXCLK/RPD7/RD7
M11	RPA14/SCL1/RA14
M12	GD19/EBIA21/RK7
M13	GD15/EBIA20/RK6
N1	VDDCORE
N2	GD3/EBIA8/RPG0/PMA8/RG0
N3	EBID2/PMD2/RE2
N4	ERXD2/RH6
N5	ECRS/RH12
N6	ERXD3/RH9
N7	ERXD0/RH8
N8	ERXCLK/EREFCLK/RJ11
N9	ETXD0/RJ8
N10	EMDC/RPD11/RD11
N11	RPA15/SDA1/RA15
N12	EBIRDY1/SDA2/RA3
N13	No Connect

- Note 1: The RPn pins can be used by remappable peripherals. See Table 1 and Table 2 for the available peripherals and 12.4 "Peripheral Pin Select (PPS)" for restrictions.
 - 2: Every I/O port pin (RAx-RKx) can be used as a change notification pin (CNAx-CNKx). See 12.0 "I/O Ports" for more information.
 - 3: Shaded pins are 5V tolerant.
 - 4: This pin must be tied to Vss through a 20k Ω resistor in devices without DDR.
 - **5**: This pin is a No Connect in devices without DDR.
 - **6:** These pins are restricted to input functions only.

TABLE 6: **PIN NAMES FOR 176-PIN DEVICES**

176-PIN LQFP (TOP VIEW)

PIC32MZ1025DAA176

PIC32MZ1025DAB176

PIC32MZ1064DAA176

PIC32MZ1064DAB176

PIC32MZ2025DAA176

PIC32MZ2025DAB176

PIC32MZ2064DAA176

PIC32MZ2064DAB176

PIC32MZ1025DAG176

PIC32MZ1025DAH176

PIC32MZ1064DAG176

PIC32MZ1064DAH176 PIC32MZ2025DAG176

PIC32MZ2025DAH176

PIC32MZ2064DAG176

PIC32MZ2064DAH176

	E H B' Maria
Pin Number	Full Pin Name
1	VREF-/CVREF-/AN27/RA9
2	VREF+/CVREF+/AN28/RA10
3	AVDD
4	AVDD
5	AVss
6	AVss
7	AN3/C2INA/RPB15/OCFB/RB15
8	AN8/RPB3/RB3
9	AN48/CTPLS/RB13
10	EBID10/AN4/RPB8/PMD10/RB8
11	PGEC1/AN9/RPB1/CTED1/RB1
12	AN49/RB11
13	PGEC2/RPB6/RB6
14	EBID12/AN10/RPC2/PMD12/RC2
15	EBIWE/AN34/RPC3/PMWR/RC3
16	EBIOE/AN19/RPC4/PMRD/RC4
17	EBID5/AN12/RPC1/PMD5/RC1
18	VDDCORE
19	VDDIO
20	No Connect
21	Vss
22	Vss
23	EBID6/AN16/PMD6/RE6
24	EBID7/AN15/PMD7/RE7
25	AN25/RPE8/RE8
26	AN26/RPE9/RE9
27	TDO/AN31/RPF12/RF12
28	TDI/AN17/SCK5/RF13
29	Vss
30	AN14/C1IND/SCK2/RG6
31	AN13/C1INC/RPG7/SDA4/RG7
32	AN30/C2IND/RPG8/SCL4/RG8
33	EBIA2/AN23/C2INC/RPG9/PMA2/RG9
34	AN21/RG15
35	AN20/RH4
36	EBID1/AN39/PMD1/RE1

Pin Number	Full Pin Name
37	Vss
38	VDDIO
39	VDDCORE
40	EBID0/PMD0/RE0
41	RPF2/SDA3/RF2
42	INT0/RH14
43	EBID4/AN18/PMD4/RE4
44	No Connect
45	VBUS
46	VUSB3V3
47	VUSB3V3
48	Vss
49	Vss
50	D-
51	D+
52	USBID
53	TMS/SDCD/RA0
54	TRCLK/SDCK/SQICLK/RA6
55	TRD3/SDDATA3/SQID3/RA7
56	TRD1/SDDATA1/SQID1/RG12
57	VDDR1V8 ⁽⁵⁾
58	VDDR1V8 ⁽⁵⁾
59	VDDR1V8 ⁽⁵⁾
60	VDDR1V8 ⁽⁵⁾
61	VDDR1V8 ⁽⁵⁾
62	VDDR1V8 ⁽⁵⁾
63	VDDR1V8 ⁽⁵⁾
64	TRD0/SDDATA0/SQID0/RG13
65	TRD2/SDDATA2/SQID2/RG14
66	DDRVREF ⁽⁶⁾
67	VDDR1V8 ⁽⁵⁾
68	VDDR1V8 ⁽⁵⁾
69	EBIA6/RPE5/PMA6/RE5
70	SDCMD/SQICS0/RPD4/RD4
71	SQICS1/RPD5/RD5
72	VDDR1V8 ⁽⁵⁾

- The RPn pins can be used by remappable peripherals. See Table 1 and Table 3 for the available peripherals and 12.4 "Peripheral Pin Note 1: Select (PPS)" for restrictions.
 - Every I/O port pin (RAx-RKx) can be used as a change notification pin (CNAx-CNKx). See 12.0 "I/O Ports" for more information. 2:
 - Shaded pins are 5V tolerant. 3:
 - The metal plane at the bottom of the device is internally tied to Vss1v8 and should be connected to 1.8V ground externally. 4:
 - This pin must be tied to Vss through a 20k Ω resistor in devices without DDR.
 - This pin is a No Connect in devices without DDR.
 - These pins are restricted to input functions only.

TABLE 6: PIN NAMES FOR 176-PIN DEVICES (CONTINUED)

176-PIN LQFP (TOP VIEW)

PIC32MZ1025DAA176

PIC32MZ1025DAB176

PIC32MZ1064DAA176

PIC32MZ1064DAB176

PIC32MZ2025DAA176

PIC32MZ2025DAB176

PIC32MZ2064DAA176

PIC32MZ2064DAB176

PIC32MZ1025DAG176

PIC32MZ1025DAH176

PIC32MZ1064DAG176

PIC32MZ1064DAH176

PIC32MZ2025DAG176

PIC32MZ2025DAH176

PIC32MZ2064DAG176

PIC32MZ2064DAH176

73 SCK1/RD1 74 GD10/EBIA14/RPD2/PMA14/PMCS1/RD2 75 GD11/EBIA15/RPD3/PMA15/PMCS2/RD3 76 GD2/EBID15/RPD9/PMD15/RD9 77 SCK4/RD10 78 VDDR1v8 ⁽⁶⁾ 79 RTCC/RPD0/RD0 80 GD7/EBIA12/RPD12/PMA12/RD12 81 GD22/EBIA13/PMA13/RD13 82 RPF8/SCL3/RF8 83 Vss 84 VDDCORE 85 MCLR 86 VDDI0 87 Vss 88 No Connect 89 GD16/EBID8/RPF5/SCL5/PMD8/RF5 90 GD5/EBIA10/RPF1/PMA10/RF1	
75 GD11/EBIA15/RPD3/PMA15/PMCS2/RD3 76 GD2/EBID15/RPD9/PMD15/RD9 77 SCK4/RD10 78 VDDR1V8 ⁽⁵⁾ 79 RTCC/RPD0/RD0 80 GD7/EBIA12/RPD12/PMA12/RD12 81 GD22/EBIA13/PMA13/RD13 82 RPF8/SCL3/RF8 83 Vss 84 VDDCORE 85 MCLR 86 VDDIO 87 VSS 88 No Connect 89 GD16/EBID8/RPF5/SCL5/PMD8/RF5	
76 GD2/EBID15/RPD9/PMD15/RD9 77 SCK4/RD10 78 VDDR1V8 ⁽⁵⁾ 79 RTCC/RPD0/RD0 80 GD7/EBIA12/RPD12/PMA12/RD12 81 GD22/EBIA13/PMA13/RD13 82 RPF8/SCL3/RF8 83 Vss 84 VDDCORE 85 MCLR 86 VDDIO 87 Vss 88 No Connect 89 GD16/EBID8/RPF5/SCL5/PMD8/RF5	
77 SCK4/RD10 78 VDDR1V8 ⁽⁵⁾ 79 RTCC/RPD0/RD0 80 GD7/EBIA12/RPD12/PMA12/RD12 81 GD22/EBIA13/PMA13/RD13 82 RPF8/SCL3/RF8 83 Vss 84 VDDCORE 85 MCLR 86 VDDIO 87 Vss 88 No Connect 89 GD16/EBID8/RPF5/SCL5/PMD8/RF5	
78	
79 RTCC/RPD0/RD0 80 GD7/EBIA12/RPD12/PMA12/RD12 81 GD22/EBIA13/PMA13/RD13 82 RPF8/SCL3/RF8 83 Vss 84 VDDCORE 85 MCLR 86 VDDIO 87 Vss 88 No Connect 89 GD16/EBID8/RPF5/SCL5/PMD8/RF5	
80 GD7/EBIA12/RPD12/PMA12/RD12 81 GD22/EBIA13/PMA13/RD13 82 RPF8/SCL3/RF8 83 Vss 84 VDDCORE 85 MCLR 86 VDDIO 87 Vss 88 No Connect 89 GD16/EBID8/RPF5/SCL5/PMD8/RF5	
81 GD22/EBIA13/PMA13/RD13 82 RPF8/SCL3/RF8 83 Vss 84 VDDCORE 85 MCLR 86 VDDIO 87 Vss 88 No Connect 89 GD16/EBID8/RPF5/SCL5/PMD8/RF5	
82 RPF8/SCL3/RF8 83 Vss 84 VDDCORE 85 MCLR 86 VDDIO 87 Vss 88 No Connect 89 GD16/EBID8/RPF5/SCL5/PMD8/RF5	
83	
84 VDDCORE 85 MCLR 86 VDDIO 87 Vss 88 No Connect 89 GD16/EBID8/RPF5/SCL5/PMD8/RF5	
85 MCLR 86 VDDIO 87 Vss 88 No Connect 89 GD16/EBID8/RPF5/SCL5/PMD8/RF5	
86 VDDIO 87 VSS 88 No Connect 89 GD16/EBID8/RPF5/SCL5/PMD8/RF5	
87 Vss 88 No Connect 89 GD16/EBID8/RPF5/SCL5/PMD8/RF5	
88 No Connect 89 GD16/EBID8/RPF5/SCL5/PMD8/RF5	
89 GD16/EBID8/RPF5/SCL5/PMD8/RF5	
00 CDE/EDIA40/DDE4/DMA40/DE4	
90 GD5/EBIA10/RPF1/PMA10/RF1	
91 GD6/EBIA11/RPF0/PMA11/RF0	
92 GD21/EBIA23/RH15	
93 ERXERR/RPF3/RF3	
94 Vss	
95 GD4/EBIA9/RPG1/PMA9/RG1	
96 GD3/EBIA8/RPG0/PMA8/RG0	
97 GD17/EBID9/RPF4/SDA5/PMD9/RF4	
98 EBID3/RPE3/PMD3/RE3	
99 EBID2/PMD2/RE2	
100 ERXD1/RH5	
101 ERXD2/RH6	
102 VDDIO	
103 Vss	
104 ERXDV/ECRSDV/RH13	
105 ECRS/RH12	
106 ECOL/RH10	
107 ERXD3/RH9	
108 ERXD0/RH8 Note 1: The RPn pins can be used by remappable periphera	

Pin Number	Full Pin Name
109	ETXD3/RH1
110	ETXD2/RH0
111	ERXCLK/EREFCLK/RJ11
112	ETXD1/RJ9
113	ETXD0/RJ8
114	EMDIO/RJ1
115	Vss
116	VDDCORE
117	VDDIO
118	ETXERR/RJ0
119	EMDC/RPD11/RD11
120	ETXCLK/RPD7/RD7
121	ETXEN/RPD6/RD6
122	Vss
123	Vss
124	VDDIO
125	RPA15/SDA1/RA15
126	RPA14/SCL1/RA14
127	GD1/EBID14/PMD14/RA4
128	EBIRDY1/SDA2/RA3
129	SCL2/RA2
130	GD19/EBIA21/RK7
131	GD15/EBIA20/RK6
132	GD14/EBIA19/RK5
133	GD13/EBIA18/RK4
134	GD12/EBIA17/RK3
135	EBIA3/AN11/PMA3/RK2
136	EBIA1/AN38/PMA1/RK1
137	GD23/EBIA16/RK0
138	EBIRDY2/AN37/RH11
139	EBIA4/AN36/PMA4/RH7
140	AN35/RH3
141	SDWP/EBIRP/RH2
142	EBIA0/PMA0/RJ15
143	GD8/EBID11/PMD11/RJ14
144	GD0/EBID13/PMD13/RJ13

- Note 1: The RPn pins can be used by remappable peripherals. See Table 1 and Table 3 for the available peripherals and 12.4 "Peripheral Pin Select (PPS)" for restrictions.
 - 2: Every I/O port pin (RAx-RKx) can be used as a change notification pin (CNAx-CNKx). See 12.0 "I/O Ports" for more information.
 - 3: Shaded pins are 5V tolerant.
 - 4: The metal plane at the bottom of the device is internally tied to Vss1v8 and should be connected to 1.8V ground externally.
 - 5: This pin must be tied to Vss through a 20k Ω resistor in devices without DDR.
 - 6: This pin is a No Connect in devices without DDR.
 - 7: These pins are restricted to input functions only.

TABLE 6: PIN NAMES FOR 176-PIN DEVICES (CONTINUED)

176-PIN LQFP (TOP VIEW) PIC32MZ1025DAA176 PIC32MZ1025DAB176

PIC32MZ1064DAA176

PIC32MZ1064DAB176

PIC32MZ2025DAA176

PIC32MZ2025DAB176

PIC32MZ2064DAA176

PIC32MZ2064DAB176

PIC32MZ1025DAG176

PIC32MZ1025DAH176

PIC32MZ1064DAG176 PIC32MZ1064DAH176

PIC32MZ2025DAG176

PIC32MZ2025DAH176

PIC32MZ2064DAG176

PIC32MZ2064DAH176

Pin Number	Full Pin Name
145	GD9/EBIBS0/RJ12
146	GD18/EBIBS1/RJ10
147	GEN/EBICS3/RJ7
148	GCLK/EBICS2/RJ6
149	HSYNC/EBICS1/RJ5
150	VSYNC/EBICS0/RJ4
151	GD20/EBIA22/RJ3
152	EBIRDY3/AN32/RJ2
153	Vss
154	Vss
155	VDDIO
156	VDDIO
157	AN33/SCK6/RD15
158	AN22/RPD14/RD14
159	AN29/SCK3/RB14
160	TCK/AN24/RA1

Pin Number	Full Pin Name
161	SOSCO/RPC14 ⁽⁷⁾ /T1CK/RC14 ⁽⁷⁾
162	SOSCI/RPC13 ⁽⁷⁾ /RC13 ⁽⁷⁾
163	OSC2/CLKO/RC15
164	OSC1/CLKI/RC12
165	VDDIO
166	VBAT
167	AN45/RPB5/RB5
168	AN5/RPB10/RB10
169	PGED1/AN0/RPB0/CTED2/RB0
170	PGED2/C1INA/AN46/RPB7/RB7
171	AN6/RB12
172	AN1/C2INB/RPB2/RB2
173	EBIA7/AN47/HLVDIN/RPB9/PMA7/RB9
174	EBIA5/AN7/PMA5/RA5
175	AN2/C1INB/RB4
176	No Connect

- Note 1: The RPn pins can be used by remappable peripherals. See Table 1 and Table 3 for the available peripherals and 12.4 "Peripheral Pin Select (PPS)" for restrictions.
 - 2: Every I/O port pin (RAx-RKx) can be used as a change notification pin (CNAx-CNKx). See 12.0 "I/O Ports" for more information.
 - 3: Shaded pins are 5V tolerant.
 - 4: The metal plane at the bottom of the device is internally tied to Vss1v8 and should be connected to 1.8V ground externally.
 - 5: This pin must be tied to Vss through a 20k Ω resistor in devices without DDR.
 - 6: This pin is a No Connect in devices without DDR.
 - 7: These pins are restricted to input functions only.

TABLE 7: PIN NAMES FOR 288-PIN DEVICES

Ball/Pin Number	Full Pin Name
A1	No Connect
A2	DDRUDQS
A3	DDRDM1
A4	D-
A5	Vss
A6	INT0/RH14
A7	RPF2/SDA3/RF2
A8	AN21/RG15
A9	AN14/C1IND/SCK2/RG6
A10	TDI/AN17/SCK5/RF13
A11	TDO/AN31/RPF12/RF12
A12	EBID5/AN12/RPC1/PMD5/RC1
A13	EBIOE/AN19/RPC4/PMRD/RC4
A14	PGEC1/AN9/RPB1/CTED1/RB1
A15	EBID10/AN4/RPB8/PMD10/RB8
A16	AN8/RPB3/RB3
A17	VREF-/CVREF-/AN27/RA9
A18	No Connect
B1	No Connect
B2	DDRUDQS
В3	DDRDQ14
B4	D+
B5	Vss
В6	EBID4/AN18/PMD4/RE4
B7	EBID0/PMD0/RE0
B8	AN20/RH4
В9	EBIA2/AN23/C2INC/RPG9/PMA2/RG9
B10	AN26/RPE9/RE9
B11	EBID7/AN15/PMD7/RE7
B12	No Connect
B13	EBIWE/AN34/RPC3/PMWR/RC3
B14	PGEC2/RPB6/RB6
B15	AN48/CTPLS/RB13
B16	AN3/C2INA/RPB15/OCFB/RB15

Ball/Pin Number	Full Pin Name
B17	AN2/C1INB/RB4
B18	EBIA5/AN7/PMA5/RA5
C1	DDRDQ8
C2	DDRDQ15
C3	DDRDQ9
C4	Vusb3v3
C5	VBUS
C6	USBID
C7	Vss
C8	No Connect
C9	AN30/C2IND/RPG8/SCL4/RG8
C10	AN25/RPE8/RE8
C11	EBID6/AN16/PMD6/RE6
C12	No Connect
C13	EBID12/AN10/RPC2/PMD12/RC2
C14	AN49/RB11
C15	VREF+/CVREF+/AN28/RA10
C16	VDDIO
C17	AN1/C2INB/RPB2/RB2
C18	AN6/RB12
D1	DDRDQ13
D2	DDRDQ10
D3	Vss1v8
D4	TMS/SDCD/RA0
D5	VUSB3V3
D6	No Connect
D7	VDDCORE
D8	EBID1/AN39/PMD1/RE1
D9	AN13/C1INC/RPG7/SDA4/RG7
D10	Vss
D11	Vss
D12	Vss
D13	Vss
D14	VDDCORE

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 and Table 4 for the available peripherals and 12.4 "Peripheral Pin Select (PPS)" for restrictions.

- 2: Every I/O port pin (RAx-RKx) can be used as a change notification pin (CNAx-CNKx). See 12.0 "I/O Ports" for more information.
- 3: Shaded pins are 5V tolerant.
- 4: This pin must be tied to Vss through a 20k Ω resistor when DDR is not connected in the system.
- 5: This pin is a No Connect when DDR is not connected in the system.
- 6: These pins are restricted to input functions only.

TABLE 7: PIN NAMES FOR 288-PIN DEVICES (CONTINUED)

Ball/Pin Number	Full Pin Name
D15	VDDIO
D16	VDDIO
D17	PGED2/C1INA/AN46/RPB7/RB7
D18	PGED1/AN0/RPB0/CTED2/RB0
E1	DDRLDQS
E2	DDRLDQS
E3	DDRDQ12
E4	TRCLK/SDCK/SQICLK/RA6
E15	VDDIO
E16	EBIA7/AN47/HLVDIN/RPB9/PMA7/RB9
E17	AN45/RPB5/RB5
E18	CVREFOUT/AN5/RPB10/RB10
F1	DDRDQ0
F2	DDRDQ7
F3	DDRDQ11
F4	TRD3/SDDATA3/SQID3/RA7
F6	Vss1v8
F7	Vss1v8
F8	VSS1V8
F9	Vss
F10	Vss
F11	VDDIO
F12	AVss
F13	AVDD
F15	VDDIO
F16	VBAT
F17	No Connect
F18	No Connect
G1	DDRDQ3
G2	DDRDQ4
G3	DDRDM0
G4	TRD1/SDDATA1/SQID1/RG12
G6	VSS1V8
G7	VSS1V8

Ball/Pin	Full Pin Name
Number	
G8	VSS1V8
G9	VSS1V8
G10	Vss
G11	VDDIO
G12	AVss
G13	AVDD
G15	VDDIO
G16	No Connect
G17	OSC1/CLKI/RC12
G18	OSC2/CLKO/RC15
H1	DDRDQ2
H2	DDRDQ5
H3	DDRDQ6
H4	TRD0/SDDATA0/SQID0/RG13
H6	VDDR1V8 ⁽⁴⁾
H7	VDDR1V8 ⁽⁴⁾
H8	VDDR1V8 ⁽⁴⁾
H9	VSS1V8
H10	Vss
H11	VDDIO
H12	VDDIO
H13	VDDIO
H15	VDDIO
H16	TCK/AN24/RA1
H17	SOSCI/RPC13 ⁽⁶⁾ /RC13 ⁽⁶⁾
H18	SOSCO/RPC14 ⁽⁶⁾ /T1CK/RC14 ⁽⁶⁾
J1	DDRVREF ⁽⁵⁾
J2	No Connect
J3	DDRDQ1
J4	TRD2/SDDATA2/SQID2/RG14
J6	VDDR1V8 ⁽⁴⁾
J7	VDDR1V8 ⁽⁴⁾
J8	VDDR1V8 ⁽⁴⁾
J9	VSS1V8

G7 | VSS1V8 | J9 | VSS1V8

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 and Table 4 for the available peripherals and 12.4 "Peripheral Pin Select (PPS)" for restrictions.

- 2: Every I/O port pin (RAx-RKx) can be used as a change notification pin (CNAx-CNKx). See 12.0 "I/O Ports" for more information.
- 3: Shaded pins are 5V tolerant.
- 4: This pin must be tied to Vss through a 20k Ω resistor when DDR is not connected in the system.
- 5: This pin is a No Connect when DDR is not connected in the system.
- 6: These pins are restricted to input functions only.

TABLE 7: PIN NAMES FOR 288-PIN DEVICES (CONTINUED)

Ball/Pin Number	Full Pin Name
J10	VDDIO
J11	Vss
J12	Vss
J13	Vss
J15	VDDIO
J16	AN33/SCK6/RD15
J17	AN29/SCK3/RB14
J18	AN22/RPD14/RD14
K1	DDRCK
K2	DDRCK
K3	EBIA6/RPE5/PMA6/RE5
K4	SDCMD/SQICS0/RPD4/RD4
K6	VDDR1V8 ⁽⁴⁾
K7	VDDR1V8 ⁽⁴⁾
K8	VDDR1V8 ⁽⁴⁾
K9	VSS1V8
K10	VDDIO
K11	Vss
K12	Vss
K13	Vss
K15	Vss
K16	EBIRDY3/AN32/RJ2
K17	GD20/EBIA22/RJ3
K18	VSYNC/EBICS0/RJ4
L1	DDRWE
L2	DDRCKE
L3	DDRA1
L4	SQICS1/RPD5/RD5
L6	VDDR1V8 ⁽⁴⁾
L7	VDDR1V8 ⁽⁴⁾
L8	VDDR1V8 ⁽⁴⁾
L9	VSS1V8
L10	Vss
L11	VDDIO

Ball/Pin Number	Full Pin Name
L12	VDDIO
L13	Vss
L15	Vss
L16	GEN/EBICS3/RJ7
L17	GCLK/EBICS2/RJ6
L18	HSYNC/EBICS1/RJ5
M1	DDRRAS
M2	DDRBA0
M3	DDRBA1
M4	SCK1/RD1
M6	Vss1v8
M7	Vss1v8
M8	Vss1v8
M9	Vss1v8
M10	Vss
M11	Vss
M12	VDDIO
M13	VDDIO
M15	VDDIO
M16	GD0/EBID13/PMD13/RJ13
M17	GD9/EBIBS0/RJ12
M18	GD18/EBIBS1/RJ10
N1	DDRODT
N2	DDRCS0
N3	DDRA2
N4	GD22/EBIA13/PMA13/RD13
N6	VSS1V8
N7	Vss1v8
N8	VSS1V8
N9	VSS1V8
N10	Vss
N11	Vss
N12	VDDIO
N13	VDDIO

L11 VDDIO
 Note 1: The RPn pins can be used by remappable peripherals. See Table 1 and Table 4 for the available peripherals and 12.4 "Peripheral Pin Select (PPS)" for restrictions.

- 2: Every I/O port pin (RAx-RKx) can be used as a change notification pin (CNAx-CNKx). See 12.0 "I/O Ports" for more information.
- 3: Shaded pins are 5V tolerant.
- 4: This pin must be tied to Vss through a 20k Ω resistor when DDR is not connected in the system.
- 5: This pin is a No Connect when DDR is not connected in the system.
- 6: These pins are restricted to input functions only.

TABLE 7: PIN NAMES FOR 288-PIN DEVICES (CONTINUED)

Ball/Pin Number	Full Pin Name
N15	EBIA4/AN36/PMA4/RH7
N16	SDWP/EBIRP/RH2
N17	EBIA0/PMA0/RJ15
N18	GD8/EBID11/PMD11/RJ14
P1	DDRA10
P2	DDRCAS
P3	DDRA4
P4	RPF8/SCL3/RF8
P15	GD13/EBIA18/RK4
P16	GD23/EBIA16/RK0
P17	EBIRDY2/AN37/RH11
P18	AN35/RH3
R1	DDRA0
R2	DDRA3
R3	DDRA9
R4	VSS1V8
R5	MCLR
R6	GD10/EBIA14/RPD2/PMA14/PMCS1/RD2
R7	Vss
R8	Vss
R9	VDDIO
R10	VDDIO
R11	VDDCORE
R12	VDDIO
R13	VDDIO
R14	VDDIO
R15	GD14/EBIA19/RK5
R16	GD12/EBIA17/RK3
R17	EBIA3/AN11/PMA3/RK2
R18	EBIA1/AN38/PMA1/RK1
T1	DDRA5
T2	DDRA7
T3	DDRA12
T4	DDRA14

Ball/Pin Number	Full Pin Name								
T5	No Connect								
T6	GD11/EBIA15/RPD3/PMA15/PMCS2/RD3								
T7	GD16/EBID8/RPF5/SCL5/PMD8/RF5								
Т8	GD4/EBIA9/RPG1/PMA9/RG1								
Т9	EBID3/RPE3/PMD3/RE3								
T10	ERXD2/RH6								
T11	ECOL/RH10								
T12	ETXD3/RH1								
T13	ETXD1/RJ9								
T14	No Connect								
T15	ETXCLK/RPD7/RD7								
T16	RPA14/SCL1/RA14								
T17	GD19/EBIA21/RK7								
T18	GD15/EBIA20/RK6								
U1	DDRA6								
U2	DDRA8								
U3	DDRA13								
U4	DDRBA2								
U5	GD7/EBIA12/RPD12/PMA12/RD12								
U6	GD2/EBID15/RPD9/PMD15/RD9								
U7	GD5/EBIA10/RPF1/PMA10/RF1								
U8	ERXERR/RPF3/RF3								
U9	GD17/EBID9/RPF4/SDA5/PMD9/RF4								
U10	ERXD1/RH5								
U11	ECRS/RH12								
U12	ERXD0/RH8								
U13	ERXCLK/EREFCLK/RJ11								
U14	EMDIO/RJ1								
U15	EMDC/RPD11/RD11								
U16	RPA15/SDA1/RA15								
U17	EBIRDY1/SDA2/RA3								
U18	SCL2/RA2								
V1	No Connect								
V2	DDRA11								

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 and Table 4 for the available peripherals and 12.4 "Peripheral Pin Select (PPS)" for restrictions.

- 2: Every I/O port pin (RAx-RKx) can be used as a change notification pin (CNAx-CNKx). See 12.0 "I/O Ports" for more information.
- 3: Shaded pins are 5V tolerant.
- 4: This pin must be tied to Vss through a 20k Ω resistor when DDR is not connected in the system.
- This pin is a No Connect when DDR is not connected in the system.
- 6: These pins are restricted to input functions only.

TABLE 7: PIN NAMES FOR 288-PIN DEVICES (CONTINUED)

Ball/Pin Number	Full Pin Name							
V3	DDRA15							
V4	VDDCORE							
V5	RTCC/RPD0/RD0							
V6	SCK4/RD10							
V7	GD6/EBIA11/RPF0/PMA11/RF0							
V8	GD21/EBIA23/RH15							
V9	GD3/EBIA8/RPG0/PMA8/RG0							
V10	EBID2/PMD2/RE2							

Ball/Pin Number	Full Pin Name
V11	ERXDV/ECRSDV/RH13
V12	ERXD3/RH9
V13	ETXD2/RH0
V14	ETXD0/RJ8
V15	ETXERR/RJ0
V16	ETXEN/RPD6/RD6
V17	GD1/EBID14/PMD14/RA4
V18	No Connect

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 and Table 4 for the available peripherals and 12.4 "Peripheral Pin Select (PPS)" for restrictions.

- 2: Every I/O port pin (RAx-RKx) can be used as a change notification pin (CNAx-CNKx). See 12.0 "I/O Ports" for more information.
- 3: Shaded pins are 5V tolerant.
- 4: This pin must be tied to Vss through a 20k Ω resistor when DDR is not connected in the system.
- 5: This pin is a No Connect when DDR is not connected in the system.
- 6: These pins are restricted to input functions only.

Table of Contents

1.0	Device Overview	17
2.0	Guidelines for Getting Started with 32-bit Microcontrollers	39
3.0	CPU	45
4.0	Memory Organization	
5.0	Flash Program Memory	105
6.0	Resets	
7.0	CPU Exceptions and Interrupt Controller	123
8.0	Oscillator Configuration	
9.0	Prefetch Module	
10.0		
11.0		
12.0	I/O Ports	251
13.0	Timer1	279
14.0	Timer2/3, Timer4/5, Timer6/7, and Timer8/9	283
15.0		
16.0	Output Compare	293
	Deadman Timer (DMT)	
	Watchdog Timer (WDT)	
	Deep Sleep Watchdog Timer (DSWDT)	
20.0	Real-Time Clock and Calendar (RTCC)	313
	Serial Peripheral Interface (SPI) and Inter-IC Sound (I ² S)	
22.0	Serial Quad Interface (SQI)	333
	Inter-Integrated Circuit (I ² C)	
	Universal Asynchronous Receiver Transmitter (UART)	
	Parallel Master Port (PMP)	
	External Bus Interface (EBI)	
	Crypto Engine	
	Random Number Generator (RNG)	
29.0	12-bit High-Speed Successive Approximation Register (SAR) Analog-to-Digital Converter (ADC)	427
	Controller Area Network (CAN)	
	Ethernet Controller	
	Comparator	
	Comparator Voltage Reference (CVREF)	
	High/Low-Voltage Detect (HLVD)	
	Charge Time Measurement Unit (CTMU)	
	Graphics LCD (GLCD) Controller	
	2-D Graphics Processing Unit (GPU)	
	DDR2 SDRAM Controller	
	Secure Digital Host Controller (SDHC)	
	Power-Saving Features	
	Special Features	
	Instruction Set	
	Development Support	
	Electrical Characteristics	
	AC and DC Characteristics Graphs	
	Packaging Information	
Index	K	799

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Frrata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- · Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

Referenced Sources

This device data sheet is based on the following individual sections of the "PIC32 Family Reference Manual". These documents should be considered as the general reference for the operation of a particular module or device feature.

Note: To access the following documents, refer to the *Documentation > Reference Manuals* section of the Microchip PIC32 website: http://www.microchip.com/pic32.

- Section 1. "Introduction" (DS60001127)
- Section 7. "Resets" (DS60001118)
- Section 8. "Interrupt Controller" (DS60001108)
- Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114)
- Section 10. "Power-Saving Features" (DS60001130)
- Section 12. "I/O Ports" (DS60001120)
- Section 13. "Parallel Master Port (PMP)" (DS60001128)
- Section 14. "Timers" (DS60001105)
- Section 15. "Input Capture" (DS60001122)
- Section 16. "Output Compare" (DS60001111)
- Section 19. "Comparator" (DS60001110)
- Section 20. "Comparator Voltage Reference (CVREF)" (DS60001109)
- Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107)
- Section 22. "12-bit High-Speed Successive Approximation Register (SAR) Analog-to-Digital Converter (ADC)" (DS60001344)
- Section 23. "Serial Peripheral Interface (SPI)" (DS60001106)
- Section 24. "Inter-Integrated Circuit (I²C)" (DS60001116)
- Section 29. "Real-Time Clock and Calendar (RTCC)" (DS60001125)
- Section 31. "Direct Memory Access (DMA) Controller" (DS60001117)
- Section 32. "Configuration" (DS60001124)
- Section 33. "Programming and Diagnostics" (DS60001129)
- Section 34. "Controller Area Network (CAN)" (DS60001154)
- Section 35. "Ethernet Controller" (DS60001155)
- Section 37. "Charge Time Measurement Unit (CTMU)" (DS60001167)
- Section 38. "High/Low Voltage Detect (HLVD) (DS60001408)
- Section 41. "Prefetch Module for Devices with L1 CPU Cache" (DS60001183)
- Section 42. "Oscillators with Enhanced PLL" (DS60001250)
- Section 46. "Serial Quad Interface (SQI)" (DS60001244)
- Section 47. "External Bus Interface (EBI)" (DS60001245)
- Section 48. "Memory Organization and Permissions" (DS60001214)
- Section 49. "Crypto Engine (CE) and Random Number Generator (RNG)" (DS60001246)
- Section 50. "CPU for Devices with MIPS32® microAptiv™ and M-Class Cores" (DS60001192)
- Section 51. "High-Speed USB with On-The-Go (OTG)" (DS60001326)
- Section 52. "Flash Program Memory with Support for Live Update" (DS60001193)
- Section 54. "Graphics LCD (GLCD) Controller" (DS60001379)
- Section 55. "DDR SDRAM Controller" (DS60001321)
- Section 57. "Secure Digital Host Controller (SDHC)" (DS60001334)

1.0 DEVICE OVERVIEW

Note:

This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the documents listed in the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

This data sheet contains device-specific information for the PIC32MZ DA family of devices.

Figure 1-1 illustrates a general block diagram of the core and peripheral modules in the PIC32MZ DA family of devices.

Table 1-1 through Table 1-24 list the pinout I/O descriptions for the pins shown in the device pin tables (see Table 5 through Table 7).

FIGURE 1-1: PIC32MZ DA FAMILY BLOCK DIAGRAM

TABLE 1-1: ADC PINOUT I/O DESCRIPTIONS

Dim	F	Pin Numbe	er	Dim	D. How	
Pin Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Pin Type	Buffer Type	Description
				Α		Digital Converter
AN0	C12	169	D18	I	Analog	Analog Input Channels
AN1	A13	172	C17	I	Analog	
AN2	A12	175	B17		Analog	
AN3	B10	7	B16		Analog	
AN4	A9	10	A15		Analog	
AN5	C11	168	E18	I	Analog	
AN6	B13	171	C18		Analog	
AN7	A11	174	B18	I	Analog	
AN8	A10	8	A16	ı	Analog	
AN9	В9	11	A14		Analog	
AN10	A8	14	C13	I	Analog	
AN11	H11	135	R17	I	Analog	
AN12	В7	17	A12	Ī	Analog	
AN13	D5	31	D9	I	Analog	
AN14	E5	30	A9		Analog	
AN15	C7	24	B11		Analog	
AN16	F6	23	C11		Analog	
AN17	A6	28	A10		Analog	
AN18	В3	43	В6		Analog	
AN19	В8	16	A13		Analog	
AN20	D4	35	В8	I	Analog	
AN21	A5	34	A8	I	Analog	
AN22	E9	158	J18	I	Analog	
AN23	C5	33	В9	I	Analog	
AN24	E11	160	H16	l	Analog	
AN25	E6	25	C10	ı	Analog	
AN26	D6	26	B10	I	Analog	
AN27	B11	1	A17	I	Analog	
AN28	C10	2	C15	l	Analog	
AN29	E10	159	J17	I	Analog	
AN30	B5	32	C9	I	Analog	
AN31	C6	27	A11	I	Analog	
AN32	F10	152	K16	I	Analog	
AN33	F11	157	J16	I	Analog	
AN34	A7	15	B13	I	Analog	
AN35	J13	140	P18	I	Analog	
AN36	J12	139	N15	I	Analog	
AN37	K13	138	P17	I	Analog	
AN38	J11	136	R18	I	Analog	
AN39	A4	36	D8	I	Analog	
AN45	D11	167	E17	I	Analog	
AN46	D12	170	D17	I	Analog	
AN47	B12	173	E16	I	Analog	
AN48	F7	9	B15	I	Analog	
AN49	E7	12 CMOS as	C14	I	Analog	Analog - Analog input

Legend: CMOS = CMOS-compatible input or output

ST = Schmitt Trigger input with CMOS levels

TTL = Transistor-transistor Logic input buffer

Analog = Analog input

O = Output

PPS = Peripheral Pin Select

P = Power

TABLE 1-2: OSCILLATOR PINOUT I/O DESCRIPTIONS

	Pin Number			Din	Duffer	
Pin Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Pin Type	Buffer Type	Description
					Osci	llators
CLKI	E12	164	G17	I		External clock source input. Always associated with OSC1 pin function.
CLKO	E13	163	G18	0		Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
OSC1	E12	164	G17	I	ST/CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.
OSC2	E13	163	G18	0		Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
SOSCI	C13	162	H17	I	ST/CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise.
SOSCO	D13	161	H18	0	ST/CMOS	32.768 low-power oscillator crystal output.
REFCLKI1	PPS	PPS	PPS	I	_	Reference Clock Generator Inputs 1-4
REFCLKI3	PPS	PPS	PPS	I	_	
REFCLKI4	PPS	PPS	PPS	I	_	
REFCLKO1	PPS	PPS	PPS	0	_	Reference Clock Generator Outputs 1-4
REFCLKO3	PPS	PPS	PPS	0	_	
REFCLKO4	PPS	PPS	PPS	0		

Legend: CMOS = CMOS-compatible input or output

ST = Schmitt Trigger input with CMOS levels

Analog = Analog input O = Output

P = Power I = Input

TTL = Transistor-transistor Logic input buffer

PPS = Peripheral Pin Select

TABLE 1-3: IC1 THROUGH IC9 PINOUT I/O DESCRIPTIONS

	Р	in Numbe	er	Din Buffer	Pin Buffer Type Type Description						
Pin Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Type		Description					
	Input Capture										
IC1	PPS	PPS	PPS	I	ST	Input Capture Inputs 1-9					
IC2	PPS	PPS	PPS	1	ST						
IC3	PPS	PPS	PPS	1	ST						
IC4	PPS	PPS	PPS	-	ST						
IC5	PPS	PPS	PPS		ST						
IC6	PPS	PPS	PPS		ST						
IC7	PPS	PPS	PPS	Ι	ST						
IC8	PPS	PPS	PPS	I	ST						
IC9	PPS	PPS	PPS	I	ST						

Legend: CMOS = CMOS-compatible input or output

ST = Schmitt Trigger input with CMOS levels

TTL = Transistor-transistor Logic input buffer

Analog = Analog input

O = Output

PPS = Peripheral Pin Select

P = Power I = Input

TABLE 1-4: OC1 THROUGH OC9 PINOUT I/O DESCRIPTIONS

Pin	F	Pin Numbe	r	Pin	Din Buffer	Buffer	
Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Type	Туре	Description	
					Output C	ompare	
OC1	PPS	PPS	PPS	0	_	Output Compare Outputs 1-9	
OC2	PPS	PPS	PPS	0	_		
OC3	PPS	PPS	PPS	0	_		
OC4	PPS	PPS	PPS	0	_		
OC5	PPS	PPS	PPS	0	_		
OC6	PPS	PPS	PPS	0	_		
OC7	PPS	PPS	PPS	0	_		
OC8	PPS	PPS	PPS	0	_		
OC9	PPS	PPS	PPS	0	_		
OCFA	PPS	PPS	PPS	I	ST	Output Compare Fault A Input	
OCFB	PPS	PPS	PPS		ST	Output Compare Fault B Input	

Legend: CMOS = CMOS-compatible input or output

ST = Schmitt Trigger input with CMOS levels

O = Output

Analog = Analog input

P = Power I = Input

TTL = Transistor-transistor Logic input buffer

PPS = Peripheral Pin Select

TABLE 1-5: **EXTERNAL INTERRUPTS PINOUT I/O DESCRIPTIONS**

Pin	F	Pin Numbe	r	Pin I	Buffer	
Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Type	Туре	Description
					External	Interrupts
INT0	C3	42	A6	1	ST	External Interrupt 0
INT1	PPS	PPS	PPS	1	ST	External Interrupt 1
INT2	PPS	PPS	PPS	1	ST	External Interrupt 2
INT3	PPS	PPS	PPS	I	ST	External Interrupt 3
INT4	PPS	PPS	PPS	I	ST	External Interrupt 4

Legend: CMOS = CMOS-compatible input or output

ST = Schmitt Trigger input with CMOS levels

Analog = Analog input O = Output

P = Power I = Input

TTL = Transistor-transistor Logic input buffer

PPS = Peripheral Pin Select

TABLE 1-6: PORTA THROUGH PORTK PINOUT I/O DESCRIPTIONS

Pin	F	in Numbe	r	Di-	Duffer	
Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Pin Type	Buffer Type	Description
					PC	DRTA
RA0	D2	53	D4	I/O	ST	PORTA is a bidirectional I/O port
RA1	E11	160	H16	I/O	ST	
RA2	L12	129	U18	I/O	ST	
RA3	N12	128	U17	I/O	ST	
RA4	L11	127	V17	I/O	ST	
RA5	A11	174	B18	I/O	ST	
RA6	E4	54	E4	I/O	ST	
RA7	D1	55	F4	I/O	ST	
RA9	B11	1	A17	I/O	ST	
RA10	C10	2	C15	I/O	ST	
RA14	M11	126	T16	I/O	ST	
RA15	N11	125	U16	I/O	ST	
					PC	DRTB
RB0	C12	169	D18	I/O	ST	PORTB is a bidirectional I/O port
RB1	В9	11	A14	I/O	ST	
RB2	A13	172	C17	I/O	ST	
RB3	A10	8	A16	I/O	ST	
RB4	A12	175	B17	I/O	ST	
RB5	D11	167	E17	I/O	ST	
RB6	D7	13	B14	I/O	ST	
RB7	D12	170	D17	I/O	ST	
RB8	A9	10	A15	I/O	ST	
RB9	B12	173	E16	I/O	ST	
RB10	C11	168	E18	I/O	ST	
RB11	E7	12	C14	I/O	ST	
RB12	B13	171	C18	I/O	ST	
RB13	F7	9	B15	I/O	ST	
RB14	E10	175	J17	I/O	ST	
RB15	B10	7	B16	I/O	ST	
	l l		l l		PC	DRTC
RC1	B7	17	A12	I/O	ST	PORTC is a bidirectional I/O port
RC2	A8	14	C13	I/O	ST	
RC3	A7	15	B13	I/O	ST	
RC4	B8	16	A13	I/O	ST	
RC12	E12	164	G17	I/O	ST	
RC13	C13	162	H17	ı	ST	
RC14	D13	161	H18	I	ST	
RC15	E13	163	G18	I/O	ST	
I edeuq.	CMOC -	CMOS ao	mnatible in	nut or outn		Analog = Analog input P = Power

Legend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer Analog = Analog input O = Output PPS = Peripheral Pin Select P = Power I = Input

TABLE 1-6: PORTA THROUGH PORTK PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin	F	Pin Numbe	r	Pin	Buffer	
Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Туре		Description
					PC	ORTD
RD0	H3	79	V5	I/O	ST	PORTD is a bidirectional I/O port
RD1	G1	73	M4	I/O	ST	
RD2	G2	74	R6	I/O	ST	
RD3	G3	75	T6	I/O	ST	
RD4	F1	70	K4	I/O	ST	
RD5	F2	71	L4	I/O	ST	
RD6	K11	121	V16	I/O	ST	
RD7	M10	120	T15	I/O	ST	
RD9	H1	76	U6	I/O	ST	
RD10	H2	77	V6	1/0	ST	
RD11	N10	119	U15	I/O	ST	
RD12	J1	80	U5	1/0	ST	
RD13	J2	81	N4	1/0	ST	
RD14	E9	158	J18	I/O	ST	
RD15	F11	157	J16	1/0	ST	
					PC	DRTE
RE0	C4	40	В7	I/O	ST	PORTE is a bidirectional I/O port
RE1	A4	36	D8	I/O	ST	
RE2	N3	99	V10	I/O	ST	
RE3	М3	98	T9	I/O	ST	
RE4	В3	43	B6	I/O	ST	
RE5	F3	17	K3	I/O	ST	
RE6	F6	23	C11	I/O	ST	
RE7	C7	24	B11	I/O	ST	
RE8	E6	25	C10	I/O	ST	
RE9	D6	26	B10	I/O	ST	DDT5
RF0	L1	91	V7	I/O	ST	PORTF is a bidirectional I/O port
RF1	K3	90	V7 U7	I/O	ST	PORTE IS a bigilectional I/O port
RF2	A3	41	A7	1/0	ST ST	
RF3	M1	93	U8	1/0		
RF4	L3	44	U9	1/0	ST	
RF5	K2	89	T7	1/0	ST	
RF8	J3	82	P4	I/O	ST	
RF12	C6	27	A11	I/O	ST	
RF13	A6	28	A10	I/O	ST	

Legend: CMOS = CMOS-compatible input or output

ST = Schmitt Trigger input with CMOS levels

TTL = Transistor-transistor Logic input buffer

Analog = Analog input

O = Output

PPS = Peripheral Pin Select

P = Power

TABLE 1-6: PORTA THROUGH PORTK PINOUT I/O DESCRIPTIONS (CONTINUED)

IABLE	1	Pin Numbe				The best in the (self-intels)
Pin		1	1	Pin	Buffer	Description
Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Туре	Туре	
	1	1				DRTG
RG0	N2	96	V9	I/O	ST	PORTG is a bidirectional I/O port
RG1	M2	95	T8	I/O	ST	
RG6	E5	30	A9	I/O	ST	
RG7	D5	31	D9	I/O	ST	
RG8	B5	32	C9	I/O	ST	
RG9	C5	33	В9	I/O	ST	
RG12	E3	56	G4	I/O	ST	
RG13	E2	64	H4	I/O	ST	
RG14	E1	65	J4	I/O	ST	
RG15	A5	34	A8	I/O	ST	
	1	ı				DRTH
RH0	M8	110	V13	I/O	ST	PORTH is a bidirectional I/O port
RH1	M7	109	T12	I/O	ST	
RH2	H12	141	N16	I/O	ST	
RH3	J13	140	P18	I/O	ST	
RH4	D4	35	B8	I/O	ST	
RH5	M4	100	U10	I/O	ST	
RH6	N4	101	T10	I/O	ST	
RH7	J12	139	N15	I/O	ST	
RH8	N7	108	U12	1/0	ST	
RH9	N6	107	V12	I/O	ST	
RH10	M6	106	T11	1/0	ST	
RH11	K13	138	P17	I/O	ST	
RH12	N5	105	U11	I/O	ST	
RH13	M5	104	V11	I/O	ST	
RH14	C3	42	A6	I/O	ST	
RH15	L2	92	V8	I/O	ST	
		T				DRTJ
RJ0	L10	118	V15	I/O	ST	PORTJ is a bidirectional I/O port
RJ1	K10	114	U14	I/O	ST	
RJ2	F10	152	K16	I/O	ST	
RJ3	E8	151	K17	I/O	ST	
RJ4	F13	150	K18	I/O	ST	
RJ5	F12	149	L18	I/O	ST	
RJ6	G11	148	L17	I/O	ST	
RJ7	G13	147	L16	I/O	ST	
RJ8	N9	113	V14	I/O	ST	
RJ9	M9	112	T13	I/O	ST	
RJ10	F8	146	M18	I/O	ST	
RJ11	N8	111	U13	I/O	ST	
RJ12	F9	145	M17	I/O	ST	
RJ13	G12	144	M16	I/O	ST	
RJ14	G10	143	N18	I/O	ST	
RJ15	H13	142	N17	I/O	ST	
I edend:		CMOS-co			-	Δ nalog = Δ nalog input $P = Power$

Legend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels

TTL = Transistor-transistor Logic input buffer

Analog = Analog input
O = Output
PPS = Peripheral Pin Select

P = Power I = Input

TABLE 1-6: PORTA THROUGH PORTK PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin	F	in Numbe	r	Pin	Buffer	Description						
Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Type	Туре							
	PORTK											
RK0	K12	137	P16	I/O	ST	PORTK is a bidirectional I/O port						
RK1	J11	136	R18	I/O	ST							
RK2	H11	135	R17	I/O	ST							
RK3	L13	134	R16	I/O	ST							
RK4	H10	133	P15	I/O	ST							
RK5	J10	132	R15	I/O	ST							
RK6	M13	131	T18	I/O	ST							
RK7	M12	130	T17	I/O	ST							

CMOS = CMOS-compatible input or output

ST = Schmitt Trigger input with CMOS levels

Analog = Analog input O = Output

P = Power I = Input

TTL = Transistor-transistor Logic input buffer

PPS = Peripheral Pin Select

TABLE 1-7: TIMER1 THROUGH TIMER9 AND RTCC PINOUT I/O DESCRIPTIONS

	F	Pin Numbe	r	Pin Type	Buffer	
Pin Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA		Туре	Description
				Tin	ner1 throu	gh Timer9
T1CK	D13	161	H18		ST	Timer1 External Clock Input
T2CK	PPS	PPS	PPS		ST	Timer2 External Clock Input
T3CK	PPS	PPS	PPS		ST	Timer3 External Clock Input
T4CK	PPS	PPS	PPS		ST	Timer4 External Clock Input
T5CK	PPS	PPS	PPS		ST	Timer5 External Clock Input
T6CK	PPS	PPS	PPS		ST	Timer6 External Clock Input
T7CK	PPS	PPS	PPS		ST	Timer7 External Clock Input
T8CK	PPS	PPS	PPS		ST	Timer8 External Clock Input
T9CK	PPS	PPS	PPS		ST	Timer9 External Clock Input
				Real-T	ime Clock	and Calendar
RTCC ⁽¹⁾	H3	79	V5	0	_	Real-Time Clock Alarm/Seconds Output

CMOS = CMOS-compatible input or output Legend:

ST = Schmitt Trigger input with CMOS levels

Analog = Analog input

P = Power

TTL = Transistor-transistor Logic input buffer

O = Output PPS = Peripheral Pin Select I = Input

Note 1: RTCC pin function in not available during VBAT operation.

UART1 THROUGH UART6 PINOUT I/O DESCRIPTIONS TABLE 1-8:

	ı	Pin Numbe	r	Dire						
Pin Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Pin Type	Buffer Type	Description				
		l .	Univ	ersal Asyn	chronous	Receiver Transmitter 1				
U1RX	PPS	PPS	PPS	I	ST	UART1 Receive				
U1TX	PPS	PPS	PPS	0	_	UART1 Transmit				
U1CTS	PPS	PPS	PPS	I	ST	UART1 Clear to Send				
U1RTS	PPS	PPS	PPS	0	_	UART1 Ready to Send				
Universal Asynchronous Receiver Transmitter 2										
U2RX	PPS	PPS	PPS	I	ST	UART2 Receive				
U2TX	PPS	PPS	PPS	0		UART2 Transmit				
U2CTS	PPS	PPS	PPS	1	ST	UART2 Clear To Send				
U2RTS	PPS	PPS	PPS	0	_	UART2 Ready To Send				
Universal Asynchronous Receiver Transmitter 3										
U3RX	PPS	PPS	PPS	1	ST	UART3 Receive				
U3TX	PPS	PPS	PPS	0		UART3 Transmit				
U3CTS	PPS	PPS	PPS	1	ST	UART3 Clear to Send				
U3RTS	PPS	PPS	PPS	0	_	UART3 Ready to Send				
			Univ	ersal Asyn	chronous	Receiver Transmitter 4				
U4RX	PPS	PPS	PPS	I	ST	UART4 Receive				
U4TX	PPS	PPS	PPS	0	-	UART4 Transmit				
U4CTS	PPS	PPS	PPS	1	ST	UART4 Clear to Send				
U4RTS	PPS	PPS	PPS	0	_	UART4 Ready to Send				
			Univ	ersal Asyn	chronous	Receiver Transmitter 5				
U5RX	PPS	PPS	PPS	I	ST	UART5 Receive				
U5TX	PPS	PPS	PPS	0	_	UART5 Transmit				
U5CTS	PPS	PPS	PPS	I	ST	UART5 Clear to Send				
U5RTS	PPS	PPS	PPS	0	_	UART5 Ready to Send				
			Univ	ersal Asyr	chronous	Receiver Transmitter 6				
U6RX	PPS	PPS	PPS	I	ST	UART6 Receive				
U6TX	PPS	PPS	PPS	0	_	UART6 Transmit				
U6CTS	PPS	PPS	PPS	I	ST	UART6 Clear to Send				
U6RTS	PPS	PPS	PPS	0	_	UART6 Ready to Send				
Legend:	CMOS =	CMOS-com	patible inpu	t or output	-	Analog = Analog input P = Power				

ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

Analog = Analog input O = Output

I = Input

PPS = Peripheral Pin Select

TABLE 1-9: SPI1 THROUGH SPI 6 PINOUT I/O DESCRIPTIONS

	F	Pin Numbe	r	- Pin Buffer Type Type	Ruffor					
Pin Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA		Description					
				Seria	l Periphera	al Interface 1				
SCK1	G1	73	M4	I/O	ST	SPI1 Synchronous Serial Clock Input/Output				
SDI1	PPS	PPS	PPS	I	ST	SPI1 Data In				
SDO1	PPS	PPS	PPS	0	_	SPI1 Data Out				
SS1	PPS	PPS	PPS	I/O	ST	SPI1 Slave Synchronization Or Frame Pulse I/O				
Serial Peripheral Interface 2										
SCK2	E5	30	A9	I/O	ST	SPI2 Synchronous Serial Clock Input/output				
SDI2	PPS	PPS	PPS	I	ST	SPI2 Data In				
SDO2	PPS	PPS	PPS	0	_	SPI2 Data Out				
SS2	PPS	PPS	PPS	I/O	ST	SPI2 Slave Synchronization Or Frame Pulse I/O				
Serial Peripheral Interface 3										
SCK3	E10	159	J17	I/O	ST	SPI3 Synchronous Serial Clock Input/Output				
SDI3	PPS	PPS	PPS	I	ST	SPI3 Data In				
SDO3	PPS	PPS	PPS	0	_	SPI3 Data Out				
SS3	PPS	PPS	PPS	I/O	ST	SPI3 Slave Synchronization Or Frame Pulse I/O				
				Seria	l Periphera	al Interface 4				
SCK4	H2	77	V6	I/O	ST	SPI4 Synchronous Serial Clock Input/Output				
SDI4	PPS	PPS	PPS	I	ST	SPI4 Data In				
SDO4	PPS	PPS	PPS	0		SPI4 Data Out				
SS4	PPS	PPS	PPS	I/O	ST	SPI4 Slave Synchronization Or Frame Pulse I/O				
				Seria	l Periphera	al Interface 5				
SCK5	A6	28	A10	I/O	ST	SPI5 Synchronous Serial Clock Input/Output				
SDI5	PPS	PPS	PPS	I	ST	SPI5 Data In				
SDO5	PPS	PPS	PPS	0	_	SPI5 Data Out				
SS5	PPS	PPS	PPS	I/O	ST	SPI5 Slave Synchronization Or Frame Pulse I/O				
				Seria	l Periphera	al Interface 6				
SCK6	F11	157	J16	I/O	ST	SPI6 Synchronous Serial Clock Input/Output				
SDI6	PPS	PPS	PPS	I	ST	SPI6 Data In				
SDO6	PPS	PPS	PPS	0	_	SPI6 Data Out				
SS6	PPS	PPS	PPS	I/O	ST	SPI6 Slave Synchronization Or Frame Pulse I/O				

Legend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels

Analog = Analog input

P = Power I = Input

TTL = Transistor-transistor Logic input buffer

O = Output

PPS = Peripheral Pin Select

TABLE 1-10: I2C1 THROUGH I2C5 PINOUT I/O DESCRIPTIONS

	ı	Pin Numbe	r	Pin Type	Buffer					
Pin Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA		Туре	Description				
Inter-Integrated Circuit 1										
SCL1	M11	126	T16	I/O	ST	I2C1 Synchronous Serial Clock Input/Output				
SDA1	N11	125	U16	I/O	ST	I2C1 Synchronous Serial Data Input/Output				
	Inter-Integrated Circuit 2									
SCL2	L12	129	U18	I/O	ST	I2C2 Synchronous Serial Clock Input/Output				
SDA2	N12	128	U17	I/O	ST	I2C2 Synchronous Serial Data Input/Output				
		•		Inte	er-Integrate	ed Circuit 3				
SCL3	J3	82	P4	I/O	ST	I2C3 Synchronous Serial Clock Input/Output				
SDA3	A3	42	A7	I/O	ST	I2C3 Synchronous Serial Data Input/Output				
		•		Inte	er-Integrate	ed Circuit 4				
SCL4	B5	32	C9	I/O	ST	I2C4 Synchronous Serial Clock Input/Output				
SDA4	D5	31	D9	I/O	ST	I2C4 Synchronous Serial Data Input/Output				
		•		Inte	er-Integrate	ed Circuit 5				
SCL5	K2	89	T7	I/O	ST	I2C5 Synchronous Serial Clock Input/Output				
SDA5	L3	97	U9	I/O	ST	I2C5 Synchronous Serial Data Input/Output				

Legend: CMOS = CMOS-compatible input or output

ST = Schmitt Trigger input with CMOS levels

TTL = Transistor-transistor Logic input buffer

Analog = Analog input

O = Output PPS = Peripheral Pin Select P = Power I = Input

I = Inp

TABLE 1-11: COMPARATOR 1, COMPARATOR 2 AND CVREF PINOUT I/O DESCRIPTIONS

	I	Pin Numbe	r	Pin	Buffer					
Pin Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Type	Туре	Description				
				Compara	tor Voltage	Reference				
CVREF+	C10	2	C15	I	Analog	Comparator Voltage Reference (High) Input				
CVREF-	B11	1	A17	I	Analog	Comparator Voltage Reference (Low) Input				
CVREFOUT	C11	168	E18	0	Analog	Comparator Voltage Reference Output				
Comparator 1										
C1INA	D12	170	D17	I	Analog	Comparator 1 Positive Input				
C1INB	A12	176	B17	I	Analog	Comparator 1 Selectable Negative Input				
C1INC	D5	31	D9	I	Analog					
C1IND	E5	30	A9	I	Analog					
C1OUT	PPS	PPS	PPS	0	_	Comparator 1 Output				
					Comparato	r 2				
C2INA	B10	7	B16		Analog	Comparator 2 Positive Input				
C2INB	A13	172	C17	I	Analog	Comparator 2 Selectable Negative Input				
C2INC	C5	33	В9	I	Analog					
C2IND	B5	32	C9	I	Analog					
C2OUT	PPS	PPS	PPS	0	_	Comparator 2 Output				

Legend: CMOS = CMOS-compatible input or output

ST = Schmitt Trigger input with CMOS levels

TTL = Transistor-transistor Logic input buffer

Analog = Analog input

O = Output

PPS = Peripheral Pin Select

P = Power

TABLE 1-12: PMP PINOUT I/O DESCRIPTIONS

	Pin Number		r	Dim	Duffer	
Pin Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Pin Type	Buffer Type	Description
				Pa	arallel Mast	er Port
PMA0	H13	142	N17	I/O	TTL/ST	Parallel Master Port Address bit 0 Input (Buffered Slave modes) and Output (Master modes)
PMA1	J11	136	R18	I/O	TTL/ST	Parallel Master Port Address bit 1 Input (Buffered Slave modes) and Output (Master modes)
PMA2	C5	33	В9	0	_	Parallel Master Port Address (Demultiplexed Master modes)
PMA3	H11	135	R17	0	_	
PMA4	J12	139	N15	0	-	
PMA5	A11	174	B18	0	_	
PMA6	F3	69	K3	0	_	
PMA7	B12	173	E16	0	_	
PMA8	N2	96	V9	0	_	
PMA9	M2	95	T8	0	_	
PMA10	K3	90	U7	0	_	
PMA11	L1	91	V7	0	_	
PMA12	J1	80	U5	0	_	
PMA13	J2	81	N4	0	_	
PMA14	G2	74	R6	0	_	
PMA15	G3	75	T6	0	_	
PMCS1	G2	74	R6	0	_	Parallel Master Port Chip Select 1 Strobe
PMCS2	G3	75	Т6	0	_	Parallel Master Port Chip Select 2 Strobe
PMD0	C4	40	B7	I/O	TTL/ST	Parallel Master Port Data (Demultiplexed Master mode) or
PMD1	A4	36	D8	I/O	TTL/ST	Address/Data (Multiplexed Master modes)
PMD2	N3	99	V10	I/O	TTL/ST	
PMD3	M3	98	Т9	I/O	TTL/ST	
PMD4	В3	43	В6	I/O	TTL/ST	
PMD5	B7	17	A12	I/O	TTL/ST	
PMD6	F6	23	C11	I/O	TTL/ST	
PMD7	C7	24	B11	I/O	TTL/ST	
PMD8	K2	89	T7	I/O	TTL/ST	
PMD9	L3	97	U9	I/O	TTL/ST	
PMD10	A9	10	A15	I/O	TTL/ST	
PMD11	G10	143	N18	I/O	TTL/ST	
PMD12	A8	14	C13	I/O	TTL/ST	
PMD13	G12	144	M16	I/O	TTL/ST	
PMD14	L11	127	V17	I/O	TTL/ST	
PMD15	H1	76	U6	I/O	TTL/ST	
PMALL	H13	142	N17	0	_	Parallel Master Port Address Latch Enable Low Byte (Multiplexed Master modes)
PMALH	J11	136	R18	0	_	Parallel Master Port Address Latch Enable High Byte (Multiplexed Master modes)
PMRD	B8	16	A13	0	_	Parallel Master Port Read Strobe
PMWR	A7	15	B13	0	_	Parallel Master Port Write Strobe
				l	<u> </u>	1

Legend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels

Analog = Analog input

P = Power

TTL = Transistor-transistor Logic input buffer

O = Output

PPS = Peripheral Pin Select

EBI PINOUT I/O DESCRIPTIONS TABLE 1-13:

	Pin Number					
Pin Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Pin Type	Buffer Type	Description
		l .		Ex	ternal Bus	Interface
EBIA0	H13	142	N17	0	_	External Bus Interface Address Bus
EBIA1	J11	136	R18	0	_	
EBIA2	C5	33	В9	0	_	
EBIA3	H11	135	R17	0	_	
EBIA4	J12	139	N15	0	_	
EBIA5	A11	174	B18	0	_	
EBIA6	F3	69	K3	0	_	
EBIA7	B12	173	E16	0	_	
EBIA8	N2	96	V9	0	_	
EBIA9	M2	95	Т8	0	_	
EBIA10	K3	90	U7	0	_	
EBIA11	L1	91	V7	0	_	
EBIA12	J1	80	U5	0	_	
EBIA13	J2	81	N4	0	_	
EBIA14	G2	74	R6	0	_	
EBIA15	G3	75	T6	0	_	
EBIA16	K12	137	P16	0	_	
EBIA17	L13	134	R16	0	_	
EBIA18	H10	133	P15	0	_	
EBIA19	J10	132	R15	0	_	
EBIA20	M13	131	T18	0	_	
EBIA21	M12	130	T17	0	_	
EBIA22	E8	151	K17	0	_	
EBIA23	L2	92	V8	0	_	
EBID0	C4	40	B7	I/O	ST	External Bus Interface Data I/O Bus
EBID1	A4	40	D8	I/O	ST	
EBID2	N3	36	V10	I/O	ST	
EBID3	М3	99	Т9	I/O	ST	
EBID4	В3	98	В6	I/O	ST	
EBID5	В7	43	A12	I/O	ST	
EBID6	F6	17	C11	I/O	ST	
EBID7	C7	23	B11	I/O	ST	
EBID8	K2	24	T7	I/O	ST	
EBID9	L3	89	U9	I/O	ST	
EBID10	A9	97	A15	I/O	ST	
EBID11	G10	10	N18	I/O	ST	
EBID12	A8	143	C13	I/O	ST	
EBID13	G12	14	M16	I/O	ST	
EBID14	L11	144	V17	I/O	ST	
EBID15	H1	127	U6	I/O	ST	
I edend:			natible innu			unalog = Analog input P = Power

CMOS = CMOS-compatible input or output

ST = Schmitt Trigger input with CMOS levels

TTL = Transistor-transistor Logic input buffer

Analog = Analog input

O = Output

PPS = Peripheral Pin Select

P = Power

EBI PINOUT I/O DESCRIPTIONS (CONTINUED) TABLE 1-13:

	Pin Number			Pin	Buffer	
Pin Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Туре	Туре	Description
EBIBS0	J11	145	M17	0	1	External Bus Interface Bute Select
EBIBS1	J12	146	M18	0	1	External Bus Interface Byte Select
EBICS0	G10	150	K18	0	_	
EBICS1	H12	149	L18	0	_	External Rua Interface Chin Coloct
EBICS2	H11	148	L17	0	_	External Bus Interface Chip Select
EBICS3	H10	147	L16	0	_	
EBIOE	E12	16	A13	0	_	External Bus Interface Output Enable
EBIRDY1	M10	128	U17	1	ST	
EBIRDY2	C5	138	P17	I	ST	External Bus Interface Ready Input
EBIRDY3	C4	152	K16	I	ST	
EBIRP	F1	141	N16	0	_	External Bus Interface Flash Reset Pin
EBIWE	D11	15	B13	0	_	External Bus Interface Write Enable

Legend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels Analog = Analog input O = Output

P = Power I = Input

TTL = Transistor-transistor Logic input buffer

PPS = Peripheral Pin Select

TABLE 1-14: USB PINOUT I/O DESCRIPTIONS

Pin Name	Pin Number			Pin	Buffer						
	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Туре	Туре	Description					
	Universal Serial Bus										
VBUS	A2	45	C5	I	Analog	USB bus power monitor					
VUSB3V3	B2	46, 47	C4, D5	Р	_	USB internal transceiver supply. If the USB module is <i>not</i> used, this pin must be connected to Vss.					
D+	C1	51	B4	I/O	Analog	USB D+					
D-	B1	50	A4	I/O	Analog	USB D-					
USBID	D3	52	C6	I	ST	USB OTG ID detect					

Legend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels Analog = Analog input

P = Power I = Input

TTL = Transistor-transistor Logic input buffer

O = Output PPS = Peripheral Pin Select

TABLE 1-15: CAN1 AND CAN2 PINOUT I/O DESCRIPTIONS

Pin	Pin Number			Pin	Buffer					
Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Туре	Туре	Description				
	Controller Area Network									
C1TX	PPS	PPS	PPS	0	_	CAN1 Bus Transmit Pin				
C1RX	PPS	PPS	PPS	ı	ST	CAN1 Bus Receive Pin				
C2TX	PPS	PPS	PPS	0	_	CAN2 Bus Transmit Pin				
C2RX	PPS	PPS	PPS	1	ST	CAN2 Bus Receive Pin				

CMOS = CMOS-compatible input or output Legend: ST = Schmitt Trigger input with CMOS levels Analog = Analog input

P = Power

TTL = Transistor-transistor Logic input buffer

O = Output

PPS = Peripheral Pin Select

TABLE 1-16: **ETHERNET MII I/O DESCRIPTIONS**

	1	Pin Numbe	r	Pin	Buffer							
Pin Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Type	Туре	Description						
	Ethernet											
ERXD0	N7	108	U12	I	ST	Ethernet Receive Data 0						
ERXD1	M4	100	U10	I	ST	Ethernet Receive Data 1						
ERXD2	N4	101	T10	ļ	ST	Ethernet Receive Data 2						
ERXD3	N6	107	V12	ļ	ST	Ethernet Receive Data 3						
ERXERR	M1	93	U8	ļ	ST	Ethernet Receive Error Input						
ERXDV	M5	104	V11	I	ST	Ethernet Receive Data Valid						
ERXCLK	N8	111	U13	I	ST	Ethernet Receive Clock						
ETXD0	N9	113	V14	0	_	Ethernet Transmit Data 0						
ETXD1	M9	112	T13	0	_	Ethernet Transmit Data 1						
ETXD2	M8	110	V13	0	_	Ethernet Transmit Data 2						
ETXD3	M7	109	T12	0	_	Ethernet Transmit Data 3						
ETXERR	L10	118	V15	0	_	Ethernet Transmit Error						
ETXEN	K11	121	V16	0	_	Ethernet Transmit Enable						
ETXCLK	M10	120	T15	I	ST	Ethernet Transmit Clock						
ECOL	M6	106	T11	I	ST	Ethernet Collision Detect						
ECRS	N5	105	U11	I	ST	Ethernet Carrier Sense						
EMDC	N10	119	U15	0	_	Ethernet Management Data Clock						
EMDIO	K10	114	U14	I/O	_	Ethernet Management Data						

CMOS = CMOS-compatible input or output Legend:

Analog = Analog input

P = Power I = Input

ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer O = Output

PPS = Peripheral Pin Select

TABLE 1-17: ETHERNET RMII PINOUT I/O DESCRIPTIONS

	Pin Number			Pin	Buffer		
Pin Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Type	Type	Description	
				Ethe	ernet MII In	terface	
ERXD0	N7	108	U12	I	ST	Ethernet Receive Data 0	
ERXD1	M4	100	U10	I	ST Ethernet Receive Data 1		
ERXERR	M1	93	U8	I	ST	Ethernet Receive Error Input	
ETXD0	N9	113	V14	0	_	Ethernet Transmit Data 0	
ETXD1	M9	112	T13	0	_	Ethernet Transmit Data 1	
ETXEN	K11	121	V16	0	_	Ethernet Transmit Enable	
EMDC	N10	119	U15	0	_	Ethernet Management Data Clock	
EMDIO	K10	114	U14	I/O	_	Ethernet Management Data	
EREFCLK	N8	111	U13	I	ST	Ethernet Reference Clock	
ECRSDV	M5	104	V11	I	ST	Ethernet Carrier Sense Data Valid	

Legend: CMOS = CMOS-compatible input or output Analog = Analog input

P = Power

ST = Schmitt Trigger input with CMOS levels

O = Output

I = Input

TTL = Transistor-transistor Logic input buffer

PPS = Peripheral Pin Select

TABLE 1-18: SQI1 PINOUT I/O DESCRIPTIONS

	Pin Number			Pin	Buffer	
Pin Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Type	Туре	Description
				Seri	al Quad Int	erface
SQICLK	E4	54	E4	0	_	Serial Quad Interface Clock
SQICS0	F1	70	K4	0	_	Serial Quad Interface Chip Select 0
SQICS1	F2	71	L4	0	_	Serial Quad Interface Chip Select 1
SQID0	E2	64	H4	I/O	ST	Serial Quad Interface Data 0
SQID1	E3	56	G4	I/O	ST	Serial Quad Interface Data 1
SQID2	E1	65	J4	I/O	ST	Serial Quad Interface Data 2
SQID3	D1	55	F4	I/O	ST	Serial Quad Interface Data 3

Legend: CMOS = CMOS-compatible input or output

Analog = Analog input O = Output P = Power I = Input

ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

PPS = Peripheral Pin Select

TABLE 1-19: SDHC PINOUT I/O DESCRIPTIONS

	Pin Number			Pin	Buffer	
Pin Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Type	Туре	Description
					SDHC	
SDCK	E4	54	E4	0	_	SD Serial Clock
SDCMD	F1	70	K4	0	_	SD Command/Response
SDDATA0	E2	64	H4	I/O	ST	SD Serial Data 0
SDDATA1	E3	56	G4	I/O	ST	SD Serial Data 1
SDDATA2	E1	65	J4	I/O	ST	SD Serial Data 2
SDDATA3	D1	55	F4	I/O	ST	SD Serial Data 3/Card Detect
SDCD	D2	53	D4	I	ST	SD Mechanical Card Detect
SDWP	H12	141	N16	I	ST	SD Write Protect

Legend: CMOS = CMOS-compatible input or output

Analog = Analog input

P = Power I = Input

ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer O = Output PPS = Peripheral Pin Select

TABLE 1-20: CTMU PINOUT I/O DESCRIPTIONS

	I	Pin Numbe	r	Pin	Buffer	Description		
Pin Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Type	Туре			
	Charge Time Measurement Unit							
CTED1	B9	11	A14	I	ST	CTMU External Edge Input 1		
CTED2	C12	169	D18	I	ST	CTMU External Edge Input 2		
CTPLS	F7	9	B15	0	_	CTMU Output Pulse		

Legend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels Analog = Analog input O = Output P = Power

TTL = Transistor-transistor Logic input buffer

PPS = Peripheral Pin Select

TABLE 1-21: GRAPHICS LCD (GLCD) CONTROLLER PINOUT I/O DESCRIPTIONS

	ı	Pin Numbe	r	D'	Buffer		
Pin Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Pin Type	Туре	Description	
				G	LCD Contro	oller	
GCLK	G11	148	L17	0	_	Graphics Display Pixel Clock	
HSYNC	F12	149	L18	0	_	Graphics Display Horizontal Sync Pulse	
VSYNC	F13	150	K18	0	_	Graphics Display Vertical Sync Pulse	
GEN	G13	147	L16	0	_	Graphics Display Enable Output	
GD0	G12	144	M16	0	_	Graphics Controller Data Output	
GD1	L11	127	V17	0	_		
GD2	H1	76	U6	0	_		
GD3	N2	96	V9	0	_		
GD4	M2	95	T8	0	_		
GD5	К3	90	U7	0	_		
GD6	L1	91	V7	0	_		
GD7	J1	80	U5	0	_		
GD8	G10	143	N18	0	_		
GD9	F9	145	M17	0	_		
GD10	G2	74	R6	0	_		
GD11	G3	75	T6	0	_		
GD12	L13	134	R16	0	_		
GD13	H10	133	P15	0	_		
GD14	J10	132	R15	0	_		
GD15	M13	131	T18	0	_		
GD16	K2	89	T7	0	_		
GD17	L3	97	U9	0	_		
GD18	F8	146	M18	0	_		
GD19	M12	130	T17	0	_		
GD20	E8	151	K17	0	_		
GD21	L2	92	V8	0	_		
GD22	J2	81	N4	0	_		
GD23	K12	137	P16	0	_		
I egend:	CMOC - C	MOC some	atible input o	or output	Λno	log = Analog input P = Power	

Legend: CMOS = CMOS-compatible input or output
ST = Schmitt Trigger input with CMOS levels
TTL = Transistor-transistor Logic input buffer

Analog = Analog input
O = Output
PPS = Peripheral Pin Select

P = Power I = Input

TABLE 1-22: DDR2 SDRAM CONTROLLER PINOUT I/O DESCRIPTIONS

		Pin Number		Pin	Buffer	
Pin Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Туре	Туре	Description
			DDR2	SDRAM Coi	ntroller	
DDRCK	DDR Internal	DDR Internal	K2	0	SSTL	Differential Clocks
DDRCK	to the Package	to the Package	K1	0	SSTL	
DDRCKE			L2	0	SSTL	Clock Enable
DDRCS0			N2	0	SSTL	Chip Select 0
DDRRAS			M1	0	SSTL	Row Address Strobe
DDRCAS			N2	0	SSTL	Column Address Strobe
DDRWE			L1	0	SSTL	Write Enable Strobe
DDRLDM			G3	0	SSTL	Lower Data Byte Mask
DDRUDM			A3	0	SSTL	Upper Data Byte Mask
DDRODT			N1	0	SSTL	On-Die Termination
DDRLDQS			E1	I/O	SSTL	Lower Data Byte Qualifier Strobes (Differential)
DDRLDQS			E2	I/O	SSTL	
DDRUDQS			B2	I/O	SSTL	Upper Data Byte Qualifier Strobes (Differential)
DDRUDQS			A2	I/O	SSTL	
DDRBA0			M2	0	SSTL	Bank Address Select 0
DDRBA1			M3	0	SSTL	Bank Address Select 1
DDRBA2			U4	0	SSTL	Bank Address Select 2
DDRA0			R1	0	SSTL	DDR2 Address Bus
DDRA1			L3	0	SSTL	
DDRA2			N3	0	SSTL	
DDRA3			R2	0	SSTL	
DDRA4			P3	0	SSTL	
DDRA5			T1	0	SSTL	
DDRA6			U1	0	SSTL	
DDRA7			T2	0	SSTL	
DDRA8			U2	0	SSTL	
DDRA9			R3	0	SSTL	
DDRA10			P1	0	SSTL	
DDRA11			V2	0	SSTL	
DDRA12			Т3	0	SSTL	
DDRA13			U3	0	SSTL	
DDRA14			T4	0	SSTL	
DDRA15			V3	0	SSTL	

Legend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels

Analog = Analog input

P = Power I = Input

TTL = Transistor-transistor Logic input buffer

O = Output PPS = Peripheral Pin Select

SSTL = Stub Series Terminated Logic

TABLE 1-22: DDR2 SDRAM CONTROLLER PINOUT I/O DESCRIPTIONS (CONTINUED)

		Pin Number		Dim	Buffer	
Pin Name	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Pin Type	Buffer Type	Description
DDRDQ0	DDR Internal	DDR Internal	F1	I/O	SSTL	DDR2 Data Bus
DDRDQ1	to the Package	to the Package	J3	I/O	SSTL	
DDRDQ2			H1	I/O	SSTL	
DDRDQ3			G1	I/O	SSTL	
DDRDQ4			G2	I/O	SSTL	
DDRDQ5			H2	I/O	SSTL	
DDRDQ6			Н3	I/O	SSTL	
DDRDQ7			F2	I/O	SSTL	
DDRDQ8			C1	I/O	SSTL	DDR2 Data Bus
DDRDQ9			C3	I/O	SSTL	
DDRDQ10			D2	I/O	SSTL	
DDRDQ11			F3	I/O	SSTL	
DDRDQ12			E3	I/O	SSTL	
DDRDQ13			D1	I/O	SSTL	
DDRDQ14			В3	I/O	SSTL	
DDRDQ15			C2	I/O	SSTL	

Legend: CMOS = CMOS-compatible input or output

output Analog = Analog input
S levels O = Output

P = Power I = Input

ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer

PPS = Peripheral Pin Select

SSTL = Stub Series Terminated Logic

TABLE 1-23: POWER, GROUND, AND VOLTAGE REFERENCE PINOUT I/O DESCRIPTIONS

Pin Name		Pin Numbe	r	Pin	Buffer	Description	
	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Type	Type		
		•		Pov	wer and Gr	ound	
AVDD	D9	3, 4	F13, G13	Р	Р	Positive supply for analog modules. This pin must be connected at all times.	
AVss	C8, D8	5, 6	F12, G12	Р	Р	Ground reference for analog modules. This pin must be connected at all times.	
VDDIO	B6, G9, H9, J9, K9, L6, L7, L9	19, 38, 86, 102, 117, 124, 155, 156, 165	C16, D15, D16, E15, F11, F15, G11, G15, H11, H12, H13, H15, J10, J15, K10, L11, L12, M12, M13, M15, N12, N13, R9, R10, R12, R13,	Р	_	Positive supply for peripheral logic and I/O pins. This pin must be connected at all times.	
VDDCORE	B4, C9, L8, N1	18, 39, 84, 116	D7, D14, R11, V4	Р	_	1.8V positive supply for peripheral logic. This pin must be connected at all times.	
Vss	C2, F5, G5, G6, G7, G8, H7, H8, J7, J8, K7, K8	21, 22, 29, 37, 48, 49, 83, 87, 94, 103, 115, 122, 123, 153, 154	A5, B5, C7, D10, D11, D12, D13, F9, F10, G10, H10, J11, J12, J13, K11, K12, K13, K15, L10, L13, L15, M10, M11, N10, N11, R7, R8	Р	_	Ground reference for logic, I/O pins, and USB. This pin must be connected at all times.	
HLVDIN	B12	173	E16	Р	_	Low-voltage detect pin.	
VBAT	D10	166	F16	Р	_	Positive supply for the battery backed section. It is recommended to connect this pin to VDDIO if VBAT mode is not used (i.e., not connected to the battery).	
VDDR1V8	H5, H6, J5, J6, K5, K6 (Note 2)	57, 58, 59, 60, 61, 62, 63, 67, 68, 72, 78 (Note 2)	H6, H7, H8, J6, J7, J8, K6, K7, K8, L6, L7, L8 (Note 2)	Р	_	Positive supply for the DDR2 SDRAM memory.	

Legend: CMOS = CMOS-compatible input or output

Analog = Analog input

P = Power

ST = Schmitt Trigger input with CMOS levels

O = Output

I = Input

TTL = Transistor-transistor Logic input buffer

PPS = Peripheral Pin Select

Note 1: The metal plane at the bottom of the device is internally tied to Vss1v8 and must be connected to 1.8V ground externally.

2: This pin must be tied to Vss through a 20k Ω resistor in devices without DDR.

3: This pin is a No Connect in devices without DDR.

TABLE 1-23: POWER, GROUND, AND VOLTAGE REFERENCE PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	ı	Pin Number			Buffer	Description
	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Type	Type	
Vss1v8	G4, H4, J4, K4, L4, L5	See Note 1	D3, F6, F7, F8, G6, G7, G8, G9, H9, J9, K9, L9, M6, M7, M8, M9, N6, N7, N8, N9, R4	Р	I	Ground reference for DDR2 SDRAM memory.
				Vol	tage Refere	ence
DDRVREF	F4 (Note 3)	66 (Note 3)	J11	Р	_	1.8V Voltage Reference to DDR2 SDRAM memory.
VREF+	C10	2	C15		Analog	Analog Voltage Reference (High) Input
VREF-	B11	1	A17	I	Analog	Analog Voltage Reference (Low) Input

 Legend:
 CMOS = CMOS-compatible input or output
 Analog = Analog input
 P = Power

 ST = Schmitt Trigger input with CMOS levels
 O = Output
 I = Input

 TTL = Transistor-transistor Logic input buffer
 PPS = Peripheral Pin Select

Note 1: The metal plane at the bottom of the device is internally tied to Vss1v8 and must be connected to 1.8V ground externally.

2: This pin must be tied to Vss through a 20k Ω resistor in devices without DDR.

3: This pin is a No Connect in devices without DDR.

TABLE 1-24: JTAG, TRACE, AND PROGRAMMING/DEBUGGING PINOUT I/O DESCRIPTIONS

Pin Name	Pin Number			Pin	Buffer	Description
	169-pin LFBGA	176-pin LQFP	288-pin LFBGA	Туре	Type	
					JTAG	
TCK	E11	160	H16	Ĺ	ST	JTAG Test Clock Input Pin
TDI	A6	28	A10	Ţ	ST	JTAG Test Data Input Pin
TDO	C6	27	A11	0	_	JTAG Test Data Output Pin
TMS	D2	53	D4	Ţ	ST	JTAG Test Mode Select Pin
					Trace	
TRCLK	E4	54	E4	0	_	Trace Clock
TRD0	E2	64	H4	0	_	Trace Data bits 0-3
TRD1	E3	56	G4	0	_	
TRD2	E1	65	J4	0	_	
TRD3	D1	55	F4	0	_	
				Progra	amming/De	bugging
PGED1	C12	169	D18	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 1
PGEC1	В9	11	A14	I	ST	Clock input pin for Programming/Debugging Communication Channel 1
PGED2	D12	170	D17	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 2
PGEC2	D7	13	B14	I	ST	Clock input pin for Programming/Debugging Communication Channel 2
MCLR	K1	85	R5	I/P	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.

egend: CMOS = CMOS-compatible input or output ST = Schmitt Trigger input with CMOS levels TTL = Transistor-transistor Logic input buffer Analog = Analog input
O = Output

P = Power I = Input

PPS = Peripheral Pin Select

2.0 GUIDELINES FOR GETTING STARTED WITH 32-BIT MICROCONTROLLERS

Note:

This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the documents listed in the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

2.1 Basic Connection Requirements

Getting started with the PIC32MZ DA family of 32-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDDIO, VDDCORE, and Vss pins (see 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins, even if the ADC module is not used (see 2.2 "Decoupling Capacitors")
- VBAT pin (see 2.2 "Decoupling Capacitors")
- All VDDR1v8 and VSS1v8 pins (see 2.2 "Decoupling Capacitors")
- MCLR pin (see 2.3 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins, used for In-Circuit Serial Programming (ICSP™) and debugging purposes (see 2.4 "ICSP Pins")
- OSC1 and OSC2 pins, when external oscillator source is used (see 2.7 "External Oscillator Pins")

The following pin(s) may be required as well:

VREF+/VREF- pins, used when external voltage reference for the ADC module is implemented.

Note:

The AVDD and AVSS pins must be connected, regardless of ADC use and the ADC voltage reference source.

2.2 Decoupling Capacitors

The use of decoupling capacitors on power supply pins, such as VDDIO, VSS, AVDD and AVSS is required. See Figure 2-1.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: It is recommended that two parallel capacitors with a value of 0.1 μF (100 nF, 10-20V) and a value of 0.01 μF be used. The 0.1 μF capacitor should be a low Equivalent Series Resistance (low-ESR) capacitor and have resonance frequency in the range of 20 MHz and higher. Place both capacitors in close proximity and consider implementing the pair of capacitances as close to the power and ground pins as possible. It is further recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The
 decoupling capacitors should be placed as close to
 the pins as possible. It is recommended that the
 capacitors be placed on the same side of the board
 as the device. If space is constricted, the capacitor
 can be placed on another layer on the PCB using a
 via; however, ensure that the trace length from the
 pin to the capacitor is within one-quarter inch
 (6 mm) in length.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

- Note 1: There are multiple power and ground pairs and minimum connection rules apply for each power source (i.e., VDDIO, VDDCORE, AVDD, VUSB3v3, VBAT, VDDR1v8) and each ground source (VSS, AVSS, VSS1v8).
 - 2: Voltage on VDDIO must always be greater than or equal to VDDCORE during power-up.
 - 3: If the USB module is not used, this pin must be connected to Vss.
 - **4:** As an option, instead of a hard-wired connection, an inductor (L1) can be substituted between VDDIO and AVDD to improve ADC noise rejection. The inductor impedance should be less than 1Ω and the inductor capacity greater than 10 mA.

Where:

$$f=rac{FCNV}{2}$$
 (i.e., ADC conversion rate/2)
$$f=rac{1}{(2\pi\sqrt{LC})}$$
 $L=\left(rac{1}{2\pi\sqrt{LC}}
ight)^2$

2.2.1 BULK CAPACITORS

The use of a bulk capacitor on VDDIO and VDDCORE is recommended to improve power supply stability. Typical values range from 4.7 μF to 47 μF . This capacitor should be located as close to the device as possible.

2.3 Master Clear (MCLR) Pin

The $\overline{\text{MCLR}}$ pin provides for two specific device functions:

- · Device Reset
- · Device programming and debugging

Pulling The MCLR pin low generates a device Reset. Figure 2-2 illustrates a typical MCLR circuit. During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as illustrated in Figure 2-2, it is recommended that the capacitor C be isolated from the MCLR pin during programming and debugging operations.

Place the components illustrated in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

- Note 1: $\frac{470\Omega \leq R1 \leq 1\Omega}{MCLR} \text{ from the external capacitor C, in the event of } \frac{MCLR}{MCLR} \text{ pin breakdown, due to Electrostatic Discharge} \\ \frac{(ESD)}{MCLR} \text{ pin VIH and VIL specifications are met without interfering with the Debug/Programmer tools.}$
 - 2: The capacitor can be sized to prevent unintentional Resets from brief glitches or to extend the device Reset period during POR.
 - **3:** No pull-ups or bypass capacitors are allowed on active debug/program PGECx/PGEDx pins.

2.4 ICSP Pins

The PGECx and PGEDx pins are used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB $^{\&}$ ICD 3 or MPLAB REAL ICE $^{\textmd{TM}}$.

For additional information on ICD 3 and REAL ICE connection requirements, refer to the following documents that are available for download from the Microchip web site, www.microchip.com:

- "Using MPLAB® ICD 3" (poster) (DS50001765)
- "MPLAB® ICD 3 Design Advisory" (DS50001764)
- "MPLAB[®] REAL ICE™ In-Circuit Debugger User's Guide" (DS50001616)
- "Using MPLAB® REAL ICE™ Emulator" (poster) (DS50001749)

2.5 JTAG

The TMS, TDO, TDI and TCK pins are used for testing and debugging according to the Joint Test Action Group (JTAG) standard. It is recommended to keep the trace length between the JTAG connector and the JTAG pins on the device as short as possible. If the JTAG connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the TMS, TDO, TDI and TCK pins are not recommended as they will interfere with the programmer or debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

2.6 Trace

The trace pins can be connected to a hardware trace-enabled programmer to provide a compressed real-time instruction trace. When used for trace, the TRD3, TRD2, TRD1, TRD0 and TRCLK pins should be dedicated for this use. The trace hardware requires a 22 Ohm series resistor between the trace pins and the trace connector.

2.7 External Oscillator Pins

Many MCUs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 8.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is illustrated in Figure 2-3.

FIGURE 2-3: SUGGESTED OSCILLATOR CIRCUIT PLACEMENT

2.8 Unused I/Os

Unused I/O pins should not be allowed to float as inputs. They can be configured as outputs and driven to a logic-low state.

Alternatively, inputs can be reserved by connecting the pin to Vss through a 1k to 10k resistor and configuring the pin as an input.

2.9 Designing for High-Speed Peripherals

The PIC32MZ DA family devices have peripherals that operate at frequencies much higher than typical for an embedded environment. Table 2-1 lists the peripherals that produce high-speed signals on their external pins:

TABLE 2-1: PERIPHERALS THAT
PRODUCE HS SIGNALS ON
EXTERNAL PINS

Peripheral	High-Speed Signal Pins	Maximum Speed on Signal Pin
DDR2 SDRAM Controller	DDRCLK, DDRCLK, DDRUDQS, DDRUDQS, DDRLDQS, DDRLDQS	200 MHz
	DDRAx, DDRDx	400 MHz
EBI	EBIAx, EBIDx	50 MHz
HS USB	D+, D-	480 MHz
SDHC	SDCK, DATAx	50 MHz
SQI	SQICLK, SQIDx	80 MHz

Due to these high-speed signals, it is important to consider several factors when designing a product that uses these peripherals, as well as the PCB on which these components will be placed. Adhering to these recommendations will help achieve the following goals:

- Minimize the effects of electromagnetic interference to the proper operation of the product
- Ensure signals arrive at their intended destination at the same time
- · Minimize crosstalk
- · Maintain signal integrity
- · Reduce system noise
- · Minimize ground bounce and power sag

2.9.1 SYSTEM DESIGN

2.9.1.1 Impedance Matching

When selecting parts to place on high-speed buses, particularly the SQI bus, if the impedance of the peripheral device does not match the impedance of the pins on the PIC32MZ DA device to which it is connected, signal reflections could result, thereby degrading the quality of the signal.

If it is not possible to select a product that matches impedance, place a series resistor at the load to create the matching impedance, see Figure 2-4 for an example.

FIGURE 2-4: SERIES RESISTOR

Note:

2.9.1.2 PCB Layout Recommendations

The following list contains recommendations that will help ensure the PCB layout will promote the goals previously listed.

· Component Placement

- Place bypass capacitors as close to their component power and ground pins as possible, and place them on the same side of the PCB
- Devices on the same bus that have larger setup times should be placed closer to the PIC32MZ DA device

· Power and Ground

- Multi-layer PCBs will allow separate power and ground planes
- Each ground pin should be connected to the ground plane individually
- Place bypass capacitor vias as close to the pad as possible (preferably inside the pad)
- If power and ground planes are not used, maximize width for power and ground traces
- Use low-ESR, surface-mount bypass capacitors

· Clocks and Oscillators

- Place crystals as close as possible to the PIC32MZ DA device OSC/SOSC pins
- Do not route high-speed signals near the clock or oscillator
- Avoid via usage and branches in clock lines (SQICLK)
- Place termination resistors at the end of clock lines

Traces

- Higher-priority signals should have the shortest traces
- Follow vendor-recommended layout guidelines for the DDR2 interface
- Match trace lengths for parallel buses (EBIAx, EBIDx, SQIDx)
- Avoid long run lengths on parallel traces to reduce coupling
- Make the clock traces as straight as possible
- Use rounded turns rather than right-angle turns
- Have traces on different layers intersect on right angles to minimize crosstalk
- Maximize the distance between traces, preferably no less than three times the trace width
- Power traces should be as short and as wide as possible
- High-speed traces should be placed close to the ground plane

2.9.1.3 EMI/EMC/EFT (IEC 61000-4-4 and IEC 61000-4-2) Suppression Considerations

The use of LDO regulators is preferred to reduce overall system noise and provide a cleaner power source. However, when utilizing switching Buck/Boost regulators as the local power source for PIC32MZ DA devices, as well as in electrically noisy environments or test conditions required for IEC 61000-4-4 and IEC 61000-4-2, users should evaluate the use of T-Filters (i.e., L-C-L) on the power pins, as shown in Figure 2-5. In addition to a more stable power source, using T-Filters can greatly reduce susceptibility to EMI sources and events.

The EMI/EMC/EFT Suppression Circuit represents only a few supply/ground pairs. However, the number of pairs on a given package may vary. The number of T-Filters in the system depends on the ferrite chip current limitation and the number of supply/ground pairs. For example, with 600 mA current limitation per T-Filter for the 288-LFBGA package, the system should use three T-Filters.

FIGURE 2-5: EMI/EMC/EFT SUPPRESSION CIRCUIT

2.10 Typical Application Connection Example

An example of a typical application connection is shown in Figure 2-6.

FIGURE 2-6: GRAPHICS APPLICATION

- **Note 1:** R<7:0> = GD<7:0>; G<7:0> = GD<15:8>; B<7:0> = GD<23:16>.
 - 2: Frame buffers are either in system RAM or in the DDR2 SDRAM (maximum resolution supported depends on the memory size).
 - 3: Stacked die version (169-pin LFBGA and 176-pin LQFP) supports 32 MB DDR2 SDRAM devices.

3.0 CPU

- Note 1: This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 50. "CPU for Devices with MIPS32[®] microAptiv™ and M-Class Cores" (DS60001192), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).
 - 2: MIPS32[®] microAptiv[™] Microprocessor Core resources are available at: http://www.imgtec.com.

The MIPS32 microAptiv Microprocessor Core is the heart of the PIC32MZ DA family device processor. The CPU fetches instructions, decodes each instruction, fetches source operands, executes each instruction and writes the results of instruction execution to the proper destinations.

3.1 Features

PIC32MZ DA family processor core key features:

- · 5-stage pipeline
- · 32-bit address and data paths
- MIPS32 Enhanced Architecture (Release 2):
 - Multiply-accumulate and multiply-subtract instructions
 - Targeted multiply instruction
 - Zero/One detect instructions
 - WAIT instruction
 - Conditional move instructions (MOVN, MOVZ)
 - Vectored interrupts
 - Programmable exception vector base
 - Atomic interrupt enable/disable
 - GPR shadow registers to minimize latency for interrupt handlers
 - Bit field manipulation instructions
 - Virtual memory support
- microMIPS compatible instruction set:
 - Improves code size density over MIPS32, while maintaining MIPS32 performance.
 - Supports all MIPS32 instructions (except branchlikely instructions)
 - Fifteen additional 32-bit instructions and 39 16-bit instructions corresponding to commonly-used MIPS32 instructions
 - Stack pointer implicit in instruction
 - MIPS32 assembly and ABI compatible

- MMU with Translation Lookaside Buffer (TLB) mechanism:
 - 32 dual-entry fully associative Joint TLB
 - 4-entry fully associative Instruction TLB
 - 4-entry fully associative Data TLB
 - 4 KB pages
- · Separate L1 data and instruction caches:
 - 32 KB 4-way Instruction Cache (I-Cache)
 - 32 KB 4-way Data Cache (D-Cache)
- · Autonomous Multiply/Divide Unit (MDU):
 - Maximum issue rate of one 32x32 multiply per clock
 - Early-in iterative divide. Minimum 12 and maximum 38 clock latency (dividend (rs) sign extension-dependent)
- · Power Control:
 - Minimum frequency: 0 MHz
 - Low-Power mode (triggered by WAIT instruction)
 - Extensive use of local gated clocks
- · EJTAG Debug and Instruction Trace:
 - Support for single stepping
 - Virtual instruction and data address/value breakpoints
 - Hardware breakpoint supports both address match and address range triggering.
 - Eight instruction and four data complex breakpoints
- iFlowtrace[®] version 2.0 support:
 - Real-time instruction program counter
 - Special events trace capability
 - Two performance counters with 34 userselectable countable events
 - Disabled if the processor enters Debug mode
- Four Watch registers:
 - Instruction, Data Read, Data Write options
 - Address match masking options
- DSP ASE Extension:
 - Native fractional format data type operations
 - Register Single Instruction Multiple Data (SIMD) operations (add, subtract, multiply, shift)
 - GPR-based shift
 - Bit manipulation
 - Compare-Pick
 - DSP Control Access
 - Indexed-Load
 - Branch
 - Multiplication of complex operands
 - Variable bit insertion and extraction
 - Virtual circular buffers
 - Arithmetic saturation and overflow handling
 - Zero-cycle overhead saturation and rounding operations

A block diagram of the PIC32MZ DA family processor core is shown in Figure 3-1.

FIGURE 3-1: PIC32MZ DA FAMILY MICROPROCESSOR CORE BLOCK DIAGRAM

3.2 Architecture Overview

The MIPS32 microAptiv Microprocessor core in PIC32MZ DA family devices contains several logic blocks working together in parallel, providing an efficient high-performance computing engine. The following blocks are included with the core:

- · Execution unit
- · General Purpose Register (GPR)
- Multiply/Divide Unit (MDU)
- System control coprocessor (CP0)
- · Memory Management Unit (MMU)
- · Instruction/Data cache controllers
- · Power Management
- · Instructions and data caches
- · microMIPS support
- · Enhanced JTAG (EJTAG) controller

3.2.1 EXECUTION UNIT

The processor core execution unit implements a load/ store architecture with single-cycle ALU operations (logical, shift, add, subtract) and an autonomous multiply/divide unit. The core contains thirty-two 32-bit General Purpose Registers (GPRs) used for integer operations and address calculation. Seven additional register file shadow sets (containing thirty-two registers) are added to minimize context switching overhead during interrupt/exception processing. The register file consists of two read ports and one write port and is fully bypassed to minimize operation latency in the pipeline.

The execution unit includes:

- 32-bit adder used for calculating the data address
- Address unit for calculating the next instruction address
- Logic for branch determination and branch target address calculation
- · Load aligner
- Trap condition comparator
- Bypass multiplexers used to avoid stalls when executing instruction streams where data producing instructions are followed closely by consumers of their results

- Leading Zero/One detect unit for implementing the CLZ and CLO instructions
- Arithmetic Logic Unit (ALU) for performing arithmetic and bitwise logical operations
- · Shifter and store aligner
- DSP ALU and logic block for performing DSP instructions, such as arithmetic/shift/compare operations

3.2.2 MULTIPLY/DIVIDE UNIT (MDU)

The processor core includes a Multiply/Divide Unit (MDU) that contains a separate pipeline for multiply and divide operations, and DSP ASE multiply instructions. This pipeline operates in parallel with the Integer Unit (IU) pipeline and does not stall when the IU pipeline stalls. This allows MDU operations to be partially masked by system stalls and/or other integer unit instructions.

The high-performance MDU consists of a 32x32 booth recoded multiplier, four pairs of result/accumulation registers (HI and LO), a divide state machine, and the necessary multiplexers and control logic. The first number shown ('32' of 32x32) represents the *rs* operand. The second number ('32' of 32x32) represents the *rt* operand.

The MDU supports execution of one multiply or multiply-accumulate operation every clock cycle.

Divide operations are implemented with a simple 1-bit-per-clock iterative algorithm. An early-in detection checks the sign extension of the dividend (rs) operand. If rs is 8 bits wide, 23 iterations are skipped. For a 16-bit wide rs, 15 iterations are skipped and for a 24-bit wide rs, 7 iterations are skipped. Any attempt to issue a subsequent MDU instruction while a divide is still active causes an IU pipeline stall until the divide operation has completed.

Table 3-1 lists the repeat rate (peak issue rate of cycles until the operation can be reissued) and latency (number of cycles until a result is available) for the processor core multiply and divide instructions. The approximate latency and repeat rates are listed in terms of pipeline clocks.

TABLE 3-1: MIPS32 microAptiv MICROPROCESSOR CORE HIGH-PERFORMANCE INTEGER MULTIPLY/DIVIDE UNIT LATENCIES AND REPEAT RATES

Opcode	Operand Size (mul rt) (div rs)	Latency	Repeat Rate
MULT/MULTU, MADD/MADDU,	16 bits	5	1
MSUB/MSUBU (HI/LO destination)	32 bits	5	1
MUL (GPR destination)	16 bits	5	1
	32 bits	5	1
DIV/DIVU	8 bits	12/14	12/14
	16 bits	20/22	20/22
	24 bits	28/30	28/30
	32 bits	36/38	36/38

The MIPS architecture defines that the result of a multiply or divide operation be placed in one of four pairs of HI and LO registers. Using the Move-From-HI (MFHI) and Move-From-LO (MFLO) instructions, these values can be transferred to the General Purpose Register file.

In addition to the HI/LO targeted operations, the MIPS32 architecture also defines a multiply instruction, \mathtt{MUL} , which places the least significant results in the primary register file instead of the HI/LO register pair. By avoiding the explicit \mathtt{MFLO} instruction required when using the LO register, and by supporting multiple destination registers, the throughput of multiply-intensive operations is increased.

Two other instructions, Multiply-Add (MADD) and Multiply-Subtract (MSUB), are used to perform the multiply-accumulate and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and then subtracts the product from the HI and LO registers. The MADD and MSUB operations are commonly used in DSP algorithms.

The MDU also implements various shift instructions operating on the HI/LO register and multiply instructions as defined in the DSP ASE. The MDU supports all of the data types required for this purpose and includes three extra HI/LO registers as defined by the ASE.

Table 3-2 lists the latencies and repeat rates for the DSP multiply and dot-product operations. The approximate latencies and repeat rates are listed in terms of pipeline clocks.

TABLE 3-2: DSP-RELATED LATENCIES AND REPEAT RATES

Op code	Latency	Repeat Rate
Multiply and dot-product without saturation after accumulation	5	1
Multiply and dot-product with saturation after accumulation	5	1
Multiply without accumulation	5	1

3.2.3 SYSTEM CONTROL COPROCESSOR (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation and cache protocols, the exception control system, the processor's diagnostics capability, the operating modes (Kernel, User and Debug) and whether interrupts are enabled or disabled. Configuration information, such as cache size and set associativity, and the presence of options like microMIPS, is also available by accessing the CP0 registers, listed in Table 3-3.

TABLE 3-3: COPROCESSOR 0 REGISTERS

Register Number	Register Name	Function
0	Index	Index into the TLB array (microAptiv MPU only).
1	Random	Randomly generated index into the TLB array (microAptiv MPU only).
2	EntryLo0	Low-order portion of the TLB entry for even-numbered virtual pages (microAptiv MPU only).
3	EntryLo1	Low-order portion of the TLB entry for odd-numbered virtual pages (microAptiv MPU only).
4	Context/ UserLocal	Pointer to the page table entry in memory (microAptiv MPU only). User information that can be written by privileged software and read via the RDHWR instruction.
5	PageMask/ PageGrain	PageMask controls the variable page sizes in TLB entries. PageGrain enables support of 1 KB pages in the TLB (microAptiv MPU only).
6	Wired	Controls the number of fixed (i.e., wired) TLB entries (microAptiv MPU only).
7	HWREna	Enables access via the RDHWR instruction to selected hardware registers in Non-privileged mode.
8	BadVAddr	Reports the address for the most recent address-related exception.
9	Count	Processor cycle count.
10	EntryHi	High-order portion of the TLB entry (microAptiv MPU only).
11	Compare	Core timer interrupt control.

TABLE 3-3: COPROCESSOR 0 REGISTERS (CONTINUED)

Register Number	Register Name	Function						
12	Status	Processor status and control.						
	IntCtl	Interrupt control of vector spacing.						
	SRSCtl	Shadow register set control.						
	SRSMap	Shadow register mapping control.						
	View_IPL	Allows the Priority Level to be read/written without						
		extracting or inserting that bit from/to the Status register.						
	SRSMAP2	Contains two 4-bit fields that provide the mapping from a vector number to the shadow set number to use when servicing such an interrupt.						
13	Cause	Describes the cause of the last exception.						
	NestedExc	Contains the error and exception level status bit values that existed prior to the current exception.						
	View_RIPL	Enables read access to the RIPL bit that is available in the Cause register.						
14	EPC	Program counter at last exception.						
	NestedEPC	Contains the exception program counter that existed prior to the current exception.						
15	PRID	Processor identification and revision						
	Ebase	Exception base address of exception vectors.						
	CDMMBase	Common device memory map base.						
16	Config	Configuration register.						
	Config1	Configuration register 1.						
	Config2	Configuration register 2.						
	Config3	Configuration register 3.						
	Config4	Configuration register 4.						
	Config5	Configuration register 5.						
	Config7	Configuration register 7.						
17	LLAddr	Load link address (microAptiv MPU only).						
18	WatchLo	Low-order watchpoint address (microAptiv MPU only).						
19	WatchHi	High-order watchpoint address (microAptiv MPU only).						
20-22	Reserved	Reserved in the PIC32 core.						
23	Debug	EJTAG debug register.						
	TraceControl	EJTAG trace control.						
	TraceControl2	EJTAG trace control 2.						
	UserTraceData1	EJTAG user trace data 1 register.						
	TraceBPC	EJTAG trace breakpoint register.						
	Debug2	Debug control/exception status 1.						
24	DEPC	Program counter at last debug exception.						
	UserTraceData2	EJTAG user trace data 2 register.						
25	PerfCtl0	Performance counter 0 control.						
	PerfCnt0	Performance counter 0.						
	PerfCtl1	Performance counter 1 control.						
	PerfCnt1	Performance counter 1.						
26	ErrCtl	Software test enable of way-select and data RAM arrays for I-Cache and D-Cache (microAptiv MPU only).						
27	Reserved	Reserved in the PIC32 core.						
28	TagLo/DataLo	Low-order portion of cache tag interface (microAptiv MPU only).						

3.3 Power Management

The processor core offers a number of power management features, including low-power design, active power management and power-down modes of operation. The core is a static design that supports slowing or halting the clocks, which reduces system power consumption during Idle periods.

3.3.1 INSTRUCTION-CONTROLLED POWER MANAGEMENT

The mechanism for invoking Power-Down mode is through execution of the WAIT instruction. For more information on power management, see Section 40.0 "Power-Saving Features".

3.3.2 LOCAL CLOCK GATING

The majority of the power consumed by the processor core is in the clock tree and clocking registers. The PIC32MZ family makes extensive use of local gated-clocks to reduce this dynamic power consumption.

3.4 L1 Instruction and Data Caches

3.4.1 INSTRUCTION CACHE (I-CACHE)

The I-Cache is an on-core memory block of 32 Kbytes. Because the I-Cache is virtually indexed, the virtual-to-physical address translation occurs in parallel with the cache access rather than having to wait for the physical address translation. The tag holds 23 bits of physical address, a valid bit, and a lock bit. The LRU replacement bits are stored in a separate array.

The I-Cache block also contains and manages the instruction line fill buffer. Besides accumulating data to be written to the cache, instruction fetches that reference data in the line fill buffer are serviced either by a bypass of that data, or data coming from the external interface. The I-Cache control logic controls the bypass function.

The processor core supports I-Cache locking. Cache locking allows critical code or data segments to be locked into the cache on a per-line basis, enabling the system programmer to maximize the efficiency of the system cache.

The cache locking function is always available on all I-Cache entries. Entries can then be marked as locked or unlocked on a per entry basis using the CACHE instruction.

3.4.2 DATA CACHE (D-CACHE)

The D-Cache is an on-core memory block of 32 Kbytes. This virtually indexed, physically tagged cache is protected. Because the D-Cache is virtually indexed, the virtual-to-physical address translation occurs in parallel with the cache access. The tag holds 23 bits of physical address, a valid bit, and a lock bit. There is an additional array holding dirty bits and LRU replacement algorithm bits for each set of the cache.

In addition to I-Cache locking, the processor core also supports a D-Cache locking mechanism identical to the I-Cache. Critical data segments are locked into the cache on a per-line basis. The locked contents can be updated on a store hit, but cannot be selected for replacement on a cache miss.

The D-Cache locking function is always available on all D-Cache entries. Entries can then be marked as locked or unlocked on a per-entry basis using the CACHE instruction.

3.4.3 ATTRIBUTES

The processor core I-Cache and D-Cache attributes are listed in the Configuration registers (see Register 3-1 through Register 3-4).

3.5 EJTAG Debug Support

The processor core provides for an Enhanced JTAG (EJTAG) interface for use in the software debug of application and kernel code. In addition to standard User mode and Kernel modes of operation, the processor core provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, single-step exception, etc.) is taken and continues until a Debug Exception Return (DERET) instruction is executed. During this time, the processor executes the debug exception handler routine.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test data in and out of the core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG specification specify which registers are selected and how they are used.

3.6 MIPS® DSP ASE Extension

The MIPS DSP Application-Specific Extension Revision 2 is an extension to the MIPS32 architecture. This extension comprises new integer instructions and states that include new HI/LO accumulator register pairs and a DSP control register. This extension is crucial in a wide range of DSP, multimedia, and DSP-like algorithms covering Audio and Video processing applications. The extension supports native fractional format data type operations, register Single Instruction Multiple Data (SIMD) operations, such as add, subtract, multiply, and shift. In addition, the extension includes the following features that are essential in making DSP algorithms computationally efficient:

- · Support for multiplication of complex operands
- · Variable bit insertion and extraction
- · Implementation and use of virtual circular buffers
- Arithmetic saturation and overflow handling support
- Zero cycle overhead saturation and rounding operations

3.7 microAptiv Core Configuration

Register 3-1 through Register 3-4 show the default configuration of the microAptiv core, which is included on PIC32MZ DA family devices.

REGISTER 3-1: CONFIG: CONFIGURATION REGISTER; CP0 REGISTER 16, SELECT 0

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	r-1	U-0	U-0	U-0	U-0	U-0	U-0	R-0
31:24	1	_	_	_	_		_	ISP
22:46	R-0	R-0	R-1	R-0	U-0	R-1	R-0	R-0
23:16	DSP	UDI	SB	MDU	_	MM<	1:0>	BM
15.0	R-0	R-0	R-0	R-0	R-0	R-1	R-0	R-0
15:8	BE	AT<1:0>		AR<2:			MT<	2:1>
7:0	R-1	U-0	U-0	U-0	U-0	R/W-0	R/W-1	R/W-0
7.0	MT<0>	_	_			K0<2:0>		

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 Reserved: This bit is hardwired to '1' to indicate the presence of the Config1 register.

bit 30-25 Unimplemented: Read as '0'

bit 24 ISP: Instruction Scratch Pad RAM bit

0 = Instruction Scratch Pad RAM is not implemented

bit 23 DSP: Data Scratch Pad RAM bit

0 = Data Scratch Pad RAM is not implemented

bit 22 UDI: User-defined bit

0 = CorExtend User-Defined Instructions are not implemented

bit 21 SB: SimpleBE bit

1 = Only simple byte enables are allowed on the internal bus interface

bit 20 MDU: Multiply/Divide Unit bit

0 = Fast, high-performance MDU

bit 19 **Unimplemented:** Read as '0'

bit 18-17 MM<1:0>: Merge Mode bits

10 = Merging is allowed

bit 16 BM: Burst Mode bit

0 = Burst order is sequential

bit 15 **BE:** Endian Mode bit

0 = Little-endian

bit 14-13 AT<1:0>: Architecture Type bits

00 **= MIPS32**

bit 12-10 AR<2:0>: Architecture Revision Level bits

001 = MIPS32 Release 2

bit 9-7 MT<2:0>: MMU Type bits

001 = microAptiv MPU Microprocessor core uses a TLB-based MMU

bit 6-3 **Unimplemented:** Read as '0'

bit 2-0 K0<2:0>: Kseg0 Coherency Algorithm bits

010 = Uncached

REGISTER 3-2: CONFIG1: CONFIGURATION REGISTER 1; CP0 REGISTER 16, SELECT 1

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	r-1	R-0	R-1	R-1	R-1	R-1	R-1	R-0
31.24	_			MMU Size<5:0>				IS<2>
22.46	R-1	R-1	R-0	R-1	R-1	R-0	R-1	R-1
23:16	IS<1	:0>	IL<2:0>					
45.0	R-0	R-1	R-1	R-0	R-1	R-1	R-0	R-1
15:8	DS<2:0>			DL<2:0>			DA<	2:1>
7.0	R-1	U-0	U-0	R-1	R-0	R-0	R-1	R-0
7:0	DA<0>	_		PC	WR	CA	EP	FP

Legend:r = Reserved bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31 Reserved: This bit is hardwired to a '1' to indicate the presence of the Config2 register.

bit 30-25 MMU Size<5:0>: Contains the number of TLB entries minus 1

011111 = 32 TLB entries

bit 24-22 IS<2:0>: Instruction Cache Sets bits

011 = Contains 512 instruction cache sets per way

bit 21-19 IL<2:0>: Instruction-Cache Line bits

011 = Contains instruction cache line size of 16 bytes

bit 18-16 IA<2:0: Instruction-Cache Associativity bits

011 = Contains 4-way instruction cache associativity

bit 15-13 DS<2:0>: Data-Cache Sets bits

011 = Contains 512 data cache sets per way

bit 12-10 DL<2:0>: Data-Cache Line bits

011 = Contains data cache line size of 16 bytes

bit 9-7 DA<2:0>: Data-Cache Associativity bits

011 = Contains the 4-way set associativity for the data cache

bit 6-5 Unimplemented: Read as '0'

bit 4 PC: Performance Counter bit

1 = The processor core contains Performance Counters

bit 3 WR: Watch Register Presence bit

1 = Four Watch registers are present

bit 2 CA: Code Compression Implemented bit

0 = No MIPS16e® present

bit 1 **EP:** EJTAG Present bit

1 = Core implements EJTAG

bit 0 FP: Floating Point Unit bit

0 = Floating Point Unit is not implemented

REGISTER 3-3: CONFIG3: CONFIGURATION REGISTER 3; CP0 REGISTER 16, SELECT 3

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	r-1	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	_	_	_	_	_	_	_
22:46	U-0	R-0	R-1	R-0	R-0	R-0	R-1	R/W-y
23:16	_	IPLW<1:0>		MMAR<2:0>			MCU	ISAONEXC ⁽¹⁾
15:8	R-y	R-y	R-1	R-1	R-1	R-1	U-0	R-1
15.6	ISA<1	:0> ⁽¹⁾	ULRI	RXI	DSP2P	DSPP	_	ITL
7:0	U-0	R-1	R-1	R-0	R-1	U-0	U-0	R-1
7:0	_	VEIC	VINT	SP	CDMM	_	_	TL

Legend:r = Reserved bity = Value set from Configuration bits on PORR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

- bit 31 Reserved: This bit is hardwired as '1' to indicate the presence of the Config4 register
- bit 30-23 Unimplemented: Read as '0'
- bit 22-21 IPLW<1:0>: Width of the Status IPL and Cause RIPL bits
 - 01 = IPL and RIPL bits are 8-bits in width
- bit 20-18 MMAR<2:0>: microMIPS Architecture Revision Level bits

000 = Release 1

- bit 17 MCU: MIPS MCU ASE Implemented bit
 - 1 = MCU™ ASE is implemented
- bit 16 **ISAONEXC:** ISA on Exception bit⁽¹⁾
 - 1 = microMIPS is used on entrance to an exception vector
 - 0 = MIPS32 ISA is used on entrance to an exception vector
- bit 15-14 ISA<1:0>: Instruction Set Availability bits⁽¹⁾
 - 11 = Both MIPS32 and microMIPS are implemented; microMIPS is used when coming out of reset
 - 10 = Both MIPS32 and microMIPS are implemented; MIPS32 ISA used when coming out of reset
- bit 13 **ULRI:** UserLocal Register Implemented bit
 - 1 = UserLocal Coprocessor 0 register is implemented
- bit 12 RXI: RIE and XIE Implemented in PageGrain bit
 - 1 = RIE and XIE bits are implemented
- bit 11 DSP2P: MIPS DSP ASE Revision 2 Presence bit
 - 1 = DSP Revision 2 is present
- bit 10 DSPP: MIPS DSP ASE Presence bit
 - 1 = DSP is present
- bit 9 **Unimplemented:** Read as '0'
- bit 8 ITL: Indicates that iFlowtrace hardware is present
 - 1 = The iFlowtrace is implemented in the core
- bit 7 Unimplemented: Read as '0'
- bit 6 **VEIC:** External Vector Interrupt Controller bit
 - 1 = Support for an external interrupt controller is implemented.
- bit 5 VINT: Vector Interrupt bit
 - 1 = Vector interrupts are implemented
- bit 4 SP: Small Page bit
 - 0 = 4 KB page size
- bit 3 CDMM: Common Device Memory Map bit
 - 1 = CDMM is implemented
- bit 2-1 **Unimplemented:** Read as '0'
- bit 0 TL: Trace Logic bit
 - 0 = Trace logic is not implemented (this is old trace logic, which is replaced by iFlowtrace (ITL bit))
- Note 1: These bits are set based on the value of the BOOTISA Configuration bit (DEVCFG0<6>).

REGISTER 3-4: CONFIG5: CONFIGURATION REGISTER 5; CP0 REGISTER 16, SELECT 5

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	-	_	_	-	_	-	_	_
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	_	_	_	_	_	_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.8	_	_	_	_	_	_	_	_
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-1
7.0	_	_	_	_	_	_	_	NF

Legend: r = Reserved

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-1 Unimplemented: Read as '0'

bit 0 NF: Nested Fault bit

1 = Nested Fault feature is implemented

REGISTER 3-5: CONFIGT: CONFIGURATION REGISTER 7; CP0 REGISTER 16, SELECT 7

					, -		,	
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R-1	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	WII	_	_	_	_	_	_	_
22.46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	_	_	_	_	_	_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6	_	_	_	_	_	_	_	_
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7.0	_	_	_	_	_	_	_	_

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31 WII: Wait IE Ignore bit

1 = Indicates that this processor will allow an interrupt to unblock a WAIT instruction

bit 30-0 Unimplemented: Read as '0'

4.0 MEMORY ORGANIZATION

Note:

This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source.For detailed information, refer to Section 48. "Memory Organization Permissions" (DS60001214), which is available from the Documentation > Reference Manual section of the PIC32 Microchip web site (www.microchip.com/pic32).

PIC32MZ DA microcontrollers provide 4 GB of unified virtual memory address space. All memory regions, including program, data memory, SFRs and Configuration registers, reside in this address space at their respective unique addresses. The program and data memories can be optionally partitioned into user and kernel memories. In addition, PIC32MZ DA devices allow execution from data memory.

Key features include:

- · 32-bit native data width
- Separate User (KUSEG) and Kernel (KSEG0/ KSEG1/KSEG2/KSEG3) mode address space
- · Separate Boot Flash memory for protected code
- Robust bus exception handling to intercept runaway code
- Cacheable (KSEG0/KSEG2) and non-cacheable (KSEG1/KSEG3) address regions
- Read-Write permission access to predefined memory regions

4.1 Memory Layout

PIC32MZ DA microcontrollers implement two address schemes: virtual and physical. All hardware resources, such as program memory, data memory and peripherals, are located at their respective physical addresses. Virtual addresses are exclusively used by the CPU to fetch and execute instructions as well as access peripherals. Physical addresses are used by bus master peripherals, such as DMA and the Flash controller, that access memory independently of the CPU.

The main memory maps for the PIC32MZ DA devices are illustrated in Figure 4-1. Figure 4-2 provides memory map information for Boot Flash and boot alias. Table 4-1 provides memory map information for Program Flash, RAM, and DDR2 SDRAM. Table 4-2 provides memory map information for Special Function Registers (SFRs).

FIGURE 4-1: PIC32MZ DA FAMILY MEMORY MAP

TABLE 4-1: ADDRESS MAPPING TABLE

Memory	Size	Region End Address (KSEG1)	Region End Address (KSEG0)	Region End Address (Physical)
Drogram Flach	2 MB	0xBD1FFFFF	0x9D1FFFFF	0x1D1FFFFF
Program Flash	1 MB	0xBD0FFFFF	0x9D0FFFFF	0x1D0FFFFF
	EXT ⁽¹⁾	0xAFFFFFF	0x8FFFFFF	0x0FFFFFF
DDR2 SDRAM	32 MB ⁽⁵⁾	0xA9FFFFF	0x89FFFFF	0x09FFFFFF
	(2)	Reserved	Reserved	Reserved
RAM	640 KB ⁽³⁾	0xA009FFFF	0x8009FFFF	0x0009FFFF
KAIVI	256 KB ⁽⁴⁾	0xA003FFFF	0x8003FFFF	0x0003FFFF

- **Note 1:** External DDR2 SDRAM can be up to 128 MB, EXTDDRSIZE<3:0> bits (DEVCFG3<19:16>) should be set, and the region end address should be scaled accordingly.
 - 2: Devices without the DDR2 option.
 - 3: Devices with 640 KB RAM contain SRAM Bank 1 (256 KB) and SRAM Bank 2 (384 KB).
 - 4: Devices with 256 KB RAM contain SRAM Bank 1 (128 KB) and SRAM Bank 2 (128 KB).
 - **5:** Refer to **4.2 "DDR2 SDRAM"** for DDR2 SDRAM features, which are applicable to devices with internal DDR2 SDRAM.

FIGURE 4-2: BOOT AND ALIAS MEMORY MAP

TABLE 4-2: SFR MEMORY MAP

	Virtual Add	dress
Peripheral	Base	Offset Start
System Bus ⁽¹⁾	0xBF8F0000	0x0000
SDHC		0xC000
GPU		0xB000
GLCD		0xA000
DDRPHY		0x9100
DDRC		0x8000
RNG	0xBF8E0000	0x6000
Crypto		0x5000
USB		0x3000
SQI1		0x2000
EBI		0x1000
Prefetch		0x0000
DSCTRL	0×DE0C0000	0x0200
RTCC	0xBF8C0000	0x0000
USBCR		0x4000
Ethernet	0xBF880000	0x2000
CAN1 and CAN2		0x0000
PORTA-PORTK	0xBF860000	0x0000
CTMU		0xC200
Comparator 1, 2		0xC000
ADC	0xBF840000	0xB000
OC1-OC9	0.000	0x4000
IC1-IC9		0x2000
Timer1-Timer9		0x0000
PMP		0xE000
UART1-UART6	0xBF820000	0x2000
SPI1-SPI6	0.000000	0x1000
I2C1-I2C5		0x0000
DMA	0xBF810000	0x1000
Interrupt Controller	00000	0x0000
HLVD		0x1800
PPS		0x1400
Oscillator		0x1200
CVREF	0xBF800000	0x0E00
Deadman Timer	UNDEGUUUUU	0x0A00
Watchdog Timer		0x0800
Flash Controller		0x0600
Configuration		0x0000

Note 1: Refer to 4.4 "System Bus Arbitration" for important legal information.

4.1.1 BOOT FLASH SEQUENCE AND CONFIGURATION SPACES

Sequence space is used to identify which Boot Flash is aliased by aliased regions. If the value programmed into the TSEQ<15:0> bits of the BF1SEQ3 word is equal to or greater than the value programmed into the TSEQ<15:0> bits of the BF2SEQ3 word, Boot Flash 1 is aliased by the lower boot alias region, and Boot Flash 2 is aliased by the upper boot alias region. If the TSEQ<15:0> bits of the BF2SEQ3 word are greater than the TSEQ<15:0> bits of the BF1SEQ3 word, the opposite is true (see Table 4-3 and Table 4-4 for BFxSEQ3 word memory locations).

The CSEQ<15:0> bits must contain the complement value of the TSEQ<15:0> bits; otherwise, the value of the TSEQ<15:0> bits are considered invalid, and an alternate sequence is used, see **Section 4.1.2** "Alternate Sequence and Configuration Words" for more information.

Once Boot Flash memories are aliased, configuration space located in the lower boot alias region is used as the basis for the Configuration words, DEVSIGN0, DEVCP0, and DEVCFGx (and the associated alternate configuration registers). This means that the Boot Flash region to be aliased by lower boot alias region memory must contain configuration values in the appropriate memory locations.

Note: Do not use word program operation (NVMOP<3:0> = 0001) when programming data into the sequence and configuration spaces.

4.1.2 ALTERNATE SEQUENCE AND CONFIGURATION WORDS

Every word in the configuration space and sequence space has an associated alternate word (designated by the letter A as the first letter in the name of the word). During device start-up, primary words are read and if uncorrectable ECC errors are found, the BCFGERR (RCON<27>) flag is set and alternate words are used. If uncorrectable ECC errors are found in primary and alternate words, the BCFGFAIL (RCON<26>) flag is set and the default configuration is used.

	50 00 1929A IIA
	18/2 17/1
	4 19/3
	21/5 20/4
IARY	23/7 22/6
ID CONFIGURATION WORDS SUMMARY Bits	24/8 23
ATION WO	26/10 25/9
ONFIGURA	27/11 26/
ICE AND C	13 28/12
I 1 SEQUENCE AN	30/14 29/13
BOOT FLASH 1	31/15
	Register Name Bit Range
	Virtual Addres (BFC4_#)

		steseR IIA	××××	XXXX	XXXX	XXXX	XXXX	XXXX	XXXX	XXXX	XXXX	XXXX	XXXX	XXXX	XXXX	XXXX	xxxx	XXXX	XXXX	××××	XXXX	×××	X X X	XXXX	XXXX	XXXX	XXXX	XXXX	XXXX	XXXX	XXXX	××××	XXXX	xxxx	XXXX	XXXX	XXXX	
		16/0														I	1	I	I	I	1													1	1	1	1	
		17/1														_	_	Ι	I	1	1													1	1	-	-	
		18/2														I	ı	I	ı	I	I													1	ı	1	I	
		19/3														I	1	_	I	1	1													_	1	1	_	
		20/4														-	-	Ι	I	1	I													1	1	Ι	1	
		21/5						ons.								I	I	Ι	I	I	1					SU								1	1	I	Ι	
∖		22/6						Note: See Table 41-2 for the bit descriptions.								I	1	Ι		I	1					Note: See Table 41-1 for the bit descriptions.	<u>-</u>							1	1	I	1	
ND CONFIGURATION WORDS SUMMARY	Bits	23/7						-2 for the b						CSEQ<15:0>	TSEQ<15:0>	I	I	I	I	I	1					-1 for the b						CSEQ<15:0>	TSEQ<15:0>	1	I	I	I	
RDS SL	В	24/8						e Table 41						CSEQ	TSEQ	I	I	1	I	I	1					e Table 41						CSEQ	TSEQ	1	ı	I	1	
ON NO	_	25/9						Note: Se								I	I	I	I	I	I					Note: Se								1	ı	I	1	
URATIC		26/10														Ι	I	I	I	I	1													I	1	I	1	
ONFIG		27/11														Ι	I	I	I	I	1													I	1	I	1	
⋖		28/12															_	Ι	I	-	1													1	_	_	1	
BOOT FLASH 2 SEQUENCE		29/13														Ι	Ι	Ι		I															1	1		
2 SEQ		30/14														I	I	I		I	I													1	1	1	Ι	
FLASH		31/15														I	I	Ι	I	I	I													1		1	Ι	
100		Bit Range	31:0	31:0	31:0	31:0	31:0	31:0	31:0	31:0	31:0	31.0	31:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:0	31:0	31:0	31:0	31:0	31:0	31:0	31:0	31.0	31:0	31:16	15:0	31:16	15:0	31:16	15:0	
		Register Name	ABF2DEVCFG4	ABF2DEVCFG3	ABF2DEVCFG1	ABF2DEVCFG0	ABF2DEVCP3	ABF2DEVCP2	ABF2DEVCP1	ABF2DEVCP0	ABF2DEVSIGN3	ABF2DEVSIGNZ ABF2DFVSIGN1	ABF2DEVSIGNO	ADESCEOS	ADIZOEGO	ABESSEOS	אטן בטרעב	ABF2SEQ1		ARF2SEG0	20101	BF2DEVCFG4	BF2DEVCFG3	BF2DEVCFG1	BF2DEVCFG0	BF2DEVCP3	BF2DEVCP1	BF2DEVCP0	BF2DEVSIGN3	BFZDEVSIGNZ RF2DEVSIGN1	BF2DEVSIGN0	2013010	BFZSEQ3	RE2SEO2	1 20 10 1	BE2SEO1	בטרעין	
TABLE 4-4	ss	Virtual Addres (BFC6_#)	FF3C /		FF48 /	FF4C /	FF50 /	FF54 /	FF58 ,	FF5C /	, 0944	FF64 /		, 0233		/ //	_	FF78 /	_	FE7C /			FFC4	FFC8	FFCC I	FFD0 E	FFD8	FFDC B		FFE8		_	LLL I	FFF4 F	_	בבבא	-	

REGISTER 4-1: BFxSEQ3/ABFxSEQ3: BOOT FLASH 'x' SEQUENCE WORD 0 REGISTER ('x' = 1 AND 2)

			<i>,</i>					
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04:04	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P
31:24				CSEQ<	15:8>			
00.40	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P
23:16				CSEQ<	<7:0>			
45.0	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P
15:8				TSEQ<	15:8>			
7.0	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P
7:0				TSEQ<	<7:0>			

Legend:P = Programmable bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 CSEQ<15:0>: Boot Flash Complement Sequence Number bits

bit 15-0 TSEQ<15:0>: Boot Flash True Sequence Number bits

Note: The BFxSEQ0 through BFxSEQ2 and ABFxSEQ0 through ABFxSEQ2 registers are used for Quad Word programming operation when programming the BFxSEQ3/ABFxSEQ3 registers, and do not contain any valid information.

4.2 DDR2 SDRAM

Stacked DDR2 SDRAM memory devices support 32 MB of DDR2 SDRAM. Memory in these devices is organized as 4,194,304 x 4 banks x 16 bits. Refer to Figure 4-1 and Table 4-1 for the DDR2 SDRAM address ranges.

4.2.1 FEATURES

The DDR2 SDRAM includes the following features:

- Double Data Rate architecture: two data transfers per clock cycle
- · CAS Latency: 3 and 4
- · Burst Length: 8
- Bi-directional, differential data strobes (DDRUDQS, DDRLDQS and DDRUDQS, DDRLDQS) are transmitted / received with data
- Edge-aligned with Read data and center-aligned with Write data
- DLL aligns Data (DDRDQx) and Data Qualifier Strobe (DDRxDQS, DDRxDQS) transitions with clock
- Differential clock inputs (DDRCK and /DDRCK)

- · Data masks (DDRUDM, DDRLDM) for write data
- Commands entered on each positive DDRCK edge, data and data mask are referenced to both edges of DDRxDQS
- Posted CAS programmable additive latency supported to make command and data bus efficiency
- Read Latency = Additive Latency plus CAS Latency (RL = AL + CL)
- Off-Chip-Driver impedance adjustment (OCD) and On-Die-Termination (ODT) for better signal quality
- Auto-precharge operation for read and write bursts
- · Auto Refresh and Self Refresh modes
- · Precharged Power Down and Active Power Down
- Write Latency = Read Latency 1 (WL = RL 1)

Figure 4-3 provides a block diagram of the DDR2 SDRAM.

FIGURE 4-3: DDR2 SDRAM BLOCK DIAGRAM

4.3 Timing Parameters

Table 4-5 only applies to device variants with internal 32 MB DDR2 SDRAM. For device variants supporting external DDR2 SDRAM memory, refer to the vendor data sheet for timing parameters.

TABLE 4-5: TIMING PARAMETERS

Parameter	Description	Value	Units
tRFC	Auto-refresh Cycle Time	130	ns
tWR	Write Recovery Time	25	ns
tRP	Precharge-to-Active Command Delay Time	20	ns
tRCD	Active to Read/Write Command Delay Time	20	ns
tRRD	Row-to-Row (RAS to RAS) Command Delay Time	7.5	ns
tWTR	Write-to-Read Command Delay Time	15	ns
tRTP	Read-to-Precharge Command Delay Time	20	ns
tDLLK	DLL Lock Delay Time	200	Clock cycles
tRAS	Active to Precharge Minimum Command Delay Time	40	ns
tRC	Row Cycle Time	110	ns
tFAW	Four Bank Activation Window	35	ns
tMRD	Mode Register Set Command Cycle Delay	4	Clock cycles
tXP	Power Down Exit Delay	6	Clock cycles
tCKE	Power Down Minimum Delay	6	Clock cycles
RL	CAS Latency	4	Clock cycles
tRFI	Average Periodic Refresh Interval	7.8	μs
WL	Write Latency	3	Clock cycles
BL	Burst Length (in cycles)	8	Clock cycles

4.4 System Bus Arbitration

Note:

The System Bus interconnect implements one or more instantiations of the SonicsSX[®] interconnect from Sonics, Inc. This document contains materials that are (c) 2003-2015 Sonics, Inc., and that constitute proprietary information of Sonics, Inc. SonicsSX is a registered trademark of Sonics, Inc. All such materials and trademarks are used under license from Sonics, Inc.

As shown in the PIC32MZ DA Family Block Diagram (see Figure 1-1), there are multiple initiator modules (I1 through I14) in the system that can access various target modules (T1 through T23). Table 4-6 illustrates which initiator can access which target. The System Bus supports simultaneous access to targets by initiators, so long as the initiators are accessing different targets. The System Bus will perform arbitration if multiple initiators attempt to access the same target.

The GLCD and GPU are directly connected to the DDR2 SDRAM Controller to use DDR2 SDRAM for frame buffers. Arbitration control is done through the DDR2 SDRAM Controller arbitration engine. Refer to Section 55. "DDR2 SDRAM Controller" (DS60001321) in the "PIC32 Family Reference Manual" for additional information. Crypto Controller Flash × SQ11 × CAN2 × × × Ethernet Write × × Ethernet Read × INITIATORS TO TARGETS ACCESS ASSOCIATION DMA Write × \times × DMA Read × × × × × × × × × External Memory via DDR2 and DDR2 Targets 1 and 2 External Memory via DDR2 and DDR2 Targets 3 and 4 External Memory via DDR2 and DDR2 Target 0 External Memory via SQ11 and SQ11 Module Initiator ID Name Graphics LCD Controller RAM Bank 2 Memory RAM Bank 1 Memory Peripheral Set 3: Timer1-Timer9 IC1-IC9 OC1-OC9 ADC Comparator 1 Comparator 2 CTMU Ethernet Controller Program Flash Boot Flash Prefetch Module Peripheral Set 1: System Control Flash Control DMT Peripheral Set 2: SP11-SP16 I2C1-I2C5 UART1-UART6 PMP Peripheral Set 4: PORTA-PORTK Peripheral Set 5: CVREF PPS Input PPS Output Interrupts DMA Crypto Engine RNG Module CAN1 TABLE 4-6: Target Number 73 9 7 7 4 15 16 17 Note 2

© 2015-2017 Microchip Technology Inc.

SDHC

GPU 5

GLCD 12

£

×

×

×

TABL	TABLE 4-6: INITIATORS TO TARGETS ACCESS ASSOCIATION (CONTINUED)	CESS	ASSO	CIATIO	N (CO	TINUE	<u>(</u>								
F	Initiator ID	1	2	က	4	2	9	7	8	6	10	11	12	13	14
Number	r Name	СРU	DMA Read	DMA Write	USB	Ethernet Ethernet Read Write	Ethernet Write	CAN1	CAN2	SQI1	Flash Controller	Crypto	Crypto GLCD GPU		SDHC
18	2D Graphics Processing Unit	×													
19	Secure Digital Host Controller	×													
20	DDR2 PHY Control Register Interface	×													
21	DDR2 Control Register Interface	×													
22	Peripheral Set 6: RTCC DSCTRL	×													
23	External Memory via EBI and EBI Module	×	×	×	×	×	×	×	×	×		×			×
Note	Note 1: The GLCD and GPU are directly connected to the DDR2 SDRAM Controller to use DDR2 SDRAM for frame buffers. Arbitration control is done through the DDR2 SDRAM Controller arbitration engine. Refer to Section 55. "DDR2 SDRAM Controller" (DS60001321) in the "PIC32 Family Reference Manual" for additional information.	JR2 SDRA DS6000132	M Controll 1) in the "I	er to use D PIC32 Fan	DR2 SDR nily Refere	AM for frar ence Manua	ne buffers. al" for additi	Arbitration onal inforr	control is nation.	done thro	ugh the DDR	2 SDRAM	Controller	arbitration	engine.

The System Bus arbitration scheme implements a non-programmable, Least Recently Serviced (LRS).

The arbitration scheme for the available initiators is shown in Table 4-7.

TABLE 4-7: INITIATOR ID AND ARBITRATION

ID	Name	Arbitration
1	CPU	LRS
2	DMA Read	LRS
3	DMA Write	LRS
4	USB	LRS
5	Ethernet Read	LRS
6	Ethernet Write	LRS
7	CAN1	LRS
8	CAN2	LRS
9	SQI1	LRS
10	Flash Controller	LRS
11	Crypto	LRS
12	GLCD ⁽¹⁾	LRS
13	GPU ⁽¹⁾	LRS
14	SDHC	LRS

Note 1: The GLCD and GPU are directly connected to DDR2 SDRAM Controller to use DDR2 SDRAM for frame buffers.

Arbitration control is done through the DDR2 SDRAM Controller arbitration engine.

4.5 Permission Access and System Bus Registers

The System Bus on PIC32MZ DA family of microcontrollers provides access control capabilities for the transaction initiators on the System Bus.

The System Bus divides the entire memory space into 17 regions and permits access to each target by initiators via permission groups. Four Permission Groups (0 through 3) can be assigned to each initiator. Each permission group is independent of the others and can have exclusive or shared access to a region.

Using the CFGPG register (see Register 41-12 in Section 41.0 "Special Features"), Boot firmware can assign a permission group to each initiator, which can make requests on the System Bus.

The available targets and their regions, as well as the associated control registers to assign protection, are described and listed in Table 4-8.

Register 4-2 through Register 4-13 are used for setting and controlling access permission groups and regions.

To change these registers, they must be unlocked in hardware. The register lock is controlled by the PGLOCK Configuration bit (CFGCON<11>). Setting the PGLOCK bit prevents writes to the control registers and clearing the PGLOCK bit allows writes.

To set or clear the PGLOCK bit, an unlock sequence must be executed. Refer to **Section 42. "Oscillators with Enhanced PLL"** (DS60001250) in the *"PIC32 Family Reference Manual"* for details.

TERS
EGIS
TECTION REG
E
SOTE
ED PF
SIATE
SSOC
Y ON
TS A
RGE
M BUS TARGETS AND ASSOCIATE
M B
SYSTEN
တ်
4-8:
BLE
₹

				SBTxREGy Register (see Note 7)	ister (see Note	7)			SBTxRDy	SBTxRDy Register	SBTxWRy Register	Register
Target Protection Number	Target Description (see Note 5)	Name	Region Base (BASE<21:0>) (see Note 2)	Physical Start Address	Region Size (SIZE<4:0>) (see Note 3)	Region Size	Priority (PRI)	Priority Level	Name	Read Permission (GROUP3, GROUP2, GROUP1,	Name	Write Permission (GROUP3, GROUP2, GROUP1, GROUP1,
0	System Bus	SBT0REG0	Я	0x1F8F0000	Я	64 KB	I	0	SBT0RD0	0,1,1,1	SBT0WR0	0,1,1,1
		SBT0REG1	œ	0x1F8F8000	ď	32 KB	I	3	SBT0RD1	0,0,0,1	SBT0WR1	0,0,0,1
1	Flash Memory ⁽⁶⁾ :	SBT1REG0	깥	0x1D0000000	R ⁽⁴⁾	R ⁽⁴⁾	I	0	SBT1RD0	0,0,0,0	SBT1WR0	0,0,0,0
	Program Flash Boot Flash Drafatch	SBT1REG2	ď	0x1F8E0000	ď	4 KB	-	2	SBT1RD2	R/W ⁽¹⁾	SBT1WR2	R/W ⁽¹⁾
		SBT1REG3	R/W	RW	R/W	RW	-	2	SBT1RD3	0,0,0,0	SBT1WR3	0,0,0,0
		SBT1REG4	RW	RW	R/W	R/W	-	2	SBT1RD4	0,0,0,0	SBT1WR4	0,0,0,0
		SBT1REG5	RW	RW	R/W	R/W	-	2	SBT1RD5	0,0,0,0	SBT1WR5	0,0,0,0
		SBT1REG6	RW	RW	R/W	R/W	-	2	SBT1RD6	0,0,0,0	SBT1WR6	0,0,0,0
		SBT1REG7	R/W	RW	R/W	RW	0	-	SBT1RD7	0,0,0,0	SBT1WR7	0,0,0,0
		SBT1REG8	R/W	RW	R/W	R/W	0	-	SBT1RD8	0,0,0,0	SBT1WR8	0,0,0,0
2	RAM Bank 1 Memory	SBT2REG0	œ	0	R ⁽⁴⁾	R ⁽⁴⁾	I	0	SBT2RD0	R/W ⁽¹⁾	SBT2WR0	R/W ⁽¹⁾
		SBT2REG1	R/W	R/W	R/W	R/W	I	3	SBT2RD1	R/W ⁽¹⁾	SBT2WR1	R/W ⁽¹⁾
		SBT2REG2	R/W	R/W	R/W	R/W	0	-	SBT2RD2	R/W ⁽¹⁾	SBT2WR2	R/W ⁽¹⁾
3	RAM Bank 2 Memory	SBT3REG0	R ⁽⁴⁾	R(4)	R ⁽⁴⁾	R ⁽⁴⁾	I	0	SBT3RD0	R/W ⁽¹⁾	SBT3WR0	R/W ⁽¹⁾
		SBT3REG1	W/A	R/W	R/W	R/W	Ι	3	SBT3RD1	R/W ⁽¹⁾	SBT3WR1	R/W ⁽¹⁾
		SBT3REG2	W/A	R/W	R/W	R/W	0	1	SBT3RD2	R/W ⁽¹⁾	SBT3WR2	R/W ⁽¹⁾
4	External Memory via DDR2 and	SBT4REG0	œ	0x08000000	ď	R(4)	I	0	SBT4RD0	R/W ⁽¹⁾	SBT4WR0	R/W ⁽¹⁾
	DDR2 Target 0	SBT4REG1	W/A	R/W	R/W	R/W	Ι	3	SBT4RD1	R/W ⁽¹⁾	SBT4WR1	R/W ⁽¹⁾
		SBT4REG2	W/A	R/W	R/W	R/W	-	2	SBT4RD2	R/W ⁽¹⁾	SBT4WR2	R/W ⁽¹⁾
		SBT4REG3	W/A	R/W	R/W	R/W	1	2	SBT4RD3	R/W ⁽¹⁾	SBT4WR3	R/W ⁽¹⁾
		SBT4REG4	W/A	R/W	R/W	R/W	-	2	SBT4RD4	R/W ⁽¹⁾	SBT4WR4	R/W ⁽¹⁾
9	External Memory via DDR2 and	SBT5REG0	Y	0×08000000	Я	R(4)	Ι	0	SBT5RD0	R/W ⁽¹⁾	SBT5WR0	R/W ⁽¹⁾
	DDR2 Targets 1 and 2	SBT5REG1	K/W	R/W	R/W	R/W	1	3	SBT5RD1	R/W ⁽¹⁾	SBT5WR1	R/W ⁽¹⁾
		SBT5REG2	K/W	R/W	R/W	R/W	1	2	SBT5RD2	R/W ⁽¹⁾	SBT5WR2	R/W ⁽¹⁾
		SBT5REG3	K/W	R/W	R/W	R/W	1	2	SBT5RD3	R/W ⁽¹⁾	SBT5WR3	R/W ⁽¹⁾
		SBT5REG4	R/W	R/W	R/W	R/W	_	2	SBT5RD4	R/W ⁽¹⁾	SBT5WR4	R/W ⁽¹⁾
Legend:	R = Read; R/W = Read/Write;	ead/Write;	x' in a registe	x' in a register name = 0-13;	ni 'y' in	'y' in a register name = 0-8.	me = 0-8.					

The BASE<21:0> bits must be set to the corresponding Physical Address and right shifted by 10 bits. For Read-only bits, this value is set by hardware on Reset.

The SIZE<4:0> bits must be set to the corresponding Region Size, based on the following formula: Region Size = 2^{(SIZE-1}) x 1024 bytes. For read-only bits, this value is set by hardware on Reset.

Refer to the Device Memory Map (Figure 4-1) for specific device memory sizes and start addresses.

See Table 4-2 for information on specific target memory size and start addresses.
The SBTXREG1 SFRs are reserved, and therefore, are not listed in this table for this target.
The x' in the SBTXREGy, SBTXRDy, and SBTXWRy registers represents the target protection number and not the actual target number (e.g., for SQI 'x' = 13 and not 11, whereas 11 is the actual target number).

SYSTEM BUS TARGETS AND ASSOCIATED PROTECTION REGISTERS (CONTINUED) TABLE 4-8:

							\cdot					
			-	SBTxREGy Register (see Note 7)	ister (see Note	7)			SBTxRDy Register	Register	SBTxWRy Register	Register
Target Protection Number	Target Description (see Note 5)	Name	Region Base (BASE<21:0>) (see Note 2)	Physical Start Address	Region Size (SIZE<4:0>) (see Note 3)	Region Size	Priority (PRI)	Priority Level	Name	Read Permission (GROUP3, GROUP2, GROUP1,	Name	Write Permission (GROUP3, GROUP2, GROUP1, GROUP0)
9	External Memory via EBI and EBI	SBT6REG0	R	0×20000000	Я	64 MB	Ι	0	SBT6RD0	$R/W^{(1)}$	SBT6WR0	$R/W^{(1)}$
	Module(9)	SBT6REG2	æ	0x1F8EC000	ď	4 KB	0	-	SBT6RD2	R/W ⁽¹⁾	SBT6WR2	R/W(1)
7	System Controller	SBT7REG0	ď	0x1F800000	ď	I	I	0	SBT7RD0	R/W ⁽¹⁾	SBT7WR0	R/W ⁽¹⁾
	Flash Controller	SBT7REG1	R/W	R/W	R/W	R/W	I	3	SBT7RD1	R/W ⁽¹⁾	SBT7WR1	R/W(1)
	DMT/WDT CVREF PPS Input PPS Output Interrupts DMA	SBT7REG2	R/W	RW	R/W	RW	0	~	SBT7RD2	R/W ⁽¹⁾	SBT7WR2	R/W ⁽¹⁾
80	SPI1-SPI6	SBT8REG0	Я	0x1F820000	ď	64 KB	I	0	SBT8RD0	R/W ⁽¹⁾	SBT8WR0	R/W ⁽¹⁾
	I2C1-I2C5 UART1-UART6 PMP	SBT8REG1	R/W	R/W	R/W	R/W	I	3	SBT8RD1	R/W ⁽¹⁾	SBT8WR1	R/W(1)
6	Timer1-Timer9	SBT9REG0	Я	0x1F840000	ď	64 KB	I	0	SBT9RD0	R/W ⁽¹⁾	SBT9WR0	R/W ⁽¹⁾
	IC1-IC9 OC1-OC9 ADC Comparator 1 Comparator 2	SBT9REG1	RW	RW	RW	R/W	I	8	SBT9RD1	R/W ⁽¹⁾	SBT9WR1	R/W ⁽¹⁾
10	PORTA-PORTK	SBT10REG0	R	0x1F860000	R	64 KB	1	0	SBT10RD0	R/W ⁽¹⁾	SBT10WR0	R/W ⁽¹⁾
		SBT10REG1	R/W	R/W	R/W	R/W	1	3	SBT10RD1	R/W ⁽¹⁾	SBT10WR1	R/W(1)
7	CAN1	SBT11REG0	R	0x1F880000	Я	64 KB	I	0	SBT11RD0	R/W ⁽¹⁾	SBT11WR0	R/W ⁽¹⁾
	CAN2 Ethernet	SBT11REG1	R/W	R/W	R/W	RW	I	ဇ	SBT11RD1	R/W ⁽¹⁾	SBT11WR1	R/W ⁽¹⁾
12	GLCD	SBT12REG0	R	0x1F8EA000	Я	4 KB	I	0	SBT12RD0	R/W ⁽¹⁾	SBT12WR0	R/W ⁽¹⁾
	GPU		R	0x1F8EB000	ĸ	4 KB	I	0		R/W ⁽¹⁾		R/W ⁽¹⁾
	DDR2PHY		Я	0x1F8E9000	ď	4 KB	I	0	!	R/W ⁽¹⁾		R/W(1)
	DDR2SFR		R	0x1F8E8000	Я	4 KB	I	0		R/W ⁽¹⁾		R/W ⁽¹⁾
13	External Memory via SQ11 and	SBT13REG0	R	0x30000000	ĸ	64 MB	I	0	SBT13RD0	R/W ⁽¹⁾	SBT13WR0	R/W ⁽¹⁾
	SQ11	SBT13REG1	В	0x1F8E2000	Я	4 KB	1	3	SBT13RD1	R/W ⁽¹⁾	SBT13WR1	R/W ⁽¹⁾
Legend: Note 1:	R = Read; R/W = Read/Write; 'X' i Reset values for these bits are '0', '1', '1', '1', respectively.	ad/Write; '1', '1', '1', resp	'x' in a registe ectively.	'x' in a register name = 0-13; ely.	ri ʻyʻ	y' in a register name = 0-8.	me = 0-8.					

The BASE<21:0> bits must be set to the corresponding Physical Address and right shifted by 10 bits. For Read-only bits, this value is set by hardware on Reset.

The SIZE<4:0> bits must be set to the corresponding Region Size, based on the following formula: Region Size = 2^{(SIZE-1}) x 1024 bytes. For read-only bits, this value is set by hardware on Reset. Refer to the Device Memory Map (Figure 4-1) for specific device memory sizes and start addresses. - 2 8 4 5 6 7

The SBTXREG1 SFRs are reserved, and therefore, are not listed in this table for this target.

The 'x' in the SBTXREGy, SBTXRDy, and SBTXWRy registers represents the target protection number and not the actual target number (e.g., for SQI 'x' = 13 and not 11, whereas 11 is the actual target number).

_
E
ĭ
NO
<u>ပ</u>
ĒŖ
SIST
RE
<u>N</u>
SCT
Ē
PR
三三
200
SS
₹ Q
SAN
3ET
ARG
JST
M B
)TE
S
4-8
3LE
₹

				SBTxREGy Register (see Note 7)	ister (see Note	(7)			SBTxRDy	SBTxRDy Register	SBTxWRy Register	Register
Target Protection Number	Target Description (see Note 5)	Name	Region Base (BASE<21:0>) (see Note 2)	Physical Start Address	Region Size (SIZE<4:0>) (see Note 3)	Region Size	Priority (PRI)	Priority Level	Name	Read Permission (GROUP3, GROUP2, GROUP1,	Name	Write Permission (GROUP3, GROUP2, GROUP1,
14	DSCTRL	SBT14REG0	ď	0x1F8C0000	ĸ	4 KB	1	0	SBT14RD0	R/W ⁽¹⁾	SBT14WR0	R/W ⁽¹⁾
	RTCC	SBT14REG1	R/W	R/W	R/W	R/W	1	3	SBT14RD1	R/W ⁽¹⁾	SBT14WR1	R/W ⁽¹⁾
15	USB	SBT15REG0	ĸ	0x1F8E0000	R	4 KB	1	0	SBT15RD0	R/W ⁽¹⁾	SBT15WR0	R/W ⁽¹⁾
	Crypto		깥	0x1F8E5000	æ	4 KB	I	0		R/W ⁽¹⁾		R/W(1)
	RNG		œ	0x1F8E6000	æ	4 KB	1	0		R/W ⁽¹⁾		R/W ⁽¹⁾
	SDHC		œ	0x1F8EC000	æ	4 KB	1	0		R/W ⁽¹⁾		R/W ⁽¹⁾
16	External Memory via DDR2 and	SBT16REG0	깥	0×08000000	æ	R(4)	I	0	SBT16RD0	R/W ⁽¹⁾	SBT16WR0	R/W(1)
	DDR2 Targets 3 and 4	SBT16REG1	R/W	R/W	R/W	R/W	1	3	SBT16RD1	R/W ⁽¹⁾	SBT16WR1	R/W ⁽¹⁾
		SBT16REG2	R/W	R/W	R/W	R/W	1	2	SBT16RD2	R/W ⁽¹⁾	SBT16WR2	R/W ⁽¹⁾
		SBT16REG3	R/W	R/W	R/W	R/W	-	2	SBT16RD3	R/W ⁽¹⁾	SBT16WR3	R/W ⁽¹⁾
		SBT16REG4	R/W	R/W	R/W	R/W	-	2	SBT16RD4	R/W ⁽¹⁾	SBT16WR4	R/W(1)
		. O / / / / / /	40:202 0 2: (7.)			0.0 =						

Reset values for these bits are '0', '1', '1', '1', respectively.

The BASE<21:0> bits must be set to the corresponding Physical Address and right shifted by 10 bits. For Read-only bits, this value is set by hardware on Reset.

The SIZE<4:0> bits must be set to the corresponding Region Size, based on the following formula: Region Size = 2^(SIZE-1) x 1024 bytes. For read-only bits, this value is set by hardware on Reset. Refer to the Device Memory Map (Figure 4-1) for specific device memory sizes and start addresses.

See Table 4-2 for information on specific target memory size and start addresses.

The SBTXREG1 SFRs are reserved, and therefore, are not listed in this table for this target.

The 'x' in the SBTXREGy, SBTXRDy, and SBTXWRy registers represents the target protection number and not the actual target number (e.g., for SQI 'x' = 13 and not 11, whereas 11 is the actual target number). 2 8 4 6 6 7

DS60001361E-page 70

© 2015-2017 Microchip Technology Inc.

	IIA stesefa	0000	0000	0000	0000	0000	0000	0000	0000	
	16/0	I	T1PGV	I	T7PGV	I	T13PGV	I	T16PGV	
	17/1	I	T4PGV	Ι	T8PGV	Ι	T14PGV	Ι	T0PGV3	
	18/2	I	T5PGV	1	T9PGV	1	T15PGV	1	Ι	
	19/3	Ι	T2PGV	_	T10PGV	_	T0PGV2	_	_	
	20/4	I	T6PGV	Ι	T11PGV	Ι	Ι	Ι	Ι	
	21/5	I	T3PGV	Ι	T12PGV	Ι	Ι	Ι	Ι	
	22/6	Ι	T0PGV0	_	T0PGV1	_	_	_	_	
Bits	23/7	Ι	T	Ι	Ι	Ι	Ι	Ι	Ι	
В	24/8	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	lominopo
	25/9	I	T	Ι	Ι	Ι	Ι	Ι	Ι	yod ai aivoc
	26/10	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	caisoboxed ai amode ore confert todal 'o' ac
	27/11	Ι	Ι	-	-	-	-	-	-	,,,0000,,0,
	28/12	I	I	I	I	I	I	I	I	
	29/13	I	I	I	I	I	I	I	I	taomolamia
	30/14	I	I	Ι	Ι	Ι	Ι	Ι	Ι	1
	31/15		1		١		١		١	Loor botacmolamian
•	Bit Range	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	27.00
	Register Name		SPLAGO		SPLAG		SPLAGE	000	SPLAGS	
	nbbA IsuhiV (#_xx78)	8F_	0510	06	0510	91_	0510	92_	0510	-0000

SYSTEM BUS VIOLATION FLAG REGISTER MAP

TABLE 4-9:

TAE	TABLE 4-10 :	SYS	TEM	BUS 1	SYSTEM BUS TARGET PROTECTION GROUP 0 (T0PGV0 - T0PGV3) REGISTER MAP	PROTE	CTION	GROUP	0 (T0P	GV0 - T	OPGV3)	REGIS.	TER MA	٩					
SSƏ		•									Bits								
nbbA IsutriV (#_7878)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	1//1	16/0	IIA steseЯ
000		31:16	31:16 MULTI	1	I	I		CODE<3:0>	<3:0>		I	Ι	Ι	1	1	1	1	I	0000
8020	SBIOELUGI	15:0				LINI	-ID<7:0>					REGION<3:0>	1<3:0>		I	O	CMD<2:0>		0000
200	COCIDOTAG	31:16	Ι	Ι	I	I	Ι	I	-	I	Ι	1	-	_	I	-	_	I	0000
8024		15:0	I	I	I	I	I	I	I	I	1	I	I	I	I	1	GROUP<1:0>		0000
000	C	31:16	I	I	I	I	I	I	Ι	ERRP	I	I	I	1	I	-	I	I	0000
0700		15:0	_	_	1	_	Ι	_	_	I	1	-	-	_	I	-	_	I	0000
000	O LO LO LO	31:16	I	I	I	I	I	I	I	I	I	I	I	1	I	-	I	I	0000
8030		15:0	I	I	I	I	I	I	I	I	I	I	I	1	I	-	1	CLEAR	0000
		31:16	I	I	I	I	I	I	I	I	I	I	I	I	I	1	1	I	0000
8038	SBIUECLRIM	15:0	I	1	1	-	1	-	-	1	-	-	-	-	_	_	_	CLEAR	0000
0,00		31:16								BAS	BASE<21:6>								××××
0040	SBIUNEGO	15:0			BA	BASE<5:0>			IAd	I			SIZE<4:0>			_	_	1	XXXX
		31:16	-	1	I	_	I	_	_	I	I	I	1	_	I	1	_	I	XXXX
0008	SBIUKDU	15:0		1	1	1	1	Ι	1	1	1	1	1	1	GROUP3	GROUP2	GROUP1 GROUP0		XXXX
0000	Oalworas	31:16	-	-	1	-	Ι	-	_	Ι	1	-	-	_	-	_	_	1	XXXX
0000		15:0	Ι	Ι	I	I	Ι	I	-	I	Ι	I	Ι	_	GROUP3	GROUP2	GROUP1 GROUP0		XXXX
0900	SPTOBEC3	31:16								BAS	BASE<21:6>								xxxx
0000		15:0			BA	BASE<5:0>			PRI	1			SIZE<4:0>			_	_	1	XXXX
0200		31:16	I	I	I	ı	I	I	I	ı	I	I	I	ı	I	ı	l	1	XXXX
000	SPIORU	15:0		-	Ι	Ι	Ι	1	_	Ι	Ι	-	-	_	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
0000	CDTOW(01	31:16	1		I		I			I	I			-	I	_			XXXX
0		15:0		1	1	1	1	1	-	1	1	1	1	1	GROUP3	GROUP2	GROUP1 GROUP0	3ROUP0	XXXX
Legend: Note:	ij	nown va	llue on I s listed	Reset; —	x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal For reset values listed as 'xxxx', please refer to Table 4-8 for the actual reset values.	ented, read a	as '0'. Reset -8 for the ac	values are s tual reset v	shown in he	xadecimal.									

	IIA steseЯ	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	××××	××××	XXXX	0 xxxx	XXXX	0 xxxx	×××	XXXX	XXXX	0 xxxx	××××		XXXX	××××	XXXX	×××× 0.	XXXX	0 xxxx	XXXX	××××	××××	0 xxxx	XXXX	0.	-
	16/0	١		1	GROUP<1:0>	Ι	I	I	CLEAR	I	CLEAR		I	I	GROUP0	I	GROUP0		Ι	1	GROUP0	_	GROUPO		1	Ι	GROUP0	I	GROUP0		I	Ι	GROUP0	1	GROUP	
	17/1	-	CMD<2:0>	1	GROL	Ι	Ι	Ι	1	_	_		Ι	Ι	GROUP1	I	GROUP1		_	_	GROUP1		GROUP1		1	Ι	GROUP1	Ι	GROUP1		Ι	-	GROUP1	_	GROUP1	
	18/2	I		1	I	I	I	Ι	1	Ι	Ι		I	Ι	GROUP2	I	GROUP2		Ι	-	GROUP2	1	GROUP2		I		GROUP2	Ι	GROUP2		I	Ι	GROUP2	-	GROUP2	
	19/3	-	ı	I	I	I	I	I	1	Ι	_			I	GROUP3	ı	GROUP3 GROUP2 GROUP1			_	GROUP3	1	GROUP3			-	GROUP3	Ι	GROUP3			-	GROUP3	_	GROUP3 GROUP2 GROUP1 GROUP0	
	20/4	ı		1	I	I	I	I	-	I	-			I	1	ı	-			-	1	1	I		•	1	1	-	_			Ι	_	-	-	
	21/5	ı	\<3:0>	I	I	I	I	1	1	I	I		SIZE<4:0>	I	1	ı	ı		SIZE<4:0>	1	1	I	I		SIZE<4:0>	I	1	I	1		SIZE<4:0>	I	1	1	I	
	22/6	ı	REGION<3:0>	ı	I	I	1	I	1	ı	ı		0)	1	1	ı	ı		0)	1	1	1	I		O)	_	1	1	1		0)	ı	1	1	I	
، اے	23/7	1		1	ı	ı	I	1	1	ı	ı	21:6>		I	1	ı	ı	21:6>		1	1	I	1	51:6>		1	1	1	1	21:6>		ı	1	1	I	
ER MAP	24/8			1	I	ERRP	I	I	1	Ι	-	BASE<21:6>	-	I	1	ı	-	BASE<21:6>	-	-	1	ı	1	BASE<21:6>	1	1	1	1	-	BASE<21:6>	I	Ι	-	-	-	cimal
CTION GROUP 1 REGISTER MAP	25/9	3:0>		ı	1	Ι	ı	ı	1	ı	ı		PRI	I	1	ı	ı		PRI	1	1	ı	I		PRI		I	1	1		PRI	I	1	1	I	= Shown in hexadecimal
00P 11	26/10	CODE<3:0>		ı	I	I	I	ı	1	ı	Ι			I	1	ı	-			1	1	ı	ı	-		_	I	I	1			Ι	1	1	I	works are se
ON GR	27/11		40:2	ı	I	I	I	ı	1	I	Ι			ı	1	ı	-			1	1	ı	ı		•	_	I	I	1			Ι	1	1	I	Reset value
OTECTI	28/12	1	<0:2	1	ı	ı	1	1	1	1	ı		2:0>	1	1	ı	1		2:0>	1	1	1	I		2:0>	-	1	1	1		2:0>	ı	1	1	I	.∪, se pea
ET PR(29/13	1		1	ı	ı	1	1	1	I	I		BASE<5:0>	1	1	1	1		BASE<5:0>	1	I	1	I		BASE<5:0>	1	I	Ι	1		BASE<5:0>	I	1	1	1	- hennend
SYSTEM BUS TARGET PROTE	30/14	1		1	1	1	1	1	1	1	1			1	1	1	1			1	1	1	I			1	1	1	1			1	1	1	I	=
EM BU	31/15	MULTI		1	I	ı	1	1	1	I	I			1	1	1	ı			1	ı	1	1			-	I	1	1			ı	1	1	1	x = unknown value on Reset: — = unimplemented. read as '0'. Reset values are shown
NST -	Bit Range	31:16 N	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	vn value
4-11:	Register Name		SB11ELOG1 T		SBITELUGZ T	SBT4ECON 3		Setteries 3	_	SPT4ECLEM 3		3		3		3		8		3		SBT1WR2		SRT1REG3		SET1PD3		3			SBI IREG4	8		3		
TABLE	Virtual Addres (BF8F_#)		8420		8424		0440	0 0000		0430		0,440		0.450	04:00	0.450	0	0000		0078	064	8498		84A0		27.00		0 7 0			24	0.40	04.00	αΔΙν	5	Legend:

TAB	TABLE 4-11 :	SXS.	TEM BU	SYSTEM BUS TARGET PROTE	GET PF		JON GF	ROUP 1	REGIST	CTION GROUP 1 REGISTER MAP (CONTINUED)	P (CON	ITINUE	<u> </u>						
SSE		,								Bits	ţş								
ovirtual Addre (#_4848)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	1//1	16/0	IIA steseЯ
0.4		31:16								BASE<21:6>	:21:6>								XXXX
04E0	SBIIKEGS	15:0			BASE	BASE<5:0>			PRI	-			SIZE<4:0>			Ι	-	I	xxxx
0.47	3001100	31:16	I	I	Ι	I	I	I	Ι	I	I	I	I	Ι	I	I	_	I	XXXX
0 1 0		15:0	I	1	Ι	I	Ι	Ι	ı	I	I	I	I	-	GROUP3	GROUP2	GROUP1	GROUPO	×××
0.470		31:16	I	I	Ι	I	I	Ι	Ι	I	I	I	I	I	I	I	_	I	XXXX
8478	381 188	15:0	ı	Ι	Ι	Ι	I	Ι	Ι	I	I	I	I	I	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
000		31:16							1	BASE<21:6>	:21:6>	1							××××
0000	SBI IREGO	15:0			BASE	BASE<5:0>			PRI	I			SIZE<4:0>			Ι	-	I	xxxx
0.170	900FE03	31:16	I	_	Ι	I	Ι	I	I	I	I	I	I	-	I	-	I	-	XXXX
0100		15:0	I	Ι	Ι	I	Ι	Ι	Ι	I	I	I	I	I	GROUP3	GROUP2	GROUP1	GROUPO	××××
0.170		31:16	I	Ι	Ι	I	Ι	Ι	I	I	I	I	I	I	I	-	I	-	XXXX
0000	301100	15:0	I	1	1	I	I	I	1	I	1	1	I	-	GROUP3	GROUP3 GROUP2 GROUP1	GROUP1	GROUP0	XXXX
0020	20391193	31:16								BASE<21:6>	:21:6>								XXXX
0250		15:0			BASE	BASE<5:0>			PRI	1			SIZE<4:0>			1	_	1	XXXX
C		31:16	I	I	1	I	I	I	I	I	ı	I	I	1	I	I	1	1	XXXX
0000	SBI IRU/	15:0	1	-	1	1	1	1	1	Ι	Ι	Ι	Ι	_	GROUP3	GROUP2	GROUP1	GROUP0	XXXX
0630	79/WFT92	31:16	I	Ι	1	I	Ι	Ι	I	1	Ι	Ι	I	Ι	I	-	ı	_	XXXX
0000		15:0	Ι	1	1	1	Ι	1	1	1	1	1	Ι	1	GROUP3	GROUP2	GROUP1	04NOY9	XXXX
9540	SPIALIBE	31:16								BASE<21:6>	:21:6>								XXXX
t		15:0			BASE	BASE<5:0>			PRI	Ι		,,	SIZE<4:0>			-	_	-	XXXX
0220	8091195	31:16	Ι	1	1	1	Ι	1	1	1	1	1	Ι	1	Ι	1	-	-	XXXX
		15:0	1	Ι	Ι	I	1	Ι	Ι	I	1	1	Ι	_	GROUP3	GROUP2	GROUP1	GROUP0	XXXX
o U	CBT4W/D8	31:16	I	I	Ι	I	I	I	I	I	1	1	Ι	_	I	I	_	1	XXXX
2	90	15:0	I	I	1	1	I	Ι	I	I	I	I	I	-	GROUP3	GROUP2	GROUP1	04NON9	×××
Legend:		lown val	ue on Res	et; — = unir	nplemented	x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal	. Reset vali	ues are sho	wn in hexao	lecimal.									

For reset values listed as 'xxxx', please refer to Table 4-8 for the actual reset values.

Separation Sep	TAB	TABLE 4-12 :	SYS.	TEM BL	SYSTEM BUS TARGET PROTE	GET PR		CTION GROUP 2 REGISTER MAP	200P 2	REGIST	TER MA	یه								
SHYZELOG 11-10 MULTI — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 —	ssə		•								Bit	S:								
SRIZELOOM	virtual Addr (#_7878)	Register Mame	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	IIA eteseЯ
Settation (45)	0000		31:16	MULTI	I	I	Ι		CODE	<3:0>		I	I	I	I	I	ı	I	1	0000
SHIZELONG 1116 — I — I — I — I — I — I — I — I — I —	8820	SBIZELOGI	15:0				INITID	<7:0>					REGIOI	N<3:0>		Ι		CMD<2:0>		0000
SBTZECON 150 — C — C — C — C — C — C — C — C — C —	200		31:16	I	I	I	Ι	I	I	I	1	I	I	I	1	1	I	I	1	0000
SHIZECON HIGH SHIPPEND HIGH SH	9824	SBIZELUGZ	15:0	I	I	Ι	Ι	I	Ι	Ι	1	I	I	Ι	1	1	Ι	GROUI	><1:0>	0000
SBTZRCIAN 16.0	0000		31:16	1	-	1	Ι	Ι	_	-	ERRP	1	1	_	1	1	Ι	_	_	0000
SBTZECLRA STATE CLAN S	0700	SBIZECON	15:0	-	-	Ι	1	Ι	-	-	-	1	1	-	_	1	Ι	_	_	0000
SBTZREOLING 150	0000		31:16	I	1	Ι	Ι	Ι	Ι	Ι	ı	Ι	Ι	I	Ι	Ι	Ι	I	_	0000
SBTZECLIM	0000	SBIZECLRS	15:0	1	-	1	Ι	Ι	_	_	_	1	1	_	1	1	Ι	_	CLEAR	0000
SBT2ND 150	0000		31:16	I	I	Ι	Ι	Ι	1	Ι	ı	I	I	I	_	Ι	I	ı	-	0000
SBT2REG 15.0	0000	SBIZECLRIM	15:0	I	1	Ι	Ι	Ι	Ι	Ι	ı	Ι	Ι	I	Ι	Ι	Ι	I	CLEAR	0000
SHIZNO 150 HASE-5.0 H	0.00		31:16								BASE<	:21:6>								XXXX
SHIZHOUR FINE SHIZH FINE SHIZHOUR FINE SHIZHOUR FINE SHIZH FINE SHIZH FINE SHIZH FINE SHIZH FINE SHIZH FINE SHIZH	0400	SBIZREGO	15:0			BASE	<2:0>			PRI	ı			SIZE<4:0>			Ι	I	_	XXXX
SHIZAND 150 HATCH 150 HATC	0		31:16	I	I	I	Ι	I	Ι	Ι	I	I	I	I	I	I	I	I	1	XXXX
SHIGHTON BETAINTO 4 11.16 —	8820	SBIZKDU	15:0	I	I	Ι	Ι	I	Ι	Ι	1	I	I	Ι	1	GROUP3	GROUP2	GROUP1	GROUPO	
SBT2RFG 15:0	0		31:16	I	I	I	Ι	I	Ι	Ι	I	I	I	I	I	I	I	I	1	XXXX
SBTZREG 31:16 — BASE<5:0> — PRI — SIZE<4:0> —	0000	SBIZWRU	15:0	1	-	1	Ι	Ι	_	_	_	1	1	_	1	GROUP3	GROUP2	GROUP1	GROUP0	
SBT2RD1 15.0	0900		31:16								BASE<	:21:6>								XXXX
SBT2RD1 4.16 -	0000	SBIZNEGI	15:0			BASE	<2:0>			PRI	-			SIZE<4:0>			Ι	_	_	XXXX
SBT2WR1 15:0 — — — — — — — — — — — — — — — — — — —	010		31:16	I	I	I	Ι	I	Ι	Ι	I	I	I	I	I	I	I	I	1	XXXX
SBT2WR1 45	0/00	SBIZRUI	15:0	1	-	1	Ι	Ι	_	_	_	1	1	_	1	GROUP3	GROUP2	GROUP1	GROUP0	XXXX
SBT2REG 4:0 - - - - - - - - - -	0000		31:16	-	-	Ι	1	Ι	-	-	-	1	1	-	_	1	1	_	_	XXXX
SBT2RG2 41.16 58T2NC2 58T2N	0/00	SDIZWRI	15:0	1	-	1	Ι	Ι	_	_	_	1	1	_	1	GROUP3	GROUP2	GROUP1	GROUP0	
SBT2KND2 15:0 BASE<6:0> PRI -	Ogga		31:16								BASE<	:21:6>								XXXX
SBT2KD2 45.0	0000	3012NE 32	15:0			BASE	<2:0>			PRI	_			SIZE<4:0>			-	_	_	XXXX
SBT2WR2 15:0	000		31:16			I	I	I	I	-		I	I		Ι	I		_	_	XXXX
SBT2WR2 47:0	0690	SBIZNDZ	15:0	1	1	I	1	I	ı	1	-	I	I	1	1	GROUP3	GROUP2	GROUP1	GROUP0	XXXX
3B12WNZ 15:0 GROUP3 GROUP2 GROUP1 GROUP0	0000		31:16	1	1	I	I	I	I	1	1	I	I	1	Ι	ı	-	_	_	XXXX
	0600	30120172	15:0		1	I	I	I	I	-		I	I		Ι	GROUP3		GROUP1	GROUPO	

© 2015-2017 Microchip Technology Inc.

TAB	TABLE 4-13:	SYS.	TEM BL	JS TAR	SYSTEM BUS TARGET PROTE	OTECT	ION GR	toup 3	CTION GROUP 3 REGISTER MAP	TER MA	٩								
SSƏ		€								Bits	ts								
virtual Addr (#_7878)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
	100 ITCT 00	31:16	MULTI	1	I	I		CODE<3:0>	<3:0>		Ι	I	I	I	1	1	1	I	0000
8020	SBISELUGI	15:0				NITID<7:0>	<7:0>					REGION<3:0>	N<3:0>		1		CMD<2:0>		0000
700	000 110100	31:16	I	I	Ι	Ι	Ι	1	I	1	I	I	I	1	I	I	Ι	I	0000
8C24	SBISELUGZ	15:0	I	I	I	I	I	Ι	I	Ι	Ι	I	1	-	I	1	GROUP<1:0>	><1:0>	0000
٥٥٥٥	NOCHAS	31:16	Ι	1	-	Ι	-	1	1	ERRP	1	1	_	_	1	1	-	_	0000
0020		15:0	I	I	-	Ι	1	1	Ι	Ι	Ι	I	I	ı	I	Ι	Ι	I	0000
0	301016103	31:16	I	I	I	I	I	Ι	I	Ι	Ι	I	1	-	I	1	I	I	0000
8C30		15:0	I	I	I	I	I	Ι	I	Ι	Ι	I	1	-	I	1	I	CLEAR	0000
000	Malodetas	31:16	I	I	-	-	1	1	Ι	Ι	Ι	I	_	ı	I	Ι	Ι	I	0000
8 5 2 8		15:0	I	I	I	I	I	Ι	I	Ι	Ι	I	1	-	I	1	I	CLEAR	0000
0	00100	31:16								BASE<21:6>	<21:6>								XXXX
8C40	SBISKEGO	15:0			BASE<5:0>	<2:0>			PRI	I			SIZE<4:0>			1	I	I	XXXX
0	Odderao	31:16	I	I	Ι	Ι	Ι	1	I	1	-	I	I	1	I	I	Ι	I	XXXX
0000	3B13RD0	15:0	Ι	1	-	Ι	-	1	1	1	1	1	_	_	GROUP3	GROUP2	GROUP1	GROUPO	XXXX
0	OUNCHOO	31:16	I	I	I	I	I	I	I	I	I	I	I	ı	ı	1	I	I	XXXX
00.00	3513770	15:0	-	1	_	-	-	Ι	1	1	-	-	-	_	GROUP3	GROUP2	GROUP1	GROUP0	XXXX
OBOR	SBT3DEG1	31:16								BASE<21:6>	<21:6>								XXXX
2000		15:0			BASE<5:0>	<0:3>			PRI	Ι		*	SIZE<4:0>			_			XXXX
07.70	SPT3DD4	31:16		I		I	I	I	Ι	I	I			_	I	_			XXXX
200		15:0	1	1	1	I	1	1	1	1	1	I	-	1	GROUP3	GROUP2	GROUP1	GROUPO	XXXX
07.70	CDT2/WD4	31:16		I		I	I	I	Ι	I	I			_	I	_			XXXX
		15:0	1	I	1	I	1	1	1	1	1	I	1	_	GROUP3	GROUP2	GROUP1	GROUPO	XXXX
000	SBT3BEG2	31:16						i		BASE<21:6>	<21:6>				•	•			XXXX
000		15:0			BASE<5:0>	<0:3>			PRI	1			SIZE<4:0>			_	1	1	XXXX
0000	SET3DD2	31:16	I	I	Ι	Ι	1	1	1	1	I	I	1	_	1	_	1	1	XXXX
000		15:0	Ι	I	Ι	Ī	1	I	1	I	I	I	I	1	GROUP3	GROUP2	GROUP1	GROUPO	XXXX
α0 Cα	CET3MP3	31:16	Ι	I	Ι	I	I	1	1	1	I	Ι	Ι	_	1	_	Ι	1	XXXX
200		15:0	1	-	-	-	1	1	1	1	-	1	1	_	GROUP3	GROUP2	GROUP1	GROUPO	XXXX
Legend: Note:		own val t values	ue on Rese listed as 'x	et; — = unin <xxxx', plea<="" td=""><td>nplemented se refer to</td><td>x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal For reset values listed as 'xxxx', please refer to Table 4-8 for the actual reset values.</td><td>. Reset valu</td><td>ues are sho</td><td>wn in hexad es.</td><td>lecimal.</td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td></xxxx',>	nplemented se refer to	x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal For reset values listed as 'xxxx', please refer to Table 4-8 for the actual reset values.	. Reset valu	ues are sho	wn in hexad es.	lecimal.									

DS60001361E-page 76

	IIA Resets	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	××××	××××	××××	XXXX C	××××	×××× C	××××	××××	××××	XXXX C	XXXX	XXXX C	XXXX	XXXX	XXXX	XXXX C	××××	XXXX C	XXXX	XXXX	
	16/0	1		1	GROUP<1:0>	1	1	1	CLEAR	I	CLEAR		1	I	GROUP0	1	GROUPO		ı	1	GROUPO	1	GROUPO		1	1	GROUP0	I	GROUP0		1	
	17/1	1	CMD<2:0>	1	GROU	I	1	I	1	-	Ι		1	-	GROUP1	I	GROUP1		Ι	1	GROUP1	1	GROUP1		1	1	GROUP1	-	GROUP1		I	
	18/2	1		1	-	-	_	-	_	1	I		_	1	GROUP2	I	GROUP2		I	_	GROUP2	_	GROUP2		_	1	GROUP2	1	GROUP2		1	
	19/3	1	ı	I	1	1	-	1	1	_	_			_	GROUP3	_	GROUP3			_	GROUP3	1	GROUP3			1	GROUP3	_	GROUP3			•
	20/4	1		1	1	1	_	1	1	ı	ı			ı	_	I	1			_	1	-	1			1	-	ı	ı			
	21/5	1	V<3:0>	1	1	1	_	1	1	ı	ı		SIZE<4:0>	ı	_	I	1		SIZE<4:0>	_	1	-	1		SIZE<4:0>	1	-	ı	ı		SIZE<4:0>	
	22/6	I	REGION<3:0>	I	Ι	Ι	-	Ι	1	1	Ι		37	1	-	I	Ι		3,	-	I	1	I		37	I	-	1	Ι			
- s	23/7	ı		ı	Ι	Ι	-	Ι	1	Ι	I	21:6>		Ι	-	I	Ι	21:6>		-	I	I	1	21:6>		1	-	Ι	I	21:6>		
Bits	24/8			ı	I	ERRP	-	I	1	Ι	I	BASE<21:6>	_	Ι	-	I	I	BASE<21:6>	I	-	1	ı	1	BASE<21:6>	-	1	-	Ι	I	BASE<21:6>	1	ecimal.
	25/9	<3:0>		1	1	1	1	1	1	Ι	I		PRI	Ι	1	I	1		PRI	1	1	1	1		PRI	1	1	Ι	I		PRI	wn in hexad
5	26/10	CODE<3:0>		1	1	1	_	1	1	I	I			I	1	I	1			1	1	1	1			1	-	I	I			es are shov
5	27/11		<0:7>	1	1	1	_	1	1	I	I			I	1	I	1			1	1	1	1			1	-	I	I			. Reset valu
	28/12	ı	<0:22	ı	Ι	Ι	-	Ι	1	Ι	I		<2:0>	Ι	-	I	Ι		<2:0>	-	I	I	1		<2:0>	1	-	Ι	I		<2:0>	read as '0'
1	29/13	I	•	I	Ι	Ι	_	Ι	-	I	I		BASE<5:0>	I	-	Ι	Ι		BASE<5:0>	-	I	1	1		BASE<5:0>	1	-	I	I		BASE<5:0>	plemented.
	30/14	I	•	I	Ι	Ι	-	Ι	-	I	I			I	-	Ι	Ι			-	I	1	1			1	-	I	I			t; — = unim
	31/15	MULTI	•	I	Ι	Ι	-	Ι	-	Ι	Ι			Ι	1	I	Ι			1	I	1	1			1	1	Ι	Ι			x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal
	Bit Range	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	wn valu
Ė	Register Mame		SB 14ELOGI		3B14ELUG2	, IACOTATE	SB14ECON		SB14ECLRS	Maloheras	OD 14ECLAIM	COHOLD	SB14KEGU	0001103	3514RD0	OCIAN FOO	SBI4WR0	, , , , , ,		COTABOA	0014HU	CBTAWD1	1 Y W + 1 O O	COTON PROPERTY.	3514REG2	CHANTAS	3514ND2	COWETAG	3514WRZ		SB14KEG3	
ss S	Virtual Addre (#_4878)		90206		9024	000			9030	0000			9040	0300	nens	0	8008	0	0006	0200	0/08	8200	0 /06	0	9000	0606	0606	0000	0606		90 AO	Legend:

© 2015-2017 Microchip Technology Inc.

	IIA steseЯ	XXXX	××××	XXXX	××××	XXXX	××××	××××	××××	××××	××××	
	16/0	I	GROUPO	I	GROUP3 GROUP2 GROUP1 GROUP0		Ι	Ι	GROUPO	Ι	GROUP3 GROUP2 GROUP1 GROUP0 xxxx	
	17/1	I	GROUP1	I	GROUP1		I	I	GROUP1	I	GROUP1	
	18/2	I	GROUP2	Ι	GROUP2		_	_	GROUP3 GROUP2	_	GROUP2	
	19/3	1	GROUP3	I	GROUP3			ı	GROUP3	ı	GROUP3	
	20/4	I	I	I	I			I	I	I	I	
	21/5	I	-	-	-		SIZE<4:0>	-	-	-	-	
	22/6	I	_	Ι	_			_	_	_	_	
Bits	23/7	1	Ι	I	Ι	BASE<21:6>		Ι	Ι	Ι	1	
В	24/8	I	Ι	I	Ι	BASE	Ι	Ι	Ι	Ι	Ι	decimal.
	25/9	I	_	-	_		PRI	_	_	_	_	wn in hexadies.
	26/10	I	-	Ι	-			-	-	-	_	s '0'. Reset values are shown 8 for the actual reset values.
	27/11	I	_	_	_			_	_	_	_	. Reset val
	28/12	1	_	_	_		BASE<5:0>	_	_	_	_	, read as '0 Table 4-8 fo
	29/13	I	-	Ι	-		BASE	-	-	-	_	nplementec
	30/14	I	-	Ι	-			-	-	-	_	et; — = unir ××××, plea
	31/15	I	_	-	_			_	_	_	_	x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal For reset values listed as 'xxxx', please refer to Table 4-8 for the actual reset values.
•	Bit Range	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	own va
	Register Name		SBI4RUS		SB14WRS		SB14REG4		3B14RD4		3D14VVR4	
ssə	Virtual Addr (#_7878)	0	3000	0	90 Bo		2008		2000	0	9008	Legend: Note:

TABLE 4-14:

SYSTEM BUS TARGET PROTECTION GROUP 4 REGISTER MAP (CONTINUED)

TAB	TABLE 4-15 :	SYS	TEM BL	JS TAR	SYSTEM BUS TARGET PROTE		ION GR	OUP 5	CTION GROUP 5 REGISTER MAP	ER MA	یِ۵								
ssə		•								Bits	Ş								
virtual Addr (#_7878)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	NA Resets
2	100	31:16	MULTI	I	Ι	Ι		CODE<3:0>	<3:0>		I	I	I	I	I	I	I	I	0000
9420	SBISELUGI	15:0				NITID<7:0>	<7:0>					REGION<3:0>	V<3:0>		-	0	CMD<2:0>		0000
20,00	200 113143	31:16	I	I	Ι	Ι	1	I	-	Ι	I	I	I	Ι	Ι	Ι	_	I	0000
9474	SBISELUGZ	15:0	I	I	I	I	I	1	1	Ι	I	I	I	I	Ι	Ι	GROUP<1:0>	><1:0>	0000
8070	NOCITED	31:16	1	-	-	Ι	-	I	1	ERRP	1	1	1	I	1	-	_	1	0000
9470		15:0	I	-	_	_	-	Ι	_	Ι	1	-	1	-	-	1	_	1	0000
0.40	301335103	31:16	Ι	-	-	-	-	1	_	Ι	Ι	-	Ι	Ι	Ι	Ι	_	1	0000
9430		15:0		I	-	-	1	I	-	I	1		Ι	I	-	-	_	CLEAR	0000
00.70		31:16	I	_	Ι	-	Ι	Ι	-	I	Ι	I	Ι	Ι	Ι	I	_	1	0000
9450	SPISECERIM	15:0	I	I	Ι	Ι	1	I	-	I	I	I	I	Ι	Ι	Ι	_	CLEAR	0000
4	000	31:16								BASE<21:6>	21:6>								XXXX
9440	SBISKEGO	15:0			BASE<5:0>	<2:0>			PRI	I			SIZE<4:0>			I	I	I	XXXX
7	H	31:16	1	I	I	I	I	1	1	I	I	I	I	I	Ι	I	1	I	XXXX
9450	SBISKDO	15:0	I	I	I	I	I	1	1	Ι	I	I	I	I	GROUP3	GROUP2	GROUP1	GROUPO	XXXX
0.440	OCIVITATO	31:16	I	I	Ι	Ι	1	I	-	Ι	I	I	I	Ι	Ι	Ι	_	I	XXXX
9420	SBISWRU	15:0	Ι	-	-	-	-	1	_	Ι	Ι	-	Ι	Ι	GROUP3	GROUP2 GROUP1	GROUP1	GROUPO	XXXX
0460	SPT5DEG1	31:16								BASE<21:6>	21:6>								XXXX
9400	SBISKEGI	15:0			BASE<5:0>	<0:5>			PRI	Ι		,	SIZE<4:0>			1	_	1	XXXX
0770	CDTEDD1	31:16	I			I	1	I	-	I	I		Ι		I				XXXX
ì	i dici de	15:0	1	I	Ι	I	I	I	1	Ī	I	I	I	I	GROUP3	GROUP2	GROUP1	GROUPO	XXXX
8770	CBTEW/D1	31:16	1	I	Ι	I	1	I	1	I	1	I	1	Ι	Ι	-	1	1	XXXX
r f		15:0	I			I	1	I	-	I	I		I		GROUP3	GROUP2	GROUP1	GROUPO	XXXX
9480	SBTABEGS	31:16								BASE<21:6>	21:6>					•	•		XXXX
001		15:0			BASE<5:0>	<2:0>			PRI	1		,,	SIZE<4:0>			-	1	I	XXXX
000	CDTEDDO	31:16	ı	-	1	I	I	ı	-	1	1	1	I	_	ı	-	-	I	XXXX
9490	3013802	15:0		I	-	-	1	I	-	I	1		Ι	I	GROUP3	GROUP2	GROUP1	GROUPO	XXXX
8070	CETEMPS	31:16	1	I	Ι	I	1	I	1	I	1	I	1	Ι	Ι	-	1	1	XXXX
000		15:0	I			I	1	I	-	I	I		Ι		GROUP3	GROUP2	GROUP1	GROUP0	XXXX
Legend: Note:	ij	own val	lue on Rese	et; — = unin «xxx.', plea	x = unknown value on Reset; — = unimplemented, read as For reset values listed as 'xxxx', please refer to Table 4-1		. Reset valu	les are shov reset value	'0'. Reset values are shown in hexadecimal for the actual reset values.	ecimal.									

© 2015-2017 Microchip Technology Inc.

	NA Resets	XXXX	XXXX	XXXX	XXXX	XXXX	XXXX	XXXX	XXXX	XXXX	XXXX	XXXX	×××	
	16/0		I	I	GROUPO	I	GROUPO		I	I	GROUPO	I	GROUP0 xxxx	
	17/1		I	I	GROUP1	I	GROUP1		I	I	GROUP1	I	GROUP1	
	18/2		Ι	Ι	GROUP3 GROUP2	Ι	GROUP2		Ι	Ι	GROUP2	Ι	GROUP3 GROUP2 GROUP1	
	19/3			-	GROUP3	-	GROUP3			-	GROUP3	-	GROUP3	
	20/4			_	_	_	_			_	_	_	1	
	21/5		SIZE<4:0>	-	-	-	-		SIZE<4:0>	-	-	-	1	
	22/6			Ι	Ι	Ι	Ι			Ι	Ι	Ι	1	
Bits	23/7	BASE<21:6>		Ι	Ι	Ι	Ι	BASE<21:6>		Ι	Ι	Ι	1	
В	24/8	BASE	-	-	-	-	-	BASE	-	-	-	-	1	
	25/9		PRI	-	-	-	-		PRI	-	-	-	1	
	26/10			Ι	Ι	Ι	Ι			Ι	Ι	Ι	1	
	27/11			-	-	-	-			-	-	-	1	
	28/12		BASE<5:0>	1 1	_	_		BASE<5:0>	_	_	_	1		
	29/13		BASE	Ι	Ι	Ι	Ι		BASE	Ι	Ι	Ι	1	
	30/14			Ι	Ι	Ι	Ι			Ι	Ι	Ι	1	
	31/15			I	I	I	I			I	I	I	1	
€	Bit Range	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	
	Register Mame		SBISKEGS		SUNC I de		22VVC GC		SBISKEG4		9DNC198		3B13WR4	
ssə	Virtual Addr (#_7878)	2	94 AO	0.00	94 DO	0.00	04 DO	(5	2	50	5	94 0 0	

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. For reset values listed as 'xxxxx, please refer to Table 4-8 for the actual reset values.

TABLE 4-15:

SYSTEM BUS TARGET PROTECTION GROUP 5 REGISTER MAP (CONTINUED)

28/10 28/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 Region Region 20/4 20/4 20/4 19/3 18/2 17/1 16/0 Region Region 20/4	LE 4-16: S	SYSTEM BUS TARGET	TEM BUS TARGET	US TARGET	GET	4		ION GR	SOUP 6	CTION GROUP 6 REGISTER MAP	LER MA	IAP Bits								s
Code-3:0>	Virtual Add Virtual P E S	31/15 30/14 29/13 28/12	30/14 29/13 28/12	29/13 28/12	28/12		27	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	IIA _
Composition	31:16 MULTI — — — — —	MULTI — — —	MULTI — — —	1		1			CODE	<3:0>		I	Ι	-	I	-	-	_	1	0000
		INI					<0:2>						REGIO	N<3:0>				CMD<2:0>		000
	- - - - 31:16	•	•		 	- -	_		1	-	Ι	Ι	Ι	_	-		_	_	_	0000
						1	1		I	_		I	I		I			GROU	P<1:0>	0000
<td>31:16 — — — — — — — — — — — — — — — — — — —</td> <td>31:16 — — — — — —</td> <td> </td> <td></td> <td> </td> <td></td> <td>-</td> <td></td> <td>1</td> <td>-</td> <td>ERRP</td> <td>Ι</td> <td>Ι</td> <td>_</td> <td>-</td> <td></td> <td>_</td> <td>_</td> <td>_</td> <td>0000</td>	31:16 — — — — — — — — — — — — — — — — — — —	31:16 — — — — — —			 		-		1	-	ERRP	Ι	Ι	_	-		_	_	_	0000
		-			 	- -	1		1	-	Ι	Ι	Ι	_	-		_	_	_	0000
HAND HAND <t< td=""><td> 31:16 31:16</td><td>31:16 — — — — —</td><td> </td><td>1</td><td> - - -</td><td> </td><td>Ι</td><td></td><td>Ι</td><td>-</td><td>Ι</td><td>Ι</td><td>Ι</td><td>_</td><td>1</td><td>_</td><td>_</td><td>_</td><td>_</td><td>0000</td></t<>	31:16 31:16	31:16 — — — — —		1	 - - -	 	Ι		Ι	-	Ι	Ι	Ι	_	1	_	_	_	_	0000
- -			1 1	 	 	1	Ι		I	Ι	I	Ι	Ι	_	Ι	_	_	_	CLEAR	0000
	31:16 — — — — — — — — — — — — — — — — — — —	1 1	1 1	 	1	1	_		I	1	I	Ι	I	_	-	-	_	_	Ι	0000
PRI		15:0					-		1	-	Ι	Ι	Ι	_	-		_	_	CLEAR	0000
PRI — SIZE — <td>31:16</td> <td>31:16</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>BASE<</td> <td><21:6></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>XXXX</td>	31:16	31:16									BASE<	<21:6>								XXXX
	9840 SB10NEGU 15:0 BASE<5:0>		BASE<5:0>	BASE<5:0>	BASE<5:0>	<2:0>				PRI	Ι			SIZE<4:0>			_	_	_	XXXX
	31:16 — — — — 31:16	31:16 — — — — — —			 	- -	_		1	-	Ι	Ι	Ι	_	-		_	_	_	XXXX
		 - - -		-	-		I		1	-	Ι	Ι	Ι	_	-	GROUP3			GROUP0	XXXX
- - - - - - - - GROUP3 GROUP2 GROUP0 GRO	31:16 — — — — — — — — —	31:16 — — — — — —			 	-	I		I	1	I	I	I	1	1	-	1	_	_	XXXX
BASE<21:6> PRI — <td></td> <td></td> <td> </td> <td>- -</td> <td></td> <td>-</td> <td>I</td> <td></td> <td>I</td> <td>1</td> <td>I</td> <td>I</td> <td>I</td> <td>1</td> <td>1</td> <td>GROUP3</td> <td></td> <td>GROUP1</td> <td>GROUPO</td> <td>XXXX</td>				- -		-	I		I	1	I	I	I	1	1	GROUP3		GROUP1	GROUPO	XXXX
PRI — SIZE<4:0> — <th< td=""><td>31:16 31:16</td><td>31:16</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>BASE<</td><td><21:6></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>XXXX</td></th<>	31:16 31:16	31:16									BASE<	<21:6>								XXXX
- -			BASE<5:0>	BASE<5:0>	BASE<5:0>	<2:0>				PRI	Ι			SIZE<4:0>			_	_	_	XXXX
- - - - - - GROUP2 GROUP2 GROUP3 - - - - - - - - - - - - - - - - - - - - - - - -	31:16 — — — — — — — — — — — — — — — — — — —	1 1	1 1	1	1	1	_		I	1	I	Ι	I	_	-	-	_	_	Ι	XXXX
- -		-	- - -	<u> </u>			-		1	-	Ι	Ι	Ι	_	-	GROUP3	GROUP2	GROUP1	GROUP0	XXXX
. — — — GROUP3 GROUP2 GROUP1 GROUP0				 	 	-	ı		I	1	I	Ι	I	_	-	-	_	_	Ι	XXXX
	15:0 15:0	15:0 — — — — —			1	1	ı		I	Ι	I	Ι	Ι	-	1	GROUP3		GROUP1	GROUP0	XXXX

For reset values listed as 'xxxx', please refer to Table 4-8 for the actual reset values. Note:

TAB	TABLE 4-17 :	SYS.	TEM BL	JS TAR	SYSTEM BUS TARGET PROTE	OTECT	ION GR	OUP 7	CTION GROUP 7 REGISTER MAP	TER MA	٩								
ssə		ŧ								Bits	ts								
nbbA lsutriV (#_0678)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	1//1	16/0	IIA Resets
2	FOO IDETEG	31:16	MULTI	1	I	I		CODE<3:0>	<3:0>		I	I	I	Ι	I	1	1	I	0000
8420		15:0				NITID<7:0>	<7:0>				1	REGION<3:0>	V<3:0>		I		CMD<2:0>		0000
7070	900 112100	31:16	I	I	Ι	Ι	Ι	1	I	1	I	I	I	I	Ι	I	_	I	0000
8424	SB17ELUGZ	15:0	I	I	I	I	I	1	I	Ι	Ι	I	Ι	I	Ι	I	GROUP<1:0>	><1:0>	0000
0470	NOJELES	31:16	1	1	-	Ι	_	1	1	ERRP	Ι	Ι	Ι	-	-	1	_	1	0000
0470		15:0	I	I	-	Ι	1	1	Ι	Ι	I	Ι	Ι	1	Ι	I	_	Ι	0000
0400	301032103	31:16	I	I	-	Ι	1	1	Ι	Ι	I	Ι	Ι	1	Ι	I	_	Ι	0000
8430	SBITECLES	15:0	1	-	-	-	-	Ι	Ι	1	1	-		_	-	1	_	CLEAR	0000
04.00	Malodztas	31:16	I	I	-	-	1	1	Ι	Ι	I	Ι	I	1	Ι	I	_	Ι	0000
8458	SBIZECLRIM	15:0	I	I	I	I	I	Ι	I	Ι	Ι	I	Ι	I	Ι	1	1	CLEAR	0000
	00101100	31:16								BASE<21:6>	:21:6>								XXXX
8440	3B1/REG0	15:0			BASE<5:0>	<2:0>			PRI	I			SIZE<4:0>			ı	1	I	XXXX
7	0000	31:16	I	I	Ι	Ι	Ι	1	I	1	I	I	I	I	Ι	I	_	I	XXXX
0420	SBLIKEU	15:0	1	1	-	Ι	_	1	1	1	Ι	Ι	Ι	-	GROUP3	GROUP2	GROUP1	GROUP0	XXXX
0.470	OUNCE	31:16		I	I	I	I	I	I	I	I	I	I	I	I	1	ı	I	XXXX
0450	SBLIWED	15:0	1	1	-	Ι	_	1	1	1	Ι	Ι	Ι	-	GROUP3	GROUP2	GROUP1	GROUP0	XXXX
0.480	FJ3GZIG3	31:16								BASE<21:6>	:21:6>								XXXX
0		15:0			BASE<5:0>	<0:3>			PRI	Ι		•	SIZE<4:0>			I		I	XXXX
0.470	SDT7DD4	31:16		I		I	I	I	Ι	I	I	Ι	I		I	I		I	XXXX
0 0		15:0			-	I	1	Ι	1	Ι	I	Ι	1	-	GROUP3	GROUP2	GROUP1	GROUP0	XXXX
0470	CDTZWD4	31:16		I		I	I	I	Ι	I	I	Ι	I		I	I		I	XXXX
r F		15:0	1	I	1	I	1	1	1	1	I	Ι	-	1	GROUP3	GROUP2	GROUP1	GROUPO	XXXX
8480	SBT7BEG2	31:16						i		BASE<21:6>	<21:6>					•	•		XXXX
00+		15:0			BASE<5:0>	<0:3>			PRI	1			SIZE<4:0>			1	1	I	XXXX
0078	COULTAN	31:16	Ι	I	Ι	Ι	1	1	I	1	I	Ι	I	1	Ι	1	1	I	XXXX
) †	3011105	15:0	Ι	I	Ι	Ī	1	I	I	I	I	I	I	I	GROUP3	GROUP2	GROUP1	GROUP0	XXXX
8408	COMPTAG	31:16	Ι	I	Ι	I	I	1	1	1	I	Ι	1	I	I	1	1	I	XXXX
) †		15:0	1	-	-	-	1	1	1	1	1	Ι	1	-	GROUP3	GROUP2	GROUP1	GROUP0	XXXX
Legend: Note:		own val t values	ue on Rese listed as 'x	et; — = unin <xxxx', plea<="" td=""><td>nplemented se refer to</td><td>x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal For reset values listed as 'xxxx', please refer to Table 4-8 for the actual reset values.</td><td>. Reset valu</td><td>ues are sho</td><td>wn in hexad es.</td><td>lecimal.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>İ</td></xxxx',>	nplemented se refer to	x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal For reset values listed as 'xxxx', please refer to Table 4-8 for the actual reset values.	. Reset valu	ues are sho	wn in hexad es.	lecimal.									İ

DS60001361E-page 82

	IIA Stesets	0000	0000	0000	0000	0000	0000	0000	AR 0000	0000	AR 0000	××××	××××	××××	JP0 xxxx	XXXX	JP0 xxxx	××××	××××	XXXX	JP0 xxxx	XXXX	JP0 xxxx
	16/0	1	^	1	3ROUP<1:0>	1	1	1	CLEAR	1	CLEAR		1	1	1 GROUP0	1	1 GROUP0		1	1	1 GROUP0	1	1 GROUP0
	1//1	1	CMD<2:0>	1	GRO	1	1	1	1	1	1		1	1	GROUP1	1	GROUP1		1	1	GROUP1	_	GROUP1
	18/2	I		I	I	Ι	Ι	Ι	Ι	Ι	Ι		I	I	GROUP2	I	GROUP2		I	I	GROUP2	I	GROUP2
	19/3	I	I	Ι	Ι	I	I	I	_	_	_			I	GROUP3	I	GROUP3			I	GROUP3	Ι	GROUP3
	20/4	1		I	I	1	1	1	ı	ı	ı			I	_	1	_			1	1	I	1
	21/5	I	N<3:0>	I	I	I	I	I	Ι	Ι	Ι		SIZE<4:0>	I	I	ı	I		SIZE<4:0>	ı	I	I	I
	22/6	I	REGION<3:0>	I	I	I	I	I	Ι	Ι	Ι			I	I	ı	I			ı	I	I	I
ş	23/7	I		I	I	I	I	I	Ι	Ι	Ι	:21:6>		I	I	ı	I	:21:6>		I	I	I	I
Bits	24/8			_	_	ERRP	I	I	_	_	_	BASE<21:6>	I	I	I	1	I	BASE<21:6>	I	1	I	-	ı
	25/9	<3:0>		-	-	I	I	I	_	_	_		PRI	I	I	I	I		PRI	ı	I	1	I
	26/10	CODE<3:0>		I	I	I	I	I	Ι	Ι	Ι			I	I	ı	I			ı	I	I	I
	27/11		-ID<7:0>	I	I	I	I	I	Ι	Ι	Ι			I	I	ı	I			I	I	I	I
	28/12	I	INITID	I	I	1	1	1	Ι	Ι	Ι		<2:0>	ı	1	I	1		<2:0>	ı	1	I	ı
	29/13	1		I	I	I	I	I	I	I	I		BASE<5:0>	I	1	I	I		BASE<5:0>	1	I	I	I
	30/14	1		I	I	Ι	Ι	Ι	I	I	I			1	1	1	I			1	Ι	1	I
	31/15	MULTI		I	I	1	1	1	I	I	I			1	1	1	1	1		1	1	1	1
	egnsЯ jia	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0
	Register Name	1	SBISELUGI		SB I OELUGZ		SBISECON	0010101	OB LOECLRS	Maiorag	ם סביר אואן		SBISKEGU		SBISKDO		SBISWRO		SBISKEGI		SBISKUI		SBISWRI
SSE	orbbA IsutriV (#_0678)		0288		4700		9299		0000		0000		0490	0	0688	i c	8688		0088	100	0/88	0010	88/8

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in h **Note:** For reset values listed as 'xxxx', please refer to Table 4-8 for the actual reset values.

SYSTEM BUS TARGET PROTECTION GROUP 8 REGISTER MAP

TABLE 4-18:

TAB	TABLE 4-19:	SYS	TEM B	SYSTEM BUS TARGET PROTE	GET PI		CTION GROUP 9 REGISTER MAP	SOUP 9	REGIS.	TER MA	٩								
ssə		•								Bi	Bits								
nbbA IsuhiV (#_0678)	Register Mame	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	1/21	16/0	IIA steseЯ
0		31:16	MULTI	1	1	I		CODE<3:0>	<3:0>		-	1	1	I	1	1	-	1	0000
80.20	SB 19ELUG1	15:0				OITINI	ID<7:0>					REGION<3:0>	N<3:0>		1		CMD<2:0>		0000
,		31:16	1	I	Ι	ı	I	1	ı	1	1	I	ı	I	I	ı	1	1	0000
80.24	SB I 9ELUGZ	15:0	I	1	1	I	I	I	I	I	I	I	I	I	I	I	GROUP<1:0>	<1:0>	0000
000		31:16	-	I	1	I	I	I	1	ERRP	I	I	1	I	1	1	I	1	0000
8778	SBISECON	15:0	1	Ι	Ι	I	Ι	I	I	I	I	I	Ι	I	I	Ι	I	1	0000
		31:16	I	I	Ι	I	I	Ι	I	I	I	I	I	I	_	I	_	I	0000
8C30	SBISECLRS	15:0	-	Ι	Ι	Ι	Ι	I	I	1	I	Ι	Ι	I	I	Ι	1	CLEAR	0000
000	Malorotas	31:16	I	Ι	Ι	Ι	Ι	-	I	I	-	I	I	I	_	I	_	Ι	0000
000		15:0	_	-	Ι	Ι	I	_	1	_	_	I	I	I	_	I	_	CLEAR	0000
07.70	OCHODECO	31:16								BASE<21:6>	<21:6>								XXXX
5		15:0			BASE	BASE<5:0>			PRI	_			SIZE<4:0>			I	_	Ι	XXXX
0000	ОПВОТАЗ	31:16	_	1	1	1	1	_	-	_	_	1	-	-	_	-	_	1	XXXX
0000		15:0	_	1	1	1	1	-	-	_	_	-	_	-	GROUP3	GROUP2	GROUP1	GROUPO	XXXX
011	00/4/01	31:16	ı	I	I	I	I	I	1	ı	I	ı	I	I	I	I	I	I	××××
0C.00		15:0	_	1	Ι	Ι	1	_	-	_	_	Ι	_	-	GROUP3	GROUP2	GROUP1	GROUP0	××××
0900	SPIONECA	31:16								BASE<21:6>	<21:6>								XXXX
0000		15:0			BASE	BASE<5:0>			PRI	_			SIZE<4:0>			-	_	1	XXXX
02.00	LUBOTO2	31:16	_	-	1	1	1	_	_	_	_	1	-	-	_	-	_	1	XXXX
		15:0	1	I	1	I	ı	1	1	1	1	Ι	1	I	GROUP3	GROUP2	GROUP1	GROUPO	XXXX
00.70	CDTO///D4	31:16		-	I	I	I		-		_	I			I			-	XXXX
2/20		15:0	_	_	1	1	1	-	-	_	_	1	_	1	GROUP3	GROUP2	GROUP3 GROUP2 GROUP1	GROUP0 xxxx	××××
Legend:	.;	nown va	ue on Res	et; — = unir	mplementer	x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal	.'. Reset vali	ues are sho	wn in hexac	decimal.									

ss										Bits	ţ								
Virtual Addre (#_0678)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	IIA steseЯ
0000	SET 10EI OC 1	31:16	MULTI	-	-	1		CODE<3:0>	<3:0>		1	-	Ι	-	-	_	-	-	0000
3020		15:0				INITID	ITID<7:0>					REGIO	REGION<3:0>		1		CMD<2:0>		0000
7000	SBT40EI OC3	31:16	-	_	1	1	1	-	1	1	-		-	_	-	_	_	-	0000
9024		15:0	-	_	1	1	1	_	1	Ι	1	-	1	-	1	_	<0:1>dnoa9	><1:0>	0000
0000	NOCHTAS	31:16	-	_	1	1	Ι	_	1	ERRP	1	-	1	_	Ι	_	_	_	0000
9020		15:0	-	_	1	1	1	_	1	1	_	_	_	_	1	_	_	_	0000
	Salozoras	31:16	I	_	I	I	I	1	ı	Ι	I	I	I	_	-	_	_	Ι	0000
9030		15:0	I	I	Ι	I	Ι	I	I	Ι	I	1	I	I	Ι	1	I	CLEAR	0000
0000	Ma IOE011as	31:16	-	_	1	1	1	_	1	Ι	_	_	_	_	1	_	_	_	0000
8020		15:0	I	_	I	I	I	1	ı	Ι	I	I	I	_	-	_	_	CLEAR	0000
6		31:16								BASE<21:6>	<21:6>								XXXX
9040	SBIIUREGO	15:0			BASE<5:0>	<2:0>			PRI	-			SIZE<4:0>			_	_	-	XXXX
C	0000	31:16	I	_	I	I	I	I	I	I	I	I	_	_	Ι	-	_	I	XXXX
OCOS	SBIIURDO	15:0	I	I	Ι	I	Ι	Ι	I	Ι	I	1	I	I	GROUP3	GROUP2	GROUP1	GROUPO	XXXX
0100		31:16	Ι	_	ı	Ι	I	1	I	Ι	I	I	Ι	_	Ι	_	_	Ι	XXXX
0006	ONVINO	15:0	I	_	I	I	I	1	I	Ι	I	I	I	_	GROUP3	GROUP2	GROUP1	GROUP0	XXXX
0900	FD3G0FIGS	31:16								BASE<21:6>	<21:6>								XXXX
0006		15:0			BASE<5:0>	<2:0>			PRI	Ι			SIZE<4:0>			_	_	Ι	XXXX
0700	POBOF185	31:16	-	_	1	1	Ι	_	1	1	_	_	_	_	Ι	_	_	_	XXXX
		15:0	I	1	Ι	ı	ı	I	1	Ι	1	1	1	1	GROUP3	GROUP2	GROUP1	GROUPO	XXXX
0000	20VO	31:16	I	I	ı	I	ı	ı	ı	I	I		I	I	I	I	I	I	XXXX
90708	900	15:0	I	-	I	Ι	1	1	I	Ι	1	1	_	_	GROUP3	GROUP2	GROUP1	GROUP0	XXXX
Legend:		lown val	lue on Res	x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal	nplemented	, read as '0'	. Reset valu	es are shov	vn in hexad	ecimal.									

For reset values listed as 'xxxx', please refer to Table 4-8 for the actual reset values. Note:

SYSTEM BUS TARGET PROTECTION GROUP 10 REGISTER MAP

TABLE 4-20:

TAB	TABLE 4-21:	SYS	TEM B	SYSTEM BUS TARGET PROTE	GET PF	ROTECT	CTION GROUP 11 REGISTER MAP	NOUP 1	I REGIS	TER M.	AP								
SSƏ		6								Bi	Bits								
nbbA IsuhiV (#_0678)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	IIA steseЯ
9		31:16	MULTI	1	1	Ι		CODE<3:0>	<3:0>		-	1	1	1	1	1	1	1	0000
9420	SBLITELOG	15:0				<0:2	<7:0>					REGION<3:0>	V<3:0>		I		CMD<2:0>		0000
2		31:16	1	1	1	1	ı	ı	I	Ι	1	I	ı	1	I	I	I	1	0000
9474	SBLIIELUGZ	15:0	I	I	Ι	1	I	I	I	I	I	I	I	1	I	I	GROUP<1:0>	><1:0>	0000
0,400		31:16	1	1	Ι	1	I	I	I	ERRP	I	I	I	1	I	I	I	1	0000
9470	SPITECON	15:0	I	-	1	Ι	Ι	Ι	Ι	Ι	-	I	Ι	I	Ι	_	_	_	0000
2	ı	31:16	I	I	I	1	I	I	I	I	I	I	I	1	I	I	I	I	0000
9430	SBLIECLRS	15:0	1	1	Ι	1	I	I	I	Ι	I	I	I	1	I	I	I	CLEAR	0000
0,400	Ma IOHFFAS	31:16	Ι	-	I	Ι	Ι	Ι	Ι	Ι	-	I	Ι	I	Ι	_	_	_	0000
9450		15:0	1	_	-	-	_	1	1	1	_	_	1	1	-	_	_	CLEAR	0000
077	SBT11BECO	31:16								BASE<21:6>	<21:6>								XXXX
9440		15:0			BASE	BASE<5:0>			PRI	-			SIZE<4:0>			_	_	_	XXXX
0.750	CBT41BD0	31:16	1	_	-	1	-	Ι	Ι	Ι	_	-	Ι	1	-	_	_	_	XXXX
9450		15:0	Ι	_	-	1	Ι	Ι	Ι	Ι	_	-	Ι	Ι	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
0.710		31:16	-	-	ı	Ι	1	I	I	ı	_	_	I	I	1	_	_	_	XXXX
9450	SBIIWKU	15:0	Ι	_	-	1	Ι	Ι	Ι	Ι	_	-	Ι	Ι	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
0460	69111BEC.1	31:16								BASE<21:6>	<21:6>								XXXX
9400		15:0			BASE	BASE<5:0>			PRI	Ι			SIZE<4:0>			_	_	_	XXXX
0770	PO TATABLE	31:16	_	_	-	1	_	1	Ι	1	_	_	Ι	1	-	_	_	_	XXXX
i i		15:0	I	1	1	1	1	I	I	Ι	1	I	I	1	GROUP3	GROUP2	GROUP1	GROUPO	XXXX
0770	CDT44WD4	31:16	I			I		I	I	I	_		I					_	XXXX
9 1 2		15:0	1	1	1	1	1	1	1	-	_	_	1	1	GROUP3	GROUP3 GROUP2 GROUP1		GROUP0	XXXX
Legend:	ij	nown va	lue on Res	x = unknown value on Reset; — = unimplemented, read a	mplemented		s '0'. Reset values are shown	les are sho	wn in hexad	lecimal.									

	IIA Resets	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	XXXX	××××	XXXX	××××	XXXX	XXXX	
	16/0	I		Ι	GROUP<1:0>	Ι	Ι	Ι	CLEAR	Ι	CLEAR		Ι	Ι	GROUP0	Ι	GROUPO	
	17/1	I	CMD<2:0>	Ι	GROU	Ι	Ι	Ι	Ι	Ι	1		Ι	Ι	GROUP1	Ι	GROUP1	
	18/2	I		ı	ı	ı	ı	ı	ı	ı	-		ı	ı	GROUP2	ı	GROUP3 GROUP2 GROUP1	
	19/3	ı	_	_	_	_	_	_	_	_	I			_	GROUP3	_	GROUP3	
	20/4	ı		Ι	Ι	Ι	Ι	Ι	Ι	Ι	1			Ι	Ι	Ι	1	
	21/5	I	V<3:0>	_	_	_	_	_	_	_	I		SIZE<4:0>	_	_	_	1	
	22/6	ı	REGION<3:0>	Ι	Ι	Ι	Ι	Ι	Ι	Ι	1		•	Ι	Ι	Ι	1	
S.	23/7	ı		Ι	Ι	Ι	Ι	Ι	Ι	Ι	1	:21:6>		Ι	Ι	Ι	1	
Bits	24/8			Ι	Ι	ERRP	Ι	Ι	Ι	Ι	I	BASE<21:6>	Ι	Ι	Ι	Ι	I	Comico
	25/9	<3:0>		_	_	_	_	_	_	_	I		PRI	_	_	_	I	o you di di
	26/10	CODE<3:0>		_	_	_	_	_	_	_	I			_	_	_	I	040 020 00
	27/11		<0:2>	_	_	_	_	_	_	_	I			_	_	_	I	10,000
	28/12	ı	<0:7>0INIID<	Ι	Ι	Ι	Ι	Ι	Ι	Ι	1		<2:0>	Ι	Ι	Ι	1	, 00 0001
	29/13	I		Ι	Ι	Ι	Ι	Ι	Ι	Ι	I		BASE<5:0>	Ι	Ι	Ι	I	potacaclas
	30/14	I		Ι	Ι	Ι	Ι	Ι	Ι	Ι	I			Ι	Ι	Ι	I	+
	31/15	MULTI		_	_	_	_	_	_	_	I			_	_	_	I	improving value on Dood
•	Bit Range	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	0,1
	Register Name	_	SBI IZELOGI		SBI IZELUGZ		SB I IZECON	30 10701	SBI IZECLRS		SBIZECLRIM	0079054	SBI IZREGU		SPIZKDO	OGWCFTGO	SDIIZWRU	
SSƏ	virtual Addr (#_0678)		2020	7000	3024	0000	90708	0000	2000		2020	0,00	0400	0.000	ncos	0200	0006	- Pacond

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadec **Note:** For reset values listed as 'xxxx', please refer to Table 4-8 for the actual reset values.

SYSTEM BUS TARGET PROTECTION GROUP 12 REGISTER MAP

TABLE 4-22:

TAB	TABLE 4-23:	SYS	TEM B	SYSTEM BUS TARGET PROTE	GET PF	ROTECT	CTION GROUP 13 REGISTER MAP	NOUP 1	3 REGIS	STER M	ΙΑΡ								
SSƏ		6								Bits	ts								
nbbA IsuhiV (#_1678)	Register Mame	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	IIA steseЯ
9		31:16	MULTI	1	1	Ι		CODE<3:0>	<3:0>		1	1	1	1	1	1	1	1	0000
8420	SBITSELUGI	15:0				<0:2	<7:0>					REGION<3:0>	V<3:0>		I		CMD<2:0>		0000
0,00		31:16	1	1	1	1	ı	ı	I	Ι	I	ı	1	1	I	I	I	1	0000
8424	SBIISELUGZ	15:0	I	I	Ι	1	I	I	I	I	I	I	I	I	I	I	GROUP<1:0>	><1:0>	0000
0,70		31:16	1	1	Ι	1	I	I	Ι	ERRP	I	Ι	1	1	I	I	I	1	0000
0470	SELISECON	15:0	I	-	I	Ι	Ι	Ι	I	Ι	Ι	Ι	Ι	_	Ι	_	_	_	0000
2	0 1 1 1 1	31:16	I	I	I	1	I	I	I	I	I	I	I	I	I	I	I	I	0000
8430		15:0	1	1	Ι	1	I	I	Ι	I	I	Ι	1	1	I	I	I	CLEAR	0000
0,400	Malorestas	31:16	Ι	-	I	Ι	Ι	Ι	I	Ι	Ι	Ι	Ι	_	Ι	_	_	_	0000
0420		15:0	1	_	-	-	_	1	Ι	-	_	Ι	1	_	-	_	_	CLEAR	0000
0770	CDT43BECO	31:16								BASE<21:6>	<21:6>								XXXX
0		15:0			BASE	BASE<5:0>			PRI	ı			SIZE<4:0>			_	_	_	XXXX
0.450	00061100	31:16	1	_	-	1	-	Ι	Ι	Ι	_	Ι	-	_	-	_	_	_	XXXX
0430		15:0	Ι	_	-	1	Ι	Ι	Ι	Ι	-	Ι	1	_	GROUP3	GROUP2	GROUP1	GROUP0	XXXX
0.450	OCIVICATOR	31:16	-	-	ı	Ι	1	I	Ι	1	_	I	1	ı	1	_	_	_	XXXX
0400		15:0	Ι	_	-	1	Ι	Ι	Ι	Ι	-	Ι	1	_	GROUP3	GROUP2	GROUP1	GROUP0	XXXX
0.460	SPT13BEC1	31:16								BASE<21:6>	<21:6>								XXXX
040		15:0			BASE	BASE<5:0>			PRI	1			SIZE<4:0>			_	_	_	XXXX
0.470	SP 113801	31:16	_	_	-	1	_	1	1	-	_	1	-	_	-	_	_	_	XXXX
) 		15:0	I	1	1	1	1	I	I	I	1	Ι	_	1	GROUP3	GROUP2	GROUP1	GROUPO	XXXX
0.470	CDT420///04	31:16	I			I		I	I	I		I	_					_	XXXX
0 1 0		15:0	1	_	1	-		I	I	1	_	Ι	1	_	GROUP3	GROUP3 GROUP2 GROUP1		GROUPO	XXXX
Legend:		nown va	lue on Res	x = unknown value on Reset; — = unimplemented, read a	nplemented		s '0'. Reset values are shown	les are show	wn in hexad	lecimal.									

	IIA steseЯ	0000		0000	0000	0000	0000	0000	0000	0000	0000	0000	XXXX	XXXX	XXXX	XXXX	XXXX	XXXX	XXXX	XXXX	XXXX	XXXX	XXXX	XXXX	
	16/0	I			I	><1:0>	_	-	I	CLEAR	I	CLEAR		-	_	GROUP0	I	GROUP0		1	_	GROUP0	1	GROUP0 xxxx	
	17/1	I	70.07	CIMD<2:0>	I	GROUP<1:0>	I	I	I	I	I	I		I	I	GROUP1	I	GROUP1		I	I	GROUP1	I	GROUP1	
	18/2	I			I	I	I	I	I	I	I	1		I	I	GROUP2	I	GROUP2		I	I	GROUP2	I	GROUP3 GROUP2 GROUP1	
	19/3	1			I	_	I	I	_	1	_	-			I	GROUP3	_	GROUP3			I	GROUP3	I	GROUP3	
	20/4	I			I	I	I	I	I	I	I	1			I	I	I	I			I	I	I	I	
	21/5	I	20.07	N<3:0>	ı	I	I	I	I	I	I	I		SIZE<4:0>	I	I	I	I		SIZE<4:0>	I	ı	I	I	
	22/6	-	0.00	REGION<3:0>	I	Ι	I	I	Ι	I	Ι	I			I	I	Ι	I			I	I	I	I	
Bits	23/7	I			I	I	I	I	I	I	I	1	:21:6>		I	I	I	I	:21:6>		I	I	I	I	
B	24/8				I	I	ERRP	I	I	I	I	1	BASE<21:6>	ı	I	I	I	I	BASE<21:6>	I	I	I	I	I	lecimal.
	25/9	<3.0>	2		I	I	I	I	I	I	I	I		PRI	I	I	I	I		PRI	I	I	I	I	wn in hexac
	26/10	CODE<3:0>	0		_	_	_	-	_	1	_	_			_	1	_	1			_	I	1	I	as '0'. Reset values are shown in hexadecimal
	27/11		70.6	<0:7>	-	_	_	_	_	-	_	_			1	-	_	-			1	Ι	1	-	. Reset val
	28/12	I	CIFIN	<0:/>OIIIIINI	I	I	I	I	I	I	I	1		<2:0>	I	I	I	I		<2:0>	I	I	I	I	
	29/13	I			I	I	I	I	I	I	I	1		BASE<5:0>	I	I	I	I		BASE<5:0>	I	I	I	I	nplemented, read
	30/14				_	_	-	-	_	1	_	_			1	Ι	_	1			1	I	1	Ι	et; — = unir
	31/15	ILIM			Ι	_	_	-	_	I	-	-			-	1	-	1			-	1	I	I	x = unknown value on Reset; — = unimplemented, read
i	Bit Range	31.16		15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	own va
	Register Mame		SBT14ELOG1		SPT44EI OG2	3B1 14ELOG2	NO OTATA	SB 14ECON	SBT44FCI DE	SBI I4ECLRS	Ma 1946	3B1 14ECLNIN		SBI 14REGO		SBII4RD0		02 14VV		351 14REG		SB 14KU		051 14VVR	
SS	orbbA IsutriV (#_1678)		8820		7000	4 700	000	0700	000	0000	0000	000	0,00	0040	0	0000	0000	0000	0	0000	0.00	0/88	0 0 1	0/00	Legend:

gend: x = unknown value on reset, — = unimplemented, read as <math>0. Reset values are shown in yet: For reset values listed as 'xxxxx', please refer to Table 4-8 for the actual reset values.

SYSTEM BUS TARGET PROTECTION GROUP 14 REGISTER MAP

TABLE 4-24:

AB	TABLE 4-25 :	SYS	TEM B	JS TAR	SYSTEM BUS TARGET PROTE	ROTECI	TION GF	ROUP 1	5 REGIS	CTION GROUP 15 REGISTER MAP	ΙΑΡ								
										B	Bits								
Virtual Addre (#_reqa)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	1//1	16/0	IIA Resets
ç	8C20	31:16	MULTI	1	I	ı		CODE<3:0>	:<3:0>		_	I	I	-	I	I	I	-	0000
020	SDI ISELOGI	15:0				<0:2	<0:2>					REGION<3:0>	V<3:0>		I		CMD<2:0>		0000
2		31:16	Ι	I	I	I	Ι	I	I	I	I	I	I	I	I	I	I	I	0000
470	80.24 SBI 13ELUG2	15:0	I	I	I	I	I	I	I	I	I	I	I	I	I	I	GROUP<1:0>	><1:0>	0000
	SPT48FG2	31:16	I	1	I	I	I	I	I	ERRP	Ι	I	I	I	I	I	I	1	0000
070		15:0	Ι	1	Ι	I	_	_	_	I	_	I	_	1	_	_	_	_	0000
000	SDT4FFC1 DS	31:16	I	1	I	I	I	I	I	I	Ι	I	I	I	I	I	I	1	0000
000		15:0	1	1	I	I	I	I	I	I	I	I	I	1	I	I	I	CLEAR	0000
000	Ma IOTALTA	31:16	ı	1	I	I	I	I	I	I	Ι	I	I	I	I	I	I	1	0000
s S S	SBI ISECLRIM	15:0	Ι	-	I	I	I	I	I	I	I	I	I	I	I	I	I	CLEAR	0000
0000	CDT4EBECO	31:16								BASE<21:6>	<21:6>								XXXX
5		15:0			BASE<5:0>	<2:0>			PRI	I			SIZE<4:0>			_	_	_	××××
0000	OGGETAEDO	31:16	Ι	I	Ι	Ι	Ι	-	Ι	I	I	I	ı	ı	ı	ı	ı	-	XXXX
000		15:0	1	1	1	1	1	-	Ι	1	_	I	_	1	GROUP3	GROUP2	GROUP1	GROUP0	xxxx
0000	CBT16WB0	31:16	Ι	I	Ι	I	-		Ι	I		I	ı	ı	ı	ı	ı	Ι	XXXX
Š		15:0	1	1	I	I	1	1	I	I	-	ı	-	I	GROUP3	GROUP2	GROUP1	GROUP0	XXXX
Legend: Note:	ij	own va	lue on Res s listed as	et; — = unir xxxx', ples	x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal For reset values listed as 'xxxx', please refer to Table 4-8 for the actual reset values.	i, read as '0 Table 4-8 fo	. Reset vali or the actua	ues are sho Il reset valu	wn in hexadies.	decimal.									

DS60001361E-page 90

MULTIT	SBT16RDO2 SBT16RDO2 SBT16RDO3 SBT1	(:										B	Bits								
SBT16ELORI 31.16 MULTI AULTI — — CODE-30P —	SBT16ELLOGY 15.16 MULTI MULTI	#_S678) #_S678)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	IIA steseЯ
SBT16ECOX 15.6	SBT16ECOR 150 MINITIDGYOP		31:16	MULTI	I	Ι	I		CODE	<3:0>		I	1	I	Ι	1	I	I	1	0000	
SBT16ECOR 3116	SBT16ECORY 150 — — — — — — — — — — — — — — — — — — —		SBI IOELUGI	15:0	1			INITID	<7:0>					REGIO	N<3:0>		Ι		CMD<2:0>		0000
SBT16ECOLM 16.0 — — — — — — — — — — — — — — — — — — —	SBT16ECOM 31:16 — — — — — — — — — — — — — — — — — — —			31:16	I	I	Ι	I	I	Ι	Ι	Ι	Ι	Ι	I	I	Ι	I	I	1	0000
SBT16ECON 31.16 — <	SBT16ECON 31.16 — — — — — — — — — — — — — — — — — — —		SBI IDELUGZ	15:0	I	I	1	I	I	1	Ι	I	I	I	I	I	1	1	GROUI	><1:0>	0000
SBT16ECLAN [5,0] a. C.	SBT16ECURS 150	007		31:16	Ι	I	Ι	I	I	Ι	I	ERRP	Ι	Ι	I	Ι	Ι	I	1	I	0000
SBT16ECLRN STITE CLAN STATE CLAN	SBT16ECLRA 11:6	074	SBI ISECON	15:0	Ι	I	Ι	I	I	Ι	Ι	I	Ι	Ι	Ι	1	I	I	Ι	I	0000
SBT16ECLRM 150	SBT16ECLRM 150			31:16	I	I	Ι	I	I	1	I	Ι	1	1	I	I	Ι	I	I	1	0000
SBT16ECLRM 150 — — — — — — — — — — — — — — — — — — —	SBT16ECLRM		SBI IOECLKS	15:0	I	I	Ι	I	I	1	I	Ι	1	1	I	I	Ι	I	I	CLEAR	0000
SBT16REG 150	SBT16REGO 3116			31:16	I	I	Ι	I	I	1	I	I	I	1	1	I	I	1	I	I	0000
SBT16REGO 150 HASE-GIO- PRI CALLO SIZEC-410- SIZEC-410- CALLO SIZEC-410- C	SBT16REGO 31:16 BASE<5:0> PRI — BASE<21:6> SBT16RDO 31:16 — <td></td> <td>SB I IOECLRIN</td> <td>15:0</td> <td>I</td> <td>I</td> <td>I</td> <td>I</td> <td>I</td> <td>1</td> <td>I</td> <td>I</td> <td>I</td> <td>I</td> <td>I</td> <td>I</td> <td>I</td> <td>1</td> <td>1</td> <td>CLEAR</td> <td>0000</td>		SB I IOECLRIN	15:0	I	I	I	I	I	1	I	I	I	I	I	I	I	1	1	CLEAR	0000
SBT16REQ 150 BASE 45:0> PRI SIZE 44:0> SIZE 44:0> SBT16RD0 150	SBT16REO 150 BASE-6:0> PRI	9		31:16								BASE	<21:6>								XXXX
SBT16RD0 1516 — — — — — — — — — — — — — — — — — — —	SBT16RD0 31:16 — — — — — — — — — — — — — — — — — — —	0440	SBITOREGO	15:0			BASE	<2:0>			PRI	I			SIZE<4:0>			1	1	1	XXXX
SBT16RNO 155.0 — — — — — — — — — — — — — — — — — — —	SBT16WND 45.0 15.0			31:16	I	I	I	I	I	Ι	I	I	I	Ι	I	Ι	I	1	1	I	XXXX
SBT16WR0 15:0 — — — — — — — — — — — — — — — — — — —	SBT16WRO 45.0 — — — — — — — — — — — — — — — — — — —	064,		15:0	I	I	I	I	I	1	I	I	I	1	I	1	GROUP3			GROUP0	
SBT16REG1 15:0 — — — — — — — — — — — — — — — — — — —	SBT16REG1 450 — 6 — 6 — 6 — 6 — 6 — 6 — 6 — 6 — 6 —	0		31:16	I	I	Ι	I	I	1	I	I	I	1	1	I	I	1	I	I	XXXX
SBT16REG1 15.0 BASE<5:0> PRI	SBT16REG1 15:0 BASE<5:0> BASE<5:16> BASE<21:6> BASE<21:	0 0 0	SBIIOWRU	15:0	I	I	Ι	I	I	1	I	Ι	1	1	I	I	GROUP3	GROUP2	GROUP1	GROUP0	XXXX (
SBT16RD1 15.0 BASE<5:0> PRI — — SIZE<4:0> SBT16RD2 15.0 —	SBT16RD1 15.0 BASE<5:0> PRI —			31:16								BASE	<21:6>								XXXX
SBT16RD1 31:16 — <t< td=""><td>SBT16RD1 15.0 — — — — — — — — — — — — — — — — — — —</td><td>004,</td><td>35 10KEG 1</td><td>15:0</td><td></td><td></td><td>BASE</td><td><2:0></td><td></td><td></td><td>PRI</td><td>ı</td><td></td><td></td><td>SIZE<4:0></td><td></td><td></td><td>I</td><td>1</td><td>I</td><td>XXXX</td></t<>	SBT16RD1 15.0 — — — — — — — — — — — — — — — — — — —	004,	35 10KEG 1	15:0			BASE	<2:0>			PRI	ı			SIZE<4:0>			I	1	I	XXXX
SBT16WR1 15:0 — — — — — — — — — — — — — — — — — — —	SBT16RWR1 15.0 — — — — — — — — — — — — — — — — — — —	770		31:16	Ι	I	I	I	I	Ι	Ι	Ι	Ι	Ι	I	Ι	I	١	I	I	xxxx
SBT16WR1 150 — — — — — — — — — — — — — — — — — — —	SBT16WR1 150 — 6 — 6 — 6 — 6 — 6 — 6 — 6 — 6 — 6 —	0,4,	SELIGRUI	15:0	Ι	1	Ι	I	1	Ι	1	Ι	Ι	Ι	Ι	1	GROUP3			GROUP0	xxxx (
SBT16REG2 15:0 — — — — — — — — — — — — — — — — — — —	SBT16REGS 31:16	770		31:16	Ι	1	Ι	I	1	1	I	I	I	Ι	I	Ι	I	1	1	I	××××
SBT16REG2 15.0 BASE<5:0> PRI	SBT16REGS 31:16 BASE<<5:0> PRI — BASE 21:6 SBT16RD2 15:0 — <td>0 / † /</td> <td></td> <td>15:0</td> <td>1</td> <td></td> <td>1</td> <td>I</td> <td></td> <td>1</td> <td>1</td> <td>I</td> <td>-</td> <td>-</td> <td>1</td> <td>1</td> <td>GROUP3</td> <td></td> <td></td> <td>GROUP0</td> <td>xxxx (</td>	0 / † /		15:0	1		1	I		1	1	I	-	-	1	1	GROUP3			GROUP0	xxxx (
SBT16RD2 150 BASE<5:0> PRI — PRI — SIZE<4:0> SBT16RD2 150 —	SBT16RD2 15.0 BASE<6:0> PRI — PRI —	007		31:16								BASE	<21:6>								xxxx
SBT16RD2 15.0	SBT16RD2 31:16 — <t< td=""><td>5</td><td>SBIIONEGE</td><td>15:0</td><td></td><td></td><td>BASE</td><td><2:0></td><td></td><td></td><td>PRI</td><td>1</td><td></td><td></td><td>SIZE<4:0></td><td></td><td></td><td>1</td><td>1</td><td>-</td><td>XXXX</td></t<>	5	SBIIONEGE	15:0			BASE	<2:0>			PRI	1			SIZE<4:0>			1	1	-	XXXX
SBT16WR2 15.0	SBT16WR2 15.0	0		31:16	Ι	I	Ι	I	I	Ι	Ι	Ι	Ι	Ι	Ι	Ι	I	I	I	I	xxxx
SBT16WR2 31:16	SBT16WR2 15.0	064	3B 10RD2	15:0	Ι	1	1	I	1	1	Ι	I	Ι	-	1	1	GROUP3	GROUP2	GROUP1	GROUP0	xxxx (
SBT16REG3 4:0 — — — — — — — — — — — — — — — — — — —	SBT16REG3 11:16	907		31:16	Ι	I	Ι	Ι	I	Ι	Ι	Ι	Ι	Ι	Ι	Ι	I	I	I	Ι	xxxx
SBT16REG3 31:16 — BASE< PRI — BASE< SIZE< - —<	SBT16REG3 31:16 BASE<21:6> SBT16WR3 31:16	000	30 10 V	15:0	Ι	I	I	I	I	Ι	Ι	I	Ι	Ι	I	Ι	GROUP3		GROUP1	GROUP0	xxxx (
SBT16RD3 150 BASE<5:0> PRI —	SBT16KD3 15.0 BASE<<5:0> PRI —	0 4 7		31:16								BASE	<21:6>								xxxx
SBT16RD3 31:16 — — — — — — — — — — — — — — — — — — —	SBT16RD3 31:16 — — — — — — — — — — — — — — — — — — —	7	SBLIGNEGS	15:0			BASE	<2:0>			PRI	I			SIZE<4:0>			ı	1		XXXX
SBT16WR3 15:0	SBT16WR3 15:0 — — — — — — — — — — — — — — — — — — —	0		31:16	1	1	1	1	1	1	-	I	1	1	1	1	1	1	I	1	xxxx
SBT16WR3 15:0	SBT16WR3 15:0	20	SOLIONOS	15:0	Ι	I	1	ı	I	1	-	I	1	1	1	Ι	GROUP3			GROUP0	xxxx (
15:0	15:0	00		31:16	I	I	ı	I	I	I	I	I	I	1	I	I	I	I	I	I	XXXX
		ţ	SAWOI I GS	15:0	I	I	I	1	I	I	I	I	I	1	I	I	GROUP3	GROUP2	GROUP1	GROUP0	xxx (

	IIA stesefa	XXXX	XXXX	XXXX	XXXX	XXXX	XXXX	
	16/0		Ι	I	GROUP0	I	GROUP0	
	1/21		I	_	GROUP1	_	GROUP1	
	18/2		Ι	I	GROUP3 GROUP2 GROUP1 GROUP0 xxxx	I	GROUP3 GROUP2 GROUP1 GROUP0 xxxx	
	19/3			I	GROUP3	I	GROUP3	
	20/4			Ι	Ι	Ι	Ι	
	21/5		SIZE<4:0>	_	_	_	_	
	22/6			Ι	-	Ι	-	
Bits	23/7	BASE<21:6>		Ι	Ι	Ι	Ι	
В	24/8	BASE	Ι	I	Ι	I	I	decimal.
	25/9		PRI	I	Ι	I	I	wn in hexa les.
	26/10			_	_	_	-	lues are sho al reset valu
	27/11			_	_	_	_	as '0'. Reset values are shown in hexadecimal 4-8 for the actual reset values.
	28/12		BASE<5:0>	Ι	-	Ι	-	i, read as '(Table 4-8 f
	29/13		BASE	I	Ι	I	I	mplemented ase refer to
	30/14			Ι	-	Ι	-	x = unknown value on Reset; — = unimplemented, read For reset values listed as 'xxxx', please refer to Table.
	31/15			1	Ι	1	1	ue on Res listed as
,	Bit Range	31:16	15:0	31:16	15:0	31:16	15:0	wn val
	Register Mame	S CACO SBIAGBECA	30 I 00 I 00	E LUGBLIAGO	+0401 lds	E LOWBIT OF LOW	3B 10 W 4	
sse	Virtual Addre (#_2678)	0,70	2	0.0	3	0.7	ŝ	Legend: Note:

TABLE 4-26:

SYSTEM BUS TARGET PROTECTION GROUP 16 REGISTER MAP (CONTINUED)

REGISTER 4-2: SBFLAG0: SYSTEM BUS STATUS FLAG REGISTER 0

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	_	_	_		_	_	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	_	_	_		_	_	_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
13.6	_	_	_	_		_	_	_
7:0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	_	T0PGV0 ⁽¹⁾	T3PGV	T6PGV	T2PGV	T5PGV	T4PGV	T1PGV

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared

bit 31-7 Unimplemented: Read as '0'

bit 6 **T0PGV0:** Target 0 (System Bus 0) Permission Group Violation Status bit⁽¹⁾

1 = Target 0 (System Bus 0) is reporting a Permission Group (PG) violation

0 = Target 0 (System Bus 0) is not reporting a PG violation

bit 5 T3PGV: Target 3 (RAM Bank 2) Permission Group Violation Status bit

1 = Target 3 is reporting a Permission Group (PG) violation

0 = Target 3 is not reporting a PG violation

bit 4 **T6PGV:** Target 6 (EBI) Permission Group Violation Status bit

1 = Target 6 is reporting a Permission Group (PG) violation

0 = Target 6 is not reporting a PG violation

bit 3 T2PGV: Target 2 (RAM Bank 1) Permission Group Violation Status bit

1 = Target 2 is reporting a Permission Group (PG) violation

0 = Target 2 is not reporting a PG violation

bit 2 T5GV: Target 5 (DDR2 Target 1 and Target 2) Permission Group Violation Status bit

1 = Target 5 is reporting a Permission Group (PG) violation

0 = Target 5 is not reporting a PG violation

bit 1 **T4PGV:** Target 4 (DDR2 Target 0) Permission Group Violation Status bit

1 = Target 4 is reporting a Permission Group (PG) violation

0 = Target 4 is not reporting a PG violation

bit 0 T1PGV: Target 1 (Flash Memory) Permission Group Violation Status bit

1 = Target 1 is reporting a Permission Group (PG) violation

0 = Target 1 is not reporting a PG violation

Note 1: System Bus 0 represents an internal sub-system element and should be treated as a general System Bus violation.

REGISTER 4-3: SBFLAG1: SYSTEM BUS STATUS FLAG REGISTER 1

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_		_	_	_	_	_	
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_			_		_	_	_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
13.0	_			_		_	_	_
7:0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	T0PGV1 ⁽¹⁾	T12PGV ⁽²⁾	T11PGV	T10PGV	T9PGV	T8PGV	T7PGV

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared

bit 31-7 Unimplemented: Read as '0'

bit 6 **TOPGV1:** Target 1 (System Bus 1) Permission Group Violation Status bit⁽¹⁾

1 = Target 0 (System Bus 1) is reporting a Permission Group (PG) violation

0 = Target 0 (System Bus 1) is not reporting a PG violation

bit 5 T12PGV: Target Group 12 (GLCD, GPU, DDR2PHY, DDR2SFR) Permission Group Violation Status bit⁽²⁾

1 = Target group 12 is reporting a Permission Group (PG) violation

0 = Target group 12 is not reporting a PG violation

bit 4 T11PGV: Target 11 (PB5) Permission Group Violation Status bit

1 = Target 11 is reporting a Permission Group (PG) violation

0 = Target 11 is not reporting a PG violation

bit 3 **T10PGV:** Target 10 (PB4) Permission Group Violation Status bit

1 = Target 10 is reporting a Permission Group (PG) violation

0 = Target 10 is not reporting a PG violation

bit 2 **T9PGV:** Target 9 (PB3) Permission Group Violation Status bit

1 = Target 9 is reporting a Permission Group (PG) violation

0 = Target 9 is not reporting a PG violation

bit 1 T8PGV: Target 8 (PB2) Permission Group Violation Status bit

1 = Target 8 is reporting a Permission Group (PG) violation

0 = Target 8 is not reporting a PG violation

bit 0 T7PGV: Target 7 (PB1) Permission Group Violation Status bit

1 = Target 7 is reporting a Permission Group (PG) violation

0 = Target 7 is not reporting a PG violation

Note 1: System Bus 1 represents an internal sub-system element and should be treated as a general System Bus violation.

2: This bit reports violations on Targets 14 (GLCD), 18 (GPU), 20 (DDR2PHY) and 21 (DDR2SFR).

REGISTER 4-4: SBFLAG2: SYSTEM BUS STATUS FLAG REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	_		_		_	_	
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	_	_	_	_	_	_	_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6	_	_	_	_	_	_	_	_
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_	_	_	T0PGV2 ⁽¹⁾	T15PGV ⁽²⁾	T14PGV	T13PGV

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared

bit 31-4 Unimplemented: Read as '0'

bit 3 **TOPGV2:** Target 0 (System Bus 2) Permission Group Violation Status bit⁽¹⁾

1 = Target 0 (System Bus 2) is reporting a Permission Group (PG) violation

0 = Target 0 (System Bus 2) is not reporting a PG violation

bit 2 T15PGV: Target Group 15 (USB, Crypto, RNG, SDHC) Permission Group Violation Status bit⁽²⁾

1 = Target group 15 is reporting a Permission Group (PG) violation

0 = Target group 15 is not reporting a PG violation

bit 1 T14PGV: Target 14 (PB6) Permission Group Violation Status bit

1 = Target 14 is reporting a Permission Group (PG) violation

0 = Target 14 is not reporting a PG violation

bit 0 T13PGV: Target 13 (SQI) Permission Group Violation Status bit

1 = Target 13 is reporting a Permission Group (PG) violation

0 = Target 13 is not reporting a PG violation

Note 1: System Bus 2 represents an internal sub-system element and should be treated as a general System Bus violation.

2: This bit reports violations on Targets 10 (USB), 12 (Crypto), 13 (RNG) and 19 (SDHC).

REGISTER 4-5: SBFLAG3: SYSTEM BUS STATUS FLAG REGISTER 3

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0						
31.24	_	_	_	_	_	_	_	_
23:16	U-0	U-0						
23.10	_	_	_	_	_	_	_	_
15:8	U-0	U-0						
15.6	_	_	_	_	_	_	_	_
7:0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
7:0	_	_	_	_	_	_	T0PGV3 ⁽¹⁾	T16PGV

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared

bit 31-2 Unimplemented: Read as '0'

bit 1 **TOPGV3:** Target 0 (System Bus 3) Permission Group Violation Status bit⁽¹⁾

1 = Target 0 (System Bus 3) is reporting a Permission Group (PG) violation

0 = Target 0 (System Bus 3) is not reporting a PG violation

bit 0 T16PGV: Target 16 (DDR2 Target 3 and Target 4) Permission Group Violation Status bit

1 = Target 16 is reporting a Permission Group (PG) violation

0 = Target 16 is not reporting a PG violation

Note 1: System Bus 3 represents an internal sub-system element and should be treated as a general System Bus violation.

REGISTER 4-6: SBTxELOG1: SYSTEM BUS TARGET 'x' ERROR LOG REGISTER 1 ('x' = 0-13)

		,						
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit Bit 26/18/10/2 25/17/9/1		Bit 24/16/8/0
24.04	R/W-0, C	U-0	U-0	U-0	R/W-0, C	R/W-0, C	R/W-0, C	R/W-0, C
31:24	MULTI	_	_	_		CODE	<3:0>	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	_	_	_	_	_	_
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
15:8				INITIE)<7:0>			
7:0	R-0	R-0	R-0	R-0	U-0	R-0	R-0	R-0
7:0		REGIO	N<3:0>	_	_		CMD<2:0>	

Legend:C = Clearable bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is cleared

bit 31 MULTI: Multiple Permission Violations Status bit

This bit is cleared by writing a '1'.

1 = Multiple errors have been detected

0 = No multiple errors have been detected

bit 30-28 Unimplemented: Read as '0'

bit 27-24 CODE<3:0>: Error Code bits

Indicates the type of error that was detected. These bits are cleared by writing a '1'.

1111 = Reserved

1101 = Reserved

.

0011 = Permission violation

0010 = Reserved

0001 = Reserved

0000 **= No error**

bit 23-16 Unimplemented: Read as '0'

REGISTER 4-6: SBTxELOG1: SYSTEM BUS TARGET 'x' ERROR LOG REGISTER 1 ('x' = 0-13) (CONTINUED)

```
bit 15-8 INITID<7:0>: Initiator ID of Requester bits
         11111111 = Reserved
         00001111 = Reserved
         00001110 = SDHC
         00001101 = GPU
         00001100 = GLCD
         00001011 = Crypto Engine
         00001010 = Flash Controller
         00001001 = SQI1
         00001000 = CAN2
         00000111 = CAN1
         00000110 = Ethernet Write
         00000101 = Ethernet Read
         00000100 = USB
         00000011 = DMA Write
         00000010 = DMA Read
         00000001 = CPU
         00000000 = Reserved
bit 7-4
         REGION<3:0>: Requested Region Number bits
         1111 - 0000 = Target's region that reported a permission group violation
bit 3
         Unimplemented: Read as '0'
bit 2-0
         CMD<2:0>: Transaction Command of the Requester bits
         111 = Reserved
         110 = Reserved
         101 = Write (a non-posted write)
         100 = Reserved
         011 = Read (a locked read caused by a Read-Modify-Write transaction)
         010 = Read
         001 = Write
         000 = Idle
```

REGISTER 4-7: SBTxELOG2: SYSTEM BUS TARGET 'x' ERROR LOG REGISTER 2 ('x' = 0-13)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24		-	-	-		_		1
22.46	U-0 U-0							
23:16	_	-	-	-	-	_	-	-
15:8	U-0 U-0							
15.6	_	_	_	-	_	_	_	
7.0	U-0	U-0	U-0	U-0	U-0	U-0	R-0	R-0
7:0	_	_	_	_	_	_	GROU	P<1:0>

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared

bit 31-3 Unimplemented: Read as '0'

bit 1-0 GROUP<1:0>: Requested Permissions Group bits

11 = Group 3

10 = Group 2

01 = Group 1

00 = Group 0

Note: Refer to Table 4-8 for the list of available targets and their descriptions.

REGISTER 4-8: SBTxECON: SYSTEM BUS TARGET 'x' ERROR CONTROL REGISTER ('x' = 0-13)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0 R/W-0							
31.24	_	_	_	_	_	_	_	ERRP
22.40	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	U-0 U-0							
15:8	_	_	_	_	_	_	_	_
7:0	U-0 U-0							
7:0	_	_	_	_	_	_	_	_

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared

bit 31-25 Unimplemented: Read as '0'

bit 24 ERRP: Error Control bit

1 = Report protection group violation errors

0 = Do not report protection group violation errors

bit 23-0 Unimplemented: Read as '0'

REGISTER 4-9: SBTxECLRS: SYSTEM BUS TARGET 'x' SINGLE ERROR CLEAR REGISTER ('x' = 0-13)

		(
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0 U-0							
31:24	_	_	_	_	_	_	_	_
22.40	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	U-0 U-0							
15:8	_	_	_	_	_	_	_	_
7.0	U-0 R-0							
7:0	_	_	_	_	_	_	_	CLEAR

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared

bit 31-1 Unimplemented: Read as '0'

bit 0 CLEAR: Clear Single Error on Read bit

A single error as reported via SBTxELOG1 and SBTxELOG2 is cleared by a read of this register.

Note: Refer to Table 4-8 for the list of available targets and their descriptions.

REGISTER 4-10: SBTxECLRM: SYSTEM BUS TARGET 'x' MULTIPLE ERROR CLEAR REGISTER ('x' = 0-13)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	_	_	_	_	_	_	_	_
22.40	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	U-0 U-0							
15:8	_	_	_	_	_	_		_
7:0	U-0 R-0							
7:0	_	_	_	_	_	_	_	CLEAR

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared

bit 31-1 Unimplemented: Read as '0'

bit 0 CLEAR: Clear Multiple Errors on Read bit

Multiple errors as reported via SBTxELOG1 and SBTxELOG2 is cleared by a read of this register.

REGISTER 4-11: SBTxREGy: SYSTEM BUS TARGET 'x' REGION 'y' REGISTER ('x' = 0-13; 'y' = 0-8)

	71	(X 0 .0,	, ,					
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04:04	R/W0	R/W-0	R/W0	R/W-0	R/W0	R/W-0	R/W0	R/W-0
31:24				BASE	<21:14>			
00.40	R/W-0 R/W-0							
23:16				BASE	E<13:6>			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	U-0
15:8			BAS	E<5:0>			PRI	_
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
7:0			SIZE<4:0>		_	_	_	_

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared

bit 31-10 BASE<21:0>: Region Base Address bits

bit 9 PRI: Region Priority Level bit

> 1 = Level 2 0 = Level 1

bit 8 Unimplemented: Read as '0'

bit 7-3 SIZE<4:0>: Region Size bits

Permissions for a region are only active is the SIZE is non-zero. 11111 = Region size = $2^{(SIZE-1)}$ x 1024 (bytes)

00001 = Region size = $2^{(SIZE - 1)} \times 1024$ (bytes)

00000 = Region is not present

bit 2-0 Unimplemented: Read as '0'

- Note 1: Refer to Table 4-8 for the list of available targets and their descriptions.
 - For some target regions, certain bits in this register are read-only with preset values. See Table 4-8 for more information.

REGISTER 4-12: SBTxRDy: SYSTEM BUS TARGET 'x' REGION 'y' READ PERMISSIONS REGISTER ('x' = 0-13; 'y' = 0-8)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4			Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	_	_	_	_	_
22.46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	_	_		_		
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8		_	-	-	_	1	_	-
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-1	R/W-1	R/W-1
7:0	_	_	_	_	GROUP3	GROUP2	GROUP1	GROUP0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared

bit 31-4 Unimplemented: Read as '0'

bit 3 **Group3:** Group3 Read Permissions bits

1 = Privilege Group 3 has read permission

0 = Privilege Group 3 does not have read permission

bit 2 Group2: Group2 Read Permissions bits

1 = Privilege Group 2 has read permission

0 = Privilege Group 2 does not have read permission

bit 1 Group1: Group1 Read Permissions bits

1 = Privilege Group 1 has read permission

0 = Privilege Group 1 does not have read permission

bit 0 **Group0:** Group0 Read Permissions bits

1 = Privilege Group 0 has read permission

0 = Privilege Group 0 does not have read permission

Note 1: Refer to Table 4-8 for the list of available targets and their descriptions.

2: For some target regions, certain bits in this register are read-only with preset values. See Table 4-8 for more information.

REGISTER 4-13: SBTxWRy: SYSTEM BUS TARGET 'x' REGION 'y' WRITE PERMISSIONS REGISTER ('x' = 0-13; 'y' = 0-8)

			21 0 10,	,,				
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0 U-0							
31:24	_	_	_	_	_	_	_	_
23:16	U-0 U-0							
23.10	_	_	_	_	_	_	_	_
45.0	U-0 U-0							
15:8	_	_	_	_	_	_	_	_
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-1	R/W-1	R/W-1
7:0	_	_	_	_	GROUP3	GROUP2	GROUP1	GROUP0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared

bit 31-4 Unimplemented: Read as '0'

bit 3 **Group3:** Group 3 Write Permissions bits

1 = Privilege Group 3 has write permission

0 = Privilege Group 3 does not have write permission

bit 2 **Group2:** Group 2 Write Permissions bits

1 = Privilege Group 2 has write permission

0 = Privilege Group 2 does not have write permission

bit 1 **Group1:** Group 1 Write Permissions bits

1 = Privilege Group 1 has write permission

0 = Privilege Group 1 does not have write permission

bit 0 Group0: Group 0 Write Permissions bits

1 = Privilege Group 0 has write permission

0 = Privilege Group 0 does not have write permission

Note 1: Refer to Table 4-8 for the list of available targets and their descriptions.

2: For some target regions, certain bits in this register are read-only with preset values. See Table 4-8 for more information.

	•	• •		
NOTES:				

5.0 FLASH PROGRAM MEMORY

Note:

This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 52. "Flash **Program Memory with Support for Live** (DS60001193), Update" which available from the Documentation > section of Reference Manual the Microchip PIC32 site web (www.microchip.com/pic32).

PIC32MZ DA devices contain an internal Flash program memory for executing user code, which includes the following features:

- · Two Flash banks for live update support
- · Dual boot support
- · Write protection for program and Boot Flash
- · ECC support

There are three methods by which the user can program this memory:

- Run-Time Self-Programming (RTSP)
- EJTAG Programming
- In-Circuit Serial Programming™ (ICSP™)

RTSP is performed by software executing from either Flash or RAM memory. Information about RTSP techniques is available in **Section 52.** "Flash **Program Memory with Support for Live Update**" (DS60001193) in the "PIC32 Family Reference Manual".

EJTAG is performed using the EJTAG port of the device and an EJTAG capable programmer.

ICSP is performed using a serial data connection to the device and allows much faster programming times than RTSP.

The EJTAG and ICSP methods are described in the "PIC32 Flash Programming Specification" (DS60001145), which is available for download from the Microchip website.

Note: In PIC32MZ DA devices, the Flash page size is 16 KB (4K IW) and the row size is 2 KB (512 IW).

5.1 Flash Control Registers
TABLE 5-1: FLASH CONTROLLER REGISTER MAP

860	Virtual Addr (#_0878)	000	0000	0610 N	620 NV	0630 NV	0640 NV	0650 NV	^N 0990	N 0290	0890 NV		0090		SAO NIVI), I
	Register 9msM	(1)140004	INVINICOINC	NVMKEY	0620 NVMADDR ⁽¹⁾	NVMDATA0	NVMDATA1	NVMDATA2	NVMDATA3	NVMSRC ADDR	NVMPWP ⁽¹⁾		NIVATOVAD(1)	LANGINI	31:16 31:16	1
ŧ	Bit Range	31:16	15:0	31:16		31:16	31:16	31:16	31:16	31:16	31:16	15:0	31:16	15:0	31:16	15:0
	31/15	1	WR								PWPULOCK	i	1	LBWPULOCK		1
	30/14	I	WREN								1		I	1	I	1
	29/13	I	WRERR								1	•	I	1	I	1
	28/12	I	LVDERR								1		-	LBWP4	1	_
	27/11	Ι	I								1	-	I	LBWP3	1	1
	26/10	I	I								1	•	I	LBWP2	1	I
	25/9	I	1							Ź	1		I	LBWP1	_	1
Bits	24/8	I	I	NVMKEY<31:0>	NVMADDR<31:0>	NVMDATA0<31:0>	NVMDATA1<31:0>	NVMDATA2<31:0>	NVMDATA3<31:0>	VMSRCAE	1	PWP<15:0>	1	LBWP0	I	1
ţ	23/7		PFSWAP	(<31:0>	R<31:0>	\0<31:0>	\1<31:0>	\2<31:0>	\3<31:0>	NVMSRCADDR<31:0>		15:0>	1	UBWPULOCK	-	SWAPLOCK<1:0>
	22/6	ı	BFSWAP											1	I	CK<1:0>
	21/5	I	I										I	1	I	-
	20/4	I	I								PWP<23:16>		1	UBWP4	_	1
	19/3	I									<9	•	1	UBWP3	1	1
	18/2	I	NVMOP<3:0>									•	1	UBWP2	1	ı
	17/1	1	<3:0>										I	UBWP1	1	1
	16/0	I					l	•					I	UBWP0	1	I
S	steseЯ IIA	000	000	000	000	000	000	000	000	000	800	000	000	9FD	x 00	000

This register has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information. x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

REGISTER 5-1: NVMCON: PROGRAMMING CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	-	_	_	_		_	_
00:40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	_	_	_	_	_	_
45.0	R/W-0, HC	R/W-0	R-0, HS, HC	R-0, HS, HC	U-0	U-0	U-0	U-0
15:8	WR ⁽¹⁾	WREN ⁽¹⁾	WRERR ⁽¹⁾	LVDERR ⁽¹⁾	_	_	_	_
7.0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	PFSWAP ⁽³⁾	BFSWAP ^(3,4)	_	_		NVMOP	U-0 U-0 U-0 U-0 R/W-0	·

Legend:HS = Hardware SetHC = Cleared by HardwareR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 **WR:** Write Control bit⁽¹⁾

This bit cannot be cleared and can be set only when WREN = 1 and the unlock sequence has been performed.

- 1 = Initiate a Flash operation
- 0 = Flash operation is complete or inactive
- bit 14 WREN: Write Enable bit⁽¹⁾
 - 1 = Enable writes to the WR bit and the SWAP bit and disables writes to the NVMOP<3:0> bits
 - 0 = Disable writes to WR bit and the SWAP bit and enables writes to the NVMOP<3:0> bits
- bit 13 WRERR: Write Error bit⁽¹⁾

This bit can be cleared only by setting the NVMOP<3:0> bits = 0000 and initiating a Flash operation.

- 1 = Program or erase sequence did not complete successfully
- 0 = Program or erase sequence completed normally
- bit 12 LVDERR: Low-Voltage Detect Error bit⁽¹⁾

This bit can be cleared only by setting the NVMOP<3:0> bits = 0000 and initiating a Flash operation.

- 1 = Low-voltage detected (possible data corruption, if WRERR is set)
- 0 = Voltage level is acceptable for programming
- bit 11-8 Unimplemented: Read as '0'
- bit 7 **PFSWAP:** Program Flash Bank Swap Control bit⁽³⁾
 - 1 = Program Flash Bank 2 is mapped to the lower mapped region and program Flash Bank 1 is mapped to the upper mapped region
 - 0 = Program Flash Bank 1 is mapped to the lower mapped region and program Flash Bank 2 is mapped to the upper mapped region
- Note 1: These bits are only reset by a Power-on Reset (POR) and are not affected by other reset sources.
 - 2: This operation results in a "no operation" (NOP) when the Dynamic Flash ECC Configuration bits = 00 (FECCCON<1:0> (DVCFG0<9:8>)), which enables ECC at all times. For all other FECCCON<1:0> bit settings, this command will execute, but will not write the ECC bits for the word and can cause DED errors if dynamic Flash ECC is enabled (FECCCON<1:0> = 01). Refer to Section 52. "Flash Program Memory with Support for Live Update" (DS60001193) for information regarding ECC and Flash programming.
 - **3:** This bit can only be modified when the WREN bit = 0, the NVMKEY unlock sequence is satisfied, and the SWAPLOCK<1:0> bits (NVMCON2<7:6>) are cleared to '0'.
 - **4:** The BFSWAP value is determined by the values the user programmed Sequence Numbers in each boot panel.

REGISTER 5-1: NVMCON: PROGRAMMING CONTROL REGISTER (CONTINUED)

- bit 6 **BFSWAP:** Boot Flash Bank Swap Control bit^(3,4)
 - 1 = Boot Flash Bank 2 is mapped to the lower boot region and Boot Flash Bank 1 is mapped to the upper mapped region
 - 0 = Boot Flash Bank 1 is mapped to the lower boot region and Boot Flash Bank 2 is mapped to the upper mapped region
- bit 5-4 Unimplemented: Read as '0'
- bit 3-0 **NVMOP<3:0>:** NVM Operation bits

These bits are only writable when WREN = 0.

1111 = Reserved

•

1000 = Reserved

- 0111 = Program erase operation: erase all of program Flash memory (all pages must be unprotected, PWP<23:0> = 0x000000)
- 0110 = Upper program Flash memory erase operation: erases only the upper mapped region of program Flash (all pages in that region must be unprotected)
- 0101 = Lower program Flash memory erase operation: erases only the lower mapped region of program Flash (all pages in that region must be unprotected)
- 0100 = Page erase operation: erases page selected by NVMADDR, if it is not write-protected
- 0011 = Row program operation: programs row selected by NVMADDR, if it is not write-protected
- 0010 = Quad Word (128-bit) program operation: programs the 128-bit Flash word selected by NVMADDR, if it is not write-protected
- 0001 = Word program operation: programs word selected by NVMADDR, if it is not write-protected⁽²⁾
- 0000 = No operation
- Note 1: These bits are only reset by a Power-on Reset (POR) and are not affected by other reset sources.
 - 2: This operation results in a "no operation" (NOP) when the Dynamic Flash ECC Configuration bits = 00 (FECCCON<1:0> (DVCFG0<9:8>)), which enables ECC at all times. For all other FECCCON<1:0> bit settings, this command will execute, but will not write the ECC bits for the word and can cause DED errors if dynamic Flash ECC is enabled (FECCCON<1:0> = 01). Refer to Section 52. "Flash Program Memory with Support for Live Update" (DS60001193) for information regarding ECC and Flash programming.
 - 3: This bit can only be modified when the WREN bit = 0, the NVMKEY unlock sequence is satisfied, and the SWAPLOCK<1:0> bits (NVMCON2<7:6>) are cleared to '0'.
 - **4:** The BFSWAP value is determined by the values the user programmed Sequence Numbers in each boot panel.

REGISTER 5-2: NVMKEY: PROGRAMMING UNLOCK REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	W-0 W-0									
31.24		NVMKEY<31:24>								
22:46	W-0 W-0									
23:16		•		NVMKE	Y<23:16>					
45.0	W-0 W-0									
15:8		NVMKEY<15:8>								
7:0	W-0 W-0									
7:0				NVMK	EY<7:0>					

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 NVMKEY<31:0>: Unlock Register bits

These bits are write-only, and read as '0' on any read

Note: This register is used as part of the unlock sequence to prevent inadvertent writes to the PFM.

REGISTER 5-3: NVMADDR: FLASH ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24				NVMADD	R<31:24> ⁽¹⁾						
22:46	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16				NVMADD	R<23:16> ⁽¹⁾						
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8		NVMADDR<15:8> ⁽¹⁾									
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0	NVMADDR<7:0> ⁽¹⁾										

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 NVMADDR<31:0>: Flash Address bits⁽¹⁾

NVMOP<3:0> Selection	Flash Address Bits (NVMADDR<31:0>)
Page Erase	Address identifies the page to erase (NVMADDR<13:0> are ignored).
Row Program	Address identifies the row to program (NVMADDR<11:0> are ignored).
Word Program	Address identifies the word to program (NVMADDR<1:0> are ignored).
Quad Word Program	Address identifies the quad word (128-bit) to program (NVMADDR<3:0> bits are ignored).

Note 1: For all other NVMOP<3:0> bit settings, the Flash address is ignored.

Note: The bits in this register are only reset by a Power-on Reset (POR) and are not affected by other reset sources.

REGISTER 5-4: NVMDATAX: FLASH DATA REGISTER (x = 0-3)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R/W-0 R/W-0									
31:24	NVMDATA<31:24>									
22.40	R/W-0 R/W-0									
23:16	NVMDATA<23:16>									
45.0	R/W-0 R/W-0									
15:8	NVMDATA<15:8>									
7.0	R/W-0 R/W-0									
7:0				NVMD	ATA<7:0>	_				

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 NVMDATA<31:0>: Flash Data bits

Word Program: Writes NVMDATA0 to the target Flash address defined in NVMADDR Quad Word Program: Writes NVMDATA3:NVMDATA2:NVMDATA1:NVMDATA0 to the target Flash address defined in NVMADDR. NVMDATA0 contains the Least Significant Instruction Word.

Note: The bits in this register are only reset by a Power-on Reset (POR) and are not affected by other reset sources.

REGISTER 5-5: NVMSRCADDR: SOURCE DATA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R/W-0 R/W-0										
31:24		NVMSRCADDR<31:24>									
22.46	R/W-0 R/W-0										
23:16	NVMSRCADDR<23:16>										
45.0	R/W-0 R/W-0										
15:8		NVMSRCADDR<15:8>									
7:0	R/W-0 R/W-0										
7:0				NVMSRC	ADDR<7:0>						

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 NVMSRCADDR<31:0>: Source Data Address bits

The system physical address of the data to be programmed into the Flash when the NVMOP<3:0> bits (NVMCON<3:0>) are set to perform row programming.

Note: The bits in this register are only reset by a Power-on Reset (POR) and are not affected by other reset sources.

REGISTER 5-6: NVMPWP: PROGRAM FLASH WRITE-PROTECT REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R/W-1	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	PWPULOCK	_	_	_	_	_	_	_			
22.46	R/W-0 R/W-0										
23:16	PWP<23:16>										
45.0	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0			
15:8	PWP<15:8>										
7.0	R-0 R-0										
7:0				PWP<	7:0>						

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31 **PWPULOCK:** Program Flash Memory Page Write-protect Unlock bit

1 = Register is not locked and can be modified

0 = Register is locked and cannot be modified

This bit is only clearable and cannot be set except by any reset.

bit 30-24 Unimplemented: Read as '0'

bit 23-0 PWP<23:0>: Flash Program Write-protect (Page) Address bits

Physical memory below address 0x1Dxxxxxx is write protected, where 'xxxxxx' is specified by PWP<23:0>. When PWP<23:0> has a value of '0', write protection is disabled for the entire program Flash. If the specified address falls within the page, the entire page and all pages below the current page will be protected.

Note: The bits in this register are only writable when the NVMKEY unlock sequence is followed.

REGISTER 5-7: NVMBWP: FLASH BOOT (PAGE) WRITE-PROTECT REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	-	_	_	_	_
22.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	_	_	_		_	_
45.0	R/W-1	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
15:8	LBWPULOCK	_	_	LBWP4 ⁽¹⁾	LBWP3 ⁽¹⁾	LBWP2 ⁽¹⁾	LBWP1 ⁽¹⁾	LBWP0 ⁽¹⁾
7.0	R/W-1	r-1	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
7:0	UBWPULOCK	_	_	UBWP4 ⁽¹⁾	UBWP3 ⁽¹⁾	UBWP2 ⁽¹⁾	UBWP1 ⁽¹⁾	UBWP0 ⁽¹⁾

Legend: r = Reserved

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 **LBWPULOCK:** Lower Boot Alias Write-protect Unlock bit

1 = LBWPx bits are not locked and can be modified

0 = LBWPx bits are locked and cannot be modified

This bit is only clearable and cannot be set except by any reset.

bit 14-13 Unimplemented: Read as '0'

bit 12 **LBWP4:** Lower Boot Alias Page 4 Write-protect bit⁽¹⁾

1 = Write protection for physical address 0x01FC10000 through 0x1FC13FFF enabled

0 = Write protection for physical address 0x01FC10000 through 0x1FC13FFF disabled

bit 11 LBWP3: Lower Boot Alias Page 3 Write-protect bit⁽¹⁾

1 = Write protection for physical address 0x01FC0C000 through 0x1FC0FFFF enabled

0 = Write protection for physical address 0x01FC0C000 through 0x1FC0FFFF disabled

bit 10 **LBWP2**: Lower Boot Alias Page 2 Write-protect bit⁽¹⁾

1 = Write protection for physical address 0x01FC08000 through 0x1FC0BFFF enabled

0 = Write protection for physical address 0x01FC08000 through 0x1FC0BFFF disabled

bit 9 **LBWP1:** Lower Boot Alias Page 1 Write-protect bit⁽¹⁾

1 = Write protection for physical address 0x01FC04000 through 0x1FC07FFF enabled

0 = Write protection for physical address 0x01FC04000 through 0x1FC07FFF disabled

bit 8 **LBWP0:** Lower Boot Alias Page 0 Write-protect bit⁽¹⁾

1 = Write protection for physical address 0x01FC00000 through 0x1FC03FFF enabled

0 = Write protection for physical address 0x01FC00000 through 0x1FC03FFF disabled

bit 7 UBWPULOCK: Upper Boot Alias Write-protect Unlock bit

1 = UBWPx bits are not locked and can be modified

0 = UBWPx bits are locked and cannot be modified

This bit is only user-clearable and cannot be set except by any reset.

bit 6 Reserved: This bit is reserved for use by development tools

bit 5 **Unimplemented:** Read as '0'

Note 1: These bits are only available when the NVMKEY unlock sequence is performed and the associated Lock bit (LBWPULOCK or UBWPULOCK) is set.

Note: The bits in this register are only writable when the NVMKEY unlock sequence is followed.

REGISTER 5-7: NVMBWP: FLASH BOOT (PAGE) WRITE-PROTECT REGISTER

- bit 4 **UBWP4:** Upper Boot Alias Page 4 Write-protect bit⁽¹⁾
 - 1 = Write protection for physical address 0x01FC30000 through 0x1FC33FFF enabled
 - 0 = Write protection for physical address 0x01FC30000 through 0x1FC33FFF disabled
- bit 3 **UBWP3:** Upper Boot Alias Page 3 Write-protect bit⁽¹⁾
 - 1 = Write protection for physical address 0x01FC2C000 through 0x1FC2FFFF enabled
 - 0 = Write protection for physical address 0x01FC2C000 through 0x1FC2FFFF disabled
- bit 2 **UBWP2:** Upper Boot Alias Page 2 Write-protect bit⁽¹⁾
 - 1 = Write protection for physical address 0x01FC28000 through 0x1FC2BFFF enabled
 - 0 = Write protection for physical address 0x01FC28000 through 0x1FC2BFFF disabled
- bit 1 **UBWP1:** Upper Boot Alias Page 1 Write-protect bit⁽¹⁾
 - 1 = Write protection for physical address 0x01FC24000 through 0x1FC27FFF enabled
 - 0 = Write protection for physical address 0x01FC24000 through 0x1FC27FFF disabled
- bit 0 **UBWP0:** Upper Boot Alias Page 0 Write-protect bit⁽¹⁾
 - 1 = Write protection for physical address 0x01FC20000 through 0x1FC23FFF enabled
 - 0 = Write protection for physical address 0x01FC20000 through 0x1FC23FFF disabled
- **Note 1:** These bits are only available when the NVMKEY unlock sequence is performed and the associated Lock bit (LBWPULOCK or UBWPULOCK) is set.

Note: The bits in this register are only writable when the NVMKEY unlock sequence is followed.

REGISTER 5-8: NVMCON2: PROGRAMMING CONTROL REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		_	-	_	_	-	_	_
22.46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		_	_	_	_		_	_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
13.6		_	_	_	_	_	_	_
7.0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0	SWAPLOCK	(<1:0> ⁽¹⁾	_	_	_	_	_	_

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-6 **SWAPLOCK<1:0>:** Program Flash Memory Page Write-protect Unlock bits⁽¹⁾

11 = PFSWAP and BFSWP in the NVMCON register are Not Writable and SWAPLOCK<1:0> is Not Writable

10 = PFSWAP and BFSWP in the NVMCON register are Not Writable and SWAPLOCK<1:0> is Writable

01 = PFSWAP and BFSWP in the NVMCON register are Not Writable and SWAPLOCK<1:0> is Writable

00 = PFSWAP and BFSWP in the NVMCON register are Writable and SWAPLOCK<1:0> is Writable

bit 5-0 Unimplemented: Read as '0'

Note 1: These bits can only be modified when the NVMKEY unlock sequence is satisfied and the SWAPLOCK<1:0> bits ≠ 11. If the SWAPLOCK<1:0> bits == 11, only a Reset can clear these bits.

6.0 RESETS

FIGURE 6-1:

Note: This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 7. "Resets" (DS60001118), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

SYSTEM RESET BLOCK DIAGRAM

The Reset module combines all Reset sources and controls the device Master Reset signal, SYSRST. The device Reset sources are as follows:

- Power-on Reset (POR)
- · Brown-out Reset (BOR)
- VBAT Power-on Reset (VBPOR)
- High Voltage Detect Reset (HVD1V8R) on VDDR1V8
- Master Clear Reset pin (MCLR)
- · Software Reset (SWR)
- · Watchdog Timer Reset (WDTR)
- Configuration Mismatch Reset (CMR)
- Deadman Timer Reset (DMTR)

All types of device Reset will set a corresponding Status bit in the RCON register (see Register 6-1) to indicate the type of reset.

A simplified block diagram of the Reset module is illustrated in Figure 6-1.

MCLR MCLR Glitch Filter Sleep or Idle DMTR/WDTR NMI WDT Time-out Time-out DMT Time-out Voltage Regulator Enabled POR⁽¹⁾ Power-up Timer Vddio Vddio Rise SYSRST Detect POR BOR⁽¹⁾ Brown-out Reset Configuration CMR Mismatch Reset **SWR** Software Reset HVD1V8R⁽¹⁾ High-Voltage Detect VDDR1V8 VBPOR⁽¹⁾ **VRAT** Monitor **VRAT**

© 2015-2017 Microchip Technology Inc.

Refer to Table 44-4 for various RESET specifications.

Reset Control Registers

		2	3	0	0	0	0	0	0	
	stəsəЯ IIA	C802	0003	0000	0000	0000	0000	0000	0000	ore
	16/0	VBAT	POR	_	SWRST	WDTS		-	VREGS	ers" for mo
	17/1	VBPOR	BOR	-	-	CF		_	Ι	NV Regist
	18/2	1	IDLE	١	١	HLVD		I	1	SET, and I
	19/3	Ι	SLEEP	_	_	GNMI		_	_	2.2 "CLR,
	20/4	Ι	WDTO	_	_	_		_	_	Section 1
	21/5	Ι	DMTO	_	_	_		-	_	tively. See
	22/6	1	SWR	I	I	I		I	ı	xC, respec
	23/7	I	EXTR	_	_	IWNMS	2:0>	_	_	0x8 and 0
Bits	24/8	I	_	_	_	OLOW	NMICNT<15:0>	_	_	decimal. sets of 0x4
	25/9	I	CMR	-	-	DMTO		-	-	wn in hexa es, plus off
	26/10	BCFGFAIL	dTSdQ	1	1	Ι		Ι	I	as '0'. Reset values are shown in hexadecimal. sters at their virtual addresses, plus offsets of 0)
	27/11	BCFGERR BCFGFAIL	_	_	_	_		-	-	'0'. Reset va ·s at their vir
	28/12	1	Ι	Ι	Ι	Ι		I	ı	d, read as NV registe
	29/13	HVD1V8R	ı	ı	ı	ı		I	ı	x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. All registers have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.
	30/14	1	_	_	_	_		_	-	eset; — = ı ponding CL
	31/15	I	I	I	Ι	I		I	I	value on R ave corres _e
	Bit Range	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	known sters h ation.
	Register Name ⁽¹⁾	400		TOG/MOGT	2000	NOOIMING		NOCOM		
sse	Virtual Addre (#_0878)	2,0	7	1250	067	1260	1200	1270	Ņ	Legend: Note 1:

RESETS REGISTER MAP TABLE 6-1:

DS60001361E-page 116

REGISTER 6-1: RCON: RESET CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	R/W-0, HS	U-0	RW-0, HC	R/W-0, HC	U-0	U-0
31:24	_	_	HVD1V8R	_	BCFGERR	BCFGFAIL	_	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	R/W-1, HS	R/W-1, HS
23.10	_	_	_	_	_	_	VBPOR	VBAT
15:8	U-0	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	U-0
15.6	_	_	_	_	_	DPSLP ⁽¹⁾	CMR	_
7:0	R/W-0, HS	R/W-1, HS	R/W-1, HS					
7:0	EXTR	SWR	DMTO	WDTO	SLEEP	IDLE	BOR ⁽¹⁾	POR ⁽¹⁾

Legend:HS = Hardware SetHC = Hardware ClearedR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-30 Unimplemented: Read as '0'

bit 29 HVD1V8R: VDDR1V8 (DDR2) High Voltage Detect Flag bit

1 = A high voltage condition on the VDDR1V8 voltage has occurred 0 = A high voltage condition on the VDDR1V8 voltage has not occurred

bit **Unimplemented:** Read as '0'

bit 27 BCFGERR: Primary Configuration Registers Error Flag bit

1 = An error occurred during a read of the primary configuration registers0 = No error occurred during a read of the primary configuration registers

bit 26 BCFGFAIL: Primary/Secondary Configuration Registers Error Flag bit

1 = An error occurred during a read of the primary and alternate configuration registers 0 = No error occurred during a read of the primary and alternate configuration registers

bit 25-18 Unimplemented: Read as '0'

bit 17 VBPOR: VBPOR Mode Flag bit

1 = A VBAT domain POR has occurred

0 = A VBAT domain POR has not occurred

bit 16 **VBAT:** VBAT Mode Flag bit

1 = A POR exit from VBAT has occurred (a true POR must be established with the valid VBAT voltage on the VBAT pin)

0 = A POR exit from VBAT has not occurred

bit 15-11 Unimplemented: Read as '0'

bit 10 **DPSLP:** Deep Sleep Mode Flag bit⁽¹⁾

1 = Deep Sleep mode has occurred

0 = Deep Sleep mode has not occurred

bit 9 CMR: Configuration Mismatch Reset Flag bit

1 = A Configuration Mismatch Reset has occurred

0 = A Configuration Mismatch Reset has not occurred

bit 8 Unimplemented: Read as '0'

bit 7 **EXTR:** External Reset (MCLR) Pin Flag bit

1 = Master Clear (pin) Reset has occurred

0 = Master Clear (pin) Reset has not occurred

bit 6 **SWR:** Software Reset Flag bit

1 = Software Reset was executed

0 = Software Reset was not executed

bit 5 **DMTO:** Deadman Timer Time-out Flag bit

1 = A DMT time-out has occurred

0 = A DMT time-out has not occurred

Note 1: User software must clear this bit to view the next detection.

REGISTER 6-1: RCON: RESET CONTROL REGISTER

bit 4 WDTO: Watchdog Timer Time-out Flag bit 1 = WDT Time-out has occurred 0 = WDT Time-out has not occurred SLEEP: Wake From Sleep Flag bit bit 3 1 = Device was in Sleep mode 0 = Device was not in Sleep mode IDLE: Wake From Idle Flag bit bit 2 1 = Device was in Idle mode 0 = Device was not in Idle mode bit 1 BOR: Brown-out Reset Flag bit(1) 1 = Brown-out Reset has occurred 0 = Brown-out Reset has not occurred bit 0 **POR:** Power-on Reset Flag bit⁽¹⁾ 1 = Power-on Reset has occurred 0 = Power-on Reset has not occurred

Note 1: User software must clear this bit to view the next detection.

REGISTER 6-2: RSWRST: SOFTWARE RESET REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0 U-0							
31.24	_	_	1	_	_			_
23:16	U-0 U-0							
23.10	_	_	-	_	_	_	_	_
15:8	U-0 U-0							
13.6	_	_	_	_	_	_	_	_
7:0	U-0 W-0, HC							
7.0	_	_	_	_	_	_	_	SWRST ^(1,2)

Legend: HC = Hardware Cleared

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-1 Unimplemented: Read as '0'

bit 0 **SWRST:** Software Reset Trigger bit^(1,2)

1 = Enable software Reset event

0 = No effect

Note 1: The system unlock sequence must be performed before the SWRST bit can be written. Refer to the Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.

2: Once this bit is set, any read of the RSWRST register will cause a reset to occur.

REGISTER 6-3: RNMICON: NON-MASKABLE INTERRUPT (NMI) CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
31:24	_	_	_	_	1	-	DMTO	WDTO		
23:16	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
23.10	SWNMI	_	_	_	GNMI	HLVD	CF	WDTS		
15:0	R/W-0 R/W-0									
15:8	NMICNT<15:8>									
7:0	R/W-0 R/W-0									
7.0				NMICI	NT<7:0>					

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-26 Unimplemented: Read as '0'

bit 25 DMTO: Deadman Timer Time-out Flag bit

1 = DMT time-out has occurred and caused a NMI

0 = DMT time-out has not occurred

Setting this bit will cause a DMT NMI event, and NMICNT will begin counting.

bit 24 WDTO: Watchdog Timer Time-Out Flag bit

1 = WDT time-out has occurred and caused a NMI

0 = WDT time-out has not occurred

Setting this bit will cause a WDT NMI event, and MNICNT will begin counting.

bit 23 SWNMI: Software NMI Trigger.

1 = An NMI will be generated

0 = An NMI will not be generated

bit 22-20 Unimplemented: Read as '0'

bit 19 **GNMI:** General NMI bit

1 = A general NMI event has been detected or a user-initiated NMI event has occurred

0 = A general NMI event has not been detected

Setting GNMI to a '1' causes a user-initiated NMI event. This bit is also set by writing 0x4E to the NMIKEY<7:0> (INTCON<31:24>) bits.

bit 18 **HLVD:** High/Low-Voltage Detect bit

1 = HLVD has detected a low-voltage condition and caused an NMI

0 = HLVD has not detected a low-voltage condition

1 = FSCM has detected clock failure and caused an NMI

0 = FSCM has not detected clock failure

Setting this bit will cause a a CF NMI event, but will not cause a clock switch to the BFRC.

bit 16 WDTS: Watchdog Timer Time-out in Sleep Mode Flag bit

1 = WDT time-out has occurred during Sleep mode and caused a wake-up from sleep

0 = WDT time-out has not occurred during Sleep mode

Setting this bit will cause a WDT NMI.

Note 1: If a Watchdog Timer NMI event (when not in Sleep mode) or a Deadman Timer NMI event is cleared before this counter reaches '0', no device Reset is asserted. This NMI reset counter is only applicable to these two specific NMI events.

Note: The system unlock sequence must be performed before the SWRST bit can be written. Refer to **Section 42.** "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.

REGISTER 6-3: RNMICON: NON-MASKABLE INTERRUPT (NMI) CONTROL REGISTER

bit 15-0 NMICNT<15:0>: NMI Reset Counter Value bits

These bits specify the reload value used by the NMI reset counter.

1111111111111111-000000000000000 = Number of SYSCLK cycles before a device Reset occurs⁽¹⁾ 00000000000000 = No delay between NMI assertion and device Reset event

Note 1: If a Watchdog Timer NMI event (when not in Sleep mode) or a Deadman Timer NMI event is cleared before this counter reaches '0', no device Reset is asserted. This NMI reset counter is only applicable to these two specific NMI events.

Note: The system unlock sequence must be performed before the SWRST bit can be written. Refer to **Section** 42. "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.

REGISTER 6-4: PWRCON: POWER CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0 U-0							
31.24	_	_	-	_	_	_	_	_
23:16	U-0 U-0							
23.10	_	_	_	_	_	_	_	_
15:8	U-0 U-0							
13.6	_	_	-	_	_	_	_	_
7:0	U-0 R/W-0							
7:0	_	_	_	_	_	_	_	VREGS

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-1 Unimplemented: Read as '0'

bit 0 **VREGS:** Voltage Regulator Stand-by Enable bit

1 = Voltage regulator will remain active during Sleep

0 = Voltage regulator will go to Stand-by mode during Sleep

7.0 CPU EXCEPTIONS AND INTERRUPT CONTROLLER

Note:

This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Interrupt Controller" (DS60001108) and Section 50. "CPU for Devices with MIPS32® microAptiv™ and M-Class Cores" (DS60001192), which are available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MZ DA devices generate interrupt requests in response to interrupt events from peripheral modules. The Interrupt Controller module exists outside of the CPU and prioritizes the interrupt events before presenting them to the CPU.

The CPU handles interrupt events as part of the exception handling mechanism, which is described in **Section 7.1 "CPU Exceptions"**.

The Interrupt Controller module includes the following features:

- Up to 210 interrupt sources and vectors with dedicated programmable offsets, eliminating the need for redirection
- · Single and multi-vector mode operations
- · Five external interrupts with edge polarity control
- · Interrupt proximity timer
- Seven user-selectable priority levels for each vector
- Four user-selectable sub-priority levels within each priority
- Seven shadow register sets that can be used for any priority level, eliminating software context switch and reducing interrupt latency
- · Software can generate any interrupt

Figure 7-1 shows the block diagram for the Interrupt Controller and CPU exceptions.

FIGURE 7-1: CPU EXCEPTIONS AND INTERRUPT CONTROLLER MODULE BLOCK DIAGRAM

7.1 CPU Exceptions

CPU coprocessor 0 contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety of sources, including boundary cases in data, external events or program errors. Table 7-1 lists the exception types in order of priority.

TABLE 7-1: MIPS32[®] microAptiv™ MICROPROCESSOR CORE EXCEPTION TYPES

)			
Exception Type (In Order of Priority)	Description	Branches to	Status Bits Set	Debug Bits Set	ЕХССОDE	XC32 Function Name
		Highest Priority				
Reset	Assertion MCLR or a Power-on Reset (POR).	0xBFC0_0000	BEV, ERL	I	I	_on_reset
Soft Reset	Assertion of a software Reset.	0xBFC0_0000	BEV, SR, ERL	1	I	_on_reset
DSS	EJTAG debug single step.	0xBFC0_0480	I	DSS	I	I
DINT	EJTAG debug interrupt. Caused by the assertion of the external EJ_DINT input or by setting the EjtagBrk bit in the ECR register.	0xBFC0_0480	I	DINT	I	I
IMN	Assertion of NMI signal.	0xBFC0_0000	BEV, NMI, ERL	I	I	_nmi_handler
Machine Check	TLB write that conflicts with an existing entry.	EBASE+0x180	MCHECK, EXL	I	0x18	_general_exception_handler
Interrupt	Assertion of unmasked hardware or software interrupt signal.	See Table 7-2.	IPL<2:0>	I	00×0	See Table 7-2.
Deferred Watch	Deferred watch (unmasked by K DM=>!(K DM) transition).	EBASE+0x180	WP, EXL	I	0x17	_general_exception_handler
DIB	EJTAG debug hardware instruction break matched.	0xBFC0_0480	I	DIB	I	I
WATCH	A reference to an address that is in one of the Watch registers (fetch).	EBASE+0x180	EXL	I	0×17	_general_exception_handler
AdEL	Fetch address alignment error. Fetch reference to protected address.	EBASE+0x180	EXL	I	0x04	_general_exception_handler
TLBL	Fetch TLB miss or fetch TLB hit to page with $V = 0$.	EBASE if Status.EXL = 0	I	1	0x02	I
		EBASE+0x180 if Status.EXL == 1	1	I	0×02	_general_exception_handler
TLBL Execute- Inhibit	An instruction fetch matched a valid TLB entry that had the XI bit set.	EBASE+0x180	EXL	I	0x14	_general_exception_handler
IBE	Instruction fetch bus error.	EBASE+0x180	EXL	I	90×0	_general_exception_handler

_general_exception_handler general_exception_handler general_exception_handler exception_handler handler general exception handler _general_exception_handler general_exception_handler exception handler XC32 Function Name exception general general general EXCCODE 0x08-0x0C 0x0A or 0x0B 0x0 0×05 0x17 0x02 0x04 0x03 0x07 MIPS32® microAptiv™ MICROPROCESSOR CORE EXCEPTION TYPES (CONTINUED) Debug Bits Set and/or DDBSIMPR **DDBLIMPR**, DIBIMPR, DDBL or DDBS DDBL 1 Status Bits Set EXL K EXL K K EXL Z Z EXL Lowest Priority EBASE+0x180 EBASE+0x180 EBASE+0x180 EBASE+0x180 EBASE+0x180 EBASE+0x180 EBASE+0x180 EBASE+0x180 0xBFC0_0480 EBASE+0x180 0xBFC0_0480 0xBFC0_0480 Branches to Store TLB miss or store TLB hit to page with V = 0. Store address alignment error. User mode store to Load TLB miss or load TLB hit to page with V = 0. EJTAG data hardware breakpoint matched in load was not allowed to access the required resources (Coprocessor Unusable) or was illegal (Reserved instruction). If both exceptions occur on the same instruction, the Coprocessor Unusable Exception An instruction-based exception occurred: Integer An instruction could not be completed because i Execution of a trap (when trap condition is true) overflow, trap, system call, breakpoint, floating Load address alignment error. User mode load A reference to an address that is in one of the EJTAG Data Address Break (address only) or EJTAG data value break on store (address + point, or DSP ASE state disabled exception. takes priority over the Reserved Instruction **Description** reference to kernel address. EJTAG complex breakpoint. Load or store bus error. Watch registers (data). kernel address. data compare. **Exception Type** (In Order of Priority) DDBL/DDBS Validity Exceptions Instruction Exception Execute WATCH AdES TLBS AdEL TLBL DDBL CBrk DBE

TABLE 7-1:

2 Interrupts

The PIC32MZ DA family uses variable offsets for vector spacing. This allows the interrupt vector spacing to be configured according to application needs. A unique interrupt vector offset can be set for each vector using its associated OFFx register.

For details on the Variable Offset feature, refer to **8.5.2 "Variable Offset"** in **Section 8. "Interrupt Controller"** (DS60001108) of the "PIC32 Family Reference Manual".

Table 7-2 provides the Interrupt IRQ, vector and bit location information.

TABLE 7-2: INTERRUPT IRQ, VECTOR AND BIT LOCATION

(1)	XC32 Vector Name	RQ	Voctor #		Interr	Interrupt Bit Location		Persistent
	ACSZ Vector value	#	# 10109	Flag	Enable	Priority	Sub-priority	Interrupt
	Highest	Natura	Highest Natural Order Priority					
Core Timer Interrupt	_CORE_TIMER_VECTOR	0	OFF000<17:1>	IFS0<0>	<0>0>0	IPC0<4:2>	IPC0<1:0>	9V
Core Software Interrupt 0	_CORE_SOFTWARE_0_VECTOR	1	OFF001<17:1>	IFS0<1>	IEC0<1>	IPC0<12:10>	IPC0<9:8>	9V
Core Software Interrupt 1	_CORE_SOFTWARE_1_VECTOR	2	OFF002<17:1>	IFS0<2>	IEC0<2>	IPC0<20:18>	IPC0<17:16>	9
External Interrupt 0	_EXTERNAL_0_VECTOR	က	OFF003<17:1>	IFS0<3>	IEC0<3>	IPC0<28:26>	IPC0<25:24>	9
Timer1	_TIMER_1_VECTOR	4	OFF004<17:1>	IFS0<4>	IEC0<4>	IPC1<4:2>	IPC1<1:0>	9
Input Capture 1 Error	_INPUT_CAPTURE_1_ERROR_VECTOR	2	OFF005<17:1>	IFS0<5>	IEC0<5>	IPC1<12:10>	IPC1<9:8>	Yes
Input Capture 1	_INPUT_CAPTURE_1_VECTOR	9	OFF006<17:1>	(9>0S4I	<9>0)3	IPC1<20:18>	IPC1<17:16>	Yes
Output Compare 1	_OUTPUT_COMPARE_1_VECTOR	7	OFF007<17:1>	<2>0S4I	< />> 0)31	IPC1<28:26>	IPC1<25:24>	No
External Interrupt 1	_EXTERNAL_1_VECTOR	8	OFF008<17:1>	IFS0<8>	<8>0)3	IPC2<4:2>	IPC2<1:0>	No
Timer2	_TIMER_2_VECTOR	6	OFF009<17:1>	1FS0<9>	<6>0)3	IPC2<12:10>	IPC2<9:8>	N _o
Input Capture 2 Error	_INPUT_CAPTURE_2_ERROR_VECTOR	10	OFF010<17:1>	IFS0<10>	IEC0<10>	IPC2<20:18>	IPC2<17:16>	Yes
Input Capture 2	_INPUT_CAPTURE_2_VECTOR	11	OFF011<17:1>	IFS0<11>	IEC0<11>	IPC2<28:26>	IPC2<25:24>	Yes
Output Compare 2	_OUTPUT_COMPARE_2_VECTOR	12	OFF012<17:1>	IFS0<12>	IEC0<12>	IPC3<4:2>	IPC3<1:0>	N _o
External Interrupt 2	_EXTERNAL_2_VECTOR	13	OFF013<17:1>	IFS0<13>	IEC0<13>	IPC3<12:10>	IPC3<9:8>	No
Timer3	_TIMER_3_VECTOR	14	OFF014<17:1>	IFS0<14>	IEC0<14>	IPC3<20:18>	IPC3<17:16>	No
Input Capture 3 Error	_INPUT_CAPTURE_3_ERROR_VECTOR	15	OFF015<17:1>	IFS0<15>	IEC0<15>	IPC3<28:26>	IPC3<25:24>	Yes
Input Capture 3	_INPUT_CAPTURE_3_VECTOR	16	OFF016<17:1>	IFS0<16>	IEC0<16>	IPC4<4:2>	IPC4<1:0>	Yes
Output Compare 3	_OUTPUT_COMPARE_3_VECTOR	17	OFF017<17:1>	IFS0<17>	<21>03	IPC4<12:10>	IPC4<9:8>	No
External Interrupt 3	_EXTERNAL_3_VECTOR	18	OFF018<17:1>	IFS0<18>	IEC0<18>	IPC4<20:18>	IPC4<17:16>	No
Timer4	_TIMER_4_VECTOR	19	OFF019<17:1>	IFS0<19>	IEC0<19>	IPC4<28:26>	IPC4<25:24>	No
Input Capture 4 Error	_INPUT_CAPTURE_4_ERROR_VECTOR	20	OFF020<17:1>	IFS0<20>	IEC0<20>	IPC5<4:2>	IPC5<1:0>	Yes
Input Capture 4	_INPUT_CAPTURE_4_VECTOR	21	OFF021<17:1>	IFS0<21>	IEC0<21>	IPC5<12:10>	IPC5<9:8>	Yes
Output Compare 4	_OUTPUT_COMPARE_4_VECTOR	22	OFF022<17:1>	IFS0<22>	IEC0<22>	IPC5<20:18>	IPC5<17:16>	No

Not all interrupt sources are available on all devices. See the Family Features tables (Table 1 through Table 2) for the list of available peripherals. .. % Note

Upon Reset, the GLCD interrupt (both HSYNC and VSYNC) are persistent. However, through the IRQCON bit (GLCDINT<31>), the type of interrupt can be

_
TINUED
I (CON
OCATION
D BIT L
TOR AN
Q, VEC
ROPT IR
INTERR
TABLE 7-2:

		;	, , , ,					
(1)	XC32 Voctor Namo	RQ	Worter #		Interru	Interrupt Bit Location		Persistent
	ACCE VALUE	#	± 10000	Flag	Enable	Priority	Sub-priority	Interrupt
External Interrupt 4	_EXTERNAL_4_VECTOR	23	OFF023<17:1>	IFS0<23>	IEC0<23>	IPC5<28:26>	IPC5<25:24>	No
Timer5	_TIMER_5_VECTOR	24	OFF024<17:1>	IFS0<24>	IEC0<24>	IPC6<4:2>	IPC6<1:0>	No
Input Capture 5 Error	_INPUT_CAPTURE_5_ERROR_VECTOR	25	OFF025<17:1>	IFS0<25>	IEC0<25>	IPC6<12:10>	-8:6>9OI	Yes
Input Capture 5	_INPUT_CAPTURE_5_VECTOR	26	OFF026<17:1>	IFS0<26>	IEC0<26>	IPC6<20:18>	IPC6<17:16>	Yes
Output Compare 5	_OUTPUT_COMPARE_5_VECTOR	27	OFF027<17:1>	IFS0<27>	IEC0<27>	IPC6<28:26>	IPC6<25:24>	No
Timer6	_TIMER_6_VECTOR	28	OFF028<17:1>	IFS0<28>	IEC0<28>	IPC7<4:2>	IPC7<1:0>	No
Input Capture 6 Error	_INPUT_CAPTURE_6_ERROR_VECTOR	29	OFF029<17:1>	IFS0<29>	IEC0<29>	IPC7<12:10>	-8:6>L	Yes
Input Capture 6	_INPUT_CAPTURE_6_VECTOR	30	OFF030<17:1>	IFS0<30>	IEC0<30>	IPC7<20:18>	IPC7<17:16>	Yes
Output Compare 6	_OUTPUT_COMPARE_6_VECTOR	31	OFF031<17:1>	IFS0<31>	IEC0<31>	IPC7<28:26>	IPC7<25:24>	No
Timer7	_TIMER_7_VECTOR	32	OFF032<17:1>	IFS1<0>	IEC1<0>	IPC8<4:2>	IPC8<1:0>	No
Input Capture 7 Error	_INPUT_CAPTURE_7_ERROR_VECTOR	33	OFF033<17:1>	IFS1<1>	IEC1<1>	IPC8<12:10>	<8:6>8OI	Yes
Input Capture 7	_INPUT_CAPTURE_7_VECTOR	34	OFF034<17:1>	IFS1<2>	IEC1<2>	IPC8<20:18>	IPC8<17:16>	Yes
Output Compare 7	_OUTPUT_COMPARE_7_VECTOR	35	OFF035<17:1>	IFS1<3>	IEC1<3>	IPC8<28:26>	IPC8<25:24>	No
Timer8	_TIMER_8_VECTOR	36	OFF036<17:1>	IFS1<4>	IEC1<4>	IPC9<4:2>	IPC9<1:0>	No
Input Capture 8 Error	_INPUT_CAPTURE_8_ERROR_VECTOR	37	OFF037<17:1>	IFS1<5>	IEC1<5>	IPC9<12:10>	IPC9<9:8>	Yes
Input Capture 8	_INPUT_CAPTURE_8_VECTOR	38	OFF038<17:1>	IFS1<6>	IEC1<6>	IPC9<20:18>	IPC9<17:16>	Yes
Output Compare 8	_OUTPUT_COMPARE_8_VECTOR	39	OFF039<17:1>	IFS1<7>	IEC1<7>	IPC9<28:26>	IPC9<25:24>	No
Timer9	_TIMER_9_VECTOR	40	OFF040<17:1>	IFS1<8>	IEC1<8>	IPC10<4:2>	IPC10<1:0>	No
Input Capture 9 Error	_INPUT_CAPTURE_9_ERROR_VECTOR	41	<1:71>140	<6>1S31	IEC1<9>	IPC10<12:10>	IPC10<9:8>	Yes
Input Capture 9	_INPUT_CAPTURE_9_VECTOR	42	OFF042<17:1>	IFS1<10>	IEC1<10>	IPC10<20:18>	IPC10<17:16>	Yes
Output Compare 9	_OUTPUT_COMPARE_9_VECTOR	43	OFF043<17:1>	IFS1<11>	IEC1<11>	IPC10<28:26>	IPC10<25:24>	No
ADC Global Interrupt	_ADC_VECTOR	44	OFF044<17:1>	IFS1<12>	IEC1<12>	IPC11<4:2>	IPC11<1:0>	Yes
ADC FIFO Interrupt	_ADC_FIFO_VECTOR	45	OFF045<17:1>	IFS1<13>	IEC1<13>	IPC11<12:10>	IPC11<9:8>	Yes
ADC Digital Comparator 1	_ADC_DC1_VECTOR	46	OFF046<17:1>	IFS1<14>	IEC1<14>	IPC11<20:18>	IPC11<17:16>	Yes
ADC Digital Comparator 2	_ADC_DC2_VECTOR	47	OFF047<17:1>	IFS1<15>	IEC1<15>	IPC11<28:26>	IPC11<25:24>	Yes
ADC Digital Comparator 3	_ADC_DC3_VECTOR	48	OFF048<17:1>	IFS1<16>	IEC1<16>	IPC12<4:2>	IPC12<1:0>	Yes
ADC Digital Comparator 4	_ADC_DC4_VECTOR	49	OFF049<17:1>	IFS1<17>	IEC1<17>	IPC12<12:10>	IPC12<9:8>	Yes
ADC Digital Comparator 5	_ADC_DC5_VECTOR	50	OFF050<17:1>	IFS1<18>	IEC1<18>	IPC12<20:18>	IPC12<17:16>	Yes
ADC Digital Comparator 6	_ADC_DC6_VECTOR	51	OFF051<17:1>	IFS1<19>	IEC1<19>	IPC12<28:26>	IPC12<25:24>	Yes

Not all interrupt sources are available on all devices. See the Family Features tables (Table 1 through Table 2) for the list of available peripherals. Upon Reset, the GLCD interrupt (both HSYNC and VSYNC) are persistent. However, through the IRQCON bit (GLCDINT<31>), the type of interrupt can be changed to non-persistent. # % Note

_
⋽
Ħ
Ξ
Ö
$\stackrel{\smile}{=}$
6
Ĕ
S
Š
Ξ
BIT
Ω
¥
TOR AN
2
ပ္ပ
, VEC
RQ,
ਔ
_
RRUP
R
Ш
F
_
Ÿ
E7
7
AB
F

	INITIALISM (CONTINUED BIT ECCATION (CONTINUED		ואטנע,	_				
(1)	XC32 Voctor Namo	IRQ	* ************************************		Interru	Interrupt Bit Location		Persistent
	ACSZ VECTO Name	#	# 1009A	Flag	Enable	Priority	Sub-priority	Interrupt
ADC Digital Filter 1	_ADC_DF1_VECTOR	25	OFF052<17:1>	IFS1<20>	IEC1<20>	IPC13<4:2>	IPC13<1:0>	Yes
ADC Digital Filter 2	_ADC_DF2_VECTOR	53	OFF053<17:1>	IFS1<21>	IEC1<21>	IPC13<12:10>	IPC13<9:8>	Yes
ADC Digital Filter 3	_ADC_DF3_VECTOR	45	OFF054<17:1>	IFS1<22>	IEC1<22>	IPC13<20:18>	IPC13<17:16>	Yes
ADC Digital Filter 4	_ADC_DF4_VECTOR	22	OFF055<17:1>	IFS1<23>	IEC1<23>	IPC13<28:26>	IPC13<25:24>	Yes
ADC Digital Filter 5	_ADC_DF5_VECTOR	99	OFF056<17:1>	IFS1<24>	IEC1<24>	IPC14<4:2>	IPC14<1:0>	Yes
ADC Digital Filter 6	_ADC_DF6_VECTOR	22	OFF057<17:1>	IFS1<25>	IEC1<25>	IPC14<12:10>	IPC14<9:8>	Yes
ADC Fault	_ADC_FAULT_VECTOR	28	OFF058<17:1>	IFS1<26>	IEC1<26>	IPC14<20:18>	IPC14<17:16>	Yes
ADC Data 0	_ADC_DATA0_VECTOR	29	OFF059<17:1>	IFS1<27>	IEC1<27>	IPC14<28:26>	IPC14<25:24>	Yes
ADC Data 1	_ADC_DATA1_VECTOR	09	OFF060<17:1>	IFS1<28>	IEC1<28>	IPC15<4:2>	IPC15<1:0>	Yes
ADC Data 2	_ADC_DATA2_VECTOR	61	OFF061<17:1>	IFS1<29>	IEC1<29>	IPC15<12:10>	IPC15<9:8>	Yes
ADC Data 3	_ADC_DATA3_VECTOR	62	OFF062<17:1>	IFS1<30>	IEC1<30>	IPC15<20:18>	IPC15<17:16>	Yes
ADC Data 4	_ADC_DATA4_VECTOR	63	OFF063<17:1>	IFS1<31>	IEC1<31>	IPC15<28:26>	IPC15<25:24>	Yes
ADC Data 5	_ADC_DATA5_VECTOR	49	OFF064<17:1>	IFS2<0>	IEC2<0>	IPC16<4:2>	IPC16<1:0>	Yes
ADC Data 6	_ADC_DATA6_VECTOR	92	OFF065<17:1>	IFS2<1>	IEC2<1>	IPC16<12:10>	IPC16<9:8>	Yes
ADC Data 7	_ADC_DATA7_VECTOR	99	OFF066<17:1>	IFS2<2>	IEC2<2>	IPC16<20:18>	IPC16<17:16>	Yes
ADC Data 8	_ADC_DATA8_VECTOR	29	OFF067<17:1>	IFS2<3>	IEC2<3>	IPC16<28:26>	IPC16<25:24>	Yes
ADC Data 9	_ADC_DATA9_VECTOR	89	OFF068<17:1>	IFS2<4>	IEC2<4>	IPC17<4:2>	IPC17<1:0>	Yes
ADC Data 10	_ADC_DATA10_VECTOR	69	OFF069<17:1>	IFS2<5>	IEC2<5>	IPC17<12:10>	IPC17<9:8>	Yes
ADC Data 11	_ADC_DATA11_VECTOR	20	OFF070<17:1>	IFS2<6>	IEC2<6>	IPC17<20:18>	IPC17<17:16>	Yes
ADC Data 12	_ADC_DATA12_VECTOR	71	OFF071<17:1>	IFS2<7>	<2>Z	IPC17<28:26>	IPC17<25:24>	Yes
ADC Data 13	_ADC_DATA13_VECTOR	72	OFF072<17:1>	IFS2<8>	IEC2<8>	IPC18<4:2>	IPC18<1:0>	Yes
ADC Data 14	_ADC_DATA14_VECTOR	73	OFF073<17:1>	IFS2<9>	IEC2<9>	IPC18<12:10>	IPC18<9:8>	Yes
ADC Data 15	_ADC_DATA15_VECTOR	74	OFF074<17:1>	IFS2<10>	IEC2<10>	IPC18<20:18>	IPC18<17:16>	Yes
ADC Data 16	_ADC_DATA16_VECTOR	75	OFF075<17:1>	IFS2<11>	IEC2<11>	IPC18<28:26>	IPC18<25:24>	Yes
ADC Data 17	_ADC_DATA17_VECTOR	92	OFF076<17:1>	IFS2<12>	IEC2<12>	IPC19<4:2>	IPC19<1:0>	Yes
ADC Data 18	_ADC_DATA18_VECTOR	22	OFF077<17:1>	IFS2<13>	IEC2<13>	IPC19<12:10>	IPC19<9:8>	Yes
ADC Data 19	_ADC_DATA19_VECTOR	28	OFF078<17:1>	IFS2<14>	IEC2<14>	IPC19<20:18>	IPC19<17:16>	Yes
ADC Data 20	_ADC_DATA20_VECTOR	79	OFF079<17:1>	IFS2<15>	IEC2<15>	IPC19<28:26>	IPC19<25:24>	Yes
ADC Data 21	_ADC_DATA21_VECTOR	08	OFF080<17:1>	IFS2<16>	IEC2<16>	IPC20<4:2>	IPC20<1:0>	Yes
Note 1: Not all interrupt sources are available on all	s are available on all devices. See the Family Features tables (Table 1 through Table 2) for the list of available peripherals	Featill	res tables (Table 11	through Tah	le 2) for the	list of available r	perinherals	

Not all interrupt sources are available on all devices. See the Family Features tables (Table 1 through Table 2) for the list of available peripherals. Upon Reset, the GLCD interrupt (both HSYNC and VSYNC) are persistent. However, through the IRQCON bit (GLCDINT<31>), the type of interrupt can be changed to non-persistent. .. % Note

DS60001361E-page 128

_
TINUED)
CON
OCATION
D BIT L(
TOR AN
IRQ, VEC
INTERRUPT
TABLE 7-2:

TABLE 7-2: INTERRUPT II	INTERRUPT IRG, VECTOR AND BIT LOCATION (CONTINUED)	SONT	INUED)					
(1)	Smoll soboly cody	IRQ	# "0,000		Interru	Interrupt Bit Location		Persistent
mterrupt Source	AC32 Vector Name	#	vector #	Flag	Enable	Priority	Sub-priority	Interrupt
ADC Data 22	_ADC_DATA22_VECTOR	81	OFF081<17:1>	IFS2<17>	IEC2<17>	IPC20<12:10>	IPC20<9:8>	Yes
ADC Data 23	_ADC_DATA23_VECTOR	82	OFF082<17:1>	IFS2<18>	IEC2<18>	IPC20<20:18>	IPC20<17:16>	Yes
ADC Data 24	_ADC_DATA24_VECTOR	83	OFF083<17:1>	IFS2<19>	IEC2<19>	IPC20<28:26>	IPC20<25:24>	Yes
ADC Data 25	_ADC_DATA25_VECTOR	84	OFF084<17:1>	IFS2<20>	IEC2<20>	IPC21<4:2>	IPC21<1:0>	Yes
ADC Data 26	_ADC_DATA26_VECTOR	85	OFF085<17:1>	IFS2<21>	IEC2<21>	IPC21<12:10>	IPC21<9:8>	Yes
ADC Data 27	_ADC_DATA27_VECTOR	98	OFF086<17:1>	IFS2<22>	IEC2<22>	IPC21<20:18>	IPC21<17:16>	Yes
ADC Data 28	_ADC_DATA28_VECTOR	28	OFF087<17:1>	IFS2<23>	IEC2<23>	IPC21<28:26>	IPC21<25:24>	Yes
ADC Data 29	_ADC_DATA29_VECTOR	88	OFF088<17:1>	IFS2<24>	IEC2<24>	IPC22<4:2>	IPC22<1:0>	Yes
ADC Data 30	_ADC_DATA30_VECTOR	68	OFF089<17:1>	IFS2<25>	IEC2<25>	IPC22<12:10>	IPC22<9:8>	Yes
ADC Data 31	_ADC_DATA31_VECTOR	06	OFF090<17:1>	IFS2<26>	IEC2<26>	IPC22<20:18>	IPC22<17:16>	Yes
ADC Data 32	_ADC_DATA32_VECTOR	16	OFF091<17:1>	IFS2<27>	IEC2<27>	IPC22<28:26>	IPC22<25:24>	Yes
ADC Data 33	_ADC_DATA33_VECTOR	92	OFF092<17:1>	IFS2<28>	IEC2<28>	IPC23<4:2>	IPC23<1:0>	Yes
ADC Data 34	_ADC_DATA34_VECTOR	63	OFF093<17:1>	IFS2<29>	IEC2<29>	IPC23<12:10>	PC23<9:8>	Yes
ADC Data 35	_ADC_DATA35_VECTOR	6	OFF094<17:1>	IFS2<30>	IEC2<30>	IPC23<20:18>	IPC23<17:16>	Yes
ADC Data 36	_ADC_DATA36_VECTOR	<u> </u>	OFF095<17:1>	IFS2<31>	IEC2<31>	IPC23<28:26>	IPC23<25:24>	Yes
ADC Data 37	_ADC_DATA37_VECTOR	96	OFF096<17:1>	IFS3<0>	IEC3<0>	IPC24<4:2>	IPC24<1:0>	Yes
ADC Data 38	_ADC_DATA38_VECTOR	26	OFF097<17:1>	IFS3<1>	IEC3<1>	IPC24<12:10>	IPC24<9:8>	Yes
ADC Data 39	_ADC_DATA39_VECTOR	86	OFF098<17:1>	IFS3<2>	IEC3<2>	IPC24<20:18>	IPC24<17:16>	Yes
ADC Data 40	_ADC_DATA40_VECTOR	66	OFF099<17:1>	IFS3<3>	IEC3<3>	IPC24<28:26>	IPC24<25:24>	Yes
ADC Data 41	_ADC_DATA41_VECTOR	100	OFF100<17:1>	IFS3<4>	IEC3<4>	IPC25<4:2>	IPC25<1:0>	Yes
ADC Data 42	_ADC_DATA42_VECTOR	101	OFF101<17:1>	IFS3<5>	IEC3<5>	IPC25<12:10>	IPC25<9:8>	Yes
ADC Data 43	_ADC_DATA43_VECTOR	102	OFF102<17:1>	IFS3<6>	IEC3<6>	IPC25<20:18>	IPC25<17:16>	Yes
USB Suspend/Resume Event	_USB1_SR_VECTOR	103	OFF103<17:1>	IFS3<7>	IEC3<7>	IPC25<28:26>	IPC25<25:24>	N
Core Performance Counter Interrupt	_CORE_PERF_COUNT_VECTOR	104	OFF104<17:1>	IFS3<8>	IEC3<8>	IPC26<4:2>	IPC26<1:0>	No
Core Fast Debug Channel Interrupt	_CORE_FAST_DEBUG_CHAN_VECTOR	105	OFF105<17:1>	IFS3<9>	IEC3<9>	IPC26<12:10>	IPC26<9:8>	Yes
System Bus Protection Violation	_SYSTEM_BUS_PROTECTION_VECTOR	106	OFF106<17:1>	IFS3<10>	IEC3<10>	IPC26<20:18>	IPC26<17:16>	Yes
Crypto Engine Event	_CRYPTO_VECTOR	107	OFF107<17:1>	IFS3<11>	IEC3<11>	IPC26<28:26>	IPC26<25:24>	Yes
Reserved	_	108	_	_	1	_	1	1
SPI1 Fault	_SPI1_FAULT_VECTOR	109	OFF109<17:1>	IFS3<13>	IEC3<13>	IPC27<12:10>	IPC27<9:8>	Yes
Made 4. Matellintement comme	Hand I walk and a second selection of the second se	1,100	I Charles Toble 4	1 - H - H - H - H	- 0) for the	- - - - -		

Not all interrupt sources are available on all devices. See the Family Features tables (Table 1 through Table 2) for the list of available peripherals. Upon Reset, the GLCD interrupt (both HSYNC and VSYNC) are persistent. However, through the IRQCON bit (GLCDINT<31>), the type of interrupt can be changed to non-persistent. # 2 Note

INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED) **TABLE 7-2:**

			(22)		-			
Interrint Source(1)	XC32 Vector Name	IRQ	Vector #		Interru	Interrupt Bit Location		Persistent
		#	# 1000	Flag	Enable	Priority	Sub-priority	Interrupt
SPI1 Receive Done	_SPI1_RX_VECTOR	110	OFF110<17:1>	IFS3<14>	IEC3<14>	IPC27<20:18>	IPC27<17:16>	Yes
SPI1 Transfer Done	_SPI1_TX_VECTOR	111	OFF111<17:1>	IFS3<15>	IEC3<15>	IPC27<28:26>	IPC27<25:24>	Yes
UART1 Fault	_UART1_FAULT_VECTOR	112	OFF112<17:1>	IFS3<16>	IEC3<16>	IPC28<4:2>	IPC28<1:0>	Yes
UART1 Receive Done	_UART1_RX_VECTOR	113	OFF113<17:1>	IFS3<17>	IEC3<17>	IPC28<12:10>	IPC28<9:8>	Yes
UART1 Transfer Done	_UART1_TX_VECTOR	114	OFF114<17:1>	IFS3<18>	IEC3<18>	IPC28<20:18>	IPC28<17:16>	Yes
I2C1 Bus Collision Event	_I2C1_BUS_VECTOR	115	OFF115<17:1>	IFS3<19>	IEC3<19>	IPC28<28:26>	IPC28<25:24>	Yes
I2C1 Slave Event	_I2C1_SLAVE_VECTOR	116	OFF116<17:1>	IFS3<20>	IEC3<20>	IPC29<4:2>	IPC29<1:0>	Yes
I2C1 Master Event	_I2C1_MASTER_VECTOR	117	OFF117<17:1>	IFS3<21>	IEC3<21>	IPC29<12:10>	IPC29<9:8>	Yes
PORTA Input Change Interrupt	_CHANGE_NOTICE_A_VECTOR	118	OFF118<17:1>	IFS3<22>	IEC3<22>	IPC29<20:18>	IPC29<17:16>	Yes
PORTB Input Change Interrupt	_CHANGE_NOTICE_B_VECTOR	119	OFF119<17:1>	IFS3<23>	IEC3<23>	IPC29<28:26>	IPC29<25:24>	Yes
PORTC Input Change Interrupt	_CHANGE_NOTICE_C_VECTOR	120	OFF120<17:1>	IFS3<24>	IEC3<24>	IPC30<4:2>	IPC30<1:0>	Yes
PORTD Input Change Interrupt	_CHANGE_NOTICE_D_VECTOR	121	OFF121<17:1>	IFS3<25>	IEC3<5>	IPC30<12:10>	IPC30<9:8>	Yes
PORTE Input Change Interrupt	_CHANGE_NOTICE_E_VECTOR	122	OFF122<17:1>	IFS3<26>	IEC3<26>	IPC30<20:18>	IPC30<17:16>	Yes
PORTF Input Change Interrupt	_CHANGE_NOTICE_F_VECTOR	123	OFF123<17:1>	IFS3<27>	IEC3<57>	IPC30<28:26>	IPC30<25:24>	Yes
PORTG Input Change Interrupt	_CHANGE_NOTICE_G_VECTOR	124	OFF124<17:1>	IFS3<28>	IEC3<58>	IPC31<4:2>	IPC31<1:0>	Yes
PORTH Input Change Interrupt	_CHANGE_NOTICE_H_VECTOR	125	OFF125<17:1>	IFS3<29>	IEC3<58>	IPC31<12:10>	IPC31<9:8>	Yes
PORTJ Input Change Interrupt	_CHANGE_NOTICE_J_VECTOR	126	OFF126<17:1>	IFS3<30>	IEC3<30>	IPC31<20:18>	IPC31<17:16>	Yes
PORTK Input Change Interrupt	_CHANGE_NOTICE_K_VECTOR	127	OFF127<17:1>	IFS3<31>	IEC3<31>	IPC31<28:26>	IPC31<25:24>	Yes
Parallel Master Port	_PMP_VECTOR	128	OFF128<17:1>	IFS4<0>	IEC4<0>	IPC32<4:2>	IPC32<1:0>	Yes
Parallel Master Port Error	_PMP_ERROR_VECTOR	129	OFF129<17:1>	IFS4<1>	IEC4<1>	IPC32<12:10>	IPC32<9:8>	Yes
Comparator 1 Interrupt	_COMPARATOR_1_VECTOR	130	OFF130<17:1>	IFS4<2>	IEC4<2>	IPC32<20:18>	IPC32<17:16>	No
Comparator 2 Interrupt	_COMPARATOR_2_VECTOR	131	OFF131<17:1>	IFS4<3>	IEC4<3>	IPC32<28:26>	IPC32<25:24>	No
USB General Event	_USB1_VECTOR	132	OFF132<17:1>	IFS4<4>	IEC4<4>	IPC33<4:2>	IPC33<1:0>	Yes
USB DMA Event	_USB1_DMA_VECTOR	133	OFF133<17:1>	IFS4<5>	IEC4<2>	IPC33<12:10>	IPC33<9:8>	Yes
DMA Channel 0	_DMA0_VECTOR	134	OFF134<17:1>	IFS4<6>	IEC4<6>	IPC33<20:18>	IPC33<17:16>	No
DMA Channel 1	_DMA1_VECTOR	135	OFF135<17:1>	IFS4<7>	IEC4<7>	IPC33<28:26>	IPC33<25:24>	No
DMA Channel 2	_DMA2_VECTOR	136	OFF136<17:1>	IFS4<8>	IEC4<8>	IPC34<4:2>	IPC34<1:0>	No
DMA Channel 3	_DMA3_VECTOR	137	OFF137<17:1>	IFS4<9>	IEC4<9>	IPC34<12:10>	IPC34<9:8>	No
DMA Channel 4	_DMA4_VECTOR	138	OFF138<17:1>	IFS4<10>	IEC4<10>	IPC34<20:18>	IPC34<17:16>	N
M-4- 4 - M-4-10 - 4-10		L	T - 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	Table	- 11 11 1		-	

Not all interrupt sources are available on all devices. See the Family Features tables (Table 1 through Table 2) for the list of available peripherals. Upon Reset, the GLCD interrupt (both HSYNC and VSYNC) are persistent. However, through the IRQCON bit (GLCDINT<31>), the type of interrupt can be changed to non-persistent. .. % Note

_
INUED
(CONT
CATION
AND BIT LOCA
OR AND
T IRQ, VECTOR A
PT IRQ
INTERRUP'
TABLE 7-2 :

INITIALITY OF THE PRINCE IN	INTERNOLLING, VECTOR AND BIT ECCATION (CONTINGED		INOLD)				•	
(1)	omen repolicedy	IRQ	# ********		Interr	Interrupt Bit Location		Persistent
interrupt Source	AC3Z Vector Name	#	Wector #	Flag	Enable	Priority	Sub-priority	Interrupt
DMA Channel 5	_DMA5_VECTOR	139	OFF139<17:1>	IFS4<11>	IEC4<11>	IPC34<28:26>	IPC34<25:24>	9N
DMA Channel 6	_DMA6_VECTOR	140	OFF140<17:1>	IFS4<12>	IEC4<12>	IPC35<4:2>	IPC35<1:0>	9N
DMA Channel 7	_DMA7_VECTOR	141	OFF141<17:1>	IFS4<13>	IEC4<13>	IPC35<12:10>	IPC35<9:8>	No
SPI2 Fault	_SPI2_FAULT_VECTOR	142	OFF142<17:1>	IFS4<14>	IEC4<14>	IPC35<20:18>	IPC35<17:16>	Yes
SPI2 Receive Done	_SPI2_RX_VECTOR	143	OFF143<17:1>	IFS4<15>	IEC4<15>	IPC35<28:26>	IPC35<25:24>	Yes
SPI2 Transfer Done	_SPI2_TX_VECTOR	144	OFF144<17:1>	IFS4<16>	IEC4<16>	IPC36<4:2>	IPC36<1:0>	Yes
UART2 Fault	_UART2_FAULT_VECTOR	145	OFF145<17:1>	IFS4<17>	IEC4<17>	IPC36<12:10>	IPC36<9:8>	Yes
UART2 Receive Done	_UART2_RX_VECTOR	146	OFF146<17:1>	IFS4<18>	IEC4<18>	IPC36<20:18>	IPC36<17:16>	Yes
UART2 Transfer Done	_UART2_TX_VECTOR	147	OFF147<17:1>	IFS4<19>	IEC4<19>	PC36<28:26>	IPC36<25:24>	Yes
I2C2 Bus Collision Event	_I2C2_BUS_VECTOR	148	OFF148<17:1>	IFS4<20>	IEC4<20>	IPC37<4:2>	IPC37<1:0>	Yes
I2C2 Slave Event	_I2C2_SLAVE_VECTOR	149	OFF149<17:1>	IFS4<21>	IEC4<21>	IPC37<12:10>	IPC37<9:8>	Yes
I2C2 Master Event	_I2C2_MASTER_VECTOR	150	OFF150<17:1>	IFS4<22>	IEC4<22>	IPC37<20:18>	IPC37<17:16>	Yes
Control Area Network 1	_CAN1_VECTOR	151	OFF151<17:1>	IFS4<23>	IEC4<23>	PC37<28:26>	IPC37<25:24>	Yes
Control Area Network 2	_CAN2_VECTOR	152	OFF152<17:1>	IFS4<24>	IEC4<24>	IPC38<4:2>	IPC38<1:0>	Yes
Ethernet Interrupt	_ETHERNET_VECTOR	153	OFF153<17:1>	IFS4<25>	IEC4<25>	IPC38<12:10>	IPC38<9:8>	Yes
SPI3 Fault	_SPI3_FAULT_VECTOR	154	OFF154<17:1>	IFS4<26>	IEC4<26>	IPC38<20:18>	IPC38<17:16>	Yes
SPI3 Receive Done	_SPI3_RX_VECTOR	155	OFF155<17:1>	IFS4<27>	IEC4<27>	IPC38<28:26>	IPC38<25:24>	Yes
SPI3 Transfer Done	_SPI3_TX_VECTOR	156	OFF156<17:1>	IFS4<28>	IEC4<28>	IPC39<4:2>	IPC39<1:0>	Yes
UART3 Fault	_UART3_FAULT_VECTOR	157	OFF157<17:1>	IFS4<29>	IEC4<29>	IPC39<12:10>	IPC39<9:8>	Yes
UART3 Receive Done	_UART3_RX_VECTOR	158	OFF158<17:1>	IFS4<30>	IEC4<30>	IPC39<20:18>	IPC39<17:16>	Yes
UART3 Transfer Done	_UART3_TX_VECTOR	159	OFF159<17:1>	IFS4<31>	IEC4<31>	IPC39<28:26>	IPC39<25:24>	Yes
12C3 Bus Collision Event	_I2C3_BUS_VECTOR	160	OFF160<17:1>	IFS5<0>	<0>503I	IPC40<4:2>	IPC40<1:0>	Yes
I2C3 Slave Event	_I2C3_SLAVE_VECTOR	161	OFF161<17:1>	IFS5<1>	<1>2	IPC40<12:10>	IPC40<9:8>	Yes
I2C3 Master Event	_I2C3_MASTER_VECTOR	162	OFF162<17:1>	IFS5<2>	IEC5<2>	IPC40<20:18>	IPC40<17:16>	Yes
SPI4 Fault	_SPI4_FAULT_VECTOR	163	OFF163<17:1>	IFS5<3>	IEC5<3>	IPC40<28:26>	IPC40<25:24>	Yes
SPI4 Receive Done	_SPI4_RX_VECTOR	164	OFF164<17:1>	IFS5<4>	IEC5<4>	IPC41<4:2>	IPC41<1:0>	Yes
SPI4 Transfer Done	_SPI4_TX_VECTOR	165	OFF165<17:1>	IFS5<5>	IEC5<5>	IPC41<12:10>	IPC41<9:8>	Yes
Real Time Clock	_RTCC_VECTOR	166	OFF166<17:1>	IFS5<6>	IEC5<6>	IPC41<20:18>	IPC41<17:16>	9 N
Flash Control Event	_FLASH_CONTROL_VECTOR	167	OFF167<17:1>	IFS5<7>	IEC2<7>	IPC41<28:26>	IPC41<25:24>	No
Mot of the state o	lima Toda and accircle to an oldering and	L	Total	Tale Tale		[-] - [; - : - : 3 - : 4 - :]	-11	

Not all interrupt sources are available on all devices. See the Family Features tables (Table 1 through Table 2) for the list of available peripherals. Upon Reset, the GLCD interrupt (both HSYNC and VSYNC) are persistent. However, through the IRQCON bit (GLCDINT<31>), the type of interrupt can be changed to non-persistent. # 2 Note

TABLE 7-2: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)

	INTERNOL I INC. VECTOR AND BIT ECCATION (CONTINOED)		(220				•	
(1)	XC32 Voctor Namo	IRQ	Worter #		Interru	Interrupt Bit Location		Persistent
	ACSZ VECTO NAME	#	Vector #	Flag	Enable	Priority	Sub-priority	Interrupt
Prefetch Module SEC Event	_PREFETCH_VECTOR	168	OFF168<17:1>	IFS5<8>	IEC5<8>	IPC42<4:2>	IPC42<1:0>	Yes
SQI1 Event	_SQI1_VECTOR	169	OFF169<17:1>	IFS5<9>	IEC5<9>	IPC42<12:10>	IPC42<9:8>	Yes
UART4 Fault	_UART4_FAULT_VECTOR	170	OFF170<17:1>	IFS5<10>	IEC5<10>	IPC42<20:18>	IPC42<17:16>	Yes
UART4 Receive Done	_UART4_RX_VECTOR	171	OFF171<17:1>	IFS5<11>	IEC5<11>	IPC42<28:26>	IPC42<25:24>	Yes
UART4 Transfer Done	_UART4_TX_VECTOR	172	OFF172<17:1>	IFS5<12>	IEC5<12>	IPC43<4:2>	IPC43<1:0>	Yes
I2C4 Bus Collision Event	_I2C4_BUS_VECTOR	173	OFF173<17:1>	IFS5<13>	IEC5<13>	IPC43<12:10>	IPC43<9:8>	Yes
I2C4 Slave Event	_I2C4_SLAVE_VECTOR	174	OFF174<17:1>	IFS5<14>	IEC5<14>	IPC43<20:18>	IPC43<17:16>	Yes
I2C4 Master Event	_I2C4_MASTER_VECTOR	175	OFF175<17:1>	IFS5<15>	IEC5<15>	IPC43<28:26>	IPC43<25:24>	Yes
SPI5 Fault	_SPI5_FAULT_VECTOR	176	OFF176<17:1>	IFS5<16>	IEC5<16>	IPC44<2>	IPC44<1:0>	Yes
SPI5 Receive Done	_SPI5_RX_VECTOR	177	OFF177<17:1>	IFS5<17>	IEC5<17>	IPC44<12:10>	IPC44<9:8>	Yes
SPI5 Transfer Done	_SPI5_TX_VECTOR	178	OFF178<17:1>	IFS5<18>	IEC5<18>	IPC44<20:18>	IPC44<17:16>	Yes
UART5 Fault	_UART5_FAULT_VECTOR	179	OFF179<17:1>	IFS5<19>	IEC5<19>	IPC44<28:26>	IPC44<25:24>	Yes
UART5 Receive Done	_UART5_RX_VECTOR	180	OFF180<17:1>	IFS5<20>	IEC5<20>	IPC45<4:2>	IPC45<1:0>	Yes
UART5 Transfer Done	_UART5_TX_VECTOR	181	OFF181<17:1>	IFS5<21>	IEC5<21>	IPC45<12:10>	IPC45<9:8>	Yes
I2C5 Bus Collision Event	_I2C5_BUS_VECTOR	182	OFF182<17:1>	IFS5<22>	IEC5<22>	IPC45<20:18>	IPC45<17:16>	Yes
I2C5 Slave Event	_I2C5_SLAVE_VECTOR	183	OFF183<17:1>	IFS5<23>	IEC5<23>	IPC45<28:26>	IPC45<25:24>	Yes
I2C5 Master Event	_I2C5_MASTER_VECTOR	184	OFF184<17:1>	IFS5<24>	IEC5<24>	IPC46<4:2>	IPC46<1:0>	Yes
SPI6 Fault	_SPI6_FAULT_VECTOR	185	OFF185<17:1>	IFS5<25>	IEC5<25>	IPC46<12:10>	IPC46<9:8>	Yes
SPI6 Receive Done	_SPI6_RX_VECTOR	186	OFF186<17:1>	IFS5<26>	IEC5<26>	IPC46<20:18>	IPC46<17:16>	Yes
SPI6 Transfer Done	_SPI6_TX_VECTOR	187	OFF187<17:1>	IFS5<27>	IEC5<27>	IPC46<28:26>	IPC46<25:24>	Yes
UART6 Fault	_UART6_FAULT_VECTOR	188	OFF188<17:1>	IFS5<28>	IEC5<28>	IPC47<4:2>	IPC47<1:0>	Yes
UART6 Receive Done	_UART6_RX_VECTOR	189	OFF189<17:1>	IFS5<29>	IEC5<29>	IPC47<12:10>	IPC47<9:8>	Yes
UART6 Transfer Done	_UART6_TX_VECTOR	190	OFF190<17:1>	IFS5<30>	IEC5<30>	IPC47<20:18>	IPC47<17:16>	Yes
SDHC Interrupt	_SDHC_VECTOR	191	OFF191<17:1>	IFS5<31>	IEC5<31>	IPC47<28:26>	IPC47<25:24>	Yes
GLCD Interrupt	_GLCD_VECTOR	192	OFF192<17:1>	IFS6<0>	IEC6<0>	IPC48<4:2>	IPC48<1:0>	Yes/No ⁽²⁾
GPU Interrupt	_GPU_VECTOR	193	OFF193<17:1>	IFS6<1>	IEC6<1>	IPC48<12:10>	IPC48<9:8>	Yes
Reserved	_	1	_	1	1	_		1
CTMU Interrupt	_CTMU_VECTOR	195	OFF195<17:1>	IFS6<3>	IEC6<3>	IPC48<28:26>	IPC48<25:24>	Yes
ADC End of Scan	_ADC_EOS_VECTOR	196	OFF196<17:1>	IFS6<4>	IEC6<4>	IPC49<4:2>	IPC49<1:0>	Yes
Motor of tourself the Not of Management	برانسوا مطه محق مصنيتها الم هم ماطمانمين ميم م	100	t clast, soldet s	doll dollord	- 11	- - : -: - 3 - 1 - :	-1	1

Not all interrupt sources are available on all devices. See the Family Features tables (Table 1 through Table 2) for the list of available peripherals. Upon Reset, the GLCD interrupt (both HSYNC and VSYNC) are persistent. However, through the IRQCON bit (GLCDINT<31>), the type of interrupt can be changed to non-persistent. .. % Note

DS60001361E-page 132

_	
(CONTINUED)	
LOCATION	
OR AND BIT LOCA'	
IRQ, VECTOR	
INTERRUPT	
ABLE 7-2:	

			(2000)					
(1)	VC33 Voctor Name	Ro	**************************************		Interru	Interrupt Bit Location		Persistent
interrupt Source	ACSZ Vector Name	#	vector #	Flag	Enable	Priority	Sub-priority	Interrupt
ADC Analog Circuit Ready	_ADC_ARDY_VECTOR	197	OFF197<17:1>	IFS6<5>	IEC6<5>	IPC49<12:10>	IPC49<9:8>	Yes
ADC Update Ready	_ADC_URDY_VECTOR	198	OFF198<17:1>	(PS6<6>	IE6<6>	IPC49<20:18>	IPC49<17:16>	Yes
ADC0 Early Interrupt	_ADC0_EARLY_VECTOR	199	OFF199<17:1>	IFS6<7>	IEC6<7>	IPC49<28:26>	IPC49<25:24>	Yes
ADC1 Early Interrupt	_ADC1_EARLY_VECTOR	200	OFF200<17:1>	IFS6<8>	IEC6<8>	IPC50<4:2>	IPC50<1:0>	Yes
ADC2 Early Interrupt	_ADC2_EARLY_VECTOR	201	OFF201<17:1>	IFS6<9>	IEC6<9>	IPC50<12:10>	<8:6>09	Yes
ADC3 Early Interrupt	_ADC3_EARLY_VECTOR	202	OFF202<17:1>	IFS6<10>	IEC6<10>	IPC50<20:18>	IPC50<17:16>	Yes
ADC4 Early Interrupt	_ADC4_EARLY_VECTOR	203	OFF203<17:1>	IFS6<11>	IEC6<11>	IPC50<28:26>	IPC50<25:24>	Yes
Reserved	I	I	1	_	I	1	_	I
ADC Group Early Interrupt Request	_ADC_EARLY_VECTOR	202	OFF205<17:1>	IFS6<13>	IEC6<13>	IPC51<12:10>	-8:6>12OI	Yes
ADC7 Early Interrupt	_ADC7_EARLY_VECTOR	206	OFF206<17:1>	IFS6<14>	FS6<14> IEC6<14>	IPC51<20:18>	IPC51<17:16>	Yes
ADC0 Warm Interrupt	_ADC0_WARM_VECTOR	207	OFF207<17:1>	IFS6<15>	IEC6<15>	IPC51<28:26>	IPC51<25:24>	Yes
ADC1 Warm Interrupt	_ADC1_WARM_VECTOR	208	OFF208<17:1>	IFS6<16>	IEC6<16>	IPC52<4:2>	IPC52<1:0>	Yes
ADC2 Warm Interrupt	_ADC2_WARM_VECTOR	209	OFF209<17:1>	IFS6<17>	IEC6<17>	IPC52<12:10>	-8:6>25	Yes
ADC3 Warm Interrupt	_ADC3_WARM_VECTOR	210	OFF210<17:1>	IFS6<18>	IEC6<18>	IPC52<20:18>	IPC52<17:16>	Yes
ADC4 Warm Interrupt	_ADC4_WARM_VECTOR	211	OFF211<17:1>	IFS6<19>	IEC6<19>	IPC52<28:26>	IPC52<25:24>	Yes
Reserved	_	I	1	_	_	_	—	1
Reserved	_	I	1	1	_	_	—	1
ADC7 Warm Interrupt	_ADC7_WARM_VECTOR	214	OFF214<17:1>	IFS6<22>	IFS6<22> IEC6<22>	IPC53<20:18>	IPC53<17:16>	Yes
MPLL Fault Interrupt	_MPLL_FAULT_VECTOR	215	OFF215<17:1>	IFS6<23>	IEC6<23>	IPC53<28:26>	IPC53<25:24>	Yes
	Lowest	Natural	Lowest Natural Order Priority					

Not all interrupt sources are available on all devices. See the Family Features tables (Table 1 through Table 2) for the list of available peripherals. ∺ % Note

Upon Reset, the GLCD interrupt (both HSYNC and VSYNC) are persistent. However, through the IRQCON bit (GLCDINT<31>), the type of interrupt can be changed to non-persistent.

7.3 Interrupt Control Registers
TABLE 7-3: INTERRUPT REGISTER MAP

Downloaded from Arrow.com.

AE	ABLE 1-3	ې د		א ו אוסא	IN ERKUPI KEGISTEK MAP	N WAL													
ress £)		əl	-	-	•	•	•	-	-	-	Bits				•	•	-		sį
Virtual Add #_r818)	egisigeЯ ⁽¹⁾ emsM	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	PeseЯ IIA
0	TAC CHIA	31:16				NMIKEY<7	Y<7:0>				I	I	I	I	1	ı	1	I	0000
0000		15:0	ı	I	I	MVEC	I		TPC<2:0>		1	Ι	Ι	INT4EP	INT3EP	INTZEP	INT1EP	INTOEP	0000
0100	20100	31:16		PRI7SS<3:0>	3<3:0>			PRI6SS<3:0>	3<3:0>			PRI5SS<3:0>	<3:0>			PRI4SS<3:0>	3<3:0>		0000
2		15:0		PRI3SS<3:0>	3<3:0>			PRI2SS<3:0>	><3:0>			PRI1SS<3:0>	<3:0>		I	1	1	SS0	0000
0000	-LNI	31:16	1	I	1	I	I	I	I	ı	1	Ι	1	1	I	ı	1	I	0000
0020		15:0	1	Ι	I	1	Ι	-,	SRIPL<2:0>					SIRQ<7:0>	<(0000
0030	IPTMR	31:16 15:0								IPT	IPTMR<31:0>							·	0000
0770	COL	Ш	OCGIF	ICGIF	IC6EIF	T6IF	OC5IF	ICSIF	ICSEIF	TSIF	INT4IF	OC4IF	IC4IF	IC4EIF	T4IF	INT3IF	OC3IF	IC3IF	0000
0400	II 30	15:0	IC3EIF	T3IF	INT2IF	OC2IF	IC2IF	IC2EIF	T2IF	INT11F	OC11F	IC1IF	IC1EIF	T11F	INTOIF	CS11F	CSOIF	CTIF	0000
0000	1504	31:16 ₽	ADCD4IF ,	ADCD3IF	ADCD2IF	ADCD11F	ADCD0IF	ADCD01F ADCFLT1F ADCDF61F	ADCDF6IF,	ADCDF5IF	ADCDF4IF	ADCDF3IF	ADCDF211F		ADCDF11F ADCDC6IF ADCDC5IF ADCDC4IF ADCDC3IF	ADCDC5IF,	ADCDC4IF A	ADCDC3IF	0000
nenn	<u> </u>	15:0 A	DCDC2IF A	NDCDC11F /	15:0 ADCDC2IF ADCDC1IF ADCFIFOIF	ADCIF	OC9IF	IC9IF	IC9EIF	T9IF	OC8IF	IC8IF	IC8EIF	T8IF	OC7IF	IC7IF	IC7EIF	T7IF	0000
0		31:16 A	DCD36IF A	ADCD35IF	31:16 ADCD36IF ADCD35IF ADCD34IF ADCD33IF ADCD32IF ADCD31IF ADCD30IF ADCD29IF	ADCD331F	ADCD32IF	ADCD311F	ADCD30IF /	ADCD29IF	ADCD28IF	ADCD27IF	ADCD26IF	ADCD25IF	ADCD25IF ADCD24IF ADCD23IF ADCD22IF ADCD21IF	ADCD23IF	ADCD22IF /	ADCD211F	0000
ngnn	15.2	15:0 A	ADCD20IF A	ADCD19IF	ADCD18IF	ADCD17IF	ADCD171F ADCD16IF ADCD15IF	ADCD15IF	ADCD14IF /	ADCD13IF	ADCD12IF	ADCD111F	ADCD10IF	ADCD9IF	ADCD8IF	ADCD7IF	ADCD6IF	ADCD5IF	0000
004	COL	31:16	CNKIF	CNJIF	CNHIF	CNGIF	CNFIF	CNEIF	CNDIF	CNCIF	CNBIF	CNAIF	I2C1MIF	I2C1SIF	I2C1BIF	U1TXIF	U1RXIF	U1EIF	0000
0.00	20	15:0 S	11	SP11RXIF	SPI1EIF	I	CRPTIF ⁽²⁾	SBIF	CFDCIF	CPCIF	USBSRIF	ADCD43IF	ADCD42IF	ADCD411F	ADCD401F	ADCD39IF	ADCD38IF /	ADCD37IF	0000
0	701	31:16	U3TXIF	U3RXIF	U3EIF	SPI3TXIF	SPI3RXIF	SPI3EIF	ETHIF	CANZIF	CAN1IF	I2C2MIF	12C2SIF	12C2BIF	U2TXIF	UZRXIF	UZEIF	SPI2TXIF	0000
0000		15:0 S	SPI2RXIF	SPIZEIF	DMA7IF	DMA6IF	DMA5IF	DMA4IF	DMA3IF	DMA2IF	DMA11F	DMA0IF	USBDMAIF	USBIF	CMP2IF	CMP11F	PMPEIF	PMPIF	0000
0000	IFCE	31:16	SDHCIF	U6TXIF	UGRXIF	U6EIF	SPI6TX	SPIGRXIF	SPIGIF	12C5MIF	I2C5SIF	12C5BIF	USTXIF	USRXIF	USEIF	SPI5TXIF	SPI5RXIF	SPI5EIF	0000
0800	S S S	15:0	I2C4MIF	12C4SIF	I2C4BIF	U4TXIF	U4RXIF	U4EIF	SQI1IF	PREIF	FCEIF	RTCCIF	SPI4TXIF	SPI4RXIF	SPI4EIF	12C3MIF	12C3SIF	12C3BIF	0000
6	001	31:16	ı	I	I	I	I	I	I	I	MPLLFLTIF	ADC7WIF	1	I	ADC4WIF	ADC3WIF	ADC2WIF ,	ADC1WIF	0000
0040	11.50		-	F	ADCGRPIF	Ι	ADC4EIF	ADC3EIF	ADC2EIF	ADC1EIF	ADC0EIF	ADCURDYIF	ADCARDYIF ADCEOSIF	ADCEOSIF	CTMUIF	-	GPUIF	GLCDIF	0000
000	П	31:16	OCGIE	ICGIE	IC6EIE	TGIE	OCSIE	IC5IE	IC5EIE	T5IE	INT4IE	OC4IE	IC4IE	IC4EIE	T4IE	INT3IE	OC3IE	IC3IE	0000
		15:0	IC3EIE	T3IE	INT2IE	OC2IE	IC2IE	IC2EIE	T2IE	INT1IE	OC1IE	IC1IE	IC1EIE	T1IE	INTOIE	CS1IE	CSOIE	CTIE	0000
000	EC.	31:16 A	ADCD4IE '	ADCD3IE	ADCD2IE	ADCD1IE	ADCD0IE	ADCD0IE ADCFLTIE ADCDF6IE	ADCDF61E /	ADCDF5IE	ADCDF4IE	ADCDF3IE	ADCDF2IE	ADCDF11E	ADCDF11E ADCDC61E ADCDC51E ADCDC41E ADCDC31E 0000	ADCDC5IE	ADCDC4IE /	NDCDC3IE	0000
0000		15:0 AI	DCDC2IE A	NDCDC11E,	ADCDC2IE ADCDC11E ADCFIFOIE	ADCIE	OC9IE	IC9IE	IC9EIE	T9IE	OC8IE	IC8IE	IC8EIE	T8IE	OC7IE	IC7IE	IC7EIE	T7IE	0000
ODEO	ECO	31:16 A	31:16 ADCD36IE ADCD35IE	ADCD35IE	ADCD34IE	ADCD33IE	ADCD32IE	ADCD311E	ADCD34IE ADCD33IE ADCD32IE ADCD31IE ADCD30IE ADCD29IE	ADCD29IE	ADCD28IE	ADCD27IE	ADCD26IE	ADCD25IE	ADCD25IE ADCD24IE ADCD23IE ADCD22IE ADCD21IE 00000	ADCD23IE	ADCD22IE	ADCD211E	0000
		15:0 A	ADCD201E ADCD19IE		ADCD18IE	ADCD17IE	ADCD16IE	ADCD15IE	ADCD171E ADCD161E ADCD151E ADCD141E ADCD131E	ADCD13IE	ADCD12IE	ADCD111E	ADCD10IE	ADCD9IE	ADCD8IE	ADCD7IE	ADCD6IE	ADCD5IE	0000
0100	الال	31:16	CNKIE	CNJIE	CNHIE	CNGIE	CNFIE	CNEIE	CNDIE	CNCIE	CNBIE	CNAIE	12C1MIE	12C1SIE	12C1BIE	U1TXIE	U1RXIE	U1EIE	0000
0.00	IFCS		111	SPI1RXIE	SP11EIE		CRPTIE ⁽²⁾	SBIE	CFDCIE	CPCIE	USBSRIE	ADCD43IE	ADCD42IE	ADCD411E	ADCD401E	ADCD39IE	ADCD38IE	ADCD37IE	0000
0400	rJ=I	31:16	U3TXIE	U3RXIE	U3EIE	SPI3TXIE	SPI3RXIE	SPI3EIE	ETHIE	CANZIE	CAN1IE	12C2MIE	12C2SIE	12C2BIE	U2TXIE	U2RXIE	UZEIE	SPI2TXIE	0000
		15:0 S	SP12RXIE	SPI2EIE	DMA71E	DMA6IE	DMA5IE	DMA4IE	DMA3IE	DMA2IE	DMA1IE	DMA0IE	USBDMAIE	USBIE	CMP2IE	CMP11E	PMPEIE	PMPIE	0000
0110	TI C	31:16	SDHCIE	U6TXIE	UGRXIE	U6EIE	SPI6TXIE	SPI6RXIE	SPIGIE	12C5MIE	12C5SIE	I2C5BIE	USTXIE	USRXIE	USEIE	SPI5TXIE	SPI5RXIE	SPI5EIE	0000
5	2		I2C4MIE	I2C4SIE	I2C4BIE	U4TXIE	U4RXIE	U4EIE	SQI11E	PREIE	FCEIE	RTCCIE	SPI4TXIE	SPI4RXIE	SPI4EIE	12C3MIE	_		0000
0120	9031	31:16	-	1	I	1	1			I		ADC7WIE	1	1	ADC4WIE	ADC3WIE	111		0000
7	L C	15:0 A	ADC0WIE '	ADC7EIE ,	ADC7EIE ADCGRPIE	I	ADC4EIE ADC3EIE	ADC3EIE	ADC2EIE	ADC1EIE	ADC0EIE	ADCURDYIE	ADCURDYIE ADCARDYIE ADCEOSIE CTMUIE	ADCEOSIE	CTMUIE	I	GPUIE	GLCDIE	0000
Legend:		z = unknc	own value or	n Reset; —	x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal	ented, read.	as '0'. Rese	t values are	shown in hex	adecimal.	1	Ī	1					ĺ	

DS60001361E-page 134 © 2015-2017 M

All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

This bit is only available on devices with a Crypto module.

-	sı	PeseR IIA	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	-
		16/0	CS1IS<1:0>	CTIS<1:0>	IC11S<1:0>	T11S<1:0>	IC2EIS<1:0>	INT1IS<1:0>	T3IS<1:0>	OC2IS<1:0>	INT3IS<1:0>	IC3IS<1:0>	OC4IS<1:0>	IC4EIS<1:0>	IC5IS<1:0>	T5IS<1:0>	IC6IS<1:0>	T6IS<1:0>	IC7IS<1:0>	T7IS<1:0>	IC8IS<1:0>	T8IS<1:0>	IC9IS<1:0>	T9IS<1:0>	ADCDC11S<1:0>	ADCIS<1:0>	ADCDC5IS<1:0>	ADCDC3IS<1:0>	ADCDF3IS<1:0>	ADCDF1IS<1:0>	ADCFLTIS<1:0>	ADCDF5IS<1:0>	ADCD3IS<1:0>	ADCD11S<1:0>	ADCD7IS<1:0>	ADCD5IS<1:0>	ADCD111S<1:0>	ADCD9IS<1:0>	ADCD15IS<1:0>	ADCD13IS<1:0>	
		17/1	CS1	CTI	IC1I	T11	IC2E	INT1	T31	0C2	INT3	IC3I	0C4	IC4E	ICSI	151	ICGI	Tel	IC7I	177	IC8I	181	1631	161	ADCD	ADC	ADCD	ADCD	ADCDI	ADCDI	ADCFI	ADCDI	ADCD	ADCD	ADCD	ADCD	ADCD	ADCD	ADCD	ADCD	
		18/2																							<(<(<(^	^	Δ	<	^	^			Δ	,	Δ	Δ	
	-	19/3	CS1IP<2:0>	CTIP<2:0>	IC1IP<2:0>	T1IP<2:0>	IC2EIP<2:0>	INT11P<2:0>	T3IP<2:0>	OC2IP<2:0>	INT3IP<2:0>	IC3IP<2:0>	OC4IP<2:0>	IC4EIP<2:0>	IC5IP<2:0>	T5IP<2:0>	IC6IP<2:0>	T6IP<2:0>	IC7IP<2:0>	T7IP<2:0>	IC8IP<2:0>	T8IP<2:0>	IC9IP<2:0>	T9IP<2:0>	ADCDC1IP<2:0>	ADCIP<2:0>	ADCDC5IP<2:0>	ADCDC3IP<2:0>	ADCDF3IP<2:0>	ADCDF1IP<2:0>	ADCFLTIP<2:0>	ADCDF5IP<2:0>	ADCD3IP<2:0>	ADCD11P<2:0>	ADCD7IP<2:0>	ADCD5IP<2:0>	ADCD111P<2:0>	ADCD9IP<2:0>	ADCD15IP<2:0>	ADCD13IP<2:0>	
	-	20/4					<u> </u>	=			1		0)I											AD	⋖	AD	AD	AD	AD	AD	AD	AΓ	ΑΓ	AL	A	AD	AE	AD	AD	
	-	21/5	1	I	I	1	1	I	I	I	1	1	1	1	1	I	1	-	1	1	1	I	I	I	_	ı	-	1	1	1	1	1	1	-	I	ı	I	I	1	I	
	=	22/6	1	1	1	ı	ı	I	I	I		_	1	-				_				-	1	-	1	-	1	_	1	1	1	-	_	_	-	-	ı	ı	1	ı	
	Bits	23/7	1	I	I	1	1	1	I	I	1	1	1	1	1	1	1	-	1	1	1	ı	1	ı	1	ı	1	1	1	1	I	1	1	-	I	ı	1	1	1	ı	
	-	24/8	:1:0>	1:0>	4:0>	<0:1:	<o.< td=""><td>^0.</td><td><0:1:</td><td>:1:0></td><td><0:</td><td>1:0></td><td>:1:0></td><td><0:1</td><td>1:0></td><td>:1:0></td><td>1:0></td><td>:1:0></td><td>1:0></td><td>:1:0></td><td>1:0></td><td><0:1:</td><td>1:0></td><td>:1:0></td><td>S<1:0></td><td>S<1:0></td><td>3<1:0></td><td>><1:0></td><td>S<1:0></td><td>3<1:0></td><td><1:0></td><td>><1:0></td><td><1:0></td><td><1:0></td><td><1:0></td><td><1:0></td><td>><1:0></td><td>3<1:0></td><td>><1:0></td><td>><1:0></td><td>Jahrimal</td></o.<>	^ 0.	<0:1:	:1:0>	<0:	1:0>	:1:0>	<0:1	1:0>	:1:0>	1:0>	:1:0>	1:0>	:1:0>	1:0>	<0:1:	1:0>	:1:0>	S<1:0>	S<1:0>	3<1:0>	><1:0>	S<1:0>	3<1:0>	<1:0>	><1:0>	<1:0>	<1:0>	<1:0>	<1:0>	><1:0>	3<1:0>	><1:0>	><1:0>	Jahrimal
	-	25/9	INT0IS<1:0>	CS0IS<1:0>	OC11S<1:0>	IC1EIS<1:0>	IC2IS<1:0>	T2IS<1:0>	IC3EIS<1:0>	INT2IS<1:0>	T4IS<1:0>	OC3IS<1:0>	INT4IS<1:0>	IC4IS<1:0>	OC5IS<1:0>	IC5EIS<1:0>	OC6IS<1:0>	IC6EIS<1:0>	OC7IS<1:0>	IC7EIS<1:0>	OC8IS<1:0>	IC8EIS<1:0>	OC9IS<1:0>	IC9EIS<1:0>	ADCDC2IS<1:0>	ADCFIFOIS<1:0>	ADCDC6S<1:0>	ADCDC4IS<1:0>	ADCDF4IS<1:0>	ADCDF2IS<1:0>	ADCD0IS<1:0>	ADCDF6IS<1:0>	ADCD4IS<1:0>	ADCD2IS<1:0>	ADCD8IS<1:0>	ADCD6IS<1:0>	ADCD12IS<1:0>	ADCD10IS<1:0>	ADCD16IS<1:0>	ADCD14IS<1:0>	yed ni nwod
ON LINGED)	=	26/10																							^	4	^	<	Δ	^	^	^	^	^	^	^	Δ	Δ	Δ	Δ	Reset values are shown in hexadecimal
	=	27/11	INT0IP<2:0>	CS0IP<2:0>	OC1IP<2:0>	IC1EIP<2:0>	C2IP<2:0>	T2IP<2:0>	IC3EIP<2:0>	INT2IP<2:0>	T4IP<2:0>	OC3IP<2:0>	VT4IP<2:0>	IC4IP<2:0>	OC5IP<2:0>	IC5EIP<2:0>	OC6IP<2:0>	IC6EIP<2:0>	OC7IP<2:0>	IC7EIP<2:0>	OC8IP<2:0>	IC8EIP<2:0>	OC9IP<2:0>	IC9EIP<2:0>	ADCDC2IP<2:0>	ADCFIFOIP<2:0>	ADCDC6IP<2:0>	ADCDC4IP<2:0>	ADCDF4IP<2:0>	ADCDF2IP<2:0>	ADCD0IP<2:0>	CDF6IP<2:0	ADCD4IP<2:0>	ADCD2IP<2:0>	ADCD8IP<2:0>	ADCD6IP<2:0>	ADCD12IP<2:0>	ADCD10IP<2:0>	CD16IP<2:0	ADCD14IP<2:0>	Paset '∩' ac
	•	28/12			O	=			<u> </u>	=)	=		0)	0)	0)	0	2		2	AD	AD(AD	AD	AD	AD	ΑΓ	AD	AL	AL	AL	AL	AD	AD	AD	AD	poted pada
	•	29/13	1	ı	I	I	I	I	I	I	_	-	1	-	_	ı	_	-	_	_	_	-	I	-	1	-	1	-	-	1	1	-	-	-	_	-	I	ı	ı	I	'0' se been betnemelumini =
INTERNOTI REGISTER MAP (C	•	30/14	1	1	ı	ı	ı	ı	ı	ı	-	1	1	I	-	ı	-	1	-	-	-	Ι	I	Ι	1	Ι	1	1	1	1	ı	I	1	1	-	Ι	I	ı	I	ı	1
		31/15	1	1	1	I	I	Ι	ı	Ι	-	1	Ι	I	-	Ι	-	1	-	-	-	I	I	Ι	-	I	-	1	Ι	Ι	Ι	I	1	1	Ι	I	I	I	1	Ι	× = Inknown value on Beset
<u>.</u> [əſ	Bit Rang	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	· = . Inkr
; -) [Pegiste ^{r)} emsN		3	3	2	S	22	נטםו	3	וסכו	5	IPCS	3	BOGI	3	7001	5	الالام	3	וסיסו	3	0770	2	10011		10010	712	IDC13	2	IPC14	<u>†</u>	IDC15	2	2700	2	777	<u>-</u> ک		15 E	
ADLE s	(#	k_r818) *_r818)		04-0		0610		0910	04.40		0410		0100		0440		0410		0.710		040		011		0110		0000		0210		0220		0230		0,00			0020		1 0970	-puene

8

All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

This bit is only available on devices with a Crypto module.

PCD 1510	(Bits								s
PC29 31:16 ADCDZ A	(BF81_#) Register	Name…	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	1//1	16/0	HI Reset
PC20		П	1	1	1	AD	CD20IP<2:0	<u> </u>	ADCD2018	S<1:0>	1	1	1	Ā	JCD19IP<2:0	Δ	ADCD19IS<1:0>	S<1:0>	000
PC20 13:16 ADCDZ A			1	1	1	AD	CD18IP<2:0	<u> </u>	ADCD18I;	S<1:0>	1	I	1	Ā	JCD17IP<2:0	Δ	ADCD17IS<1:0>	S<1:0>	0000
PC21 15.0 ADCDZ ADCDZ 15.0 ADCDZ 15.0 ADCDZ 15.0 ADCDZ 15.0 ADCDZ 15.0			1	I	I	AD	CD24IP<2:0	4	ADCD241	S<1:0>	1	1	I	A	DCD23IP<2:0	Δ	ADCD23IS<1:0>	IS<1:0>	0000
PC21 41.16 — — — — — — — — — — — — — — — — — —			Ι	I	Ι	AD	CD22IP<2:0	4	ADCD22I:	S<1:0>	Ι	Ι	Ι	Ā	DCD21IP<2:0	Δ	ADCD211S<1:0>	IS<1:0>	0000
PC22 15.0 ADCD2 ADCD2 ADCD2 ADCD3 ADDD3 ADDD3 ADDD3 ADCD3 ADDD3 AD			Ι	Ι	1	AD	CD28IP<2:0		ADCD281	S<1:0>		-	1	Ā	DCD27IP<2:0	Δ	ADCD27IS<1:0>	S<1:0>	0000
PC22 31:16 — — ADCD3 PC23 45:0 — — ADCD3 PC23 45:0 — — ADCD3 PC24 45:0 — — ADCD4 PC24 15:0 — — ADCD4 PC25 31:16 — — ADCD4 PC26 15:0 — — ADCD4 PC26 15:0 — — ADCD4 PC27 15:0 — — ADCD4 PC28 15:0 — — ADCD4 PC29 15:0 — — ADCD4 PC20 — — — ADCD4 PC20 — <t< td=""><td></td><td>-</td><td>1</td><td>1</td><td>1</td><td>AD</td><td>CD26IP<2:0</td><td><</td><td>ADCD261:</td><td>S<1:0></td><td>-</td><td>-</td><td>-</td><td>A</td><td>DCD25IP<2:0</td><td>^</td><td>ADCD25IS<1:0></td><td>S<1:0></td><td>0000</td></t<>		-	1	1	1	AD	CD26IP<2:0	<	ADCD261:	S<1:0>	-	-	-	A	DCD25IP<2:0	^	ADCD25IS<1:0>	S<1:0>	0000
PC23 15.0			1	I	I	AD	CD32IP<2:0	4	ADCD32I	S<1:0>	1	1	I	A	DCD31IP<2:0	Δ	ADCD311S<1:0>	IS<1:0>	0000
PC23 11:16			I	1	I	AD	CD30IP<2:C	4	ADCD301	S<1:0>	1	1	Ι	Ā	DCD29IP<2:0	Δ	ADCD29IS<1:0>	IS<1:0>	0000
PC24 15.0			I	I	1	AD	CD36IP<2:0	4	ADCD361	S<1:0>	1	1	I	Ā	DCD35IP<2:0	Δ	ADCD35IS<1:0>	IS<1:0>	0000
PC24 11:16			Ι	I	I	AD	CD34IP<2:0	<u> </u>	ADCD341;	S<1:0>	1	1	I	Ā	DCD33IP<2:0	Δ	ADCD33IS<1:0>	S<1:0>	0000
PC25 15.0 — — — — — ADCD3 PC25 15.0 — — — — — — — DUSBST PC26 15.0 — — — — — — — — — — — — — — — — — —			Ι	Ι	1	AD	CD40IP<2:0		ADCD40I:	S<1:0>		-	1	Ā	DCD39IP<2:0	Δ	ADCD39IS<1:0>	S<1:0>	0000
PC25 11:16 PCD4 PC26 15:0 ADCD4 PC26 15:0 ADCD4 PC27 11:16 CRPII PC28 11:16 CRPII PC30 11:16 CRPII PC31 15:0 CRPII PC31 15:0 CRPII PC32 15:0 CRPII PC34 15:0 CRPII PC35 15:0 CRPII PC36 15:0 CRPII PC37 15:0 CRPII PC38 11:16 CRPII PC39 11:16 CRPII PC31 15:0 DMA1 PC32 15:0 DMA1 PC35 11:0 DMA1 PC36 11:0 DMA1 PC37 11:0 DMA1 PC38 11:0 DMA1 PC39 11:0 DMA1 PC30 11:0 DMA1 PC31 11:0 DMA1 PC32 11:0 DMA1 PC33 11:0 DMA1 PC34 11:0 DMA1 PC35 11:0 DMA1 PC35 11:0 DMA1 PC36 11:0 DMA1 PC37 11:0 DMA1 PC38 11:0 DMA1 PC38 11:0 DMA1 PC38			Ι	Ι	1	AD	CD38IP<2:0	_	ADCD381;	S<1:0>		-	-	Ā	DCD37IP<2:0	Δ	ADCD37IS<1:0>	S<1:0>	0000
PC26 15.0			I	I	1	ň	SBSRIP<2:0	^	USBSRIE	3<1:0>	1	1	I	Ā	DCD43IP<2:0	Δ	ADCD43IS<1:0>	IS<1:0>	0000
PC26 11.16			Ι	I	I	AD	CD42IP<2:0	<u> </u>	ADCD42I:	S<1:0>	1	1	I	Ā	DCD41IP<2:0	Δ	ADCD411S<1:0>	S<1:0>	0000
PC27 15.0				Ι	1	5	3PTIP<2:0>	2)	CRPTIS<	1:0>(2)		-	1		SBIP<2:0>		SBIS<1:0>	:1:0>	0000
PC27 31:16 — — — SPI17 PC28 31:16 — — — — SPI17 PC29 15:0 — — — SPI18 PC29 15:0 — — — CNB PC29 15:0 — — — CNB PC30 15:0 — — — CNB PC31 15:0 — —		_	1	1	1	S	:FDCIP<2:0>		CFDCIS	<1:0>		_	Ι		CPCIP<2:0>		CPCIS<1:0>	<1:0>	0000
15.0			Ι	1	1	SF	711TXIP<2:0	^	SPI1TXIS	3<1:0>	1	-	-	S	P11RXIP<2:0:	^	SPI1RXIS<1:0>	S<1:0>	0000
PC28 31:16			1	I	1	S	PI1EIP<2:0>		SP11EIS	<1:0>	1	-	I		1	1	ı	1	0000
15:0				Ι	1	21	2C1BIP<2:0>		I2C1BIS	<1:0>	1	1	I		U1TXIP<2:0>		U1TXIS<1:0>	<1:0>	0000
PC29 31:16			1	I	1	⊃	11RXIP<2:0>		U1RXIS	<1:0>	I	I	I		U1EIP<2:0>		U1EIS<1:0>	<1:0>	0000
PC30			1	I	1	J	CNBIP<2:0>		CNBIS	<1:0>	1	I	1		CNAIP<2:0>		CNAIS<1:0>	<1:0>	0000
PC30 11:16 — — — CNPI CNDI		I	I	Ι	12	:C1MIP<2:0:		I2C1MIS	<1:0>	1	I		_	2C1SIP<2:0>		I2C1SIS<1:0>	><1:0>	0000	
15:0			I	I	Ι	J	CNFIP<2:0>		CNFIS	<1:0>	1	I			CNEIP<2:0>		CNEIS<1:0>	<1:0>	0000
PC31 11:16			Ι	I	Ι	J	3NDIP<2:0>		CNDIS	<1:0>	Ι	1	I		CNCIP<2:0>		CNCIS<1:0>	<1:0>	0000
15:0			1	Ι	-)	CNKIP<2:0>		CNKIS	<1:0>	1	-	I		CNJIP<2:0>		CNJIS<1:0>	<1:0>	0000
PC32 31:16			I	I	I	J	SNHIP<2:0>		CNHIS	<1:0>	I	I	I		CNGIP<2:0>		CNGIS<1:0>	<1:0>	0000
15:0			I	I	I	O	:MP2IP<2:0>		CMP2IS	<1:0>	I	I	I)	CMP11P<2:0>		CMP11S<1:0>	3<1:0>	0000
PC33 31:16 — — — DMA1 PC34 15:0 — — — USBDM PC34 15:0 — — DMA5 PC35 31:16 — — DMA5 PC36 15:0 — — DMA7 PC37 31:16 — — DMA7 PC37 15:0 — UZEIX PC37 15:0 — UZEIX TS — — — —			1	I	1	₾	MPEIP<2:0>		PMPEIS	<1:0>	1	I	1		PMPIP<2:0>		PMPIS<1:0>	<1:0>	0000
15:0			1	Ι	_		MA11P<2:0>		DMA11S	<1:0>	1	1	I	_	OMA0IP<2:0>		DMA0IS<1:0>	><1:0>	0000
PC34 15:0			1	I	1	SN	BDMAIP<2:	<u>^</u>	USBDMAI	S<1:0>	1	I	1		USBIP<2:0>		USBIS<1:0>	<1:0>	0000
15:0			-	Ι	_	۵	MA5IP<2:0>	•	DMA5IS:	<1:0>	-		-	1	JMA4IP<2:0>		DMA4IS<1:0>	><1:0>	0000
PC35 15.0			1	I	1		MA3IP<2:0>		DMA3IS	<1:0>	1	I	1	_	JMA2IP<2:0>		DMA2IS<1:0>	3<1:0>	0000
15:0			1	Ι	_	SF	712RXIP<2:0	_	SPI2RXIS	3<1:0>	1	1	I	٠,	SPI2EIP<2:0>		SPI2EIS<1:0>	><1:0>	0000
PC36 15:0		_	1	I	1		MA71P<2:0>		DMA7IS	<1:0>	1	I	1	_	JMA6IP<2:0>		DMA6IS<1:0>	3<1:0>	0000
15:0			I	I	Ι	ر	12TXIP<2:0>		U2TXIS	<1:0>	1	I			U2RXIP<2:0>		U2RXIS<1:0>	<1:0>	0000
PC37 31:16 CAN1 15:0 x = unknown value on Reset;= unimplemented, read as '0' 1: All registers in this table with the exception of the OFFx register			I	1	1	_	U2EIP<2:0>		U2EIS<	:1:0>	1	I	1	S	PI2TXIP<2:0:	^	SPI2TXIS<1:0>	S<1:0>	0000
15:0 — 12:0S — — — 12:0S — 12:0S x = unknown value on Reset; — = unimplemented, read as '0' all registers in this table with the exception of the OFFx registe			1	I	1	S	AN11P<2:0>		CAN1IS	<1:0>	1	I	1		2C2MIP<2:0>		I2C2MIS<1:0>	><1:0>	0000
 x = unknown value on Reset; — = unimplemented, read as '0' All registers in this table with the exception of the OFFx registe 			1	Ι	_	31	2C2SIP<2:0>		12C2SIS	<1:0>	1	1	I		2C2BIP<2:0>		I2C2BIS<1:0>	><1:0>	0000
4: All registers in this table with the exception of the OFFx registe	ë	× = unk	nown value	on Reset; -	- = unimplem	ented, read	as '0'. Reset	values are s	shown in hex	adecimal.		:			-	:	;		
and INV Benisters" for more information		All regit	sters in this ta	able with the	e exception of	the OFFx re	gisters, have	e correspona	Ing CLK, SE	I, and INV r	egisters at the	ır vırtual addre	sses, plus offs	ets of 0x4, 0	x8 and 0xC, re	espectively.	See Section	12.2 "CLF	Z, SE

DS60001361E-page 136

30/14 29/13 28/12	29/13
- SPI3RXI	- SPI3
— ETHIP<2:0>	ETH
— U3TXIP<2:0>	XTEU —
— U3EIP<2:0>	— — U3E
SP14EIF	SPI4E
— I2C3SIP<2:0>	
— FCEIP<2:0>	- FCEIP
— SPI4TXIP<2:0>	- SPI4TXIF
— U4RXIP<2:0>	— U4RXIP
— SQI1IP<2:0>	SQI1IP<
I2C4MIP<2:0>	I2C4MIP<
— I2C4BIP<2:0>	— I2C4BIP<2
— U5EIP<2:0>	
SPI5RXIP<2:0>	SPI5RXIP<2:
— I2C5SIP<2:0>	120581
- U5TXIP<2:0>	— U5TXIP<2:0:
SPI6TXIP<2:0>	SPI6TXIP<2:0
SPI6EIP<2:0>	SPI6EIP<2:0:
— SDHCIP<2:0>	SDHCIP<2:0
— U6RXIP<2:0>	— U6RXIP<2:0:
— CTMU1IP<2:0>	— CTMU1IP<2:
- GPUIP<2:0>	GPUIP<2
ADC0EIP<2:0>	ADC0EIP<
ADCARDYIP<2:0>	ADCARDYII
— ADC4EIP<2:0>	ADC4EIP
— ADC2EIP<2:0>	ADC2EIP
— ADC0WIP<2:0>	
— ADCGRPIP<2:0>	— ADCGRP
— ADC4WIP<2:0>	ADC4WI
ADC2WI	ADC2WI
MPLLFLTIP<2:0>	MPLLFLT
	1
1	1
1	1
-	-
	1

8

All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

This bit is only available on devices with a Crypto module.

Part Part	TABLE	LE 7-3:		ITERR	UPT R	EGIST	INTERRUPT REGISTER MAP (C		ONTINUED)											
14 14 14 15 15 15 15 15	;) LG22		ə									Bits								s
OFFICE 3136 Care Care Care Care Care	virtual Addı 1818)			1/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	JeseЯ IIA
19-10 19-1	7	011000		1	1	1	I	1	1	1	I	1	1	1	1	I	I	VOFF<	17:16>	0000
OFFORM 31.10 —	2 2 2										VOFF<15	1.1>							I	0000
Proceeding 19 Process Proces	0880	OFFOR	31:16	-	-	Ι	Ι	I	_	-	Ι	I	Ι	I	Ι	Ι	I	VOFF<	17:16>	0000
OFFICIAL STATE STA	neen										VOFF<15	1:1>							I	0000
Note of the color of the colo	0557	OFFORE		ı	Ι	Ι	Ι	I	-	I	I	I	Ι	1	Ι	Ι	I	VOFF<	17:16>	0000
OFFORD \$13.06	000 4	Urruus									VOFF<15	:1>							_	0000
Control 150 Control 15	0880	OFFORE		-	-	Ι	Ι	Ι	_	-	Ι	I	Ι	I	Ι	Ι	I	VOFF<	17:16>	0000
OFFORD 3116 —	0000	01100									VOFF<15	1:1>							I	0000
Figure 15.5 Figure Fi	0 2 2 0	0110		I	-	1	Ι	I	-	Ι	Ι	I	Ι	I	Ι	Ι	I	VOFF<	17:16>	0000
OFFORM 31.16 —) (CO)										VOFF<15	1.1>							I	0000
11-00 11-0	0			ı	ı	I	I	I	I	I	I	1	I	1	I	I	I	VOFF<	17:16>	0000
OFFOND 31.16 —	0000										VOFF<15	:1>							I	0000
150 150	0.00	OLLO		I	-	1	Ι	I	-	Ι	Ι	I	Ι	I	Ι	Ι	I	VOFF<	17:16>	0000
OFFOND 3116 —	000										VOFF<15	1:1>							I	0000
150 150	0880	OFFORD	31:16	ı	Ι	Ι	Ι	I	-	I	I	I	Ι	1	Ι	Ι	I	VOFF<	17:16>	0000
OFFOIT 31.16 —	0000										VOFF<15	:1>							I	0000
150 150	0 20	OFF011		ı	Ι	Ι	Ι	I	-	I	I	I	Ι	1	Ι	Ι	I	VOFF<	17:16>	0000
OFF 012 31.16 — <th< td=""><td></td><td>0.01</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>VOFF<15</td><td>:1></td><td></td><td></td><td></td><td></td><td></td><td></td><td>I</td><td>0000</td></th<>		0.01									VOFF<15	:1>							I	0000
NOFF CF 15 15 15 15 15 15 15 1	0570	OFF012	31:16	1	-	-	Ι	1	1	1	I		-	1	1	Ι	I	VOFF<	17:16>	0000
31:16		01.012									VOFF<15	:1>							I	0000
150 150 150	0574	OFF013	31:16	1	1	1	1	I	1	1	I	I	I	1	1	I	I	VOFF<	17:16>	0000
OFFOR 31:16 —	3		15:0	•					•	•	VOFF<15	5:1>	•						I	0000
150 150	0578	OFF014	31:16	1	1	Ι	Ι	Ι	Ι	Ι	Ι	-	-	_	Ι	I	Ι	VOFF<	17:16>	0000
Strict S											VOFF<15	:1>							I	0000
15.0 Compared to the contraction of the exception of the OFF x registers, in this ballowith the exception of the OFF x registers, in and INV Registers." for more information. Compared to the Compared	0570	OFF015		1	1	1	1	I	1	1	I	I	I	1	1	I	I	VOFF<	17:16>	0000
OFFOIR Fig.		0.0			-				•	•	VOFF<15	:1>	•						I	0000
15.0 15.0	0580	OFF016		1	1	1	Ι	1	Ι	1	I	1	I	I	1	1	I	VOFF<	17:16>	0000
OFFOIT 31:16 —		0.0									VOFF<15	:1>							1	0000
15.0 15.0	0584	OFF017		1	1	1	1	1	1	1	I	1	1	1	1	1	I	VOFF<	17:16>	0000
OFFO18 31:16 —	9								•	•	VOFF<15	:1>							1	0000
15.0 COPFO10 15.0	0588	OFF018		1	I	I	I	1	I	I	I	I	I	1	I	I	I	VOFF<	17:16>	0000
OFFO19 31:16 — — — — — — — VOFF< — — — VOFF — — — — VOFF —											VOFF<15	:1>							I	0000
15.0 1	080	OFFO10		1	Ι	_	Ι	1	Ι	1	I	-	-	-	1	Ι	I	VOFF<	17:16>	0000
OFFQ20 31:16 — — — — — — — — — VOFF< 15:0 —											VOFF<15	1:1>							I	0000
15.0 1	0000	OFFORD		ı	Ι	Ι	Ι	I	-	I	I	I	Ι	1	Ι	Ι	I	VOFF<	17:16>	0000
OFF021 1316 — — — — — — — — — — — — — — — — — — —	0600										VOFF<15	:1>							I	0000
UST 15:0 15:0	7090	OFF034		-	-	1	Ι	I	-	1	I	I	Ι	I	Ι	Ι	I	VOFF<	17:16>	0000
x = unknown value on Reset; — = unimplemented, read as '0' All registers in this table with the exception of the OFFx register and INV Registers" for more information.	4800		_								VOFF<15	:1>							I	0000
All registers in this table with the exception of the OFFx register and INV Registers" for more information.	Legel		= unknown	value on	Reset; —=	= unimplem	ented, read	as '0'. Reset	t values are	shown in he	xadecimal.									
	Note	<u></u>	All registers i	in this tabl	e with the e	xception of	the OFFx re	gisters, have	e correspond	ling CLR, SE	ET, and INV r	egisters at their	r virtual addres	ses, plus offs	ets of 0x4, 0;	к8 and 0хС, г	espectively.	See Section	12.2 "CLR	SET,
			and INV Reg	gisters" fo	r more infor	rmation.														

DS60001361E-page 138

Part Part	TABLE	.E 7-3:	INTER	RUPT F	INTERRUPT REGISTER MAP (C	R MAP	(CONT	ONTINUED)											
State Stat	;) LG22										Bits								s
11.16 11.1	virtual Addi #_r878)			30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	teseЯ IIA
1.10 1.10			16 —	I	I	I	I	I	1	1	1	I	1	1	1	ı	VOFF<		0000
15.18 15.1			O.							VOFF<15:	1>							I	0000
Note Sing		31:	16 —	Ι	I	Ι	I	I	I	I	1	1	I	ı	I	ı	VOFF		0000
OFFORM 31:06 —			Ō.						Ī	VOFF<15:	4							I	0000
150 150				Ι	Ι	Ι	I	1	Ι	-	-	1	1	I	1	-	VOFF<		0000
OFFOR 3116 —<			0.							VOFF<15:	1>							-	0000
150 150	0504		16 —	1	1	1	1	1	Ι	1	1	1	1	1	1	1	VOFF<		0000
OFFOR 3116 —<	t (200	15:	0:							VOFF<15:	1>								0000
1.00 1.00	05.08		16 —	Ι	Ι	Ι	I	1	Ι	1	1	1	I	ı	1	ı	VOFF<		0000
OFFOCA 3116 — — — — — — — — — — — — — — — — — —	0200		0.							VOFF<15:	1>							-	0000
150 150	0 0 0		16 —	Ι	Ι	Ι	I	I	Ι	1	1	I	Ι	I	I	I	VOFF<		0000
OFFORMS 3111 —	2460	_	0.							VOFF<15:	1>								0000
1.00 1.00		31:		Ι	Ι	Ι	I	1	Ι	-	-	1	1	I	1	-	VOFF<		0000
OFFORD2 3116 — D D D —			0.							VOFF<15:	1>								0000
150 150		31:	16 —	Ι	1	I	ı	I	Ι	I	1	1	1	ı	1	1	VOFF<		0000
OFFORM 3116 — — — — — — — — — — — — — — — — — —			0.							VOFF<15.	1>								0000
150 150	0588	31::	16 —	1	I	I	I	ı	1	I	1	1	I	I	I	I	VOFF		0000
0FF031 31:16 — — — — — — — — — — — — — — — — — — —		15:	0.	•		•				VOFF<15.	4		•	•	•				0000
15.0 15.0	0580		-	I	I	I	I	1	1	1	1	1	1	I	I	I	VOFF		0000
OFFORD 31:16 —			0.							VOFF<15.	4	ŀ	•	•	•				0000
15.0 15.0	0500		16 —	1	I	I	I	ı	1	1	1	1	I	I	1	I	VOFF		0000
11-16 - - - - - - - - -)		O.							VOFF<15.	4		•	•	•				0000
15.0 15.0			16 —	1	I	I	I	I	1	1	1	1	-	ı	I	I	VOFF		0000
OFFORM String S			0:							VOFF<15.	1>								0000
15.0 16.0	0508			I	1	ı	I	I	1	I	1	1	I	ı	I	1	VOFF<		0000
OFF 035 OFF			0:							VOFF<15.	1>								0000
15.0 Colored 15.0	050.0	31:	16 —	1	I	I	I	I	1	1	1	1	-	ı	I	I	VOFF		0000
OFFORM 31:16 —)		0.							VOFF<15.	4		•	•	•				0000
15:0 Compared Com		31::	16 —	1	1	I	I	1	I	1	1	1	I	I	I	I	VOFF		0000
OFF037 31:16 —		15:	0.							VOFF<15.	4		•	•	•				0000
15.0 15.0	0504			Ι	1	Ι	Ι	Ι	1	Ι	1	1	1	Ι	Ι	_	VOFF<		0000
OFF038 31:16 —			0:							VOFF<15.	1>								0000
15:0	מטצט		16 —	Ι	1	1	I	I	I	I	1	1	Ι	ı	ı	1	VOFF<		0000
OFF039 31:16 — — — — — — — — — —	9000	15:	0.							VOFF<15:	1>								0000
15:0	טפטט	31:	16 —	Ι	1	1	I	Ι	1	1	1	1	I	ı	ı	Ι	VOFF<		0000
OFF040 31:16 —	2	15:	0.	•		•				VOFF<15.	4		•	•	•				0000
VOFF<15:1> NoFigure Voff טאבט	31:		1	1	1	I	1	1	1	1	1	1	1	1	1	VOFF		0000	
id:	200		0.							VOFF<15.	-							-	0000
	፵		inknown value	on Reset; —	= unimplem	ented, read a	as '0'. Reset	values are s	hown in hex	adecimal.	1	1	1		0				į

© 2015-2017 Microchip Technology Inc.

All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

This bit is only available on devices with a Crypto module.

Part Part	TABLE	LE 7-3:		NTERF	RUPT R	EGIST	INTERRUPT REGISTER MAP (C	(CONT	ONTINUED)											
1988 1988 1988 1989	ess Less		ə									Bits								s
15.19 15.20 15.2	Nirtual Addi #_r87 <u>8</u>)			31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	teseЯ IIA
150 150	r C	077044	31:16	1	1	1	1	1	ı	1	1	1	1	1	1	1	1	VOFF<	17:16>	0000
CFF02 31.10 —	USE4	27.72	15:0								VOFF<15	÷.							1	0000
Figs 19 Figs	C L	011010	31:16	1	I	I	1	ı	1	I	I	-	1	1	I	I	ı	VOFF<	17:16>	0000
OFFORM 3110 —	0100		15:0								VOFF<15	<u>*1</u> :							I	0000
Comparison Com	CEEC	OFFO13		-	Ι	1	Ι	I	1	-	Ι	-	1	1	1	Ι	Ι	VOFF<	17:16>	0000
OFFIGH 31156 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 —	000										VOFF<15	:1>							Ι	0000
Control Cont	CHA		31:16	1	Ι	Ι	I	I	Ι	-	Ι	Ι	1	Ι	Ι	Ι	Ι	VOFF<	17:16>	0000
OFFIGE STATE INTO THE BLANK STAT	0.00		15:0								VOFF<15	<u>*1</u> :							I	0000
Fig. Fig.	7 1 2 0			1	I	I	I	ı	I	I	I	1	1		Ι	I	ı	VOFF<	17:16>	0000
OFFORM \$1.10 —	420	OTT 045									VOFF<15	7.							1	0000
Fig. Fig.	L	011046	31:16	I	I	I	I	ı	1	I	I	1	1	I	Ι	Ι	I	VOFF<	17:16>	0000
OFFORM 1516	0.27.8	OFF046	15:0								VOFF<15	7.							1	0000
150 150	L	011011	31:16	1	I	I	I	ı	I	I	I	1	1		Ι	I	ı	VOFF<	17:16>	0000
11-10 11-1) L		15:0								VOFF<15	<u>*</u>							I	0000
OFFICIAL 150 OFFICIAL O	0		31:16	1	I	I	I	ı	I	I	I	1	1		Ι	I	ı	VOFF<	17:16>	0000
OFFORM 31:16 —	0000		15:0								VOFF<15	7.							1	0000
OFFORS 15.0 OFFORS 15.	7000		31:16	1	I	I	I	ı	I	I	I	1	1		Ι	I	ı	VOFF<	17:16>	0000
OFFOR 31:16 — DeF471769- — — —	†000	011048	15:0								VOFF<15	:1>							1	0000
15.0 15.0	8090	OFFOR	31:16	I	1	I	Ι	I	1	1	Ι	1	1	1	1	Ι	ı	VOFF<	17:16>	0000
31.16	2000	01 - 039	15:0								VOFF<15	:1>					•		1	0000
150 Compared to the control of the following late of the order of the following late	060	OFF051	31:16	ı	I	1	1	I	I	1	I	·	1		1	I	I	VOFF<	17:16>	0000
OFFORD 31.16 —			15:0								VOFF<15	:1>							1	0000
150 150	0610	OFF052	31:16	1	I	1	1	ı	1	I	I	1	1	1	Ι	I	I	VOFF<	17:16>	0000
11.6	2		15:0								VOFF<15	:1>							1	0000
15.0 16.0	0614	OFF053	31:16	I	I	I	I	I	I	1	I		1	1	1		I	VOFF<	17:16>	0000
OFFO664 15:0 OFFO674		3	15:0								VOFF<15	:1>							1	0000
15:0 15:0	0618	OFF054	31:16	ı	I	I	I	I	I	I	I	-	1	1	1		I	VOFF	17:16>	0000
11-16	3		15:0	•	•				•	•	VOFF<15	:1>	•				•		1	0000
15.0 15.0	0610	OFFOSS		1	I	1	I	1	1	1	1	1	Ι	1	1	1	I	VOFF<	17:16>	0000
OFF DESTRUCTOR 31:16 —		01 1 000		•	•				•	•	VOFF<15	:1>	•				•		1	0000
15.0 15.0	0690	OFFORE	31:16	1	1	Ι	_	1	1	-	1	1	-	_	1	1	-	VOFF<	17:16>	0000
OFF057 All Composition of the OFF x registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 122."CLR, and a solid property of the Order of the	0020										VOFF<15	:1>							I	0000
15.0 15.0	0624	055057	31:16	1	Ι	Ι	Ι	I	1	1	Ι	-	1	-	1	Ι	Ι	VOFF<	17:16>	0000
OFFOGE Accordance OFFOGE Accordance OFFOGE Accordance OFFOGE Accordance OFFOGE Accordance OFFOGE Accordance OFFOGE Accordance OFFOGE Accordance OFFOGE Accordance OFFOGE OFFOGE OFFOGE OCFOGE O	†		15:0								VOFF<15	:1>							I	0000
15.0 CPF 05.0 15.0 CPF 05.1 CPF 05	0000	OFFOE	31:16	ı	I	Ι	I	I	Ι	I	Ι	-	1	I	Ι	1	I	VOFF<	17:16>	0000
OFF059 31:16 —	0000	050110									VOFF<15	:1>							1	0000
15.0	0690	OFFOS	31:16	ı	Ι	I	1	ı	I	I	Ι	1	1	I	1	I	1	VOFF<	17:16>	0000
 x = unknown value on Reset; — = unimplemented, read as '0' All registers in this table with the exception of the OFFx registe and INV Registers' for more information. This hi is only available on devices with a Cronto module 	2000	0.10	15:0								VOFF<15	:1>							-	0000
All registers in this table with the exception of the OFFX register and INV Registers." for more information. This his can waitable on devices with a Cronto module.	Leger		= unknow	vn value or	n Reset; —	= unimplem	nented, read	as '0'. Rese	t values are	shown in he:	xadecimal.	1	1	3	0					į
	Note		ni registers	s in this tat voisters" fo	ole with the	exception o	TINE OFFX R	egisters, nav	e correspon	aing CLK, St	=1, and INV I	egisters at mei	r virtuai addres	ses, pius ons	ets or ux4, u	xs and uxc, r	espectively.	See Section	12.2 CLR	Ä,
		2: ⊥	his hit is o	nlv availab	ale on devic	os with a C	rvnto module													

DS60001361E-page 140

TABL	TABLE 7-3:		RUPT F	INTERRUPT REGISTER MAP (C	ER MAP	(CONT	ONTINUED)											
(;		ə								Bits								s
httual Addi *_r878)	Register Name ⁽¹⁾	Bit Rang	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	teseЯ IIA
000	31	31:16 —	I	I	I	I	1	1	I	Ι	1	1	1	1	1	VOFF<17:16>		0000
0000		15:0							VOFF<15:1>	†							I	0000
7,000	31	31:16 —	I	I	I	I	I	I	I	1	1	I	I	I	I	VOFF<17:16>		0000
		15:0							VOFF<15:1>	-1>							_	0000
0 8590	31	31:16 —	1	I	1	Ι	1	Ι	-	1	1	Ι	1	1	Ι	VOFF<17:16>		0000
		15:0							VOFF<15:1>	-1>								0000
0830	31	31:16 —	1	1	ı	ı	1	_	1	1	1	-	-	1	-	VOFF<17:16>		0000
		15:0							VOFF<15:1>	1>								0000
0640	31	31:16 —	Ι	ı	I	I	1	1	1	I	1	I	1	1	-	VOFF<17:16>		0000
		15:0							VOFF<15:1>	-1>								0000
0644	31	31:16 —	1	I	1	Ι	1	Ι	-	1	1	Ι	1	Ι	Ι	VOFF<17:16>		0000
		15:0							VOFF<15:1>	-1>								0000
0648	31	31:16 —	Ι	ı	ı	ı	1	1	1	I	1	-	-	1	-	VOFF<17:16>		0000
		15:0							VOFF<15:1>	1>								0000
0840	31	31:16 —	1	1	1	1	1	1	1	1	1	1	1	1	1	VOFF<17:16>		0000
		15:0							VOFF<15:1>	-1>								0000
0650	OFFOR8	31:16 —	1	1	I	I	1	I	1	I	1	Ι	1	Ι	I	VOFF<17:16>		0000
		15:0				•			VOFF<15:1>	4			٠					0000
0654 O	OFF069	31:16 —	1	I	I	I	1	1	1	I	I	1	1	1	1	VOFF<17:16>		0000
		15:0			•	•	-	-	VOFF<15:1>	~	=		•	•	•			0000
0658	OFF070	31:16 —	I	I	I	I	I	I	1	I	I	1	1	I	I	VOFF<17:16>		0000
		15:0				•	-	-	VOFF<15:1>	<u></u>	-		-	}	•			0000
0650	OFF071	31:16 —	I	I	1	I	I	ı	I	1	I	I	1	I	I	VOFF<17:16>		0000
		15:0				•			VOFF<15:1>	~								0000
0880	OFF072	31:16 —	I	I	ı	I	I	1	I	Ι	1	1	1	1	1	VOFF<17:16>		0000
		15:0				•			VOFF<15:1>	4			٠					0000
0664	OFF073	31:16 —	1	I	I	I	1	1	1	I	I	1	1	1	1	VOFF<17:16>		0000
		15:0				•	-	-	VOFF<15:1>	<u></u>	-		-	}	•			0000
0668	OFF074	31:16 —	1	1	I	I	1	ı	1	I	1	1	1	I	I	VOFF<17:16>		0000
	_	15:0				•			VOFF<15:1>	~								0000
080	31	31:16 —	1	-	Ι	Ι	1	-	Ι	1	1	1	I	Ι	_	VOFF<17:16>		0000
		15:0							VOFF<15:1>	-1>								0000
0670	31	31:16 —	1	-	I	ı	Ι	I	-	1	1	1	Ι	Ι	Ι	VOFF<17:16>		0000
		15:0							VOFF<15:1>	-1>								0000
0674	31	31:16 —	1	1	I	I	1	1	I	1	1	1	I	ı	1	VOFF<17:16>		0000
		15:0				•			VOFF<15:1>	4					•			0000
0678	31 OFF078	31:16 —	1	1	I	I	1	1	1	I	1	1	I	1	1	VOFF<17:16>		0000
		15:0							VOFF<15:1>									0000
Legend: Note ,	<u></u>	x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET,	on Reset; —	- = unimpleme exception of	ented, read at the OFFx re	as '0'. Reset gisters, hav∈)'. Reset values are shown in hexadecimal.ers, have corresponding CLR, SET, and INN	hown in hex ng CLR, SE	adecimal. T, and INV r€	gisters at their	virtual address	es, plus offse	ts of 0x4, 0x	3 and 0xC, re	espectively. S	See Section	12.2 "CLR,	SET,
	ano	1 INV Registers	" for more infi	ormation.														

© 2015-2017 Microchip Technology Inc.

All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

This bit is only available on devices with a Crypto module.

State Column State Sta	OFFORD 31/15 30/14 29/13 28/12 27 OFFORD 31:16 — — — — OFFORD <t< th=""><th>TABLE</th><th>) -</th><th>?</th><th>O) ARM PERIOD REGIONER MAP (O</th><th>-</th><th></th><th>;</th><th></th><th>•</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	TABLE) -	?	O) ARM PERIOD REGIONER MAP (O	-		;		•											
1400 1400	OFFORD 31:16	ress ;)											Bits								s
17.00 17.0	OFFORD 31:16 —	Virtual Addı 1818)			31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	təsəЯ IIA
1	OFFORD 31:16 —	01			1	1	I	I	I	1	1	I	1	I	1	I	I	I	VOFF<	17:16>	0000
OFF OR PARTS STITE —	OFF080 31:16 —	7/90										VOFF<1	5:1>							1	0000
Fig. Control	OFFOR4 15.0 OFFOR4 31.16 — — — OFFOR4 15.0 — — — — OFFOR4 15.0 — — — — — OFFOR4 15.0 —	000				1	1	I	I	I	I	I	1	1	I	I	I	I	VOFF<	17:16>	0000
OFFORM 311-6 —	OFFORA 31:16 —	0000								1		VOFF<1	5:1>							ı	0000
The color of the	OFFORE TOTAL OFFORE T	7000	,00	31:16	Ι	1	1	ı	I	I	I	I	1	1	1	I	I	I	VOFF<	17:16>	0000
OFFIGE 31116 — — — — — — OPEFICITION OFFIGE 31116 —	OFFORS 31:16 —	0004	01-10	15:0						1		VOFF<1	5:1>							ı	000
Charge 150 Char	OFFOR3 15.0 OFFOR3 31.16 —	0000			1	I	1	ı	I	I	I	I	1	1	1	I	I	I	VOFF<	17:16>	0000
OFFIGE 311-6 —	OFFOR3 31:16 —	0088										VOFF<1	5:1>							I	0000
VOPE 150 VOPE 151 PE 151 VOPE 151 VOPE 151 VOPE 151 VOPE 151 VOPE 151 VOPE 151 VOPE 151 VOPE 151 VOPE 151 VOPE 1	OFFORA 15.0 OFFORA 31.16 —	000			Ι	1	1	ı	I	I	I	I	1	1	1	I	I	I	VOFF<	17:16>	0000
OFFORM 31.16 —	OFFORA 31:16 —	2890								1		VOFF<1	5:1>							ı	0000
150 150	OFFORE 15.0 OFFORE 31.16 —	000			I	I	I	ı	I	I	I	I	1	I	1	I	I	I	VOFF<	17:16>	0000
OFFORMS 31:16 — <th< td=""><td>OFFORB 31:16 —</td><td>0090</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>VOFF<1</td><td>5:1></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>0000</td></th<>	OFFORB 31:16 —	0090									1	VOFF<1	5:1>							1	0000
150 150	OFFORM 31:16 —	0804			Ι	Ι	Ι	I	Ι	I	1	1	-	1	-	1	I	I	VOFF<	17:16>	0000
OFFORMS 3116 —	OFFORB 31:16 —	0034										VOFF<1	5:1>							1	0000
1.00 150	OFFORD 15.0 OFFORS 31.16 —	0000				I	-	I	Ι	Ι	1	I	Ι	I	1	I	I	I	VOFF<	17:16>	0000
11-6 - - - - - - - - -	OFF088 31:16 —	0600										VOFF<1	5:1>							1	0000
150 150	OFFORB 45.0 OFFORB 31.16 —	090			1	I	I	ı	1	l	1	_	_		1	1	I	I	VOFF<	17:16>	000
11-6 12-6	OFF088 31:16 —											VOFF<1	5:1>							I	0000
150 150	OFFORD 15:0 —	0 4 90				Ι	Ι	I	Ι	I	1	1		1	-	1	I	I	VOFF<	17:16>	0000
31.16	OFF089 31:16 —			15:0								VOFF<1	5:1>							1	0000
15.0 Corporation Corpora	OFF090 31:16 —	16 A 4		31:16		1	I	1	1	I	I	I	1	1	1	I	I	1	VOFF<	17:16>	000
11-16 - - - - - - - - -	OFF090 31:16 —	5		15:0						-		VOFF<1	5:1>							I	000
15.0 15.0	OFF091 13:16 — — — — — — — — — — — — — — — — — — —	6A8		31:16	Ι	I	I	I	Ι	I	I	I	I	I	1	I	I	I	VOFF	17:16>	000
31:16	OFF091 13:16 — — — — — — — — — — — — — — — — — — —	2		15:0								VOFF<1	5:1>							I	0000
15.0 1	OFF092 11:16 — — — — — — — — — — — — — — — — — — —	6AC	OFF09.		I	I	Ι	I	Ι	I	1	I	I	I	I	I	I	I	VOFF<	17:16>	000
11-16	OFF092 13:16 — — — — — — — — — — — — — — — — — — —	2) -									VOFF<1	5:1>							I	000
15.0 15.0	OFF093 31:16 —	6B0	OFFOR		1	I	1	I	I	1	I	I	1	I	I	1	I	I	VOFF	17:16>	000
OFFOR93 31:16 — <th< td=""><td>OFF093 31:16 </td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td>VOFF<1</td><td>5:1></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>000</td></th<>	OFF093 31:16		-							•		VOFF<1	5:1>							1	000
15.0 15.0	OFF094 31:16 — — — — — — — — — — — — — — — — — — —	6B4			1	1	1	1	I	1	1	1	1	1	1	I	1	I	VOFF<	17:16>	000
OFF094 31:16 —	OFF094 31:16 — — — — — — — — — — — — — — — — — — —	2								•		VOFF<1	5:1>							1	000
15.0 15.0	15:0	800	OFFOR		-	-	1	1	-	1	1	_	1	I	-	1	Ι	1	VOFF<	17:16>	000
OFF 150 According to the problem of the p	OFF095 31:16 — — — — — — — — — — — — — — — — — — —	ODO	60 1 10									VOFF<1	5:1>							I	0000
15.0 15.0	15.0 21.16	0			I	I	1	I	Ι	Ι	I		_	I	1	I	1	I	VOFF<	17:16>	0000
OFF096 31:16 — — — — — — — — — — VOFF — <	OFF096 31:16 — — — — — — — — — — — — — — — — — — —	כב										VOFF<1	5:1>					•		1	0000
15:0	15:0	0	00110		Ι	I	1	I	Ι	Ι	I	_	_	I	I	I	I	I	VOFF<	17:16>	0000
OFF097 31:16 — — — — — — — — — — — — — — — — — — —	OFF097 31:16 — — — — — — — — — — — — — — — — — — —		50110									VOFF<1	5:1>							Ι	0000
Using 15:0	15:0 16:0 16:0 16:0 17:0 18:0 19:0 19:0 10:0	7090	OEE00.		-	1	Ι	I	Ι	Ι	1		_	1	_	1	I	I	VOFF<	17:16>	0000
 x = unknown value on Reset; — = unimplemented, read as '0' All registers in this table with the exception of the OFFx register and INV Registers' for more information 	 x = unknown value on Reset; — = unimplemented, read as '0' All registers in this table with the exception of the OFFx register and INV Registers' for more information. 	500	60 1 10									VOFF<1	5:1>							Ι	0000
and INV Registers" for more information.	and INV Registers" for more information.	Lege	Þ	x = unki	sters in this ta	on Reset; – able with the	- = unimplemexception of	ented, read the OFFx re	as '0'. Rese	t values are	shown in he ling CLR, SE	xadecimal.	egisters at thei	ir virtual addres	ses, plus offs	ets of 0x4, 0.	x8 and 0xC, r	espectively.	See Section	12.2 "CLR	SET
				and INV	/ Registers	for more int	formation.			<u> </u>											

DS60001361E-page 142

st	17/1 16/0 Rese		- VOFF<17:16> 00000				VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16>	VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16>	VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16>	VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16>	VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16>	VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16>	VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16>	VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16>	VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16>	VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<	VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16>	VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<	VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<	VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<	VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<	VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<	VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<	VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<	VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<17:16> VOFF<	VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716>	VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716>	VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776>	VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716>	VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776>	VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776>	VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776>	VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF47716> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776>	VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF47716>	VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716> VOFF47716>	VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776>	VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776>	VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776> VOFF4776>
F	19/3 18/2		1	1			1 1 1		1 1 1 1	1 1 1 1																												
	21/5 20/4			 	1 1						++++	+ $+$ $+$ $+$ $+$ $+$	+HHHHH	+HHHHH		+ $+$ $+$ $+$ $+$ $+$																						
	23/7 22/6	1			1			1 1	1 1 1																													
_	24/8	1	LLC	VOFF<15:1>	VOFF<15:1>	VOFF<15:1> VOFF<15:1>	VOFF<15:1> VOFF<15:1>	VOFF<(5:1>																														
	26/10 25/9	1			1	1	1 1	1 1	1 1 1							HHHHHH	HHHHHHH	HHHHHHH							HHHHHHHHHHH													
	28/12 27/11	1			1	1	1 1								HHHHHH	HHHHHH	HHHHHHH	HHHHHHH	HHHHHHHH	HHHHHHHH	HHHHHHHHH	HHHHHHHHH	HHHHHHHHHH	HHHHHHHHHH	HHHHHHHHHHH	HHHHHHHHHH			HHHHHHHHHHHH	HHHHHHHHHHHHH	HHHHHHHHHHHHH	HHHHHHHHHHHHHH	HHHHHHHHHHHHHH					
	29/13	-			1	_							HHHHH			HHHHHH																						
	31/15 30/14	1			1	-	1 1		1 1 1							HHHHHH																						
) I	FBF81 Regist Name ⁽ Bit Ran	31:16		15:0	000	OFF099	OFF099	OFF099 OFF100	OFF099 OFF100	OFF100 OFF101	OFF100 OFF101	OFF100 OFF101 OFF102	OFF100 OFF101 OFF102 OFF103	OFF099 OFF101 OFF102 OFF103	OFF100 OFF101 OFF102 OFF103	OFF100 OFF101 OFF103 OFF103	OFF100 OFF100 OFF101 OFF102 OFF103	OFF100 OFF101 OFF102 OFF103 OFF104	OFF100 OFF101 OFF102 OFF103 OFF104 OFF105	OFF100 OFF101 OFF102 OFF103 OFF104 OFF106	OFF100 OFF101 OFF102 OFF103 OFF104 OFF106 OFF106	OFF100 OFF101 OFF102 OFF104 OFF106 OFF106 OFF106	OFF100 OFF101 OFF102 OFF103 OFF104 OFF106 OFF106 OFF106	OFF100 OFF101 OFF102 OFF104 OFF106 OFF106 OFF106	OFF100 OFF101 OFF102 OFF103 OFF105 OFF106 OFF106 OFF100	OFF100 OFF101 OFF102 OFF103 OFF106 OFF106 OFF106 OFF100	OFF100 OFF101 OFF102 OFF103 OFF106 OFF106 OFF106 OFF110	OFF100 OFF101 OFF102 OFF103 OFF106 OFF106 OFF106 OFF110 OFF110	OFF100 OFF101 OFF102 OFF103 OFF106 OFF106 OFF100 OFF1107 OFF111	OFF100 OFF101 OFF102 OFF103 OFF104 OFF106 OFF106 OFF1107 OFF111	OFF100 OFF101 OFF102 OFF103 OFF106 OFF106 OFF110 OFF111	OFF100 OFF101 OFF102 OFF103 OFF104 OFF106 OFF1107 OFF1107 OFF111	OFF100 OFF101 OFF102 OFF103 OFF104 OFF106 OFF110 OFF111 OFF111	OFF100 OFF101 OFF102 OFF103 OFF104 OFF106 OFF1107 OFF1110 OFF1111	OFF100 OFF101 OFF103 OFF103 OFF104 OFF106 OFF110 OFF111 OFF1113	OFF103 OFF104 OFF103 OFF104 OFF106 OFF107 OFF110 OFF111 OFF111	OFF100 OFF101 OFF103 OFF104 OFF106 OFF106 OFF110 OFF111 OFF111	OFF109 OFF100 OFF101 OFF103 OFF104 OFF109 OFF111 OFF111 OFF111 OFF1115 OFF1115

All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

This bit is only available on devices with a Crypto module.

	Registet Range Name 31/15 OFF118 31/16 OFF120 31/16 OFF121 31/16 15:0 - 15:0 - 15:0 - 15:0 - 15:0 - 15:0 - 15:0 - 0FF121 31:16 15:0 - 0FF122 31:16 31:16 - 0FF125 31:16 15:0 - 0FF128 31:16 15:0 - 0FF128 31:16 15:0 - 0FF128 31:16 15:0 - 0FF129 31:16 15:0 - 0FF129 31:16 15:0 - 0FF139 31:16 15:0 - 15:0 -		28/12	27/11				Bits								L
State Stat	Registre 31/16 OFF118 31/16 OFF119 31/16 OFF120 31/16 OFF121 31/16 OFF122 31/16 OFF121 31/16 OFF122 31/16 OFF123 31/16 OFF124 45/0 OFF125 31/16 OFF126 31/16 OFF127 31/16 OFF128 31/16 31/16 OFF129 31/16 OFF129 31/16 OFF129 31/16 OFF130 31/16 OFF131 45/0 OFF131 45/0		28/12	27/11												s
STATE STAT	OFF118 31:16 — OFF129 31:16 — OFF120 45:0 — OFF121 45:0 — OFF122 45:0 — OFF123 45:0 — OFF124 41:16 — OFF125 45:0 — OFF126 45:0 — OFF127 45:0 — OFF128 45:0 — OFF129 45:0 — OFF130 45:0 — OFF131 45:0 — OFF131 45:0 — OFF131 45:0 —				26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	1//1	16/0	JeseЯ IIA
The control of the	OFF119 15.0 OFF120 31.16 — OFF120 15.0 — OFF121 15.0 — OFF122 15.0 — OFF123 31.16 — OFF124 31.16 — OFF125 31.16 — OFF126 15.0 — OFF127 15.0 — OFF128 15.0 — OFF129 15.0 — OFF130 15.0 — OFF131 15.0 — OFF131 15.0 —			1	1	I	1	1	1	1	1	I	I	VOFF.	17:16>	0000
	OFF119 31:16 — 15:0 — — 15:0 — — OFF120 31:16 — 15:0 — — OFF122 15:0 — OFF123 31:16 — OFF124 15:0 — OFF125 15:0 — OFF126 15:0 — OFF127 15:0 — OFF128 15:0 — OFF129 15:0 — OFF129 15:0 — OFF129 15:0 — OFF129 15:0 — 15:0 — — OFF130 15:0 — 15:0 — — OFF131 15:0 — 15:0 — —						VOFF<15	-1 :							I	0000
Note Note	OFF120 15:0 OFF121 15:0 OFF122 15:0 OFF122 15:0 OFF124 31:16 —			ı	ı	I	ı	1		I	1	I	I	VOFF<	17:16>	0000
OFF 70 3116 Image: Registry of the control of the contro	OFF120 31:16 —						VOFF<15	-1 :							I	0000
Note Note	OFF121 15:0 OFF122 15:0 OFF122 15:0 OFF123 17:0 OFF124 31:16 —		1 1 1	I	I	I	1	I	1		Ι	I	Ι	VOFF	17:16>	0000
	OFF121 31:16 — 15:0 — — OFF122 15:0 — 15:0 — — 0FF124 15:0 — 0FF125 31:16 — 15:0 — — 0FF126 15:0 — 0FF127 15:0 — 0FF128 15:0 — 0FF129 15:0 — 0FF130 15:0 — 0FF131 15:0 — 0FF131 15:0 — 0FF131 15:0 — 0FF131 15:0 — 15:0 — —						VOFF<15	:1>							_	0000
The control of the	OFF122 15.0			1	I	I	1	I	Ι	-	Ι	I	Ι	VOFF	17:16>	0000
OFFICASIONIS OFFICASIONIS<	OFF122 15:0		1 1 1				VOFF<15	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 							I	0000
Note of the color of the colo	OFF123 11:16 —		1 1	I	I	I	1	1	Ι	I	I	I	Ι	VOFF	17:16>	0000
	OFF123 31:16 —		1 1				VOFF<15	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 							ı	0000
Note of the control	OFF124 15:0 OFF125 31:16 — 15:0 OFF126 15:0 OFF127 31:16 — 15:0 OFF128 31:16 — 15:0 OFF129 31:16 — 15:0 OFF129 31:16 — 15:0 OFF129 31:16 — 15:0 OFF139 31:16 — 15:0 OFF1		1	I	ı	I	I	1	I	I	1	I	I	VOFF<	17:16>	0000
OFF 124 Si 116 Inches de la composition of the compo	OFF124 31:16 — 1		1				VOFF<15	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 							I	0000
NOFF-CIST-19 150 NOFF-CIST-19 NOFF-CIST-19 NOFF-CIST-19 NOFF-CIST-19 NOFF-CIST-19 NOFF-CIST-19 NOFF-CIST-19 NOFF-CIST-19 NO	OFF125 31:16 — 15:0			I	ı	I	I	1	I	I	1	I	I	VOFF<	17:16>	0000
	OFF125 31:16 — 1	1 1					VOFF<15	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 							ı	0000
Note of the control	OFF126 15:0 OFF127 31:16 —	ı	ı	I	I	I	1	I	1		Ι	I	Ι	VOFF	17:16>	0000
	OFF126 45:0	1					VOFF<15	:1>							1	0000
Note 15.0 Note 15.0 Note 15.1 Note	OFF127 41:16 —		ı	Ι	I	I	1	1	1	-	1	I	Ι	VOFF	17:16>	0000
OFF 127 31:16 — <td< td=""><td>OFF127 31:16 — 15:0 OFF128 31:16 — 15:0 OFF129 31:16 — 15:0 OFF130 31:16 — 15:0 OFF131 31:16 — 15:0</td><td>•</td><td></td><td></td><td></td><td></td><td>VOFF<15</td><td>:1></td><td></td><td></td><td></td><td></td><td></td><td></td><td>I</td><td>0000</td></td<>	OFF127 31:16 — 15:0 OFF128 31:16 — 15:0 OFF129 31:16 — 15:0 OFF130 31:16 — 15:0 OFF131 31:16 — 15:0	•					VOFF<15	:1>							I	0000
150 150	OFF128 31:16 —	-	-	I	1	1	Ι	·	1	1	Ι	I	Ι	VOFF	17:16>	0000
11-16 11-1	OFF128 31:16 — 15:0 OFF129 31:16 — 15:0 OFF139 31:16 — 15:0 OFF130 31:16 — 15:0 OFF131 31:16 OFF131 31:16 OF						VOFF<15	:1>							Ι	0000
150 CPF 126 Table with the exception of the OFF x registers in this label with the exception of the OFF x registers in the x registers in this label with the exception of the OFF x registers in this label with the exception of the OFF x registers i	OFF129 OFF130 OFF131	1	I	I	1	I	1	1	1	1	1	I	1	VOFF<	17:16>	0000
OFF 129 31:16 — <td< td=""><td>OFF129 OFF130</td><td> = </td><td></td><td></td><td></td><td></td><td>VOFF<15</td><td>\</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>0000</td></td<>	OFF129 OFF130	=					VOFF<15	\							1	0000
15.0 1	OFF130	I	ı	1	1	I	I	1	1	I	I	I	I	VOFF	17:16>	0000
OFF 130 31:16	OFF130	=					VOFF<15	<u>-;-</u>							1	0000
15.0 15.0	OFF 131	1	ı	1	1	ı	1	1	1	Ι	I	I	1	VOFF.	17:16>	0000
OFF 1316 — — — — — — — — — — — OFF 47716> OFF 132 31.16 —<	OFF131		_				VOFF<15								1	0000
15:0 15:0 15:0 15:0 15:0 15:0 15:0 15:0		I	I	I	1	I	1	1	1	1	1	I		VOFF	17:16>	0000
OFF 132 31:16 — <th< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td>VOFF<15</td><td>\</td><td></td><td></td><td></td><td></td><td></td><td></td><td>I</td><td>0000</td></th<>			-				VOFF<15	\							I	0000
15.0 CFF 15.1 CFF 15.	OFF132	I	ı	I	1	I	1	I	1	1	1	I	I	VOFF	17:16>	0000
OFF133 31:16 —	-	=					VOFF<15	^ :							I	0000
15.0 15.0	OFF133	I	I	1	1	I	I	I	I	I	1	I		VOFF.	17:16>	0000
OFF134 41:16 — — — — — — — VOFF< <fr> 15:0 — <</fr>	- 133						VOFF<15	-1 -							I	0000
VoPF<15:19 VoPF<15:19 VoPF<15:19 VoPF<17:16 VoP	055774	ı	ı	I	I	I	Ι	I	1	1	I	I	I	VOFF	17:16>	0000
OFF135 31:16 —	45. 17.						VOFF<15	\							1	0000
VOFF<15:19	011435	1	ı	I	ı	I	I	1	Ι	I	1	I	I	VOFF<	17:16>	0000
OFF136 — <td>651 770</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>VOFF<15</td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>I</td> <td>0000</td>	651 770						VOFF<15	<u> </u>							I	0000
15:0 15:0 15:0 15:0 15:0 15:0 15:0 15:0 15:0 15:0 15:0 15:0 15:0 15:0 15:0 15:0 15:0 15:0 15:0 15:0 15:0 15:0	OEE138	1	1	1	1	I	-	I	-	-	-	Ι	Ι	VOFF<	17:16>	0000
 x = unknown value on Reset; — = unimplemented, read as '0' All registers in this table with the exception of the OFFx registe 	2						VOFF<15	: 1 >							I	0000
 All registers in this table with the exception of the OFFx registe 	:pu	t; — = unimpleme	nted, read as	s '0'. Reset	values are si	vown in hex	xadecimal.		:			:				
	÷	i the exception of t	he OFFx reg	isters, have	correspondi	ng CLR, SE	ET, and INV r	egisters at thei	r virtual addres	ses, plus offs	ets of 0x4, 0.	x8 and 0xC, r	respectively.	See Section	12.2 "CLR	SET

DS60001361E-page 144

All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

This bit is only available on devices with a Crypto module.

OFF 156 31/15 30/14 29/13 28/12 27 OFF 156 15.0 — — — — OFF 157 15.0 — — — — OFF 168 15.0 — — — — — OFF 169 15.0 — — — — — — OFF 169 15.0 — — — — — — — OFF 169 15.0 —		ge gar a ga	TAE	TABLE 7-3:		JTERR	UPT R	EGISTE	INTERRUPT REGISTER MAP (C		ONTINUED)											
Part Part	14 14 14 14 14 14 14 14	Because Registre Registre 3115 3014 2913 2812 27 OFF 156 15.0 ————————————————————————————————————	:) LGSS		ə									Bits								s
Fire Fire	17.16 17.1	OFF 156 31:16 — <th< th=""><th>ibbA lsutriV # 1878)</th><th></th><th></th><th>1/15</th><th>30/14</th><th>29/13</th><th>28/12</th><th>27/11</th><th>26/10</th><th>25/9</th><th>24/8</th><th>23/7</th><th>22/6</th><th>21/5</th><th>20/4</th><th>19/3</th><th>18/2</th><th>1//1</th><th>16/0</th><th>feseЯ IIA</th></th<>	ibbA lsutriV # 1878)			1/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	1//1	16/0	feseЯ IIA
1.10 1.10	Part 150	OFF 150 15.0 ————————————————————————————————————		01110		1	1	1	I	1	1	1	1	1	1	1	I	1	1	VOFF<	17:16>	0000
OFF 10 Fig 11 Sig 12 In 1	OFF SIST 31:10 — <t< td=""><td>OFF167 31:16 —</td><td>0/ BC</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>VOFF<15</td><td>:+</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>0000</td></t<>	OFF167 31:16 —	0/ BC										VOFF<15	:+							1	0000
11 12 12 13 14 15 15 15 15 15 15 15	Fig. String Control	OFF 15.0 15.0 OFF 168 31.16 — — — — — — — — — — — — — — — — — — —	040	011457	31:16	1	ı	I	I	I	I	I	I	1	1	1	ı	ı	1	VOFF<	17:16>	0000
OFF NG STAGE STAGE STAGE STAGE STAGE STAGE STAGE STA	OFF (5) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	OFF 158 31:16 — <th< td=""><td>0/B4</td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>VOFF<15</td><td>:1></td><td></td><td></td><td></td><td></td><td></td><td></td><td>I</td><td>0000</td></th<>	0/B4		_								VOFF<15	:1>							I	0000
1	Note of the color of the colo	OFF150 15.0 OFF161 31.16 —	0400	055150		1	Ι	I	Ι	Ι	1	I	1	1	I	Ι	_	I	I	VOFF<	17:16>	0000
OFF 105 1316 OFF 105	OFF 05 13 15 0 OFF 05	OFF159 31:16 —	U/ DC	OFF 130									VOFF<15	:1>							1	0000
11.0 11.0 11.0	Control 150 Control 15	OFF 160 15.0 OFF 161 31.16 —	0420	055150		1	I	Ι	Ι	Ι	Ι	Ι	-	1	I	Ι	_	ı	Ι	VOFF<	17:16>	0000
OFF NOTE ATTRIBLE OFF NOTE ATTRIBLE	OFF OF IST OF THE STATE AND STATE	OFF 160 31:16 — <th< td=""><td>0/0</td><td>65 110</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>VOFF<15</td><td><u>.</u>+:</td><td></td><td></td><td></td><td></td><td></td><td></td><td>I</td><td>0000</td></th<>	0/0	65 110									VOFF<15	<u>.</u> +:							I	0000
Note of the control	Fig. 1.15	OFF161 15.0 OFF162 31.16 —	0.02	011460		1	I	I	I	Ι	Ι	Ι	-	1	I	I	_	ı	I	VOFF<	17:16>	0000
OFF NIT L L L L L L L L Defending of the control of the	OFF (6) 3116 —	OFF 161 31:16 — <th< td=""><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>VOFF<15</td><td>:1></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>0000</td></th<>	3										VOFF<15	:1>							1	0000
Fig. Fig.	11-56 11-5	OFF162 15.0 OFF163 31.16 —	700	011464		1	ı	I	I	I	I	I	I	1	1	1	ı	ı	ı	VOFF<	17:16>	0000
OFF IGN STATE A <th< td=""><td>OFF 102 Incl. OFF 102</td><td>OFF 162 31:16 — <th< td=""><td>7</td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>VOFF<15</td><td>÷:</td><td></td><td></td><td></td><td></td><td></td><td></td><td>I</td><td>0000</td></th<></td></th<>	OFF 102 Incl. OFF 102	OFF 162 31:16 — <th< td=""><td>7</td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>VOFF<15</td><td>÷:</td><td></td><td></td><td></td><td></td><td></td><td></td><td>I</td><td>0000</td></th<>	7		_								VOFF<15	÷:							I	0000
150 150	110 120	OFF 163 15.0 OFF 163 31.16 —	200	011460		1	ı	I	I	I	I	I	I	1	1	1	ı	ı	ı	VOFF<	17:16>	0000
OFF 163 311.6 — <th< td=""><td>OFF 163 15116 STITE CPC F CATA STATE <</td><td>OFF 163 31:16 — <th< td=""><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>VOFF<15</td><td><u>.</u>+:</td><td></td><td></td><td></td><td></td><td></td><td></td><td>I</td><td>0000</td></th<></td></th<>	OFF 163 15116 STITE CPC F CATA STATE <	OFF 163 31:16 — <th< td=""><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>VOFF<15</td><td><u>.</u>+:</td><td></td><td></td><td></td><td></td><td></td><td></td><td>I</td><td>0000</td></th<>	2										VOFF<15	<u>.</u> +:							I	0000
Fig Fig	150 150	OFF164 45.0 OFF165 31.16 —	7720	055162	31:16	1	Ι	I	Ι	Ι	1	I	1	1	I	Ι	_	I	I	VOFF<	17:16>	0000
OFF 164 31.16 — <th< td=""><td>OFF 104 13116 1 <</td><td>OFF 164 31:16 — <th< td=""><td>), C.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>VOFF<15</td><td>:1></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>0000</td></th<></td></th<>	OFF 104 13116 1 <	OFF 164 31:16 — <th< td=""><td>), C.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>VOFF<15</td><td>:1></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>0000</td></th<>), C.										VOFF<15	:1>							1	0000
1 1 1 1 1 1 1 1 1 1	150 150	OFF 165 31:16 — <th< td=""><td>0.00</td><td>055164</td><td></td><td>1</td><td>Ι</td><td>I</td><td>Ι</td><td>Ι</td><td>1</td><td>I</td><td>1</td><td>1</td><td>I</td><td>Ι</td><td>_</td><td>I</td><td>I</td><td>VOFF<</td><td>17:16></td><td>0000</td></th<>	0.00	055164		1	Ι	I	Ι	Ι	1	I	1	1	I	Ι	_	I	I	VOFF<	17:16>	0000
OFF 165 31:16 — <th< td=""><td>OFF 166 31.16 — <th< td=""><td>OFF 165 31:16 — <td< td=""><td>7</td><td>01 104</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>VOFF<15</td><td>:1></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>0000</td></td<></td></th<></td></th<>	OFF 166 31.16 — <th< td=""><td>OFF 165 31:16 — <td< td=""><td>7</td><td>01 104</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>VOFF<15</td><td>:1></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>0000</td></td<></td></th<>	OFF 165 31:16 — <td< td=""><td>7</td><td>01 104</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>VOFF<15</td><td>:1></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>0000</td></td<>	7	01 104									VOFF<15	:1>							1	0000
150 150	15.0 15.0	OFF 165 31:16 — <th< td=""><td>777</td><td>OFF165</td><td>31:16</td><td>1</td><td>Ι</td><td>1</td><td>I</td><td>1</td><td>1</td><td>I</td><td>1</td><td></td><td>1</td><td>1</td><td>-</td><td>ı</td><td>ı</td><td>VOFF<</td><td>17:16></td><td>0000</td></th<>	777	OFF165	31:16	1	Ι	1	I	1	1	I	1		1	1	-	ı	ı	VOFF<	17:16>	0000
OFF 166 31.16 — <th< td=""><td>OFF 16B 31:16 — <th< td=""><td>OFF 166 31:16 — <th< td=""><td>7,0</td><td>OFF 103</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>VOFF<15</td><td>:1></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>0000</td></th<></td></th<></td></th<>	OFF 16B 31:16 — <th< td=""><td>OFF 166 31:16 — <th< td=""><td>7,0</td><td>OFF 103</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>VOFF<15</td><td>:1></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>0000</td></th<></td></th<>	OFF 166 31:16 — <th< td=""><td>7,0</td><td>OFF 103</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>VOFF<15</td><td>:1></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>0000</td></th<>	7,0	OFF 103									VOFF<15	:1>							1	0000
15.0 15.0	15.0 15.0 15.0	15.0 15.0 15.0	מטענ	OFF 166	31:16	1	1	I	I	I	1	1	1	1	1	1	1	1	1	VOFF<	17:16>	0000
11-16 - - - - - - - - -	OFF 167 1.16 - - - - - - VOFF < 17.16> OFF 163 11.16 - <	OFF167 31:16 —		-	15:0							•	VOFF<15	+	•			•	•		1	0000
Strict S	Size Size	OFF 163 15.0 OFF 168 31.16 —	700	OEE167	31:16	1	Ι	Ι	Ι	Ι	Ι	Ι	Ι	1	1	1	-	_	_	VOFF<	17:16>	0000
11-16 11-1	Strict S	OFF 168 31:16 — <th< td=""><td>7</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>VOFF<15</td><td>:1></td><td></td><td></td><td></td><td>•</td><td>•</td><td></td><td>1</td><td>0000</td></th<>	7										VOFF<15	:1>				•	•		1	0000
15.0 15.0	15.0 Colored 15.0	15.0 15.0	7F0	OFF 168		1	1	I	I	I	I	I	ı	I	1	1	1	1	1	VOFF<	17:16>	0000
OFF 169 31:16 — <th< td=""><td> OFF 169 15.0 </td><td>OFF169 31:16 —</td><td>3</td><td>010</td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td>•</td><td>VOFF<15</td><td>+</td><td>•</td><td></td><td></td><td>•</td><td>•</td><td></td><td>1</td><td>0000</td></th<>	OFF 169 15.0	OFF169 31:16 —	3	010								•	VOFF<15	+	•			•	•		1	0000
15.0 15.0	15.0 15.0	15:0	77E4	OFF 169		1	1	I	I	1	1	1	1	1	1	I	1	1	1	VOFF<	17:16>	0000
11-16 15-0	OFF 170 31.16 — <th< td=""><td>OFF170 31:16 —</td><td>5</td><td>010</td><td></td><td></td><td>٠</td><td></td><td></td><td></td><td></td><td></td><td>VOFF<15</td><td>.</td><td></td><td></td><td></td><td>•</td><td>•</td><td></td><td>I</td><td>0000</td></th<>	OFF170 31:16 —	5	010			٠						VOFF<15	.				•	•		I	0000
15:0	15.0 Comparison Compariso	15:0	07E8	OFF170		1	1	I	1	1	1	1	1	1	1	I	1	1	I	VOFF<	17:16>	0000
OFF 171 311:16 — <t< td=""><td>OFF171 31:16 —</td><td>OFF171 31:16 —</td><td>0/ EC</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>VOFF<15</td><td>:1></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>0000</td></t<>	OFF171 31:16 —	OFF171 31:16 —	0/ EC										VOFF<15	:1>							1	0000
15:0 1	15.0 1	15.0	7750	055171		1	ı	1	1	Ι	Ι	1	1	1	I	1	1	1	1	VOFF<	17:16>	0000
11-16 Colored Size	OFF172 31:16 — — — — — — — VOFF< 15:0 — — — — — — — VOFF —	OFF172 31:16 —	J1 E C										VOFF<15	:1>							-	0000
15.0 Color 15.0	15.0 1	OFF173 31:16	0.750	055472		1	ı	I	I	I	1	I	I	1	1	-	-	ı	ı	VOFF<	17:16>	0000
11-19 11-1	11:16	OFF173 15.0	0/10										VOFF<15	÷:							I	0000
15.0	15:0	15.0	1	011477		1	ı	I	I	I	I	I	I	1	1	1	ı	ı	ı	VOFF<	17:16>	0000
71.16 —	OFF174 31:16 — — — — — — — — — — — — — — — — — — —	OFF174 31:16 — — — — — — — — — — — — — — — — — — —	7										VOFF<15	. 1>							I	0000
VOFF<15:0 VOFF<15:1> VOFF<15:1> = unimplemented, read as '0'. Reset values are shown in hexadecimal.	VOFF<15:10 Total 15:00 Total	 15.0 15.0 16.10 16.	0750	055174		1	1	-	1	1	1	Ι	-	Ι	I	1	_	I	Ι	VOFF<	17:16>	0000
$_{ m X}$ = unknown value on Reset; — = unimplemented, read as '0'	 x = unknown value on Reset; — = unimplemented, read as '0' All registers in this table with the exception of the OFFx register and INV Registers" for more information. 	 x = unknown value on Reset; — = unimplemented, read as '0' All registers in this table with the exception of the OFFx register and INV Registers" for more information. This bit is only available on devices with a Crypto module. 	0 .	† - - -									VOFF<15	. 1>							I	0000
	All registers in this table with the exception of the OFFx register and INV Registers" for more information.	 All registers in this table with the exception of the OFFx register and INV Registers" for more information. This bit is only available on devices with a Crypto module. 	Lege		< = unknown	ר value on	Reset; —	= unimplem	ented, read	as '0'. Reset	values are	shown in hex	adecimal.									
					and inv Reg	ol suassification		irmation.														

	17/1 16/0 Resetz	•	VOFF<17:16> 0000																																				
	18/2		1					$H \mid H \mid H$	$H \mid H \mid H \mid H$	$H \vdash H \vdash H$	$H \mid H \mid H \mid H \mid H$		\mathbb{H} \mathbb{H} \mathbb{H} \mathbb{H} \mathbb{H}	HHHHHH	H H H H H H H	HHHHHHH	H H H H H H	H H H H H H H	oxdot	oxdot $oxdot$ $oxdot$ $oxdot$ $oxdot$ $oxdot$ $oxdot$ $oxdot$ $oxdot$ $oxdot$ $oxdot$	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	H H H H H H H H H	H H H H H H H H H H H	H H H H H H H H H H	$oxdot H \; H \; H \; H \; H \; H \; H \; H \; H \; H $	$oxdot H \; H \; H \; H \; H \; H \; H \; H \; H \; H$		oxdots	oxdots	oxdots	oxdots	$oldsymbol{+}$	oxdots	$oldsymbol{+}$				
	20/4 19/3		1			1 1				$H \vdash H \vdash H$	HHHHH		HHHHHH	+	+ $+$ $+$ $+$ $+$ $+$	HHHHHHH	+ $+$ $+$ $+$ $+$ $+$ $+$	+ $+$ $+$ $+$ $+$ $+$ $+$	+ + + + + + + + + + + + + + + + + + +	+ $+$ $+$ $+$ $+$ $+$ $+$	+ + + + + + + + + + + + + + + + + + +	$oldsymbol{+}$	+ + + + + + + + + + + + + + + + + + +		+ + + + + + + + + + + + + + + + + + +		$+\!$		#HHHHHHHHHHHHHHHHHHH	#HHHHHHHHHHHHHHHHHHH	$oxdot H \; H \; H \; H \; H \; H \; H \; H \; H \; H $	oxdots	oxdots $oxdots$ oxd						
	21/5																																						
	22/6		1	I	1				1 1 1 1	1 1 1 1	1 1 1 1				1 1 1 1 1 1																								
Bits	24/8 23/7		1	— — — VOFF<15:1>	VOFF<15:1>	— — — — — — — — — — — — — — — — — — —		VOFF<15:1> VOFF<15:1> VOFF<15:1> VOFF<15:1>	VOFF<15:1>																														
	25/9 2		1																																				
	27/11 26/10		1	1	1 1	1 1			1 1 1 1	+ $+$ $+$ $+$	+HHHH	+HHHH	+ $+$ $+$ $+$ $+$	+ $+$ $+$ $+$ $+$ $+$			+ $+$ $+$ $+$ $+$ $+$ $+$														4 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4	4						4
	28/12	1			1	1							HHHHH		HHHHHHH					HHHHHHHHH		H + H + H + H + H + H	${f H} + {f H}$		${f H} {f H}$		${f H} {f H}$				1		1						
	30/14 29/13	1			1													HHHHHHH																					
aßı	31/15	.16 — —		2:0	5:0	5:0 :16 — — 5:0	5:0 :16 — — — 5:0 5:0 — — :16 — — — — :16	5:0 :16 — — — — — — — — — — — — — — — — — — —	1 1 1	1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1 1																								
(4) (1)	PA IsuriV 1878) segen emsM Bit Rai	31:16		15:0		OFF 176	OFF 176	OFF176 OFF177	OFF176 OFF177	OFF176 OFF177 OFF178	OFF176 OFF177 OFF178	OFF176 OFF177 OFF178 OFF179	OFF176 OFF177 OFF178 OFF179	OFF176 OFF177 OFF178 OFF179 OFF180	OFF176 OFF177 OFF179 OFF180 OFF181	OFF176 OFF177 OFF179 OFF180	OFF176 OFF177 OFF179 OFF180	OFF176 OFF177 OFF179 OFF180 OFF181	OFF176 OFF177 OFF178 OFF180 OFF181	OFF176 OFF177 OFF178 OFF181 OFF182	OFF176 OFF177 OFF178 OFF181 OFF183	OFF176 OFF177 OFF178 OFF181 OFF183	OFF177 OFF177 OFF180 OFF181 OFF183 OFF183	OFF176 OFF178 OFF178 OFF181 OFF183 OFF183	OFF177 OFF178 OFF180 OFF181 OFF183 OFF185 OFF186	OFF176 OFF178 OFF178 OFF181 OFF183 OFF185 OFF185	OFF176 OFF178 OFF178 OFF181 OFF183 OFF185 OFF185	OFF176 OFF178 OFF178 OFF181 OFF183 OFF183 OFF185 OFF185	OFF176 OFF177 OFF187 OFF183 OFF188 OFF188 OFF188 OFF188	OFF176 OFF178 OFF178 OFF181 OFF185 OFF185 OFF188	OFF176 OFF178 OFF181 OFF183 OFF185 OFF188 OFF188 OFF188	OFF178 OFF178 OFF178 OFF189 OFF188 OFF188 OFF188 OFF188	OFF173 OFF174 OFF178 OFF187 OFF188 OFF188 OFF188 OFF188	OFF176 OFF177 OFF178 OFF187 OFF187 OFF187 OFF188 OFF188 OFF188 OFF188 OFF188 OFF188	OFF176 OFF177 OFF178 OFF187 OFF188 OFF188 OFF188 OFF188 OFF189 OFF189	OFF176 OFF178 OFF181 OFF188 OFF188 OFF188 OFF188 OFF188 OFF188 OFF188 OFF188	OFF176 OFF177 OFF187 OFF188 OFF188 OFF188 OFF189 OFF189	OFF176 OFF177 OFF178 OFF183 OFF186 OFF188 OFF188 OFF188 OFF189 OFF189	OFF173 OFF174 OFF178 OFF185 OFF186 OFF186 OFF186 OFF187

All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

This bit is only available on devices with a Crypto module.

OFF 196 Title Company San 14 29/13 28/12 27/11 28/10 28/18 24/18 34/18	Section Sect	-											Bits								
150 150	CFF STS CFF Virtual Addre (#_r87B)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	eteseЯ IIA	
Principal Fire Prin	Principal 1150 Principal		1 40		I	I	I	I	I	1	1	1	1	1	I	I	I	I	VOFF<1	17:16>	0000
OFF No File 110 1	OFF OF STATE STATE		OFF 195									VOFF<15:	4							ı	0000
The control of the	Figs Figs		9071		I	1	I	I	I	1	I	I	I	1	I	I	I	1	VOFF<1	17:16>	0000
OFF 0F 101 16 CHE 0F 1	OFF 100 11 Sign 10 Sign		021.130	1					•			VOFF<15:	:1>							Ι	0000
Charle 150 Charle 150 Charle	Charles 15.0 Charles 15.1 Charles		055107		I	I	I	I	I	I	I	1	I	I	I	I	Ι	I	VOFF<1	17:16>	0000
OFFIGN 116 116	OFF 90 11:10 1.10		/81 LD									VOFF<15:	<u></u>							-	0000
Fig. Fig.	Fig. Fig.				I	I	1	I	I	1	Ι	I	I	I		I	I	I	VOFF<1	17:16>	0000
	OFFIGN 3116 —		981									VOFF<15:	<u></u>							-	0000
1.10 1.10	Note of the content	2	0011100		I	Ι	Ι	Ι	I	I	Ι	1	I	I	-	Ι	Ι	I	VOFF<1	17:16>	0000
OFF 200 31:16 — <th< td=""><td>OFF200 Tistle — <th< td=""><td>2</td><td>881</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>VOFF<15:</td><td><u></u></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>0000</td></th<></td></th<>	OFF200 Tistle — <th< td=""><td>2</td><td>881</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>VOFF<15:</td><td><u></u></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>0000</td></th<>	2	881									VOFF<15:	<u></u>							-	0000
11-00 150	State Stat		0001		I	I	I	I	ı	I	ı	I	1	1	1	1	1	I	VOFF<1	17:16>	0000
OFF201 Strite — <th< td=""><td>OFF 201 15:10 = Inches 1 Inches 201 15:10 = Inches 201 15:10 =</td><td></td><td>OFFZUU</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>VOFF<15:</td><td><u></u></td><td></td><td></td><td></td><td></td><td></td><td></td><td>I</td><td>0000</td></th<>	OFF 201 15:10 = Inches 1 Inches 201 15:10 =		OFFZUU			1						VOFF<15:	<u></u>							I	0000
150	1150 1150				Ι	I	I	Ι	Ι	I	1	-	I	I	I	I	1	I	VOFF<1	17:16>	0000
OFF 2002 31.16 — <t< td=""><td>OFF 202 1516 —</td><td></td><td>OFFE</td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td>VOFF<15:</td><td>:1></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Ι</td><td>0000</td></t<>	OFF 202 1516 —		OFFE						•			VOFF<15:	:1>							Ι	0000
OFF 202 51:16	15 15 15 15 15 15 15 15				I	I	I	I	ı	I	ı	I	1	1	1	1	1	I	VOFF<1	17:16>	0000
OFF 203 311-16 — <t< td=""><td>OFF 200 31.16 — <th< td=""><td></td><td>OF F 202</td><td>1</td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td>VOFF<15:</td><td>.1></td><td></td><td></td><td></td><td></td><td></td><td></td><td>I</td><td>0000</td></th<></td></t<>	OFF 200 31.16 — <th< td=""><td></td><td>OF F 202</td><td>1</td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td>VOFF<15:</td><td>.1></td><td></td><td></td><td></td><td></td><td></td><td></td><td>I</td><td>0000</td></th<>		OF F 202	1					•			VOFF<15:	.1>							I	0000
OFFZOG 15.0	OFF 200 15.0		20071		I	I	I	I	ı	I	I	I	I	I	I	I	I	I	VOFF<1	17:16>	0000
31.16	OFF 206 31:16 — <th< td=""><td></td><td>01 1 200</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>VOFF<15:</td><td>:1></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td>0000</td></th<>		01 1 200									VOFF<15:	:1>							_	0000
150 150	OFF 216 OFF 217 OFF		OFFORE		I	Ι	Ι	Ι	Ι	1	Ι	-	I	I	-	Ι	Ι	1	VOFF<1	17:16>	0000
OFF PDR PST PST PST PST PST PST PST PST PST PST	31:16		01 1 200									VOFF<15:	:1>							_	0000
Street S	VolPt VolP				I	Ι	I	1	I	1	Ι	1	1	1	-	I	Ι	I	VOFF<1	17:16>	0000
11-16 11-1	11-16		OFFZUU									VOFF<15:	:1>							_	0000
OFF 201 15.0	NoFercratic 15.0		706550		I	Ι	Ι	I	I	I	Ι	1	I	I	-	Ι	Ι	I	VOFF<1	17:16>	0000
OFF 20R 31:16 — <th< td=""><td> 11-16 11-1</td><td></td><td>OF F 207</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>VOFF<15:</td><td>:1></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td>0000</td></th<>	11-16 11-1		OF F 207									VOFF<15:	:1>							_	0000
15.0 15.0	15.0 15.0		OFF208		I	Ι	1	1	I	1	Ι	I		1	1	I	1	ı	VOFF<1	17:16>	0000
OFF209 31:16 —	OFF209 31:16 — — — — — — — VOFF<47:16> OFF210 31:16 —		007 - 100									VOFF<15:	:1>							_	0000
15.0 15.0	15.0 15.0		OFF209		I	Ι	I	I	I	I	I	I	I	1	I	I	1	I	VOFF<1	17:16>	0000
OFF210 31:16 —	OFF210 31:16 — — — — — — — — VOFF<47:16> OFF21 45:0 —<					٠						VOFF<15:	<u>+</u>					•		_	0000
15.0 15.0	15.0 15.0		OFF210		I	Ι	1	1	I	1	Ι	I	1	1	1	I	1	ı	VOFF<1	17:16>	0000
OFF214 41:16 — — — — — — — VOFF< 15:0 — — — — VOFF —	OFF214 Altife — — — — — — — — — VOFF< — — — — — — VOFF< —		2	_		٠						VOFF<15:	<u>+</u>					•		_	0000
15.0 Compared to the compared to the OFF x registers, have corresponding CLR, SET, and INV Registers" for more information.	15.0 Corporation 15.0		OFF211		I	1	I	I	I	1	1	1	1	1	1	I	I	I	VOFF<1	17:16>	0000
OFF214 31:16 - - - - - - - - -	OFF214 41:16 - - - - - - - VOFF - - - VOFF - - - - VOFF -		5			٠						VOFF<15:	<u>+</u>					•		_	0000
15.0 COFF215 15.0 COFF215	15.0 1		OFF214		I	1	I	I	1	1	1	1	1	1	1	I	1	I	VOFF<1	17:16>	0000
OFF215 31:16 — — — — — — — — — — — — — — — — — — —	OFF215 31:16 — — — — — — — — — — — — — — — — — — —		1 2 1									VOFF<15:	-1>							_	0000
VOFF<15:1> 15:0 NoFF<15:1> All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, and INV Registers" for more information.	VOFF<15:1> 15:0 NOFF<15:1> 16:0 X = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. 1. All registers in this table with the exception of the OFFx registers, have corresponding CLR, SET, and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, and INV Registers" for more information. 2. This bit is only available on devices with a Crypto module.	Ċ	OFF215	31:16	I	1	I	I	I	1	1	1	1	1	1	I	I	I	VOFF<1	17:16>	0000
 	jp ;; ;;)										VOFF<15:	<u></u>							1	0000
	;;	gen	<u></u>	x = unknc All registe	own value c	on Reset; — ible with the ε	= unimpleme exception of t	ented, read a the OFFx rec	is '0'. Reset jisters, have	values are s	hown in hexing CLR, SE	adecimal. T, and INV re	egisters at thei	ir virtual addres	ses, plus offs	ets of 0x4, 0x	3 and 0xC, re	espectively.	See Section	12.2 "CLR,	SET.
				and INV F	Registers"	for more info	rmation.	ĺ								-					

TABLE 7-3:

INTERRUPT REGISTER MAP (CONTINUED)

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0 R/W-0							
31:24				NMIKI	EY<7:0>			
22.46	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
15:8	_	_	_	MVEC	_		TPC<2:0>	
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-24 NMIKEY<7:0>: Non-Maskable Interrupt Key bits

When the correct key (0x4E) is written, a software NMI will be generated. The status is indicated by the GNMI bit (RNMICON<19>).

bit 23-13 Unimplemented: Read as '0'

bit 12 MVEC: Multi Vector Configuration bit

1 = Interrupt controller configured for multi-vectored mode

0 = Interrupt controller configured for single vectored mode

bit 11 Unimplemented: Read as '0'

bit 10-8 TPC<2:0>: Interrupt Proximity Timer Control bits

111 = Interrupts of group priority 7 or lower start the Interrupt Proximity timer

110 = Interrupts of group priority 6 or lower start the Interrupt Proximity timer

101 = Interrupts of group priority 5 or lower start the Interrupt Proximity timer

100 = Interrupts of group priority 4 or lower start the Interrupt Proximity timer

011 = Interrupts of group priority 3 or lower start the Interrupt Proximity timer

010 = Interrupts of group priority 2 or lower start the Interrupt Proximity timer 001 = Interrupts of group priority 1 start the Interrupt Proximity timer

000 - Disables Interrupt Drawinsity times

000 = Disables Interrupt Proximity timer

bit 7-5 Unimplemented: Read as '0'

bit 4 INT4EP: External Interrupt 4 Edge Polarity Control bit

1 = Rising edge

0 = Falling edge

bit 3 INT3EP: External Interrupt 3 Edge Polarity Control bit

1 = Rising edge

0 = Falling edge

bit 2 INT2EP: External Interrupt 2 Edge Polarity Control bit

1 = Rising edge

0 = Falling edge

bit 1 INT1EP: External Interrupt 1 Edge Polarity Control bit

1 = Rising edge

0 = Falling edge

bit 0 INT0EP: External Interrupt 0 Edge Polarity Control bit

1 = Rising edge

0 = Falling edge

REGISTER 7-2: PRISS: PRIORITY SHADOW SELECT REGISTER

W = Writable bit

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24		PRI7SS	<3:0> ⁽¹⁾			PRI6SS	<3:0> ⁽¹⁾	
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16		PRI5SS	<3:0> ⁽¹⁾	•		PRI4SS	<3:0> ⁽¹⁾	
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8		PRI3S	S<3:0>	•		PRI2SS	<3:0> ⁽¹⁾	
7.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0
7:0		PRI1SS	<3:0> ⁽¹⁾	•	_		_	SS0

U = Unimplemented bit, read as '0'

```
-n = Value at POR
                                     '1' = Bit is set
                                                                '0' = Bit is cleared
                                                                                            x = Bit is unknown
bit 31-28 PRI7SS<3:0>: Interrupt with Priority Level 7 Shadow Set bits<sup>(1)</sup>
          1xxx = Reserved (by default, an interrupt with a priority level of 7 uses Shadow Set 0)
          0111 = Interrupt with a priority level of 7 uses Shadow Set 7
          0110 = Interrupt with a priority level of 7 uses Shadow Set 6
          0001 = Interrupt with a priority level of 7 uses Shadow Set 1
          0000 = Interrupt with a priority level of 7 uses Shadow Set 0
bit 27-24 PRI6SS<3:0>: Interrupt with Priority Level 6 Shadow Set bits(1)
          1xxx = Reserved (by default, an interrupt with a priority level of 6 uses Shadow Set 0)
          0111 = Interrupt with a priority level of 6 uses Shadow Set 7
          0110 = Interrupt with a priority level of 6 uses Shadow Set 6
          0001 = Interrupt with a priority level of 6 uses Shadow Set 1
          0000 = Interrupt with a priority level of 6 uses Shadow Set 0
bit 23-20 PRI5SS<3:0>: Interrupt with Priority Level 5 Shadow Set bits(1)
          1xxx = Reserved (by default, an interrupt with a priority level of 5 uses Shadow Set 0)
          0111 = Interrupt with a priority level of 5 uses Shadow Set 7
          0110 = Interrupt with a priority level of 5 uses Shadow Set 6
          0001 = Interrupt with a priority level of 5 uses Shadow Set 1
          0000 = Interrupt with a priority level of 5 uses Shadow Set 0
bit 19-16 PRI4SS<3:0>: Interrupt with Priority Level 4 Shadow Set bits(1)
          1xxx = Reserved (by default, an interrupt with a priority level of 4 uses Shadow Set 0)
          0111 = Interrupt with a priority level of 4 uses Shadow Set 7
          0110 = Interrupt with a priority level of 4 uses Shadow Set 6
          0001 = Interrupt with a priority level of 4 uses Shadow Set 1
          0000 = Interrupt with a priority level of 4 uses Shadow Set 0
```

Note 1: These bits are ignored if the MVEC bit (INTCON<12>) = 0.

Legend:

R = Readable bit

REGISTER 7-2: PRISS: PRIORITY SHADOW SELECT REGISTER (CONTINUED)

```
bit 15-12 PRI3SS<3:0>: Interrupt with Priority Level 3 Shadow Set bits<sup>(1)</sup>
          1xxx = Reserved (by default, an interrupt with a priority level of 3 uses Shadow Set 0)
          0111 = Interrupt with a priority level of 3 uses Shadow Set 7
          0110 = Interrupt with a priority level of 3 uses Shadow Set 6
          0001 = Interrupt with a priority level of 3 uses Shadow Set 1
          0000 = Interrupt with a priority level of 3 uses Shadow Set 0
bit 11-8 PRI2SS<3:0>: Interrupt with Priority Level 2 Shadow Set bits<sup>(1)</sup>
          1xxx = Reserved (by default, an interrupt with a priority level of 2 uses Shadow Set 0)
          0111 = Interrupt with a priority level of 2 uses Shadow Set 7
          0110 = Interrupt with a priority level of 2 uses Shadow Set 6
          0001 = Interrupt with a priority level of 2 uses Shadow Set 1
          0000 = Interrupt with a priority level of 2 uses Shadow Set 0
          PRI1SS<3:0>: Interrupt with Priority Level 1 Shadow Set bits<sup>(1)</sup>
bit 7-4
          1xxx = Reserved (by default, an interrupt with a priority level of 1 uses Shadow Set 0)
          0111 = Interrupt with a priority level of 1 uses Shadow Set 7
          0110 = Interrupt with a priority level of 1 uses Shadow Set 6
          0001 = Interrupt with a priority level of 1 uses Shadow Set 1
          0000 = Interrupt with a priority level of 1 uses Shadow Set 0
bit 3-1
          Unimplemented: Read as '0'
bit 0
          SS0: Single Vector Shadow Register Set bit
           1 = Single vector is presented with a shadow set
           0 = Single vector is not presented with a shadow set
```

Note 1: These bits are ignored if the MVEC bit (INTCON<12>) = 0.

REGISTER 7-3: INTSTAT: INTERRUPT STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0						
31:24	_	_	_	_	_	-	_	
22.40	U-0	U-0						
23:16	_	-	-	_	-	_	_	_
45.0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
15:8	_	-	-	_	-	S	SRIPL<2:0> ⁽¹⁾	
7:0	R-0	R-0						
7:0				SIR	Q<7:0>	_		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-11 Unimplemented: Read as '0'

bit 10-8 SRIPL<2:0>: Requested Priority Level bits for Single Vector Mode bits⁽¹⁾

111-000 = The priority level of the latest interrupt presented to the CPU

bit 7-6 **Unimplemented:** Read as '0'

bit 7-0 SIRQ<7:0>: Last Interrupt Request Serviced Status bits

11111111-00000000 = The last interrupt request number serviced by the CPU

Note 1: This value should only be used when the interrupt controller is configured for Single Vector mode.

REGISTER 7-4: IPTMR: INTERRUPT PROXIMITY TIMER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0 R/W-0							
31.24				IPTMF	?<31:24>			
23:16	R/W-0 R/W-0							
23.10				IPTMF	?<23:16>			
45.0	R/W-0 R/W-0							
15:8				IPTM	R<15:8>			
7:0	R/W-0 R/W-0							
7.0				IPTM	R<7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 **IPTMR<31:0>:** Interrupt Proximity Timer Reload bits

Used by the Interrupt Proximity Timer as a reload value when the Interrupt Proximity timer is triggered by an interrupt event.

REGISTER 7-5: IFSx: INTERRUPT FLAG STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0 R/W-0							
31:24	IFS31	IFS30	IFS29	IFS28	IFS27	IFS26	IFS25	IFS24
22.40	R/W-0 R/W-0							
23:16	IFS23	IFS22	IFS21	IFS20	IFS19	IFS18	IFS17	IFS16
15:8	R/W-0 R/W-0							
13.6	IFS15	IFS14	IFS13	IFS12	IFS11	IFS10	IFS9	IFS8
7:0	R/W-0 R/W-0							
7.0	IFS7	IFS6	IFS5	IFS4	IFS3	IFS2	IFS1	IFS0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 IFS31-IFS0: Interrupt Flag Status bits

1 = Interrupt request has occurred

0 = No interrupt request has occurred

Note: This register represents a generic definition of the IFSx register. Refer to Table 7-2 for the exact bit definitions.

REGISTER 7-6: IECx: INTERRUPT ENABLE CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0 R/W-0							
31:24	IEC31	IEC30	IEC29	IEC28	IEC27	IEC26	IEC25	IEC24
23:16	R/W-0 R/W-0							
23.10	IEC23	IEC22	IEC21	IEC20	IEC19	IEC18	IEC17	IEC16
15:8	R/W-0 R/W-0							
13.6	IEC15	IEC14	IEC13	IEC12	IEC11	IEC10	IEC9	IEC8
7:0	R/W-0 R/W-0							
7.0	IEC7	IEC6	IEC5	IEC4	IEC3	IEC2	IEC1	IEC0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 IEC31-IEC0: Interrupt Enable bits

1 = Interrupt is enabled

0 = Interrupt is disabled

Note: This register represents a generic definition of the IECx register. Refer to Table 7-2 for the exact bit definitions.

REGISTER 7-7: IPCx: INTERRUPT PRIORITY CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	_	_	_		IP3<2:0>		IS3<	:1:0>
23:16	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	_	_	_		IP2<2:0>		IS2<	:1:0>
15:8	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.6	_	_	_		IP1<2:0>		IS1<	1:0>
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	_	_	_		IP0<2:0>		IS0<	:1:0>

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28-26 IP3<2:0>: Interrupt Priority bits

111 = Interrupt priority is 7

•

010 = Interrupt priority is 2

001 = Interrupt priority is 1

000 = Interrupt is disabled

bit 25-24 IS3<1:0>: Interrupt Sub-priority bits

11 = Interrupt sub-priority is 3

10 = Interrupt sub-priority is 2

01 = Interrupt sub-priority is 1

00 = Interrupt subdirectory is 0

bit 23-21 Unimplemented: Read as '0'

bit 20-18 IP2<2:0>: Interrupt Priority bits

111 = Interrupt priority is 7

•

010 = Interrupt priority is 2

001 = Interrupt priority is 1

000 = Interrupt is disabled

bit 17-16 IS2<1:0>: Interrupt Sub-priority bits

11 = Interrupt sub-priority is 3

10 = Interrupt sub-priority is 2

01 = Interrupt sub-priority is 1

00 = Interrupt sub-priority is 0

bit 15-13 Unimplemented: Read as '0'

Note: This register represents a generic definition of the IPCx register. Refer to Table 7-2 for the exact bit definitions.

REGISTER 7-7: IPCx: INTERRUPT PRIORITY CONTROL REGISTER (CONTINUED)

```
bit 12-10 IP1<2:0>: Interrupt Priority bits
           111 = Interrupt priority is 7
           010 = Interrupt priority is 2
           001 = Interrupt priority is 1
           000 = Interrupt is disabled
bit 9-8
           IS1<1:0>: Interrupt Sub-priority bits
           11 = Interrupt sub-priority is 3
           10 = Interrupt sub-priority is 2
           01 = Interrupt sub-priority is 1
           00 = Interrupt sub-priority is 0
bit 7-5
           Unimplemented: Read as '0'
bit 4-2
           IP0<2:0>: Interrupt Priority bits
           111 = Interrupt priority is 7
           010 = Interrupt priority is 2
           001 = Interrupt priority is 1
           000 = Interrupt is disabled
bit 1-0
           ISO<1:0>: Interrupt Sub-priority bits
           11 = Interrupt sub-priority is 3
           10 = Interrupt sub-priority is 2
           01 = Interrupt sub-priority is 1
           00 = Interrupt sub-priority is 0
```

Note: This register represents a generic definition of the IPCx register. Refer to Table 7-2 for the exact bit definitions.

REGISTER 7-8: OFFx: INTERRUPT VECTOR ADDRESS OFFSET REGISTER (x = 0-190)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0 U-0							
31:24	_	_	_	_	_	_	_	_
22.46	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
23:16	_	_	_	_	_	_	VOFF<	:17:16>
45.0	R/W-0 R/W-0							
15:8				VOFF	-<15:8>			
7:0	R/W-0 U-0							
7:0				VOFF<7:1>				_

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 17-1 **VOFF<17:1>:** Interrupt Vector 'x' Address Offset bits

bit 0 Unimplemented: Read as '0'

8.0 OSCILLATOR CONFIGURATION

Note:

This data sheet summarizes the features of the PIC32MZ DA family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 42. "Oscillators with Enhanced PLL"** (DS60001250) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The PIC32MZ DA oscillator system has the following modules and features:

- Five external and internal oscillator options as clock sources
- On-Chip PLL with user-selectable input divider, multiplier and output divider to boost operating frequency on select internal and external oscillator sources
- On-Chip user-selectable divisor postscaler on select oscillator sources
- Software-controllable switching between various clock sources
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown with dedicated Back-up FRC (BFRC)
- Dedicated On-Chip PLL for DDR2 and USB modules
- · Flexible reference clock output
- Multiple clock branches for peripherals for better performance flexibility

A block diagram of the oscillator system is provided in Figure 8-1. The clock distribution is shown in Table 8-1.

FIGURE 8-1: PIC32MZ DA FAMILY OSCILLATOR DIAGRAM

A series resistor, Rs, may be required for AT strip cut crystals, or to eliminate clipping. Alternately, to increase oscillator circuit gain, add a parallel resistor, RP, with a value of 1 M Ω .

- The internal feedback resistor, RF, is typically in the range of 2 to 10 M Ω .
- Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for help in determining the best oscillator components.
- PBCLK1 divided by 2 is available on the OSC2 pin in certain clock modes.
- Shaded regions indicate multiple instantiations of a peripheral or feature.
- Refer to Table 44-25 in Section 44.0 "Electrical Characteristics" for frequency limitations.

 Memory Phase-Locked Loop (MPLL) is controlled through the CFGMPLL register (see 41.0 "Special Features" for details).

 MFMPLL drives the DDR2 PHY and is the source clock (DDRCK, DDRCK) for DDR2 SDRAM.

TABLE 8-1: SYSTEM AND PERIPHERAL CLOCK DISTRIBUTION

Peripheral									Clo	k Sou	ırce							
	FRC	LPRC	SOSC	SYSCLK	USBCLK	MPLL	PBCLK1 ⁽¹⁾	PBCLK2	PBCLK3	PBCLK4	PBCLK5	PBCLK6	PBCLK7	REFCLK01	REFCLK02	REFCLK03	REFCLK04	REFOCLK5
CPU													Х					
WDT		Х		Х			X ⁽³⁾											
DMT				Х			X ⁽³⁾						Х					
GLCD				X ⁽³⁾														X ⁽⁶⁾
GPU				Х														
DDR2C				X ⁽³⁾		Х												
SDHC											X ⁽³⁾						Х	
Flash	X ⁽²⁾			X ⁽²⁾							X ⁽²⁾							
ADC	Х			Х					X ⁽³⁾							Х		
Comparator									X ⁽³⁾									
CTMU									X ⁽³⁾									
Crypto											X ⁽³⁾							
RNG											X ⁽³⁾							
USB					Х						X ⁽³⁾							
USBCR ⁽⁷⁾											X ⁽³⁾							
CAN											X ⁽³⁾							
Ethernet											X ⁽³⁾							
PMP								X ⁽³⁾										
I ² C								X ⁽³⁾										
UART								X ⁽³⁾										
RTCC		Х	Х									X ⁽³⁾						
EBI				Х														
SQI											X ⁽³⁾				Х			
SPI								Х						Х				
Timers		Х	X ⁽⁴⁾						Х									
Output Compare									Х									
Input Capture									Х									
Ports										X ⁽³⁾								
DMA				Х														
Interrupts				Х														
Prefetch				Х														
OSC2 Pin							X ⁽⁵⁾											
DSCTRL ⁽⁸⁾				Х								Х						
HLVD							X ⁽³⁾											

- Note 1: PBCLK1 is used by system modules and cannot be turned off.
 - 2: SYSCLK/PBCLK5 is used to fetch data from/to the Flash Controller, while the FRC clock is used for programming.
 - 3: Special Function Register (SFR) access only.
 - 4: Timer1 only.
 - **5:** PBCLK1 divided by 2 is available on the OSC2 pin in certain clock modes.
 - **6:** REFCLKO5 (divided version of SPLL clock) is used for the Pixel Clock.
 - 7: USBCR is the Clock/Reset Control block for the USB.
 - 8: DSCTRL is the Deep Sleep Control Block.

8.1 Fail-Safe Clock Monitor (FSCM)

The PIC32MZ DA oscillator system includes a Fail-safe Clock Monitor (FSCM). The FSCM monitors the SYSCLK for continuous operation. If it detects that the SYSCLK has failed, it switches the SYSCLK over to the BFRC oscillator and triggers a NMI. The BFRC is an untuned 8 MHz oscillator that will drive the SYSCLK during FSCM event. When the NMI is executed, software can attempt to restart the main oscillator or shut down the system.

In Sleep mode both the SYSCLK and the FSCM halt, which prevents FSCM detection.

Oscillator Control Registers 8.2

OSCILLATOR CONFIGURATION REGISTER MAP TABLE 8-2:

(^{r)} steseЯ IIA	0020		0000	00xx	01xx	0×0×	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	8801	0000	8801	0000	8801	0000	8801	
	16/0	I	OSWEN	I			<0			1	I			1	I			I	1			I	I			I	I	I		I		I		I		
	17/1	1	SOSCEN	I			PLLRANGE<2:0>		ROSEL<3:0>	ı	I		ROSEL<3:0>	ı	I		ROSEL<3:0>	ı	I	-	ROSEL<3:0>	1	I		ROSEL<3:0>	I	-	Ι		ı	-	ı		1		
	18/2	I	I	I	TUN<5:0>	<0			ROS	I	I		ROS	I	I		ROS	Ι	I		ROS	I	I		ROS	I	Ι	Ι	^	Ι	^	I	^	Ι	٨	
	19/3	I	CF	I	ī	PLLMULT<6:0>	I			Ι	Ι			Ι	Ι			1	Ι			1	Ι			I	-	1	PBDIV<6:0>	ı	PBDIV<6:0>	Ι	PBDIV<6:0>	I	PBDIV<6:0>	
	20/4	1	SLPEN	I		Д	I		I	I	I		I	I	I		I	I	I		I	I	I		1	I	Ι	I		I		I		1		
	21/5	SLP2SPD	I	Ι			I		I	I	I		I	I	I		I	I	I		I	I	I		I	I	I	I		I		I		I		
	22/6	1	Ι	I	1		1	V	I	-	_	_	I	Ι	I	_	I	1	Ι	_	Ι	_	-	Δ	1	Ι	_	1		1		I		1		
Bits	23/7	DRMEN	CLKLOCK	Ι	I	I	PLLICLK	RODIV<14:0>	I		I	RODIV<14:0>	I		I	RODIV<14:0>	I		Ι	RODIV<14:0>	Ι		I	RODIV<14:0>	Ι		I	-	I	Ι	I	Ι	Ι	Ι	1	
ш	24/8			I	I	_			ACTIVE		I		ACTIVE		I		ACTIVE		I		ACTIVE		I		ACTIVE		I	Ι	I	I	I	I	I	Ι	I	ecimal.
	25/9	FRCDIV<2:0>	NOSC<2:0>	I	I	PLLODIV<2:0>	PLLIDIV<2:0>		DIVSWEN		ı		DIVSWEN		I		DIVSWEN		I		DIVSWEN	1	I	1	DIVSWEN		ı	I	I	I	I	I	I	I	I	o'. Reset values are shown in hexadecimal.
	26/10	Ē		I	I	<u> </u>	В		ı	Δ	ı		ı	Δ	I		I	Δ	I		I	Δ	I		ı	Δ	I	I	ı	I	I	I	I	I	I	lues are sho
	27/11	I	Ι	I	I	I	I		RSLP	ROTRIM<8:0>	ı		RSLP	ROTRIM<8:0>	I		RSLP	ROTRIM<8:0>	I		RSLP	ROTRIM<8:0>	I		RSLP	ROTRIM<8:0>	I	Ι	PBDIVRDY	ı	PBDIVRDY	Ι	PBDIVRDY	Ι	PBDIVRDY	'0'. Reset val
	28/12	Ι		Ι	1	Ι	I		OE	_	I		I		I		OE		I		OE	-	Ι		Ι		I	Ι	1	1	I	I	Ι	Ι	I	ed, read as
	29/13	1	COSC<2:0>	Ι	Ι	1	1		SIDL		ı		SIDL		I		SIDL		Ι		SIDL		I		SIDL		Ι	Ι	1	I	I	Ι	Ι	Ι	I	\times = unknown value on Reset; — = unimplemented, read as '
	30/14	Ι		Ι	1	Ι	1		I		I		I		I		I		I		I		I		Ι		-	Ι	I	I	I	I	I	Ι	I	Reset; — = L
	31/15	Ι	Ι	Ι	Ι	I	Ι	I	NO		I	Ι	NO		I	Ι	NO		I	Ι	NO		I		NO		_	Ι	-	Ι	NO	I	NO	Ι	NO	value on F
	Bit Range	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	ıknowr
	Register Name		OSCCON	MILEOSO	NO LOSO	100	SPLECON		KEFOICON	DEFO3TENIN		0000	KELOZCON	MIGTOCATA	KETOZIKIM		KELOSCON	DEECO3TBIM	AET CO TEN	ואסטאסטאום	NO.40	DEFOATBIN		DEFORM		REFOSTRIM		MOLDO		2000	PBZDIV	711000	70207	אייטרסם	> 0	
SS	Virtual Addre (#_0878)	000	1200	40,4	0171	000	1220	0	1280	,		4	TZAU		1280	0	1200	1200		707	1250	1250		1300		1310		1040	1		1350	000	1360	1270	2/2	Legend:

© 2015-2017 Microchip Technology Inc.

(1	^{∖)} stəsəЯ IIA	0000	8801	0000	8803	0000	8800	0000	0000	0000	0000	
	16/0	Ι		Ι		Ι			BUSY	Ι	FRCRDY 0000	
	1//1	I		I		I		SYSDIV<3:0>	DNEN	I	1	
	18/2	I	Δ	Ι	^	1	^	SYS	NBEN	Ι	POSCRDY	
	19/3	I	PBDIV<6:0>	I	PBDIV<6:0>	I	PBDIV<6:0>		I	I	I	
	20/4	I		Ι		I		I	I	Ι	-PRCRDY SOSCRDY	
	21/5	I		-		Ι		-	1	-	LPRCRDY	
	22/6	I		_		I		_	I	_	I	
Bits	23/7	I	Ι	Ι	Ι	Ι	Ι	ı	Ι	Ι	SPLLRDY	
	24/8	I	Ι	Ι	Ι	Ι	Ι	Ι	_	Ι	1	lowing
	25/9	I	Ι	_	Ι	Ι	_	_	SLWDIV<2:0>	_	I	ovod ai ave
	26/10	I	I	_	I	I	_	_		_	I	lion ore obt
	27/11	I	PBDIVRDY	1	PBDIVRDY	1	PBDIVRDY	-	1	1	ı	lemicoboxed ai amodo ere center tecelo (e)
	28/12	I	I	I	I	I	I	Ι	I	I	1	or poor po
	29/13	I	-	_	Ι	-	_	_	-	_	I	- hotacaclamian -
	30/14	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	1	
	31/15	I	NO	_	NO	Ι	NO	_	I	_	I	tood as only, amount = ::
	Bit Range	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	2,000
	Register Name	עוטפסס	ND201	/ווחמםם	7 Dod 7	\!\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			SLEWCON	CIVETAT	CLNSIA	
ssa	Virtual Addre (#_0878)	1 200	0001	1 200	0801	2 0 0	2	0	3	100	NGC!	l occord.

 Legend:
 x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexa

 Note
 1:
 Reset values are dependent on the DEVCFGx Configuration bits and the type of reset.

TABLE 8-2:

OSCILLATOR CONFIGURATION REGISTER MAP (CONTINUED)

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
31:24	_	_	_	_	-	F	RCDIV<2:0>	
22.40	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
23:16	DRMEN	_	SLP2SPD	_	_	_	_	_
45.0	U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
15:8	_		COSC<2:0>				NOSC<2:0>	
7:0	R/W-0	U-0	U-0	R/W-0	R/W-0, HS	U-0	R/W-y	R/W-y
7:0	CLKLOCK	_		SLPEN	CF		SOSCEN	OSWEN ⁽¹⁾

Legend:y = Value set from Configuration bits on PORHS = Hardware SetR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

bit 26-24 FRCDIV<2:0>: Internal Fast RC (FRC) Oscillator Clock Divider bits

111 = FRC divided by 256

110 = FRC divided by 64

101 = FRC divided by 32

100 = FRC divided by 16

011 = FRC divided by 8

010 = FRC divided by 4

001 = FRC divided by 2

000 = FRC divided by 1 (default setting)

bit 23 DRMEN: Dream Mode Enable bit

1 = Dream mode is enabled

0 = Dream mode is disabled

bit 22 Unimplemented: Read as '0'

bit 21 SLP2SPD: Sleep Two-speed Start-up Control bit

1 = Use FRC as SYSCLK until the selected clock is ready

0 = Use the selected clock directly

bit 20-15 Unimplemented: Read as '0'

bit 14-12 COSC<2:0>: Current Oscillator Selection bits

111 = System PLL (SPLL)

110 = Back-up Fast RC (BFRC) Oscillator

101 = Internal Low-Power RC (LPRC) Oscillator

100 = Secondary Oscillator (Sosc)

011 = Reserved

010 = Primary Oscillator (Posc) (HS or EC)

001 = System PLL (SPLL)

000 = Internal Fast RC (FRC) Oscillator divided by FRCDIV<2:0> bits (FRCDIV)

bit 11 Unimplemented: Read as '0'

Note 1: The reset value for this bit depends on the setting of the IESO bit (DEVCFG1<7>). When IESO = 1, the reset value is '1'. When IESO = 0, the reset value is '0'.

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER

bit 10-8 NOSC<2:0>: New Oscillator Selection bits

111 = System PLL (SPLL)

110 = Reserved

101 = Internal Low-Power RC (LPRC) Oscillator

100 = Secondary Oscillator (Sosc)

011 = Reserved

010 = Primary Oscillator (Posc) (HS or EC)

001 = System PLL (SPLL)

000 = Internal Fast RC (FRC) Oscillator divided by FRCDIV<2:0> bits (FRCDIV)

On Reset, these bits are set to the value of the FNOSC<2:0> Configuration bits (DEVCFG1<2:0>).

bit 7 CLKLOCK: Clock Selection Lock Enable bit

1 = Clock and PLL selections are locked

0 = Clock and PLL selections are not locked and may be modified

bit 6-5 **Unimplemented:** Read as '0'

bit 4 SLPEN: Sleep Mode Enable bit

1 = Device will enter Sleep mode when a \mathtt{WAIT} instruction is executed

0 = Device will enter Idle mode when a WAIT instruction is executed

1 = FSCM has detected a clock failure

0 = No clock failure has been detected

bit 2 Unimplemented: Read as '0'

bit 1 SOSCEN: Secondary Oscillator (Sosc) Enable bit

1 = Enable Secondary Oscillator

0 = Disable Secondary Oscillator

bit 0 **OSWEN:** Oscillator Switch Enable bit⁽¹⁾

1 = Initiate an oscillator switch to selection specified by NOSC<2:0> bits

0 = Oscillator switch is complete

Note 1: The reset value for this bit depends on the setting of the IESO bit (DEVCFG1<7>). When IESO = 1, the reset value is '1'. When IESO = 0, the reset value is '0'.

REGISTER 8-2: OSCTUN: FRC TUNING REGISTER

Legend:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	_	_	_	_	_
00:40	U-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	_	_	_	_	_	_
45.0	U-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_	_	_	_	_	_	_
7.0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_			TUN<	5:0> ⁽¹⁾		

```
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-6 Unimplemented: Read as '0'
bit 5.0 TUNKERS: ERC Oscillator Tuning bits(1)
```

Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation, and is neither characterized, nor tested.

REGISTER 8-3: SPLLCON: SYSTEM PLL CONTROL REGISTER

						=		
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	R/W-y	R/W-y	R/W-y
31:24	_	_	_	_	_	F	PLLODIV<2:0	>
23:16	U-0	R/W-y	R/W-y	R/W-y	R/W-y	R/W-y	R/W-y	R/W-y
23:10	_			F	PLLMULT<6:0	>		
45.0	U-0	U-0	U-0	U-0	U-0	R/W-y	R/W-y	R/W-y
15:8	_					ı	PLLIDIV<2:0>	•
7:0	R/W-y	U-0	U-0	U-0	U-0	R/W-y	R/W-y	R/W-y
7:0	PLLICLK	_	_	_	_	PL	25/17/9/1 RW-y PLLODIV<2:0 R/W-y PLLIDIV<2:0	0>

Legend:y = Value set from Configuration bits on PORR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

```
bit 31-27 Unimplemented: Read as '0'
```

bit 26-24 PLLODIV<2:0>: System PLL Output Clock Divider bits

111 = Reserved

110 = Reserved

101 = PLL Divide by 32

100 = PLL Divide by 16

011 = PLL Divide by 8

010 = PLL Divide by 4

001 = PLL Divide by 2

000 = Reserved

The default setting is specified by the FPLLODIV<2:0> Configuration bits in the DEVCFG2 register. Refer to Register 34-5 in **Section 34.0 "Special Features"** for information.

bit 23 Unimplemented: Read as '0'

bit 22-16 PLLMULT<6:0>: System PLL Multiplier bits

1111111 = Multiply by 128

1111110 = Multiply by 127

1111101 = Multiply by 126

1111100 = Multiply by 125

•

.

0000000 = Multiply by 1

The default setting is specified by the FPLLMULT<6:0> Configuration bits in the DEVCFG2 register. Refer to Register 34-5 in **Section 34.0 "Special Features"** for information.

bit 15-11 Unimplemented: Read as '0'

- Note 1: Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.
 - 2: Writes to this register are not allowed if the SPLL is selected as a clock source (COSC<2:0> = 001).

REGISTER 8-3: SPLLCON: SYSTEM PLL CONTROL REGISTER

```
bit 10-8 PLLIDIV<2:0>: System PLL Input Clock Divider bits

111 = Divide by 8

110 = Divide by 7

101 = Divide by 6

100 = Divide by 5
```

011 = Divide by 4

010 = Divide by 3 001 = Divide by 2

000 = Divide by 1

The default setting is specified by the FPLLIDIV<2:0> Configuration bits in the DEVCFG2 register. Refer to Register 34-5 in **Section 34.0** "**Special Features**" for information. If the PLLICLK is set for FRC, this setting is ignored by the PLL and the divider is set to Divide-by-1.

bit 7 PLLICLK: System PLL Input Clock Source bit

1 = FRC is selected as the input to the System PLL

0 = Posc is selected as the input to the System PLL

The POR default is specified by the FPLLICLK Configuration bit in the DEVCFG2 register. Refer to Register 34-5 in **Section 34.0 "Special Features"** for information.

bit 6-3 Unimplemented: Read as '0'

bit 2-0 PLLRANGE<2:0>: System PLL Frequency Range Selection bits

111 = Reserved

110 = Reserved

101 **= 34-64 MHz**

100 **= 21-42 MHz**

011 **= 13-26 MHz**

010 **= 8-16 MHz**

001 = 5-10 MHz

000 = Bypass

The default setting is specified by the FPLLRNG<2:0> Configuration bits in the DEVCFG2 register. Refer to Register 34-5 in **Section 34.0 "Special Features"** for information.

- Note 1: Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.
 - 2: Writes to this register are not allowed if the SPLL is selected as a clock source (COSC<2:0> = 001).

REGISTER 8-4: REFOxCON: REFERENCE OSCILLATOR CONTROL REGISTER ('x' = 1-4)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	_			I	RODIV<14:8	>		
22:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16				RODI\	/<7:0>			
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R-0, HS, HC
15:8	ON ⁽¹⁾		SIDL	OE	RSLP ⁽²⁾	1	DIVSWEN	ACTIVE ⁽¹⁾
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_		_	_		ROSEL	-<3:0> ⁽³⁾	

Legend:HC = Hardware ClearedHS = Hardware SetR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31 Unimplemented: Read as '0'

bit 30-16 RODIV<14:0> Reference Clock Divider bits

The value selects the reference clock divider bits (see Figure 8-1 for details). A value of '0' selects no divider.

bit 15 **ON:** Output Enable bit⁽¹⁾

1 = Reference Oscillator Module enabled

0 = Reference Oscillator Module disabled

bit 14 Unimplemented: Read as '0'

bit 13 SIDL: Peripheral Stop in Idle Mode bit

1 = Discontinue module operation when the device enters Idle mode

0 = Continue module operation in Idle mode

bit 12 **OE:** Reference Clock Output Enable bit

1 = Reference clock is driven out on REFCLKOx pin

0 = Reference clock is not driven out on REFCLKOx pin

bit 11 **RSLP:** Reference Oscillator Module Run in Sleep bit⁽²⁾

1 = Reference Oscillator Module output continues to run in Sleep

0 = Reference Oscillator Module output is disabled in Sleep

bit 10 Unimplemented: Read as '0'

bit 9 **DIVSWEN:** Divider Switch Enable bit

1 = Divider switch is in progress

0 = Divider switch is complete

bit 8 **ACTIVE**: Reference Clock Request Status bit⁽¹⁾

1 = Reference clock request is active

0 = Reference clock request is not active

bit 7-4 Unimplemented: Read as '0'

bit 3-0 ROSEL<3:0>: Reference Clock Source Select bits⁽³⁾

1111 = Reserved

•

1001 **= BFRC**

1000 = REFCLKIX

0111 = System PLL output

0110 = Reserved

0101 = Sosc

0100 = LPRC

0011 **= FRC**

0010 **= Posc**

0001 = PBCLK1

0000 = SYSCLK

Note 1: Do not write to this register when the ON bit is not equal to the ACTIVE bit.

2: This bit is ignored when the ROSEL<3:0> bits = 0000 or 0001.

3: The ROSEL<3:0> bits should not be written while the ACTIVE bit is '1', as undefined behavior may result.

REGISTER 8-5: REFOXTRIM: REFERENCE OSCILLATOR TRIM REGISTER ('x' = 1-4)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	R/W-0 R/W-0							
31:24				ROTRIN	√1<8:1>			
00:40	R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	ROTRIM<0>	_	_	_	_	_	_	_
45.0	U-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_	_	_	_	_	_	_
7.0	U-0 U-0							
7:0	_	_	_	_	_	_	_	_

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-23 ROTRIM<8:0>: Reference Oscillator Trim bits

1111111111 = 511/512 divisor added to RODIV value

1111111110 = 510/512 divisor added to RODIV value

.

.

100000000 = 256/512 divisor added to RODIV value

•

•

000000010 = 2/512 divisor added to RODIV value

000000001 = 1/512 divisor added to RODIV value

000000000 = 0 divisor added to RODIV value

bit 22-0 Unimplemented: Read as '0'

- **Note 1:** While the ON bit (REFOxCON<15>) is '1', writes to this register do not take effect until the DIVSWEN bit is also set to '1'.
 - 2: Do not write to this register when the ON bit (REFOxCON<15>) is not equal to the ACTIVE bit (REFOxCON<8>).
 - 3: Specified values in this register do not take effect if RODIV<14:0> (REFOxCON<30:16>) = 0.

REGISTER 8-6: PBxDIV: PERIPHERAL BUS 'x' CLOCK DIVISOR CONTROL REGISTER ('x' = 1-7)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0 U-0							
31.24	_	_	_	_		_	_	_
00.40	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	R/W-1	U-0	U-0	U-0	R-1	U-0	U-0	U-0
15:8	ON ⁽¹⁾	_	_	_	PBDIVRDY	_	_	
7.0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
7:0	-				PBDIV<6:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 **ON:** Peripheral Bus 'x' Output Clock Enable bit⁽¹⁾

1 = Output clock is enabled

0 = Output clock is disabled

bit 14-12 Unimplemented: Read as '0'

bit 11 **PBDIVRDY:** Peripheral Bus 'x' Clock Divisor Ready bit

1 = Clock divisor logic is not switching divisors and the PBxDIV<6:0> bits may be written

0 = Clock divisor logic is currently switching values and the PBxDIV<6:0> bits cannot be written

bit 10-7 Unimplemented: Read as '0'

bit 6-0 **PBDIV<6:0>:** Peripheral Bus 'x' Clock Divisor Control bits

1111111 = PBCLKx is SYSCLK divided by 128

11111110 = PBCLKx is SYSCLK divided by 127

.

.

0000011 = PBCLKx is SYSCLK divided by 4

0000010 = PBCLKx is SYSCLK divided by 3

0000001 = PBCLKx is SYSCLK divided by 2 (default value for x < 7)

0000000 = PBCLKx is SYSCLK divided by 1 (default value for $x \ge 7$)

Note 1: The clock for peripheral bus 1 cannot be turned off. Therefore, the ON bit in the PB1DIV register cannot be written as a '0'.

REGISTER 8-7: SLEWCON: OSCILLATOR SLEW CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0						
31.24	_	_	_	_	_	_	_	_
00.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	_	_	_	_		SYSDIV	<3:0> ⁽¹⁾	
45.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
15:8	_	_	_	_		;	SLWDIV<2:0>	•
7.0	U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R-0, HS, HC
7:0	-	_	_	_	_	UPEN	DNEN	BUSY

Legend:HC = Hardware ClearedHS = Hardware SetR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-20 Unimplemented: Read as '0'

bit 19-16 SYSDIV<3:0>: System Clock Divide Control bits⁽¹⁾

1111 = SYSCLK is divided by 16

1110 = SYSCLK is divided by 15

.

0010 = SYSCLK is divided by 3

0001 = SYSCLK is divided by 2

0000 = SYSCLK is not divided

bit 15-11 Unimplemented: Read as '0'

bit 10-8 SLWDIV<2:0>: Slew Divisor Steps Control bits

These bits control the maximum division steps used when slewing during a frequency change.

111 = Steps are divide by 128, 64, 32, 16, 8, 4, 2, and then no divisor

110 = Steps are divide by 64, 32, 16, 8, 4, 2, and then no divisor

101 = Steps are divide by 32, 16, 8, 4, 2, and then no divisor

100 = Steps are divide by 16, 8, 4, 2, and then no divisor

011 = Steps are divide by 8, 4, 2, and then no divisor

010 = Steps are divide by 4, 2, and then no divisor

001 = Steps are divide by 2, and then no divisor 000 = No divisor is used during slewing

The steps apply in reverse order (i.e., 2, 4, 8, etc.) during a downward frequency change.

bit 7-3 Unimplemented: Read as '0'

bit 2 UPEN: Upward Slew Enable bit

1 = Slewing enabled for switching to a higher frequency

0 = Slewing disabled for switching to a higher frequency

bit 1 **DNEN:** Downward Slew Enable bit

1 = Slewing enabled for switching to a lower frequency

0 = Slewing disabled for switching to a lower frequency

bit 0 BUSY: Clock Switching Slewing Active Status bit

1 = Clock frequency is being actively slewed to the new frequency

0 = Clock switch has reached its final value

Note 1: The SYSDIV<3:0> bit settings are ignored if both UPEN and DNEN = 0, and SYSCLK will be divided by 1.

REGISTER 8-8: CLKSTAT: OSCILLATOR CLOCK STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0 U-0							
31.24	_	_	_	_	_	1	_	_
00:40	U-0 U-0							
23:16	_	_	_	_	_	-	_	_
45.0	U-0 U-0							
15:8	_	_	_	_	_	-	_	_
7.0	R-0	U-0	R-0	R-0	U-0	R-0	U-0	R-0
7:0	SPLLRDY	_	LPRCRDY	SOSCRDY	_	POSCRDY	_	FRCRDY

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7 SPLLRDY: System PLL (SPLL) Ready Status bit

1 = SPLL is ready

0 = SPLL is not ready

bit 6 Unimplemented: Read as '0'

bit 5 LPRCRDY: Low-Power RC (LPRC) Oscillator Ready Status bit

1 = LPRC is stable and ready

0 = LPRC is disabled or not operating

bit 4 SOSCRDY: Secondary Oscillator (Sosc) Ready Status bit

1 = Sosc is stable and ready

0 = Sosc is disabled or not operating

bit 3 Unimplemented: Read as '0'

bit 2 POSCRDY: Primary Oscillator (Posc) Ready Status bit

1 = Posc is stable and ready

0 = Posc is disabled or not operating

bit 1 Unimplemented: Read as '0'

bit 0 FRCRDY: Fast RC (FRC) Oscillator Ready Status bit

1 = FRC is stable and ready

0 = FRC is disabled for not operating

9.0 PREFETCH MODULE

Note:

This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 41.** "**Prefetch Module for Devices with L1 CPU Cache**" (DS60001183), which is available from the *Documentation > Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Prefetch module is a performance enhancing module that is included in PIC32MZ DA family devices. When running at high-clock rates, Wait states must be inserted into Program Flash Memory (PFM) read transactions to meet the access time of the PFM. Wait states can be hidden to the core by prefetching and storing instructions in a temporary holding area that the CPU can access quickly. Although the data path to the CPU is 32 bits wide, the data path to the PFM is 128 bits wide. This wide data path provides the same bandwidth to the CPU as a 32-bit path running at four times the frequency.

The Prefetch module holds a subset of PFM in temporary holding spaces known as lines. Each line contains a tag and data field. Normally, the lines hold a copy of what is currently in memory to make instructions or data available to the CPU without Flash Wait states.

9.1 Features

The Prefetch module includes the following key features:

- · 4x16 byte fully-associative lines
- · One line for CPU instructions
- · One line for CPU data
- · Two lines for peripheral data
- 16-byte parallel memory fetch
- · Configurable predictive prefetch
- · Error detection and correction

A simplified block diagram of the Prefetch module is shown in Figure 9-1.

FIGURE 9-1: PREFETCH MODULE BLOCK DIAGRAM

9.2 Prefetch Control Registers

	s	Feset:	0000	0007	0000	0000
		16/0	I	٨	_	
		1/11	1	PFMWS<2:0>	1	
		18/2	I	Ь	-	
		19/3	I	Ι	1	PFMSECCNT<7:0>
		20/4	I	PREFEN<1:0>	1	PFMSEC
		21/5	I	PREFE	_	
		22/6	I	1	_	
	ts	23/7	I	1	1	
	Bits	24/8	1	Ι	1	1
		25/9	I	_	_	-
		26/10	PFMSECEN	I	PFMDED PFMSEC	-
		27/11	I	_	PFMDED	1
MAP		28/12	I	Ι	-	1
SISTER		29/13	I	Ι	1	1
CH REG	ICH KEG	30/14	I	Ι	-	Ι
PREFETCH REGISTER MAP		31/15		1	9	-
Д	€	Bit Range	31:16	15:0	31:16	15:0
TABLE 9-1:		registen ^(†) emsM		TXECON NO.	TATE OF TATE	PRESIAI
TABL		Virtual Addr (*_3878)		0000	200	2

All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information. x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 9-1: PRECON: PREFETCH MODULE CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0
31.24	_	_	_	_	_	PFMSECEN	_	
23:16	U-0	U-0						
23.10	_	-	-	_	_	1	_	_
15:8	U-0	U-0						
15.6	_	-	-	_	_	1	_	_
7:0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1
7.0	_	-	PREFE	N<1:0>	_	PFI	MWS<2:0> ⁽	1)

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-27 Unimplemented: Write '0'; ignore read

bit 26 **PFMSECEN:** Flash SEC Interrupt Enable bit

1 = Generate an interrupt when the PFMSEC bit (PRESTAT<26>) is set

0 = Do not generate an interrupt when the PFMSEC bit is set

bit 25-6 Unimplemented: Write '0'; ignore read

bit 5-4 **PREFEN<1:0>:** Predictive Prefetch Enable bits

11 = Enable predictive prefetch for any address

10 = Enable predictive prefetch for CPU instructions and CPU data

01 = Enable predictive prefetch for CPU instructions only

00 = Disable predictive prefetch

bit 3 Unimplemented: Write '0'; ignore read

bit 2-0 **PFMWS<2:0>:** PFM Access Time Defined in Terms of SYSCLK Wait States bits⁽¹⁾

111 = Seven Wait states

•

010 = Two Wait states

001 = One Wait state

000 = Zero Wait states

Note 1: For the Wait states to SYSCLK relationship, refer to Table 44-16 in Section44.0 "Electrical Characteristics".

Register 9-1: PRESTAT: Prefetch Module Status Register

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	U-0	U-0
31.24	_	_	_	_	PFMDED	PFMSEC	_	_
23:16	U-0 U-0							
23.10	_	_	_	-	-	_		_
15:8	U-0 U-0							
15.6	_	_	_	-	-	_		_
7:0	R/W-0 R/W-0							
7.0				PFMSEC	CNT<7:0>			

Legend: HS = Hardware Set

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-28 Unimplemented: Write '0'; ignore read

bit 27 **PFMDED:** Flash Double-bit Error Detected (DED) Status bit

This bit is set in hardware and can only be cleared (i.e., set to '0') in software.

1 = A DED error has occurred 0 = A DED error has not occurred

bit 26 **PFMSEC:** Flash Single-bit Error Corrected (SEC) Status bit

1 = A SEC error occurred when PFMSECCNT<7:0> was equal to zero

0 = A SEC error has not occurred

bit 25-8 **Unimplemented:** Write '0'; ignore read bit 7-0 **PFMSECCNT<7:0>:** Flash SEC Count bits

11111111 - 00000000 = SEC count

10.0 DIRECT MEMORY ACCESS (DMA) CONTROLLER

Note:

This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 31. "Direct Memory Access (DMA) Controller" (DS60001117), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Direct Memory Access (DMA) Controller is a bus master module useful for data transfers between different devices without CPU intervention. The source and destination of a DMA transfer can be any of the memory mapped modules existent in the device such as SPI, UART, PMP, etc., or memory itself.

Following are some of the key features of the DMA Controller module:

- · Eight identical channels, each featuring:
 - Auto-increment source and destination address registers
 - Source and destination pointers
 - Memory to memory and memory to peripheral transfers
- · Automatic word-size detection:
 - Transfer granularity, down to byte level
 - Bytes need not be word-aligned at source and destination

- · Fixed priority channel arbitration
- · Flexible DMA channel operating modes:
 - Manual (software) or automatic (interrupt) DMA requests
 - One-Shot or Auto-Repeat Block Transfer modes
 - Channel-to-channel chaining
- · Flexible DMA requests:
 - A DMA request can be selected from any of the peripheral interrupt sources
 - Each channel can select any (appropriate) observable interrupt as its DMA request source
 - A DMA transfer abort can be selected from any of the peripheral interrupt sources
 - Up to 2-byte Pattern (data) match transfer termination
- Multiple DMA channel status interrupts:
 - DMA channel block transfer complete
 - Source empty or half empty
 - Destination full or half full
 - DMA transfer aborted due to an external event
 - Invalid DMA address generated
- · DMA debug support features:
 - Most recent error address accessed by a DMA channel
 - Most recent DMA channel to transfer data
- CRC Generation module:
 - CRC module can be assigned to any of the available channels
 - CRC module is highly configurable

FIGURE 10-1: DMA BLOCK DIAGRAM

DMA Control Registers

TABLE 10-1: DMA GLOBAL REGISTER MAP

s	Place IIA	0000	0000	0000	0000	0000	0000
	16/0	1	I	I	^		
	1//1	I	_	_	DMACH<2:0>		
	18/2	I	-	-	D		
	19/3	I	Ι	Ι	Ι		
	20/4	I	I	I	I		
	21/5	I	-	_	-		
	22/6	I	_	_	_		
Bits	23/7	I	Ι	-	Ι	DMAADDB<31.0>	0.10
ā	24/8	I	I	Ι	I	חמממח	
	25/9	I	Ι	-	Ι		
	26/10	1	_	_	_		
	27/11	1	DMABUSY	_	-		
	28/12	I	GN34SNS	_	_		
	29/13	I	I	Ι	I		
	30/14	1	_	_	_		
	31/15	I	NO	RDWR	I		
•	Bit Range	31:16	15:0	31:16	15:0	,	15:0
	Register (¹⁾	NO CAMO		TATAMA	I SKINO	AUDAMU 000	
	Virtual Addr (#_1878)	7	3	7	2	1020	24

 $_{
m X}$ = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal

All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

		4						
		20/4	1	_				
		21/5	I	CRCEN CRCAPP CRCTYP				
		22/6	I	CRCAPP				
	Bits	23/7	I	CRCEN	CPCDATA/34:0>	0.10/41	CBC VOB / 34:0>	V0.16×N0
	В	24/8	BITO		, עטםטע		7	אטאטע
		25/9	I					
		26/10	I	PLEN<4:0>				
		27/11	WBO					
۱P		28/12	BYTO<1:0>					
TER M/		29/13	BYTO	_				
REGIS		30/14	I	_				
AA CRC		31/15	I	I				
D	ŧ	Bit Range	31:16	15:0	31:16	15:0	31:16	15:0
TABLE 10-2: DMA CRC REGISTER MAP		Register Name ⁽¹⁾	OSO OSO	2000	VIVUJOJU		acyclac	USU DCRCACK
TAB	ssə	Virtual Addr (#_1878)	7000	020	1040	2	700	000

Stesets

16/0

17/1

18/2

19/3

m x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal Legend:

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

TABLE	LE 10-3:		DMA CHANNEL 0 THROUGH CH	NNEL 0	THROL		ANNEL 7 REGISTER MAP	7 REGIS	TER M	۸P									
ssə	,	e								Bits	s								s
Virtual Addr (#_r818)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	Stees IIA
0		31:16				CHPIGI	N<7:0>				I	I	1	I	1	ı	ı	I	7700
1000	DCHOCON	15:0	CHBUSY	1	CHPIGNEN	Ι	CHPATLEN	1	I	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	I	CHEDET	CHPRI<1:0>		0000
1	100100	31:16	I	I	I	I	I	1	I	I				CHAIRQ<7:0>	<0:2>				00FF
0/01	DCHOECOIN	15:0				CHSIR	Q<7:0>				CFORCE	CABORT	PATEN	SIRQEN	AIRGEN	1	I	I	FF00
7	H	31:16	I	I	I	I	I	I	I	I	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE	0000
1080		15:0	ı	1	-	Ι	Ι	1	I	I	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
1090	DCH0SSA	31:16								CHSSA<31:0>	<31:0>							•	X X X
10A0	DCH0DSA	31:16								CHDSA<31:0>	<31:0>								X X X
700	710001100	31:16	I	I	I	Ι	Ι	I	I	I	I	Ι	Ι	I	I	1	1	I	0000
000		15:0								CHSSIZ<15:0>	<15:0>								XXXX
7		31:16	ı	I	I	Ι	Ι	I	I	I	I	I	Ι	I	I	1	1	I	0000
	DCHODSIZ	15:0						-		CHDSIZ<15:0>	<15:0>								XXXX
000	атазопоа	31:16	I	I	1	-	ı	ı	I	I	I	_	I	I	I	I	I	I	0000
000	און ואטווטט	15:0								CHSPTR<15:0>	<15:0>								0000
101	40E0 DCHODETE	` '	ı	I	Ι	I	1	1	1	I	1	ı	I	I	ı	ı	I	I	0000
				•						CHDPTR<15:0>	<15:0>					•	•		0000
10E0	VISCOUNT I	31:16	1	I	I	I	I	1	I	I	1	1	1	1	I	I	1	Ι	0000
5				•						CHCSIZ<15:0>	<15:0>					•	•		XXXX
77	DCHOCETE	••	1	1	-	_	1	I	1	Ι	1	1	1	1	1	ı	1	1	0000
		15:0								CHCPTR<15:0>	<15:0>								0000
1110	DCHODAT	31:16	I		l	I	1	1	I	I	l			I		1	1	1	0000
		15:0								CHPDAT<15:0>	<15:0>					•	•		XXXX
1120	DCH1CON	31:16				CHPIGI	N<7:0>				Ι	Ι	Ι	I	I	-	_	-	7700
2		15:0	CHBUSY	1	CHPIGNEN	Ι	CHPATLEN	1	1	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	ı	CHEDET	CHPRI<1:0>		0000
1130	אַטטאַדרטט	``	-	-	_	-	1	-	I	Ι				\simeq	<0:7>				00FF
		15:0				CHSIR	.Q<7:0>				CFORCE	CABORT	PATEN		AIRGEN	I	1	1	FF00
1170	DCH1INT	31:16	1	1	1	1	1	-	1	1	CHSDIE	CHSHIE	CHDDIE		CHBCIE	CHCCIE	CHTAIE		0000
7		15:0	1	1	I	I	1	1	I	I	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
1150	DCH1SSA	31:16 15:0								CHSSA<31:0>	<31:0>								X X X X X
1160	DCH1DSA	31:16								CHDSA<31:0>	<31:0>								X X X X X X
Legend:		ınknown	value on Re	eset; — = L	unimplemen	ted, read as	x= unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal	alues are sh	own in hex	adecimal.									

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

TABLE	3LE 10-3:		1A CHA	NNEL 0	THROL	DMA CHANNEL 0 THROUGH CH	ANNEL 7 REGISTER MAP (CONTINUED)	7 REGIS	TER MA	AP (CO)	TINUE	<u> </u>						•	
ssə		€								Bits									s
virtual Addr (#_1878)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	1//1	16/0	steseЯ IIA
7		31:16	I	1	1	I	1	I	I	I	I	1	I	1	1	I	1	I	0000
0711	DCH15SIZ	15:0								CHSSIZ<15:0>	15:0>								XXXX
1100	71301130	31:16	Ι	I	I	I	Ι	I	Ι	I	I	I	Ι	1	I	I	I	I	0000
00		15:0								CHDSIZ<15:0>	15:0>								XXXX
7	PCH46BTB	31:16	Ι	I	I	I	-	I	Ι	I	Ι	I	I	I	I	I	Ι	I	0000
081.1	או אפן הטט	15:0								CHSPTR<15:0>	:15:0>								0000
4	атаалаа	31:16	1	I	1	I	Ι	I	Ι	I	1	1	1	I	I	I	I	I	0000
2		15:0								CHDPTR<15:0>	<15:0>								0000
7.		31:16	1	I	I	I	1	I	I	I	1	I	I	I	I	I	I	I	0000
9	DCHICSIZ	15:0								CHCSIZ<15:0>	15:0>								×××
7	071 071	31:16	I	I	1	I	1	I	I	I	I	ı	I	ı	ı	I	I	I	0000
2	DCHICFIR	15:0								CHCPTR<15:0>	<15:0>								0000
7	TAG 12	31:16	ı	ı	1	I	1	ı	I	I	I	1	1	ı	1	I	I	I	0000
00	DCHIDAL	15:0								CHPDAT<15:0>	<15:0>								XXXX
11 🖺	ואסטמחטם	31:16				CHPIGI	<0:Z>N				Ι	Ι	Ι	Ι	I	1	I	Ι	7700
		15:0	CHBUSY		CHPIGNEN	1	CHPATLEN	Ι		CHCHNS	CHEN	CHAED	CHCHN	CHAEN	1	CHEDET	CHPRI<1:0>		0000
11	DOUGEOOM	31:16	I	1	-	I	Ι	Ι	Ι	I				CHAIRQ<7:0>	<0:7>				00FF
		15:0				CHSIR	.Q<7:0>					CABORT	PATEN		AIRGEN	1	1	1	FF00
1200	DCH2INT	31:16	I	I	I	I	1	ı	I	ı	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE		0000
200		15:0	ı	1	1	I	1	I	I	I	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF	0000
1210	DCH2SSA	31:16								CHSSA<31:0>	31:0>								X X X X X X
1220	DCH2DSA	31:16								CHDSA<31:0>	31:0>								X X X
7		31:16	I	I	1	I	1	I	1	I	1	I	1	1	I	1	ı	ı	0000
1230	DCHZSSIZ	15:0								CHSSIZ<15:0>	15:0>								XXXX
1240	71300000	31:16	-	Ι	-	I	1	Ι	Ι	I	1	Ι	Ι	1	Ι	1	1	1	0000
77		15:0								CHDSIZ<15:0>	15:0>								XXXX
1250	DCHOOPTD	` '	1	I	_	I	1	Ι	Ι	I	1	1	1	1	1	I	I	I	0000
200		15:0		·						CHSPTR<15:0>	:15:0>					•	•		0000
1260	DCHODPTR	(.)	1	I	1	I	1	Ī	I	1	1	I	1	I	I	I	I	I	0000
2										CHDPTR<15:0>	<15:0>					•	•		0000
1270	DCH2CS17	(.)	1	1	1	I	1	I	I	I	1	1	I	1	1	I	I	1	0000
1		15:0								CHCSIZ<15:0>	15:0>								XXXX
Legend:		ınknown	value on R	eset; — = L	ınimplemen	ted, read as	x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal	alues are sh	own in hex	adecimal.									

..

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information. ÷ Note

CHASCA STATE STA	TAB	TABLE 10-3:		AA CHA	NNEL (DMA CHANNEL 0 THROUGH		CHANNEL 7 REGISTER MAP (CONTINUED)	7 REGIS	TER M	AP (COI	NTINUE	:D)							
CHASSING STATE S	SSƏ		e								Bits	•								s
CHASSA 3116 CHOSA-3110 CHOSA-310	Virtual Addr (*_r8 ₁ #)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	steseR IIA
CHUSA-3110- HEADING 1560- HEADING 1	1390		31:16								CHSSA<	31:0>								XXX
CHADSIZ 1516 — — — — — — — — — — — — — — — — — — —	13A0		31:16								CHDSA<	31:0>								X X
150 150	200		31:16	1	1	I	1	1	1	1	ı	I	I	1	I	ı	I	ı	1	000
HARPING 3116	1380		15:0								>ZISSH2	:15:0>		•		•				XXX
High Bank High	1300		31:16	1	_	Ι	-	Ι	Ι	Ι	I	-	_	Ι	_	1	1	-	1	000
11-16 11-1	0000		15:0								CHDSIZ<	:15:0>								XXX
150 CHOPTR-15.04	1300			1	1	ı	1	1	1	Ι	1	_	1	1	1	1	1	1	1	000
3116	2021										CHSPTR•	<15:0>								000
CHACSIZ STATE CHOPTR<15:0> CHACSIZ STATE CHOPTR<15:0> CHACSIZ STATE CHOPTR<15:0> CHACSIZ STATE CHOPTR<15:0> CHACSIZ STATE CHOPTR<15:0> CHOPTR<15:0> CHOPTR<15:0> CHOPTR<15:0 CHOPTR<15:0 CHOPTR<15:0 CHOPTR<15:0 CHOPTR<15:0 CHOPTR<15:0 CHOPTR<15:0 CHOPTR<15:0 CHOPTR<15:0 CHOPTR<15:0 CHOPTR<15:0 CHOPTR<15:0 CHOPTR<15:0 CHOPTR<15:0 CHOPTR<15:0 CHOPTR<15:0 CHOPTR<15:0 CHOPTR<15:0 CHOPTR<15:0 CHOPTR<15:0 CHOPTR<15:0 CHOPTR<15:0 CHOPTR<16:0 CHOPT	13E0	TOHADDA		1	1	ı	1	1	1	Ι	1	_	1	1	1	1	1	1	1	000
11- 11-	J.C.	NI LOTI DO									CHDPTR	<15:0>								000
CHOCAL 15.0 CHOCAL 15.	120		31:16	I	Ι	-	Ι	ı	Ι	Ι	I	ı	-	ı	ı	ı	I	ı	Ι	000
11-16 11-1	0101		15:0								CHCSIZ<	:15:0>								XXX:
15.0 16.0	1700			I	_	Ι	1	1	Ι	Ι	1	-	-	1	1	1	1	I	1	000
11-16 1-19	004		_								CHCPTR	<15:0>								000
150 CHBUSY 150 CHBUSY CHPIGNEN CHPIGNEN CHPIGNEN CHPIGNEN CHCPIN CHGEN CHCPIN CHGIN CHGEN CHGIN CHGEN CHGEN CHGEN CHGIN CHGEN CHGIN CHGEN CHGIN	7		31:16	I	Ι	I	Ι	Ι	I	Ι	I	I	I	I	Ι	I	I	I	I	000
CHECON 13:16 —	4 5 		15:0								CHPDAT-	<15:0>								XXX
150 CHBUSY LANGE LANGE LANGE LANGE LANGE LANGE CHCHN CHAED CHCHN	1420		31:16				CHPIG	N<7:0>				I	-	1	-	1	Ι	Ι	Ι	170
HECCON 31:16 — — — — — — CHAIRQ<7:0> CHAIRQ<7:0> CHAIRQ<7:0> CHAIRQ<7:0> CHAIRQ<7:0> CHAIRQ<7:0> CHAIRQ<7:0 AIRQGN AIRQGN AIRQGN — — CHAIRQ<7:0 — CHAIRQ<7:0 — CHAIRQ<7:0 — CHAIRQ<7:0 — CHAIRQ<7:0 — CHAIRQ<7:0 — CHAIRQ	024		15:0	CHBUSY	_	CHPIGNEN	-	CHPATLEN	I	-	CHCHNS	CHEN	CHAED	CHCHN	CHAEN	_	CHEDET	CHPRI<1:0>	<1:0>	000
15.0 15.0	7,00			I	Ι	I	Ι	Ι	I	I	I				CHAIRC	<0:7>				00E
OCHERNY 31:16 — — — — — — CHSDIE CHSDIE CHDDIE CHDDIE CHDDIE CHDCIE CHCCIE	1450	DOLLSECON					CHSIR	Q<7:0>				CFORCE	CABORT	PATEN		AIRGEN	1	Ι	1	FF0
CH5SSA 31:16 CHSMS CHSMS CHSMS CHSMS CHSMS CHSMS CHSMS CHSMS CHCCIF	1440		31:16	I	Ι	I	1	1	I	1	1	CHSDIE	_	CHDDIE	_	CHBCIE	CHCCIE	CHTAIE	CHERIE	000
CH5SSA 31:16 CHSSA<31:0> CHDSA<31:0> CH5DSIZ 31:16 —<	?		15:0	I	1	1	I	1	I	1	1	CHSDIF		CHDDIF	_	CHBCIF	CHCCIF	CHTAIF	CHERIF	000
CH5DSA 31:16 L	1450		31:16 15:0								CHSSA<	31:0>								X X
CH5SSIZ 41:16	1460		31:16 15:0								CHDSA<	31:0>								XXX
CH5SSIZ 45:0 CH5SSIZ 45:0> CH5DSIZ 45:0 CH5SPTR 31:16	77.7			I	I	I	1	1	I	I	1	1	1	I	ı	1	I	I	1	000
CH5DSIZ 41:16	1470		_								CHSSIZ<	:15:0>								XXX
H5SPTR 31:16 — — — — — — — — — — — — — — — — — — —	7480			I	_	I	1	Ι	I	Ι	I	_	I	-	I	1	I	I	Ι	000
CH5SPTR 15:0	001										CHDSIZ<	:15:0>		•		•				XXX
15:0	1490	DCH5SPTR		I	I	I	I	I	I	Ι	I	1	I	Ι	I	1	1	1	1	000
	<u>:</u>].		15:0	-		-	-			-	CHSPTR	<15:0>								000

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12,2 "CLR, SET, and INV Registers" for more information.

© 2015-2017 Microchip Technology Inc.

÷ Note

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

H 0 0 0 0 X X X X X 0 X 0 X 0 0 0 0 0 X 0 0 X

s	teseR IIA	00E	FFO	000	000	X X	XXX	××	000	XXX	000	XXX	000	000	000	000	000	XXX	000	000	000	×××
	16/0		I	CHERIE	CHERIF				I		-		_		-		-		I		I	
	17/1		1	CHTAIE	CHTAIF				1		-		_		-		-		I		1	
	18/2		1	CHCCIE	CHCCIF				-		I		_		I		I		I		-	
	19/3	<0:7>≿	AIRGEN	CHBCIE	CHBCIF				-		I		-		1		I		I		-	
	20/4	CHAIRQ<7:0>	SIRGEN	CHDHIE	CHDHIF				Ι		I				I		I		I		Ι	
	21/5		PATEN	CHDDIE	CHDDIF				-		-		_		-		-		I		-	
	22/6		CFORCE CABORT	CHSHIE	CHSHIF				I		I		Ι		I		I		I		I	
ts.	23/7		CFORCE	CHSDIE	CHSDIF	<31:0>	<31:0>	<u>.</u>	I	<15:0>	Ι	<15:0>	Ι	<15:0>	Ι	<<15:0>	Ι	<15:0>	I	<<15:0>	I	<15:0>
Bits	24/8	1		I	I	CHSSA<31:0>	CHDSA<31:0>		I	CHSSIZ<15:0>	I	CHDSIZ<15:0>	1	CHSPTR<15:0>	I	CHDPTR<15:0>	I	CHCSIZ<15:0>	I	CHCPTR<15:0>	Ι	CHPDAT<15:0>
	25/9	1		I	Ι				I		Ι		_		Ι		Ι		I		I	
	26/10	1		I	Ι				I		I		-		I		I		I		I	
	27/11	_	Q<7:0>	I	_				I		_		_		_		_		I		I	
	28/12	1	CHSIRQ<7:0>	I	_				I		_		_		_		_		I		Ι	
	29/13	1		I	I				I		I		1		I		I		1		I	CHPDA
	30/14	_		I	_				-		_		_		_		_		I		-	
	31/15	1		1	1				-		I		-		I		I		I		-	15:0
€	Bit Range	31:16	15:0	31:16	15:0	31:16 15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0
	Register Name ⁽¹⁾	_	ISBU DCH/ECON	DOLIZINIT		DCH7SSA	DCH7DSA		71994170		21302130	100,100	DCH7CBTB		1620 OCUZUBITE	Y	21302100		DOUGLE	א וייי	TAGE	ווייייייייייייייייייייייייייייייייייי
ssə	Virtual Addr (#_1878)	7	0961	7	000	15D0	15F0	2	7 1	010	7600	000	1610	2	76.00	020	76.97	000	7	040	7	0001

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

TABLE 10-3:

DMA CHANNEL 0 THROUGH CHANNEL 7 REGISTER MAP (CONTINUED)

REGISTER 10-1: DMACON: DMA CONTROLLER CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0 U-0							
31.24	_	_	_	-		_	_	_
22.46	U-0 U-0							
23:16	-	_	-	1		_	-	_
45.0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0
15:8	ON	_	_	SUSPEND	DMABUSY		_	_
7.0	U-0 U-0							
7:0	_	_	_	_	_	_	_	_

Legend:

bit 12

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 ON: DMA On bit

1 = DMA module is enabled0 = DMA module is disabledbit 14-13 Unimplemented: Read as '0'

SUSPEND: DMA Suspend bit

1 = DMA transfers are suspended to allow CPU uninterrupted access to data bus

0 = DMA operates normally

bit 11 **DMABUSY:** DMA Module Busy bit

1 = DMA module is active and is transferring data

0 = DMA module is disabled and not actively transferring data

bit 10-0 Unimplemented: Read as '0'

REGISTER 10-2: DMASTAT: DMA STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	RDWR	_	_	_	_	_	_	_
00.40	U-0 U-0							
23:16	_	-	_	_	_	_	_	_
45.0	U-0 U-0							
15:8		-	_	_	_	_	_	_
7.0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
7:0	_	_	_	_	_		DMACH<2:0>	,

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31 RDWR: Read/Write Status bit

1 = Last DMA bus access when an error was detected was a read

0 = Last DMA bus access when an error was detected was a write

bit 30-3 Unimplemented: Read as '0'

bit 2-0 DMACH<2:0>: DMA Channel bits

These bits contain the value of the most recent active DMA channel when an error was detected.

REGISTER 10-3: DMAADDR: DMA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R-0 R-0							
31:24				DMAADDF	?<31:24>			
22.46	R-0 R-0							
23:16				DMAADDF	?<23:16>			
15:8	R-0 R-0							
15.6				DMAADDI	R<15:8>			
7.0	R-0 R-0							
7:0				DMAADD	R<7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 DMAADDR<31:0>: DMA Module Address bits

These bits contain the address of the most recent DMA access when an error was detected.

REGISTER 10-4: DCRCCON: DMA CRC CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
31:24		_	BYTO	<1:0>	WBO ⁽¹⁾	_	_	BITO
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	-	_	-	_	_	_	_	_
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	-	_	_			PLEN<4:0> ⁽¹⁾		
7.0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
7:0	CRCEN	CRCAPP ⁽¹⁾	CRCTYP	_	_	(CRCCH<2:0>	•

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-30 Unimplemented: Read as '0'

bit 29-28 BYTO<1:0>: CRC Byte Order Selection bits

- 11 = Endian byte swap on half-word boundaries (i.e., source half-word order with reverse source byte order per half-word)
- 10 = Swap half-words on word boundaries (i.e., reverse source half-word order with source byte order per half-word)
- 01 = Endian byte swap on word boundaries (i.e., reverse source byte order)
- 00 = No swapping (i.e., source byte order)
- bit 27 WBO: CRC Write Byte Order Selection bit (1)
 - 1 = Source data is written to the destination re-ordered as defined by BYTO<1:0>
 - 0 = Source data is written to the destination unaltered

bit 26-25 Unimplemented: Read as '0'

bit 24 BITO: CRC Bit Order Selection bit

When CRCTYP (DCRCCON<15>) = 1 (CRC module is in IP Header mode):

- 1 = The IP header checksum is calculated Least Significant bit (LSb) first (i.e., reflected)
- 0 = The IP header checksum is calculated Most Significant bit (MSb) first (i.e., not reflected)

When CRCTYP (DCRCCON<15>) = 0 (CRC module is in LFSR mode):

- 1 = The LFSR CRC is calculated Least Significant bit first (i.e., reflected)
- 0 = The LFSR CRC is calculated Most Significant bit first (i.e., not reflected)

bit 23-13 Unimplemented: Read as '0'

bit 12-8 **PLEN<4:0>:** Polynomial Length bits⁽¹⁾

When CRCTYP (DCRCCON<15>) = 1 (CRC module is in IP Header mode):

These bits are unused.

When CRCTYP (DCRCCON<15>) = 0 (CRC module is in LFSR mode):

Denotes the length of the polynomial – 1.

bit 7 CRCEN: CRC Enable bit

- 1 = CRC module is enabled and channel transfers are routed through the CRC module
- 0 = CRC module is disabled and channel transfers proceed normally
- Note 1: When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.

REGISTER 10-4: DCRCCON: DMA CRC CONTROL REGISTER (CONTINUED)

bit 6 CRCAPP: CRC Append Mode bit⁽¹⁾

- 1 = The DMA transfers data from the source into the CRC but NOT to the destination. When a block transfer completes the DMA writes the calculated CRC value to the location given by CHxDSA
- 0 = The DMA transfers data from the source through the CRC obeying WBO as it writes the data to the destination
- bit 5 CRCTYP: CRC Type Selection bit
 - 1 = The CRC module will calculate an IP header checksum
 - 0 = The CRC module will calculate a LFSR CRC
- bit 4-3 Unimplemented: Read as '0'
- bit 2-0 CRCCH<2:0>: CRC Channel Select bits
 - 111 = CRC is assigned to Channel 7
 - 110 = CRC is assigned to Channel 6
 - 101 = CRC is assigned to Channel 5
 - 100 = CRC is assigned to Channel 4
 - 011 = CRC is assigned to Channel 3
 - 010 = CRC is assigned to Channel 2
 - 001 = CRC is assigned to Channel 1 000 = CRC is assigned to Channel 0
- **Note 1:** When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.

REGISTER 10-5: DCRCDATA: DMA CRC DATA REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0 R/W-0							
31.24				DCRCDATA	A<31:24>			
22.46	R/W-0 R/W-0							
23:16				DCRCDATA	A<23:16>			
45.0	R/W-0 R/W-0							
15:8				DCRCDAT	A<15:8>			
7:0	R/W-0 R/W-0							
7:0				DCRCDA	ΓA<7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 DCRCDATA<31:0>: CRC Data Register bits

Writing to this register will seed the CRC generator. Reading from this register will return the current value of the CRC. Bits greater than PLEN will return '0' on any read.

When CRCTYP (DCRCCON<15>) = 1 (CRC module is in IP Header mode):

Only the lower 16 bits contain IP header checksum information. The upper 16 bits are always '0'. Data written to this register is converted and read back in 1's complement form (i.e., current IP header checksum value).

When CRCTYP (DCRCCON<15>) = 0 (CRC module is in LFSR mode):

Bits greater than PLEN will return '0' on any read.

REGISTER 10-6: DCRCXOR: DMA CRCXOR ENABLE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0 R/W-0							
31.24				DCRCXOF	?<31:24>			
22:16	R/W-0 R/W-0							
23:16				DCRCXOF	?<23:16>			
45.0	R/W-0 R/W-0							
15:8				DCRCXO	R<15:8>			
7:0	R/W-0 R/W-0							
7:0				DCRCXO	R<7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 DCRCXOR<31:0>: CRC XOR Register bits

When CRCTYP (DCRCCON<15>) = 1 (CRC module is in IP Header mode):

This register is unused.

When CRCTYP (DCRCCON<15>) = 0 (CRC module is in LFSR mode):

- 1 = Enable the XOR input to the Shift register
- 0 = Disable the XOR input to the Shift register; data is shifted in directly from the previous stage in the register

REGISTER 10-7: DCHxCON: DMA CHANNEL x CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24				CHPIG	N<7:0>			
00:40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	_	_	_	_	_	_
45.0	R/W-0	U-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0
15:8	CHBUSY	_	CHIPGNEN	_	CHPATLEN	_	_	CHCHNS ⁽¹⁾
7.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R-0	R/W-0	R/W-0
7:0	CHEN ⁽²⁾	CHAED	CHCHN	CHAEN	_	CHEDET	CHPF	RI<1:0>

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-24 CHPIGN<7:0>: Channel Register Data bits

Pattern Terminate mode:

Any byte matching these bits during a pattern match may be ignored during the pattern match determination when the CHPIGNEN bit is set. If a byte is read that is identical to this data byte, the pattern match logic will treat it as a "don't care" when the pattern matching logic is enabled and the CHPIGEN bit is set.

bit 23-16 Unimplemented: Read as '0'

bit 15 CHBUSY: Channel Busy bit

1 = Channel is active or has been enabled

0 = Channel is inactive or has been disabled

bit 14 Unimplemented: Read as '0'

bit 13 CHPIGNEN: Enable Pattern Ignore Byte bit

1 = Treat any byte that matches the CHPIGN<7:0> bits as a "don't care" when pattern matching is enabled

0 = Disable this feature

bit 12 **Unimplemented:** Read as '0'

bit 11 CHPATLEN: Pattern Length bit

1 = 2 byte length

0 = 1 byte length

bit 10-9 Unimplemented: Read as '0'

bit 8 CHCHNS: Chain Channel Selection bit (1)

1 = Chain to channel lower in natural priority (CH1 will be enabled by CH2 transfer complete)

0 = Chain to channel higher in natural priority (CH1 will be enabled by CH0 transfer complete)

bit 7 CHEN: Channel Enable bit(2)

1 = Channel is enabled

0 = Channel is disabled

bit 6 CHAED: Channel Allow Events If Disabled bit

1 = Channel start/abort events will be registered, even if the channel is disabled

 $_{
m 0}$ = Channel start/abort events will be ignored if the channel is disabled

bit 5 CHCHN: Channel Chain Enable bit

1 = Allow channel to be chained

0 = Do not allow channel to be chained

Note 1: The chain selection bit takes effect when chaining is enabled (i.e., CHCHN = 1).

2: When the channel is suspended by clearing this bit, the user application should poll the CHBUSY bit (if available on the device variant) to see when the channel is suspended, as it may take some clock cycles to complete a current transaction before the channel is suspended.

REGISTER 10-7: DCHxCON: DMA CHANNEL x CONTROL REGISTER (CONTINUED)

- bit 4 CHAEN: Channel Automatic Enable bit
 - 1 = Channel is continuously enabled, and not automatically disabled after a block transfer is complete
 - 0 = Channel is disabled on block transfer complete
- bit 3 Unimplemented: Read as '0'
- bit 2 CHEDET: Channel Event Detected bit
 - 1 = An event has been detected
 - 0 = No events have been detected
- bit 1-0 CHPRI<1:0>: Channel Priority bits
 - 11 = Channel has priority 3 (highest)
 - 10 = Channel has priority 2
 - 01 = Channel has priority 1
 - 00 = Channel has priority 0
- Note 1: The chain selection bit takes effect when chaining is enabled (i.e., CHCHN = 1).
 - 2: When the channel is suspended by clearing this bit, the user application should poll the CHBUSY bit (if available on the device variant) to see when the channel is suspended, as it may take some clock cycles to complete a current transaction before the channel is suspended.

REGISTER 10-8: DCHxECON: DMA CHANNEL x EVENT CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	_	_	_	_	_
00.40	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
23:16				CHAIRQ<	<7:0> ⁽¹⁾			
45.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
15:8				CHSIRQ<	<7:0> ⁽¹⁾			
7:0	S-0	S-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
7:0	CFORCE	CABORT	PATEN	SIRQEN	AIRQEN	_	_	_

Legend:S = Settable bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23-16 CHAIRQ<7:0>: Channel Transfer Abort IRQ bits(1)

11111111 = Interrupt 255 will abort any transfers in progress and set CHAIF flag

•

.

00000001 = Interrupt 1 will abort any transfers in progress and set CHAIF flag 00000000 = Interrupt 0 will abort any transfers in progress and set CHAIF flag

bit 15-8 **CHSIRQ<7:0>:** Channel Transfer Start IRQ bits⁽¹⁾

11111111 = Interrupt 255 will initiate a DMA transfer

•

.

00000001 = Interrupt 1 will initiate a DMA transfer 00000000 = Interrupt 0 will initiate a DMA transfer

bit 7 CFORCE: DMA Forced Transfer bit

1 = A DMA transfer is forced to begin when this bit is written to a '1'

0 = This bit always reads '0'

bit 6 CABORT: DMA Abort Transfer bit

1 = A DMA transfer is aborted when this bit is written to a '1'

0 = This bit always reads '0'

bit 5 PATEN: Channel Pattern Match Abort Enable bit

1 = Abort transfer and clear CHEN on pattern match

0 = Pattern match is disabled

bit 4 SIRQEN: Channel Start IRQ Enable bit

1 = Start channel cell transfer if an interrupt matching CHSIRQ occurs

0 = Interrupt number CHSIRQ is ignored and does not start a transfer

bit 3 AIRQEN: Channel Abort IRQ Enable bit

1 = Channel transfer is aborted if an interrupt matching CHAIRQ occurs

0 = Interrupt number CHAIRQ is ignored and does not terminate a transfer

bit 2-0 Unimplemented: Read as '0'

Note 1: See Table 7-2: "Interrupt IRQ, Vector and Bit Location" for the list of available interrupt IRQ sources.

REGISTER 10-9: DCHxINT: DMA CHANNEL x INTERRUPT CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0 U-0							
31.24		_	_	-	_	_	_	_
00:40	R/W-0 R/W-0							
23:16	CHSDIE	CHSHIE	CHDDIE	CHDHIE	CHBCIE	CHCCIE	CHTAIE	CHERIE
45.0	U-0 U-0							
15:8	_	_	_	_	_	_	_	_
7.0	R/W-0 R/W-0							
7:0	CHSDIF	CHSHIF	CHDDIF	CHDHIF	CHBCIF	CHCCIF	CHTAIF	CHERIF

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23 CHSDIE: Channel Source Done Interrupt Enable bit

1 = Interrupt is enabled

0 = Interrupt is disabled

bit 22 CHSHIE: Channel Source Half Empty Interrupt Enable bit

1 = Interrupt is enabled

0 = Interrupt is disabled

bit 21 CHDDIE: Channel Destination Done Interrupt Enable bit

1 = Interrupt is enabled

0 = Interrupt is disabled

bit 20 CHDHIE: Channel Destination Half Full Interrupt Enable bit

1 = Interrupt is enabled

0 = Interrupt is disabled

bit 19 CHBCIE: Channel Block Transfer Complete Interrupt Enable bit

1 = Interrupt is enabled

0 = Interrupt is disabled

bit 18 CHCCIE: Channel Cell Transfer Complete Interrupt Enable bit

1 = Interrupt is enabled

0 = Interrupt is disabled

bit 17 CHTAIE: Channel Transfer Abort Interrupt Enable bit

1 = Interrupt is enabled

0 = Interrupt is disabled

bit 16 CHERIE: Channel Address Error Interrupt Enable bit

1 = Interrupt is enabled

0 = Interrupt is disabled

bit 15-8 Unimplemented: Read as '0'

bit 7 CHSDIF: Channel Source Done Interrupt Flag bit

1 = Channel Source Pointer has reached end of source (CHSPTR = CHSSIZ)

0 = No interrupt is pending

bit 6 CHSHIF: Channel Source Half Empty Interrupt Flag bit

1 = Channel Source Pointer has reached midpoint of source (CHSPTR = CHSSIZ/2)

0 = No interrupt is pending

REGISTER 10-9: DCHxINT: DMA CHANNEL x INTERRUPT CONTROL REGISTER (CONTINUED)

- bit 5 CHDDIF: Channel Destination Done Interrupt Flag bit
 - 1 = Channel Destination Pointer has reached end of destination (CHDPTR = CHDSIZ)
 - 0 = No interrupt is pending
- bit 4 **CHDHIF:** Channel Destination Half Full Interrupt Flag bit
 - 1 = Channel Destination Pointer has reached midpoint of destination (CHDPTR = CHDSIZ/2)
 - 0 = No interrupt is pending
- bit 3 CHBCIF: Channel Block Transfer Complete Interrupt Flag bit
 - 1 = A block transfer has been completed (the larger of CHSSIZ/CHDSIZ bytes has been transferred), or a pattern match event occurs
 - 0 = No interrupt is pending
- bit 2 CHCCIF: Channel Cell Transfer Complete Interrupt Flag bit
 - 1 = A cell transfer has been completed (CHCSIZ bytes have been transferred)
 - 0 = No interrupt is pending
- bit 1 CHTAIF: Channel Transfer Abort Interrupt Flag bit
 - 1 = An interrupt matching CHAIRQ has been detected and the DMA transfer has been aborted
 - 0 = No interrupt is pending
- bit 0 CHERIF: Channel Address Error Interrupt Flag bit
 - 1 = A channel address error has been detectedEither the source or the destination address is invalid.
 - 0 = No interrupt is pending

REGISTER 10-10: DCHxSSA: DMA CHANNEL x SOURCE START ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0 R/W-0							
31.24				CHSSA<	31:24>			
22:40	R/W-0 R/W-0							
23:16				CHSSA<	23:16>			
45.0	R/W-0 R/W-0							
15:8				CHSSA	<15:8>			
7.0	R/W-0 R/W-0							
7:0				CHSSA	<7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 CHSSA<31:0> Channel Source Start Address bits

Channel source start address.

Note: This must be the physical address of the source.

REGISTER 10-11: DCHxDSA: DMA CHANNEL x DESTINATION START ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0 R/W-0							
31:24				CHDSA<	31:24>			
22:46	R/W-0 R/W-0							
23:16				CHDSA<	23:16>			
45.0	R/W-0 R/W-0							
15:8				CHDSA-	<15:8>			
7.0	R/W-0 R/W-0							
7:0				CHDSA	<7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 CHDSA<31:0>: Channel Destination Start Address bits

Channel destination start address.

Note: This must be the physical address of the destination.

REGISTER 10-12: DCHxSSIZ: DMA CHANNEL x SOURCE SIZE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0 U-0							
31.24	_	_	_	_		_	_	_
22.40	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	R/W-0 R/W-0							
15:8				CHSSIZ	<15:8>			
7:0	R/W-0 R/W-0							
7:0		•	•	CHSSIZ	<7:0>	•	•	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHSSIZ<15:0>: Channel Source Size bits

1111111111111111 = 65,535 byte source size

•

0000000000000001 = 1 byte source size

0000000000000000 = 65,536 byte source size

REGISTER 10-13: DCHxDSIZ: DMA CHANNEL x DESTINATION SIZE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	_	_	_	_	-	_	_	_
00.46	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	R/W-0 R/W-0							
15:8				CHDSIZ	<15:8>			
7:0	R/W-0 R/W-0							
7:0				CHDSIZ	<7:0>		•	•

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHDSIZ<15:0>: Channel Destination Size bits

111111111111111 = 65,535 byte destination size

•

00000000000000010 **= 2** byte destination size

00000000000000001 = 1 byte destination size

0000000000000000 = 65,536 byte destination size

REGISTER 10-14: DCHxSPTR: DMA CHANNEL x SOURCE POINTER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0 U-0							
31:24	-	_	_	_	_	-	-	_
22.40	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	R-0 R-0							
15:8				CHSPTR	<15:8>			
7:0	R-0 R-0							
7:0		•	•	CHSPTF	R<7:0>	•	•	•

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHSPTR<15:0>: Channel Source Pointer bits

1111111111111111 = Points to byte 65,535 of the source

:

0000000000000000 = Points to byte 1 of the source

0000000000000000 = Points to byte 0 of the source

Note: When in Pattern Detect mode, this register is reset on a pattern detect.

REGISTER 10-15: DCHxDPTR: DMA CHANNEL x DESTINATION POINTER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0 U-0							
31:24	_	_	_	_	_	_	_	_
23:16	U-0 U-0							
23.10	_	_	_	_	_	_	_	_
15:8	R-0 R-0							
15.6				CHDPTR	<15:8>			
7:0	R-0 R-0							
7:0				CHDPTF	R<7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHDPTR<15:0>: Channel Destination Pointer bits

1111111111111111 = Points to byte 65,535 of the destination

•

0000000000000000 = Points to byte 1 of the destination

0000000000000000 = Points to byte 0 of the destination

REGISTER 10-16: DCHxCSIZ: DMA CHANNEL x CELL-SIZE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	-	_	_	_	_	_	-	_
22.46	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	R/W-0 R/W-0							
15:8				CHCSIZ	<15:8>			
7:0	R/W-0 R/W-0							
7:0				CHCSIZ	<7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHCSIZ<15:0>: Channel Cell-Size bits

1111111111111111 = 65,535 bytes transferred on an event

•

000000000000001= 1 byte transferred on an event

000000000000000 = 65,536 bytes transferred on an event

REGISTER 10-17: DCHxCPTR: DMA CHANNEL x CELL POINTER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0 U-0							
31:24	_	_	_	_	_	_	_	_
22.46	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	R-0 R-0							
15:8				CHCPTR	<15:8>			
7:0	R-0 R-0							
7:0			•	CHCPTF	R<7:0>		•	•

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHCPTR<15:0>: Channel Cell Progress Pointer bits

111111111111111 = 65,535 bytes have been transferred since the last event

•

0000000000000001 = 1 byte has been transferred since the last event 0000000000000000 = 0 bytes have been transferred since the last event

Note: When in Pattern Detect mode, this register is reset on a pattern detect.

REGISTER 10-18: DCHxDAT: DMA CHANNEL x PATTERN DATA REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21:24	U-0 U-0							
31:24	_	_	-	_	1	_	_	_
00:40	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	R/W-0 R/W-0							
15:8				CHPDAT	<15:8>			
7.0	R/W-0 R/W-0							
7:0				CHPDAT	T<7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHPDAT<15:0>: Channel Data Register bits

Pattern Terminate mode:

Data to be matched must be stored in this register to allow terminate on match.

All other modes:

Unused.

NOTES:		····· y	
NOTES.			

11.0 HI-SPEED USB WITH ON-THE-GO (OTG)

Note:

This data sheet summarizes features of the PIC32MZ DA family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 51. "Hi-Speed with On-The-Go (OTG)" (DS60001326) in the "PIC32 Family Reference Manual", which is available from the Microchip web (www.microchip.com/PIC32).

The Universal Serial Bus (USB) module contains analog and digital components to provide a USB 2.0 embedded host, device, or OTG implementation with a minimum of external components.

The module supports Hi-Speed, Full-Speed, or Low-Speed in any of the operating modes. This module in Host mode is intended for use as an embedded host and therefore does not implement a UHCl or OHCl controller.

The USB module consists of the RAM controller, packet encode/decode, UTM synchronization, endpoint control, a dedicated USB DMA controller, pullup and pull-down resistors, and the register interface. A block diagram of the PIC32 USB OTG module is illustrated in Figure 11-1.

The USB module includes the following features:

- USB Hi-Speed, Full-Speed, and Low-Speed support for host and device
- USB OTG support with one or more Hi-Speed, Full-Speed, or Low-Speed device
- · Integrated signaling resistors
- Integrated analog comparators for VBUS monitoring
- · Integrated USB transceiver
- · Transaction handshaking performed by hardware
- Integrated 8-channel DMA to access system RAM and Flash
- Seven transmit endpoints and seven receive endpoints, in addition to Endpoint 0
- Session Request Protocol (SRP) and Host Negotiation Protocol (HNP) support
- · Suspend and resume signaling support
- · Dynamic FIFO sizing
- Integrated RAM for the FIFOs, eliminating the need for system RAM for the FIFOs
- · Link power management support
 - Note 1: The implementation and use of the USB specifications, as well as other third party specifications or technologies, may require licensing; including, but not limited to, USB Implementers Forum, Inc. (also referred to as USB-IF). The user is fully responsible for investigating and satisfying any applicable licensing obligations.
 - 2: If the USB module is used, the Primary Oscillator (Posc) is limited to either 12 MHz or 24 MHz.

11.1 USB OTG Control Registers TABLE 11-1: USB REGISTER MAP 1

	steseЯ IIA	0000	2000		3300	0000	0090	3.00 EE	0000	0000	0000	0000	0000	0000	0000	xx00	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	
	16/0	EPOIF		(2)	EPOIE	—	SUSPIF	—			RXPKT	RDY	1	I		1	_	TXPKT	RDY		D. 17.17.	RDY				_						
	17/1	EP1TXIF		(2)	EP1TXIE	EP1RXIF	RESUMEIF	EP1RXIE	<3:0>		TXPKT	RDY	I	I		-	Ι	FIFONE				FIFOFULL		Δ		_	^					
	18/2	EP2TXIF		—(2)	EP2TXIE	EP2RXIF	RESETIF	EP2RXIE	ENDPOINT<3:0>		SENT STALL ⁽¹⁾	RXSTALL ⁽²⁾	1	1		-	I	UNDER RUN ⁽¹⁾	ERROR ⁽²⁾		OVERRUN ⁽¹⁾	ERROR ⁽²⁾		TEP<3:0>		I	TEP<3:0>					
	19/3	EP3TXIF	FUNC<6:0>(1)	(2)	EP3TXIE	EP3RXIF	SOFIF	EP3RXIE			DATAEND ⁽¹⁾	SETUP PKT ⁽²⁾	I	I	RXCNT<6:0>	1	I	101	E 603		DATAERR ⁽¹⁾	DERR- NAKT ⁽¹⁾				I						
	20/4	EP4TXIF	FUNC	(2)	EP4TXIE	EP4RXIF	CONNIF	EP4RXIE	I		SETUP END ⁽¹⁾	ERROR ⁽²⁾	1	I	RXC	1	ı	SEND STALL ⁽¹⁾	SETUPPKT ⁽²⁾			FLUSH		OL<1:0>		I	OL<1:0>					
	21/5	EP5TXIF		(2)	EP5TXIE	EP5RXIF	DISCONIF	EP5RXIE	1	RFRMNUM<10:0>	SEND STALL ⁽¹⁾	REQPKT ⁽²⁾	1	1		1	1	SENT STALL ⁽¹⁾	RXSTALL ⁽²⁾	TXMAXP<10:0>	SENDSTALL ⁽¹⁾	REQPKT ⁽²⁾	RXMAXP<10:0>	PROTOCOL<1:0>		1	PROTOCOL<1:0>					
	22/6	EP6TXIF		(2)	EP6TXIE	EPGRXIF	SESSREQIF	EPGRXIE	1	R	SVCRPR ⁽¹⁾	STATPKT ⁽²⁾	1	SPEED<1:0>(2)		1	1	i d	ב ב ב		SENTSTALL ⁽¹⁾ SENDSTALL ⁽¹⁾	RXSTALL ⁽²⁾		SPEED<1:0>(2)	RXCNT<13:0>	ı	SPEED<1:0>					
Bits	23/7	EP7TXIF	I		EP7TXIE	EP7RXIF	VBUSIF	EP7RXIE	I		SVC SETEND ⁽¹⁾	NAK TMOUT ⁽²⁾	I	SPEE	I	ı	I	INCOMP TX ⁽¹⁾	NAK TMOUT ⁽²⁾			CLRDT		SPEEC	R	I	SPEE	DATA<31:16>	DATA<15:0>	DATA<31:16>	DATA<15:0>	
	24/8	I	SUSPEN		I	I	SUSPIE	I	NAK		CHELE		I		I	JTMIDWID	I	(1)	DATA TGGL ⁽²⁾		1001	PRX						D/	D,	D/	D,	al.
	25/9	I	SUSP	MODE	I	I	RESUMEIE	I	TESTJ		(1)	DATA TGGL ⁽²⁾	I	(2)	I	DYNFIFOS SOFTCONE UTMIDWID	1	(1)	DTWREN ⁽²⁾		(1)	DATA TGGL ⁽²⁾				TXFIFOSZ<3:0>						Reset values are shown in hexadecimal = 0).
	26/10	1	RESUME		I	I	RESETIE	I	TESTK		(£)	DTWREN ⁽²⁾	I	NAKLIM<4:0>(2)	I	DYNFIFOS	Ι	DMA	REQMD		(L)	DATA TWEN ⁽²⁾				TXFIFO						ss are showr ugh 7).
	27/11	1	RESET		I	-	SOFIE	-	PACKET	I	(1)	DISPING ⁽²⁾ DTWREN ⁽²⁾	I	Z	_	HBTXEN	-	FRC	ратте			REQMD		/<7:0>(2)			:V<7:0>					
	28/12	I	HSMODE		I	_	CONNIE	_	FORCEHS	I		l	I			HBRXEN	_	DMA	REQEN		DISNYET ⁽¹⁾	PIDERR ⁽²⁾		TXINTER			RXINTERV<7:0>					1, read as '0' SSR<19:16> SBCSR<19:1
	29/13	1	HSEN		Ι	_	DISCONIE	_	FORCEFS	Ι		I	I	I	_	BIGEND	_	2		MULT<4:0>	:	REQEN	MULT<4:0>			<3:0>						mplemented (3:0> (USBC (T<3:0> (U)
	30/14	1	SOFT CONN ⁽¹⁾	(2)	1	I	SESSRQIE	I	FIFOACC	1		I	I	I	-	MPTXEN	-	(1)OSI	I	M	(1)OSI	AUTORQ ⁽²⁾	Σ		1	RXFIFOSZ<3:0>						x = unknown value on Reset; — = unimplemented, read as '0.' Device mode. Host mode. Definition for Endpoint 0 (ENDPOINT<3:0> (USBCSR<18:16>) Definition for Endpoints 1-7 (ENDPOINT<3:0> (USBCSR<19:1
	31/15	1	ISOUPD ⁽¹⁾	(2)	I	Ι	VBUSIE	Ι	FORCEHST	I		l	Ι	1	1	MPRXEN	1	THOCHIA	3000			AUTOCLR			Ι							wn value on ode. e. for Endpoint
	Bit Range	31:16	15:0		31:16	15:0	31:16	15:0	31:16	15:0	2.	0	15:0	31:16	15:0	31:16	15:0	2.	00	15:0		31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	x = unknown Device mode. Host mode. Definition for
	Register Name		USBCSR0		100000	LASSASS	0000	USBCSRZ	6000001	Secondo		USB IEOCSR0 ⁽³⁾		nsB	E0CSR2 ⁽³⁾		E0CSR3(3)		USB IENCSR0 ⁽⁴⁾			USB IENCSR1 ⁽⁴⁾		nSB	IENCSR2 ⁽⁴⁾	nsB	IENCSR3(1,3)	nsB	FIFO0	nsB	FIF01	
	lsutriV sserbbA		3000		7000			0000	0000			3010		0,00		3010	_		3010			3014		2		0	30108 DI	3020	3020	2007	4700	Legend Note

© 2015-2017 Microchip Technology Inc.

S116 30014 28913 28912 27171 28910 2269 246 2317 2216 201			ļ
11 12 13 14 15 15 15 15 15 15 15			
1116 DATACTION DATACTIO		19/3 18/2 17/1 16/0	steseЯ IIA
150 DATACISDO		0000	
1416			0000
15.0 DATACTISO		0000	
141-6 1			0000
150 DATAC-51160-		0000	
1416 DATACS1169 DATACS116			0000
150 DATAC+150		0000	
1116 DATA-631:16> DATA-631:16> DATA-631:16> DATA-641:16> DATA-641:16			0000
150 DATAC+160P DATAC+161P		0000	
11-16			0000
150			0000
1116			0000
150 TXEDMA RXEDMA BDEV FSDEV LSDEV	TXDPB	TXFIFOSZ<3:0>	0000
11-16	VBUS<1:0>	HOSTMODE HOSTREQ SESSION 0088	00 N
150	-		0000
11.16			0000
150 RC MICONR-3:0> MIC		1	0000
11:16 MACHANS-3:10- MACHANS-3:10- MACHANS-3:10- MACHANS-3:10- MASHBITS-3:10-	NOR<9:0>		0800
15.0 DMACHANS < 3.0		WTID<3:0>	3C2C
31:16		TXENDPTS<3:0>	8C77
15.0	LSEOF<7:0>		0072
31:16	HSEOF<7:0>		7780
15:0	TXHUBADD<6:0>	9:0>	0000
31:16	TXFADDR<6:0>	^ 0:	0000
15:0 —	RXHUBADD<6:0>	<:0>	0000
31:16 — TXHUBPRT-6:0- MULTRAN 15:0 — — — — — 31:16 — — — — — — 15:0 — — — — — — 15:0 — — — — — — 15:0 — — — — — — 15:0 — — — — — — 15:0 — — — — — — 15:0 — — — — — — 15:0 — — — — — — 15:0 — — — — — — 15:0 — — — — — — 15:0 — — — — — — 15:0 — — — <td>1</td> <td></td> <td>0000</td>	1		0000
15:0 —	TXHUBADD<6:0>	9:0>	0000
31:16 — RXHUBPRT<6:0> MULTRAN 15:0 — — — — — — — 31:16 — — — — — — — — 15:0 — — — — — — — 15:0 — — — — — — — 15:0 — — — — — — — 15:0 — — — — — — — 15:0 — — — — — — — 15:0 — — — — — — — 15:0 — — — — — — — 15:0 — — — — — — — 15:0 — — — — — — —	TXFADDR<6:0>	<0:	0000
15:0 —	RXHUBADD<6:0>	<:0>	0000
31:16 — TXHUBPRT<6:0> MULTRAN 15:0 — — — — — — — 31:16 — — — — — — — 15:0 — — — — — — — 31:16 — — — — — — — 15:0 — — — — — — — 15:0 — — — — — — — 15:0 — — — — — — — 15:0 — — — — — — — 15:0 — — — — — — — 15:0 — — — — — — — 15:0 — — — — — — —	RXFADDR<6:0>	<0:	0000
15:0 —	-0:9>DPADD<	9:0>	0000
31:16 — RXHUBPRT-6:0> MULTTRAN 15:0 — — — — — — 31:16 — — — — — — — 15:0 — — — — — — — x = unknown value on Reset, — = unimplemented, read as 'O'. Reset values are shown in hexadecimal. — — — — —	TXFADDR<6:0>	<0:	0000
15:0 —	RXHUBADD<6:0>	<0:9	0000
31:16 — TXHUBPRT<6:0> MULTTRAN 15:0 — — — — — x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. — — — —	RXFADDR<6:0>	<0:	0000
15:0 —	TXHUBADD<6:0>	9:0>	0000
= unimplemented, read as '0'.	TXFADDR<6:0>	<0:	0000
Device mode. Host mode			
Definition for Endpoint 0 (ENDPOINT<3:0> (USBCSR<19:16>) = 0).			

TABLE	LE 11-1		USB RE	USB REGISTER MAP 1 (CONT	MAP 1	(CON	TINUED)	(1											
			•				-	-			Bits	•	•	•	-		-		
Virtual SeorbbA	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	1/11	16/0	steseR IIA
C	NSB	31:16	I			RXF	RXHUBPRT<6:0>	^			MULTTRAN			RXHUB,	RXHUBADD<6:0>			0	0000
3080	E3RXA	15:0	Ι	I	I	I	1	I	ı	I	I			RXFAD	RXFADDR<6:0>			0	0000
	SN	31:16	Ι			文	TXHUBPRT<6:0>	^			MULTTRAN			TXHUB	TXHUBADD<6:0>			0	0000
30A0	BE4TXA	15:0	1	I	I	I	1	ı	I	1	Ι			TXFAD	TXFADDR<6:0>			0	0000
7 0 0	USB	31:16	_			RXF	RXHUBPRT<6:0>	_			MULTTRAN			RXHUB,	RXHUBADD<6:0>			0	0000
5 1 1	E4RXA	15:0	-	1	1	1	1	I	1	1	1			RXFAD	RXFADDR<6:0>			0	0000
3048	USB	31:16	I			ΤXΤ	TXHUBPRT<6:0>	^			MULTTRAN			TXHUB	TXHUBADD<6:0>			0	0000
	E5TXA	15:0	I	I	I	I	1	I	I	Ι	I			TXFAD	TXFADDR<6:0>			0	0000
3040	USB	31:16	I	•	•	RX	RXHUBPRT<6:0>	^	•		MULTTRAN			RXHUB,	RXHUBADD<6:0>			0	0000
	E5RXA	15:0	1	1	I	1	1	ı	1	1	1			RXFAD	RXFADDR<6:0>			0	0000
0000	USB	31:16	_			TXT	TXHUBPRT<6:0>	^			MULTTRAN			TXHUB,	TXHUBADD<6:0>			0	0000
2000	E6TXA	15:0	-	1	Ι	1	1	I	1	1	1			TXFAD	TXFADDR<6:0>			0	0000
2007	USB	31:16	-			RXF	RXHUBPRT<6:0>	^			MULTTRAN			RXHUB,	RXHUBADD<6:0>			0	0000
30D4	E6RXA	15:0	1	I	I	I	Ι	ı	I	I	Ι			RXFAD	RXFADDR<6:0>			0	000
ago	USB	31:16	1			TXT	TXHUBPRT<6:0>	_			MULTTRAN			TXHUB,	TXHUBADD<6:0>			0	0000
200	E7TXA	15:0	Ι	1	I	I	Ι	I	I	ı	1			TXFAD	TXFADDR<6:0>			0	0000
3080	USB	31:16	1			RXF	RXHUBPRT<6:0>	^			MULTTRAN			RXHUB,	RXHUBADD<6:0>			0	0000
2000	E7RXA	15:0	_	1	Ι	1	-	Ι	1	-	1			RXFAD	RXFADDR<6:0>			0	0000
3100	USB E0CSR0	31:16 15:0							:epul	xed by the s	Indexed by the same bits in USBIE0CSR0	BIEOCSRO						0	0000
3108	USB E0CSR2	31:16 15:0							(apul	xed by the s	Indexed by the same bits in USBIE0CSR2	BIE0CSR2						0	00000
310C	USB E0CSR3	31:16							(apul	xed by the s	Indexed by the same bits in USBIE0CSR3	BIE0CSR3						0	0000
3110	USB E1CSR0	31:16 15:0							(apul	xed by the s	Indexed by the same bits in USBIE1CSR0	BIE1CSR0						0 0	0000
3114	USB E1CSR1	31:16							(apul	xed by the s	Indexed by the same bits in USBIE1CSR1	BIE1CSR1						0	0000
3118	USB E1CSR2	31:16 15:0							lnde;	xed by the s	Indexed by the same bits in USBIE1CSR2	BIE1CSR2						0	0000
311C	USB E1CSR3	31:16 15:0							(apul	xed by the s	Indexed by the same bits in USBIE1CSR3	BIE1CSR3						0	0000
3120	USB E2CSR0	31:16 15:0							(epul	xed by the s	Indexed by the same bits in USBIE2CSR0	BIE2CSR0						0	0000
3124	USB E2CSR1	31:16							lnde;	xed by the s	Indexed by the same bits in USBIE2CSR1	BIE2CSR1						0 0	0000
Legend: Note	÷ 2 % 4	= unknow evice moc ost mode. efinition fc	x = unknown value on Reset, Device mode. Host mode. Definition for Endpoint 0 (END Definition for Endpoints 1-7 (END	62	nplemented 3:0> (USBC T<3:0> (US	= unimplemented, read as '0'. R DINT<3:0> (USBCSR<19:16>) = DPOINT<3:0> (USBCSR<19:16>	. Reset value (= 0). (6>) = 1 throu	eset values are shown in hexadecimal. 0). -) = 1 through 7).	n hexadecim	nal.									

© 2015-2017 Microchip Technology Inc.

Downloaded from Arrow.com.

DS60001361E-page 205

₹	TABLE 11-1:	•	USB REGISTER MAP 1 (CONTINUED)	ISTER	MAP 1	(CON	INUED											•	
											Bits								
Virtual searbbA	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	1//1	0/91	steseЯ IIA
3128	USB E2CSR2	31:16							Index	ed by the sa	indexed by the same bits in USBIE2CSR2	BIE2CSR2						00	0000
312C	USB E2CSR3	31:16							Index	ed by the sa	Indexed by the same bits in USBIE2CSR3	BIE2CSR3						00	0000
3130	USB E3CSR0	31:16							Index	ed by the sa	Indexed by the same bits in USBIE3CSR0	BIE3CSR0						00 00	0000
3134	USB E3CSR1	31:16							Index	ed by the sa	Indexed by the same bits in USBIE3CSR1	BIE3CSR1						00	0000
3138	USB E3CSR2	31:16							Index	ed by the sa	Indexed by the same bits in USBIE3CSR2	BIE3CSR2						00	0000
313C	USB E3CSR3	31:16							Index	ed by the sa	Indexed by the same bits in USBIE3CSR3	BIE3CSR3						00	0000
3140	USB E4CSR0	31:16							Index	ed by the sa	Indexed by the same bits in USBIE4CSR0	BIE4CSR0						00	0000
3144	USB E4CSR1	31:16							Index	ed by the sa	Indexed by the same bits in USBIE4CSR1	BIE4CSR1						00	0000
3148	USB E4CSR2	31:16							Index	ed by the sa	Indexed by the same bits in USBIE4CSR2	BIE4CSR2						00	0000
314C	USB E4CSR3	31:16							Index	ed by the sa	Indexed by the same bits in USBIE4CSR3	BIE4CSR3						00	0000
3150	USB E5CSR0	31:16							Index	ed by the sa	Indexed by the same bits in USBIE5CSR0	BIE5CSR0						00	0000
3154	USB E5CSR1	31:16							Index	ed by the sa	Indexed by the same bits in USBIE5CSR1	3BIE5CSR1						00	0000
3158	USB E5CSR2	31:16							Index	ed by the sa	Indexed by the same bits in USBIE5CSR2	BIE5CSR2						00	0000
315C	USB E5CSR3	31:16							Index	ed by the sa	Indexed by the same bits in USBIE5CSR3	BIE5CSR3						00	0000
3160	USB E6CSR0	31:16							Index	ed by the sa	Indexed by the same bits in USBIE6CSR0	BIE6CSR0						00	0000
3164	USB E6CSR1	31:16							Index	ed by the sa	indexed by the same bits in USBIE6CSR1	BIE6CSR1						00	0000
3168	USB E6CSR2	31:16 15:0							Index	ed by the sa	Indexed by the same bits in USBIE6CSR2	BIE6CSR2						00	0000
316C	USB E6CSR3	31:16							Index	ed by the sa	Indexed by the same bits in USBIE6CSR3	3BIE6CSR3						0 0	0000
Legend	: ×	= unknowr	unknown value on Beset		: = unimplemented. read as		Reset values	Reset values are shown in hexadecima	hexadecim?	-									

Legend: Note 1

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Device mode.

Device mode.

Definition for Endpoint 0 (ENDPOINT<3:0> (USBCSR<19:16>) = 0).

Definition for Endpoints 1-7 (ENDPOINT<3:0> (USBCSR<19:16>) = 1 through 7).

AB	TABLE 11-	- -	USB RE	USB REGISTER MAP 1 (CONT	MAP	1 (CON	TINUED)	<u>6</u>			Bits								
lsutriV seerbbA	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	1/21	16/0	steseЯ IIA
3170	USB E7CSR0	31:16							Inde	xed by the s	Indexed by the same bits in USBIE7CSR0	SBIE7CSR0							0000
3174	USB E7CSR1	31:16							lnde	xed by the s	indexed by the same bits in USBIE7CSR1	SBIE7CSR1							0000
3178	USB E7CSR2	31:16							lnde	xed by the s	Indexed by the same bits in USBIE7CSR2	SBIE7CSR2							0000
317C	USB E7CSR3	31:16							lnde	xed by the s	Indexed by the same bits in USBIE7CSR3	SBIE7CSR3							0000
3200	USB	31:16	1	_	1	1	1	Ι	1	1	Ι	Ι	1	1	1	1	I	1	0000
202	DMAINT	15:0	1	_	I	1	1	1	1	1	DMA8IF	DMA71F	DMA6IF	DMA5IF	DMA4IF	DMA3IF	DMA2IF	DMA11F	0000
3204		31:16	1	I	I	1	Ι	I	1	1		1	1	1	1	1		1	0000
	DMA1C	15:0	ı	1	I	I	I	DMABRSTM<1:0>	TM<1:0>	DMAERR			DMAEP<3:0>		DMAIE	DMAMODE	DMADIR	DMAEN	0000
3208	USB	31:16								DMA	DMAADDR<31:16>	_							0000
		15:0								DMA	DMAADDR<15:0>								0000
320C	USB	31:16								DMAC	DMACOUNT<31:16>	۵							0000
		15:0								DMAC	DMACOUNT<15:0>	_							0000
3214	USB	31:16	I	1	I	I	1	I	I	1	I	Ι	1	I	I	_			0000
:		15:0	1	1	1	I	1	DMABRSTM<1:0>	TM<1:0>	DMAERR			DMAEP<3:0>		DMAIE	DMAMODE	DMADIR	DMAEN	0000
3218	USB	31:16								DMA	DMAADDR<31:16>								0000
) 		15:0								DMA	DMAADDR<15:0>								0000
321C	USB	31:16								DMAC	DMACOUNT<31:16>	Ą							0000
2	DMA2N	15:0								DMAC	DMACOUNT<15:0>	,					•		0000
3224	USB	31:16	1	1	1	I	Ι	Ι	I	_	1	I	1	I	1	1			0000
1	DMA3C	15:0	I	1	1	1	1	DMABRSTM<1:0>	TM<1:0>	DMAERR			DMAEP<3:0>		DMAIE	DMAMODE	DMADIR	DMAEN	0000
3228	USB	31:16								DMA	DMAADDR<31:16>								0000
T		15:0								DIMA	DMAADDR<15:0>								0000
322C	USB	31:76								DMAC	DMACOUN I < 31:16>	۸ /							0000
		31.16	ı	I	I	I	ı	ı	I			1	1	١	I	I	I	1	0000
3234	0	15:0	ı	I	I	ı	ı	DMABRSTM<1:0>	TM<1:0>	DMAERR		DMA	DMAEP<3:0>		DMAIE	DMAMODE	DMADIR	DMAEN	0000
S		31:16	1							DMA	DMAADDR<31:16>	_							0000
3238	DMA4A	15:0								DMA	DMAADDR<15:0>								0000
323C	USB	31:16								DMAC	DMACOUNT<31:16>	A						Ü	0000
3		15:0								DMAC	DMACOUNT<15:0>								0000
3244	USB	31:16	I	_	I	I	I	I	I	I	I	1	1	I	I	1		I	0000
	DMA5C	15:0	1	1	1	I	1	DMABRSTM<1:0>	TM<1:0>	DMAERR		DMA	DMAEP<3:0>		DMAIE	DMAMODE	DMADIR	DMAEN 0000	0000
Legend: Note	# # # # # # # # # # # # # # # # # # #	= unknov evice mod ost mode. efinition for	wn value on Fide.	x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Device mode. Host mode and rendpoint 0 (ENDPOINT<3:0> (USBCSR<19:16>) = 0). Position for Endpoint 0 (ENDPOINT<3:0> (USBCSR<19:16>) = 0). Position for Endpoint 0 (ENDPOINT<3:0> (USBCSR<19:16>) = 0).	implementer (3:0> (USBC	d, read as '0' SSR<19:16>	. Reset values are sl .) = 0). 18> = 1 through 7)	les are shown	in hexadecir	Jal.									
			7	<u>;</u>) 10:01	5000	(.01	./ ،											

© 2015-2017 Microchip Technology Inc.

TABLE	LE 11-1		USB RE	USB REGISTER MAP 1 (CONT	MAP	1 (CON	TINUED)	()											
											Bits								
Virtual Reddress	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	steseЯ IIA
22.40	П	31:16								DMAA	DMAADDR<31:16>								0000
3240	DMA5A	15:0								DMA	DMAADDR<15:0>								0000
7,000		31:16								DMAC	DMACOUNT<31:16>								0000
324C	DMA5N	15:0								DMAC	DMACOUNT<15:0>								0000
3254	USB	31:16	I	I	I	I	I	I	I	ı	ı	I	I	I	ı	1	1		0000
1	DMA6C	15:0	1	Ι	I	I	1	DMABRSTM<1:0>	TM<1:0>	DMAERR		DMAE	DMAEP<3:0>		DMAIE	DMAMODE	DMADIR	DMAEN	0000
3258	NSB	31:16								DMAA	DMAADDR<31:16>								0000
0220	DMA6A	15:0								DMA	DMAADDR<15:0>								0000
3250	NSB	31:16								DMAC	DMACOUNT<31:16>								0000
3230	DMA6N	15:0								DMAC	DMACOUNT<15:0>								0000
3264	NSB	31:16	1	-	Ι	I	1	Ι		I	I	1	1	1	I	ı	1		0000
4070	DMA7C	15:0	1	1	Ι	I	1	DMABRSTM<1:0>		DMAERR		DMAE	DMAEP<3:0>		DMAIE	DMAMODE	DMADIR	DMAEN	0000
2260		31:16								DMAA	DMAADDR<31:16>								0000
3200	DMA7A	15:0								DMA	DMAADDR<15:0>								0000
0		31:16								DMAC	DMACOUNT<31:16>								0000
3200	DMA7N	15:0								DMAC	DMACOUNT<15:0>								0000
227.4	NSB	31:16	1	-	1	ı	1	-	I	I	-	-	_	-	Ι	1	_		0000
3274	DMA8C	15:0	1	Ι	1	1	1	DMABRSTM<1:0>		DMAERR		DMAE	DMAEP<3:0>		DMAIE	DMAMODE	DMADIR	DMAEN	0000
2270	NSB	31:16								DMAA	DMAADDR<31:16>								0000
02/30	DMA8A	15:0								DMA	DMAADDR<15:0>								0000
2070	USB	31:16								DMAC	DMACOUNT<31:16>								0000
327	DMA8N	15:0								DMAC	DMACOUNT<15:0>								0000
3304	NSB	31:16	1	1	I	I	1	1	I	I	I	1	1	-	ı	1	1	I	0000
t O	E1RPC	15:0								RQPK	RQPKTCNT<15:0>								0000
3308	USB	31:16	1	I	1	I	I	Ι	I	I	1	I	1	I	I	I	Ι	1	0000
)		15:0	-					•	•	RQPK	RQPKTCNT<15:0>	•	•						0000
330C	USB	31:16	ı	I	I	I	I	I	I	I	I	I	I	I	I	1	ı	ı	0000
	ESKPC	15:0								RQPK	RQPKTCNT<15:0>								0000
3310	USB	31:16	1	I	Ι	I	I	1	I	I	I	1	I	I	Ι	I	I	I	0000
3		15:0							•	RQPK	RQPKTCNT<15:0>	ŀ							0000
3317	NSB	31:16	1	l	I	l	1	Ι	ı	I	ı	1	1	Ī	-	1	1	I	0000
3	E5RPC	15:0								RQPK	RQPKTCNT<15:0>								0000
22.10	USB	31:16	1	_	Ι	I	1	1	I	I	_	1	-	1	1	1	-	I	0000
2	E6RPC	15:0								RQPK	RQPKTCNT<15:0>								0000
3310	NSB	31:16	I	I	I	I	I	I	I	I	ı	1	1	I	I	I	1	I	0000
9	E7RPC	15:0								RQPK	RQPKTCNT<15:0>								0000
Legend: Note	÷ ;; ;; ;	= unknov evice mod ost mode.	x = unknown value on Reset; — = unimplemented, read as '0'. Re Device mode. Host mode. For Endpoint 0 (ENDPOINT<3:0> (USBCSR<19:16>) = 1 Portion for Endpoint 4 7 (ENDPOINT<3:0> (USBCSR<19:16>) = 1 Portion for Endpoint 4 7 (ENDPOINT<3:0> (USBCSB<19:16>) = 1	eset; — = unim (ENDPOINT<)	mplementec 3:0> (USBC	= unimplemented, read as '0'. Re JINT<8:0> (USBCSR<19:16>) = INDINIT - 3:0> (USBCSR<19:16>) = INDINIT - 3:0> (USBCSR<19:16>)	. Reset values are s .) = 0).	eset values are shown in hexadecimal (0).	in hexadecim	ial:									
			OI FIIGPOILIG	-/ (ENDPO	(0.0/1	00000000000000000000000000000000000000	- I / OI	ugii ' '.											

DS60001361E-page 208

All Resets

	steseЯ IIA	0000	0000	05E6	4074	0000	0000	0000	0000	0000	0000	0000	
	16/0	Ι	_			I		LMXMAT			-	LPMST	
	17/1	EP1TXD	EP1RXD			ı	<0;	LPMRES		<3:0>	I	LPMNY	
	18/2	EP2TXD	EP2RXD			1	THSBT<3:0>	LPMEN<1:0>	(5)—	LNKSTATE<3:0>	-	LPMACK	
	19/3	EP3TXD	EP3RXD			Ι		TPME	(5)—		Ι	LPMNC	
	20/4	EP4TXD	EP4RXD			ı	I	LPMNAK ⁽¹⁾	(7)—		I	LPMRES	
	21/5	EP5TXD	EP5RXD			1	I	-		HIRD<3:0>	I	LPMERR ⁽¹⁾ —(2)	
	22/6	EP6TXD	EP6RXD			1	I	1		HIR	I	I	
Bits	23/7	EP7TXD	EP7RXD	THHSRTN<15:0>	TUCH<15:0>	Ι	I	I			I	1	
	24/8	I	1	王	T	1	I	LPMTOIE		RMTWAK	I		
	25/9	1	_			Ι	_	LPMSTIE		I	_		
	26/10	1	Ι			Ι	I	-PMACKIE LPMNYIE		I	I	<0:	
	27/11	I	1			ı	I	LPMACKIE		I	I	MFADDR<6:0>	
	28/12	1	_				I	-	MdT	RESIE		-	LPM
	29/13	1	_			I	-	_ □	ERRIE	T<3:0>	-		
	30/14	1	I			ı	I	I		ENDPOINT<3:0>	I		
	31/15	1	1			1	Ι	I			Ι	ı	
	Bit Range	31:16	15:0	31:16	15:0	31:16	15:0	31:16		15:0	31:16	15:0	
	Register Name	NSB		NSB	TMCON1	nSB	TMCON2	USB	LPMR1			USB LMPR2	
	lsuhiV ssenbbA	2240	2	11100	1100	0700	0400		3360			3364	

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Device mode.

Host mode.

Definition for Endpoint 0 (ENDPOINT<3:0> (USBCSR<19:16>) = 0).

Definition for Endpoints 1-7 (ENDPOINT<3:0> (USBCSR<19:16>) = 1 through 7). Legend: Note

USB REGISTER MAP 2 TABLE 11-2:

This This	_		0	0
Signature Sign		16/0	I	USB WKUPEN
Signature Sign		17/1	I	USBRIE
Richard Rich		18/2	I	USBIE
Signature Sign		19/3	I	SEND MONEN
Signature Sign		20/4	Ι	BSVAL MONEN
Signature Sign		21/5	Ι	ASVAL MONEN
Single S		22/6	Ι	
Carcon 15.0 Carcon 15.	ts	23/7	I	PHYIDEN
4 R R R R R R R R R R R R R R R R R R R	B	24/8	USBWKUP	USB IDVAL
A CHCON 15:0		25/9	USBRF	NSB IDOVEN
Address Range Rang		26/10	USBIF	1
Address en en en en en en en en en en en en en		27/11	I	Ι
Address Address 30/14 Reggister Range Bit Ran			I	ı
Address Register Renge 31/15 DUSB 31:16		29/13	Ι	1
Address Name USB 31:16 CCCON 15:0		30/14	Ι	1
OC CROSS Name		31/15		1
OC CROSS Name		Bit Range	31:16	15:0
ssenbbA S		Register Name	931	CRCON
		IsuhiV ssenbbA		4000

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal Legend:

USB REGISTER MAP 1 (CONTINUED)

TABLE 11-1:

REGISTER 11-1: USBCSR0: USB CONTROL STATUS REGISTER 0

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	_	_	_		_	_		_
23:16	R-0, HS R-0, HS							
23.10	EP7TXIF	EP6TXIF	EP5TXIF	EP4TXIF	EP3TXIF	EP2TXIF	EP1TXIF	EP0IF
	R/W-0	R/W-0	R/W-1	R-0, HS	R-0	R/W-0	R-0, HC	R/W-0
15:8	ISOUPD	SOFTCONN	HSEN	HSMODE	RESET	RESUME	SUSPMODE	SUSPEN
	_	_	HOLIN	HOWODE	KLOLI	KLSOWL	3031 WODE	303i Liv
	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0					FUNC<6:0>			
	_	_	_	_	_	_	_	_

Legend:HS = Hardware SetHC = Hardware ClearedR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23-17 EP7TXIF: Endpoint 'n' TX Interrupt Flag bit

1 = Endpoint has a transmit interrupt to be serviced

0 = No interrupt event

bit 16 **EP0IF:** Endpoint 0 Interrupt bit

1 = Endpoint 0 has an interrupt to be serviced

0 = No interrupt event

All EPxTX and EP0 bits are cleared when the byte is read. Therefore, these bits must be read independently from the remaining bits in this register to avoid accidental clearing.

bit 15 **ISOUPD:** ISO Update bit (Device mode only; unimplemented in Host mode)

1 = USB module will wait for a SOF token from the time TXPKTRDY is set before sending the packet

0 = No change in behavior

This bit only affects endpoints performing isochronous transfers when in *Device mode*. This bit is unimplemented in *Host mode*.

bit 14 SOFTCONN: Soft Connect/Disconnect Feature Selection bit

1 = The USB D+/D- lines are enabled and active

0 = The USB D+/D- lines are disabled and are tri-stated

This bit is only available in Device mode.

bit 13 **HSEN:** Hi-Speed Enable bit

1 = The USB module will negotiate for Hi-Speed mode when the device is reset by the hub

0 = Module only operates in Full-Speed mode

bit 12 **HSMODE:** Hi-Speed Mode Status bit

1 = Hi-Speed mode successfully negotiated during USB reset

0 = Module is not in Hi-Speed mode

In *Device mode*, this bit becomes valid when a USB reset completes. In *Host mode*, it becomes valid when the RESET bit is cleared.

bit 11 RESET: Module Reset Status bit

1 = Reset signaling is present on the bus

0 = Normal module operation

In Device mode, this bit is read-only. In Host mode, this bit is read/write.

REGISTER 11-1: USBCSR0: USB CONTROL STATUS REGISTER 0 (CONTINUED)

- bit 10 **RESUME:** Resume from Suspend control bit
 - 1 = Generate Resume signaling when the device is in Suspend mode
 - 0 = Stop Resume signaling

In *Device mode*, the software should clear this bit after 10 ms (a maximum of 15 ms) to end Resume signaling. In *Host mode*, the software should clear this bit after 20 ms.

- bit 9 **SUSPMODE:** Suspend Mode status bit
 - 1 = The USB module is in Suspend mode
 - 0 = The USB module is in Normal operations

This bit is read-only in Device mode. In Host mode, it can be set by software, and is cleared by hardware.

- bit 8 SUSPEN: Suspend Mode Enable bit
 - 1 = Suspend mode is enabled
 - 0 = Suspend mode is not enabled
- bit 7 Unimplemented: Read as '0'
- bit 6-0 FUNC<6:0>: Device Function Address bits

These bits are only available in *Device mode*. This field is written with the address received through a SET_ADDRESS command, which will then be used for decoding the function address in subsequent token packets.

REGISTER 11-2: USBCSR1: USB CONTROL STATUS REGISTER 1

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	_	_	_	_	_	_	_	_
22.40	R/W-1 R/W-0							
23:16	EP7TXIE	EP6TXIE	EP5TXIE	EP4TXIE	EP3TXIE	EP2TXIE	EP1TXIE	EP0IE
45.0	U-0 U-0							
15:8	_	_	_	_	_	_	_	_
7:0	R-0, HS U-0							
7:0	EP7RXIF	EP6RXIF	EP5RXIF	EP4RXIF	EP3RXIF	EP2RXIF	EP1RXIF	_

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23-17 **EP7TXIE:EP1TXIE:** Endpoint 'n' Transmit Interrupt Enable bits

1 = Endpoint Transmit interrupt events are enabled

0 = Endpoint Transmit interrupt events are not enabled

bit 16 **EP0IE**: Endpoint 0 Interrupt Enable bit

1 = Endpoint 0 interrupt events are enabled

0 = Endpoint 0 interrupt events are not enabled

bit 15-8 Unimplemented: Read as '0'

bit 7-1 **EP7RXIF:EP1RXIF:** Endpoint 'n' RX Interrupt bit

1 = Endpoint has a receive event to be serviced

0 = No interrupt event

bit 0 Unimplemented: Read as '0'

REGISTER 11-3: USBCSR2: USB CONTROL STATUS REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0
31:24	VBUSIE	SESSRQIE	DISCONIE	CONNIE	SOFIE	RESETIE	RESUMEIE	SUSPIE
22.46	R-0, HS R-0, HS							
23:16	VBUSIF	SESSRQIF	DISCONIF	CONNIF	SOFIF	RESETIF	RESUMEIF	SUSPIF
45.0	U-0 U-0							
15:8	_	_	_	_	_	_	_	_
7.0	R/W-1 U-0							
7:0	EP7RXIE	EP6RXIE	EP5RXIE	EP4RXIE	EP3RXIE	EP2RXIE	EP1RXIE	_

Legend:HS = Hardware SetR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31 VBUSIE: VBUS Error Interrupt Enable bit

1 = VBUS error interrupt is enabled

0 = VBUS error interrupt is disabled

bit 30 SESSRQIE: Session Request Interrupt Enable bit

1 = Session request interrupt is enabled

0 = Session request interrupt is disabled

bit 29 DISCONIE: Device Disconnect Interrupt Enable bit

1 = Device disconnect interrupt is enabled

0 = Device disconnect interrupt is disabled

bit 28 CONNIE: Device Connection Interrupt Enable bit

1 = Device connection interrupt is enabled

0 = Device connection interrupt is disabled

bit 27 **SOFIE:** Start of Frame Interrupt Enable bit

1 = Start of Frame event interrupt is enabled

0 = Start of Frame event interrupt is disabled

bit 26 RESETIE: Reset/Babble Interrupt Enable bit

1 = Interrupt when reset (Device mode) or Babble (Host mode) is enabled

0 = Reset/Babble interrupt is disabled

bit 25 RESUMEIE: Resume Interrupt Enable bit

1 = Resume signaling interrupt is enabled

0 = Resume signaling interrupt is disabled

bit 24 SUSPIE: Suspend Interrupt Enable bit

1 = Suspend signaling interrupt is enabled

0 = Suspend signaling interrupt is disabled

bit 23 VBUSIF: VBUS Error Interrupt bit

1 = VBUS has dropped below the VBUS valid threshold during a session

0 = No interrupt

bit 22 SESSRQIF: Session Request Interrupt bit

1 = Session request signaling has been detected

0 = No session request detected

bit 21 DISCONIF: Device Disconnect Interrupt bit

1 = In *Host mode*, indicates when a device disconnect is detected. In *Device mode*, indicates when a session ends.

0 = No device disconnect detected

bit 20 **CONNIF:** Device Connection Interrupt bit

1 = In Host mode, indicates when a device connection is detected

0 = No device connection detected

REGISTER 11-3: USBCSR2: USB CONTROL STATUS REGISTER 2 (CONTINUED)

- bit 19 **SOFIF:** Start of Frame Interrupt bit
 - 1 = A new frame has started
 - 0 = No start of frame detected
- bit 18 RESETIF: Reset/Babble Interrupt bit
 - 1 = In *Host mode*, indicates babble is detected. In *Device mode*, indicates reset signaling is detected on the bus
 - 0 = No reset/babble detected
- bit 17 **RESUMEIF:** Resume Interrupt bit
 - 1 = Resume signaling is detected on the bus while USB module is in Suspend mode
 - 0 = No Resume signaling detected
- bit 16 **SUSPIF:** Suspend Interrupt bit
 - 1 = Suspend signaling is detected on the bus (Device mode)
 - 0 = No suspend signaling detected
- bit 15-8 Unimplemented: Read as '0'
- bit 7-1 **EP7RXIE:EP1RXIE:** Endpoint 'n' Receive Interrupt Enable bit
 - 1 = Receive interrupt is enabled for this endpoint
 - 0 = Receive interrupt is not enabled
- bit 0 Unimplemented: Read as '0'

REGISTER 11-4: USBCSR3: USB CONTROL STATUS REGISTER 3

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	FORCEHST	FIFOACC	FORCEFS	FORCEHS	PACKET	TESTK	TESTJ	NAK
22.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	_		_	_		ENDPOI	NT<3:0>	
45.0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
15:8	_	_	_	_	_	RI	FRMUM<10:8	3>
7.0	R-0 R-0							
7:0				RFRMNU	Л<7:0>			

Legend: HC = Hardware Cleared

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

- bit 31 FORCEHST: Test Mode Force Host Select bit
 - 1 = Forces USB module into *Host mode*, regardless of whether it is connected to any peripheral
 - 0 = Normal operation
- bit 30 FIFOACC: Test Mode Endpoint 0 FIFO Transfer Force bit
 - 1 = Transfers the packet in the Endpoint 0 TX FIFO to the Endpoint 0 RX FIFO
 - 0 = No transfer
- bit 29 FORCEFS: Test mode Force Full-Speed Mode Select bit

This bit is only active if FORCEHST = 1.

- 1 = Forces USB module into Full-Speed mode. Undefined behavior if FORCEHS = 1.
- 0 = If FORCEHS = 0, places USB module into Low-Speed mode.
- bit 28 FORCEHS: Test mode Force Hi-Speed Mode Select bit

This bit is only active if FORCEHST = 1.

- 1 = Forces USB module into Hi-Speed mode. Undefined behavior if FORCEFS = 1.
- 0 = If FORCEFS = 0, places USB module into Low-Speed mode.
- bit 27 PACKET: Test_Packet Test Mode Select bit

This bit is only active if module is in Hi-Speed mode.

- 1 = The USB module repetitively transmits on the bus a 53-byte test packet. Test packet must be loaded into the Endpoint 0 FIFO before the test mode is entered.
- 0 = Normal operation
- bit 26 **TESTK:** Test K Test Mode Select bit
 - 1 = Enters Test_K test mode. The USB module transmits a continuous K on the bus.
 - 0 = Normal operation

This bit is only active if the USB module is in Hi-Speed mode.

- bit 25 TESTJ: Test J Test Mode Select bit
 - 1 = Enters Test J test mode. The USB module transmits a continuous J on the bus.
 - 0 = Normal operation

This bit is only active if the USB module is in Hi-Speed mode.

- bit 24 NAK: Test SE0 NAK Test Mode Select bit
 - 1 = Enter Test_SE0_NAK test mode. The USB module remains in Hi-Speed mode but responds to any valid IN token with a NAK
 - 0 = Normal operation

This mode is only active if module is in Hi-Speed mode.

bit 23-20 Unimplemented: Read as '0'

REGISTER 11-4: USBCSR3: USB CONTROL STATUS REGISTER 3 (CONTINUED)

```
bit 19-16

ENDPOINT<3:0>: Endpoint Registers Select bits

1111 = Reserved

.

.

1000 = Reserved

0111 = Endpoint 7

.

.

.

0000 = Endpoint 0

These bits select which endpoint registers are accessed through addresses 3010-301F.

bit 15-11

Unimplemented: Read as '0'

RFRMNUM<10:0>: Last Received Frame Number bits
```

REGISTER 11-5: USBIE0CSR0: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 0 (ENDPOINT 0)

	(======================================							
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
	U-0	U-0	U-0	U-0	R/W-0	R/W-0, HC	R/W-0	R/W-0, HC
31:24					1	_	_	FLSHFIFO
	_	_	_	_	DISPING	DTWREN	DATATGGL	FLSHFIFO
	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/C-0, HS	R/W-0, HS	R-0, HS	R-0	R-0
23:16	SVCSETEND	SVCRPR	SENDSTALL	SETUPEND	DATAEND	SENTSTALL	TXPKTRDY	DVDVTDDV
	NAKTMOUT	STATPKT	REQPKT	ERROR	SETUPPKT	RXSTALL	INFRIRDI	RXPKTRDY
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_	_	_	-	_	_	_
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7.0	_	_	_	_	-	_	_	_

Legend:HC = Hardware ClearedHS = Hardware SetR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-28 Unimplemented: Read as '0'

- bit 27 **DISPING:** Disable Ping tokens control bit (*Host mode*)
 - 1 = USB Module will not issue PING tokens in data and status phases of a Hi-Speed Control transfer
 - 0 = Ping tokens are issued
- bit 26 **DTWREN:** Data Toggle Write Enable bit (*Host mode*)
 - 1 = Enable the current state of the Endpoint 0 data toggle to be written. Automatically cleared.
 - 0 = Disable data toggle write
- bit 25 **DATATGGL:** Data Toggle bit (*Host mode*)

When read, this bit indicates the current state of the Endpoint 0 data toggle.

If DTWREN = 1, this bit is writable with the desired setting.

If DTWREN = 0, this bit is read-only.

- bit 24 FLSHFIFO: Flush FIFO Control bit
 - 1 = Flush the next packet to be transmitted/read from the Endpoint 0 FIFO. The FIFO pointer is reset and the TXPKTRDY/RXPKTRDY bit is cleared. Automatically cleared when the operation completes. Should only be used when TXPKTRDY/RXPKTRDY = 1.
 - 0 = No Flush operation
- bit 23 SVCSETEND: Clear SETUPEND Control bit (Device mode)
 - 1 = Clear the SETUPEND bit in this register. This bit is automatically cleared.
 - 0 = Do not clear

NAKTMOUT: NAK Time-out Control bit (*Host mode*)

- 1 = Endpoint 0 is halted following the receipt of NAK responses for longer than the time set by the NAKLIM<4:0> bits (USBICSR<28:24>)
- 0 = Allow the endpoint to continue
- bit 22 **SVCRPR:** Serviced RXPKTRDY Clear Control bit (*Device mode*)
 - 1 = Clear the RXPKTRDY bit in this register. This bit is automatically cleared.
 - 0 = Do not clear

STATPKT: Status Stage Transaction Control bit (*Host mode*)

- 1 = When set at the same time as the TXPKTRDY or REQPKT bit is set, performs a status stage transaction
- 0 = Do not perform a status stage transaction

REGISTER 11-5: USBIE0CSR0: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 0 (ENDPOINT 0) (CONTINUED)

- bit 21 SENDSTALL: Send Stall Control bit (Device mode)
 - 1 = Terminate the current transaction and transmit a STALL handshake. This bit is automatically cleared.
 - 0 = Do not send STALL handshake.

REQPKT: IN transaction Request Control bit (*Host mode*)

- 1 = Request an IN transaction. This bit is cleared when the RXPKTRDY bit is set.
- 0 = Do not request an IN transaction
- bit 20 **SETUPEND:** Early Control Transaction End Status bit (*Device mode*)
 - 1 = A control transaction ended before the DATAEND bit has been set. An interrupt will be generated and the FIFO flushed at this time.
 - 0 = Normal operation

This bit is cleared by writing a '1' to the SVCSETEND bit in this register.

ERROR: No Response Error Status bit (*Host mode*)

- 1 = Three attempts have been made to perform a transaction with no response from the peripheral. An interrupt is generated.
- 0 = Clear this flag. Software must write a '0' to this bit to clear it.

bit 19 **DATAEND:** End of Data Control bit (*Device mode*)

The software sets this bit when:

- · Setting TXPKTRDY for the last data packet
- · Clearing RXPKTRDY after unloading the last data packet
- · Setting TXPKTRDY for a zero length data packet

Hardware clears this bit.

SETUPPKT: Send a SETUP token Control bit (*Host mode*)

- 1 = When set at the same time as the TXPKTRDY bit is set, the module sends a SETUP token instead of an OUT token for the transaction
- 0 = Normal OUT token operation

Setting this bit also clears the Data Toggle.

bit 18 SENTSTALL: STALL sent status bit (Device mode)

- 1 = STALL handshake has been transmitted
- 0 = Software clear of bit

RXSTALL: STALL handshake received Status bit (Host mode)

- 1 = STALL handshake was received
- 0 = Software clear of bit
- bit 17 TXPKTRDY: TX Packet Ready Control bit
 - 1 = Data packet has been loaded into the FIFO. It is cleared automatically.
 - 0 = No data packet is ready for transmit
- bit 16 RXPKTRDY: RX Packet Ready Status bit
 - 1 = Data packet has been received. Interrupt is generated (when enabled) when this bit is set.
 - 0 = No data packet has been received

This bit is cleared by setting the SVCRPR bit.

bit 15-0 Unimplemented: Read as '0'

REGISTER 11-6: USBIE0CSR2: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 2 (ENDPOINT 0)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31.24	_	-	_		NAKLIM<4:0>				
23:16	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10	SPEED<1:0>		-	_	_	1	-	_	
15:8	U-0 U-0								
13.6	_	_	_	_	_	-		_	
7:0	U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
7.0	_				RXCNT<6:0>				

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28-24 NAKLIM<4:0>: Endpoint 0 NAK Limit bits

The number of frames/microframes (Hi-Speed transfers) after which Endpoint 0 should time-out on receiving a stream of NAK responses.

bit 23-22 SPEED<1:0>: Operating Speed Control bits

11 = Low-Speed

10 = Full-Speed

01 = Hi-Speed

00 = Reserved

bit 21-7 **Unimplemented:** Read as '0'

bit 6-0 RXCNT<6:0>: Receive Count bits

The number of received data bytes in the Endpoint 0 FIFO. The value returned changes as the contents of the FIFO change and is only valid while the RXPKTRDY bit is set.

REGISTER 11-7: USBIE0CSR3: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 3 (ENDPOINT 0)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R-x	R-x	R-0	R-x	R-x	R-x	R-1	R-0
31.24	MPRXEN	MPTXEN	BIGEND	HBRXEN	HBTXEN	DYNFIFOS	SOFTCONE	UTMIDWID
22.46	U-0 U-0							
23:16		ı		ı	_	1	_	_
15.0	U-0 U-0							
15:8	_	-			_	_	_	_
7:0	U-0 U-0							
7:0	_	_	_	_	_	_	_	_

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31 MPRXEN: Automatic Amalgamation Option bit

1 = Automatic amalgamation of bulk packets is done

0 = No automatic amalgamation

bit 30 MPTXEN: Automatic Splitting Option bit

1 = Automatic splitting of bulk packets is done

0 = No automatic splitting

bit 29 BIGEND: Byte Ordering Option bit

1 = Big Endian ordering

0 = Little Endian ordering

bit 28 HBRXEN: High-bandwidth RX ISO Option bit

1 = High-bandwidth RX ISO endpoint support is selected

0 = No High-bandwidth RX ISO support

bit 27 HBTXEN: High-bandwidth TX ISO Option bit

1 = High-bandwidth TX ISO endpoint support is selected

0 = No High-bandwidth TX ISO support

bit 26 DYNFIFOS: Dynamic FIFO Sizing Option bit

1 = Dynamic FIFO sizing is supported

0 = No Dynamic FIFO sizing

bit 25 SOFTCONE: Soft Connect/Disconnect Option bit

1 = Soft Connect/Disconnect is supported

0 = Soft Connect/Disconnect is not supported

bit 24 **UTMIDWID**: UTMI+ Data Width Option bit

Always '0', indicating 8-bit UTMI+ data width

bit 23-0 **Unimplemented:** Read as '0'

REGISTER 11-8: USBIENCSR0: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 0 (ENDPOINT 1-7)

		, -						
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
	R/W-0 R/W-0							
31:24	AUTOSET	ISO	MODE	DMADEOEN	EDCDATTO	DMAREQMD	_	_
	AUTOSET	_	MODE	DIVIAREQEIN	FRODALIG	DIVIAINEQIVID	DATAWEN	DATATGGL
	R/W-0, HS	R/W-0, HC	R/W-0, HS	R/W-0	R/W-0	R/W-0, HS	R/W-0	R/W-0, HC
23:16	INCOMPTX	-I CIRDT I	SENTSTALL	SENDSTALL	FLUSH	UNDERRUN	FIFONE	TXPKTRDY
	NAKTMOUT		RXSTALL	SETUPPKT		ERROR	FIFONE	IAFKIRDI
15.0	R/W-0 R/W-0							
15:8			MULT<4:0>		T.	XMAXP<10:8	>	
7:0	R/W-0 R/W-0							
7.0				TXMAX	<p<7:0></p<7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31 AUTOSET: Auto Set Control bit

- 1 = TXPKTRDY will be automatically set when data of the maximum packet size (value in TXMAXP) is loaded into the TX FIFO. If a packet of less than the maximum packet size is loaded, then TXPKTRDY will have to be set manually.
- 0 = TXPKTRDY must be set manually for all packet sizes
- bit 30 ISO: Isochronous TX Endpoint Enable bit (Device mode)
 - 1 = Enables the endpoint for Isochronous transfers
 - 0 = Disables the endpoint for Isochronous transfers and enables it for Bulk or Interrupt transfers.

This bit only has an effect in Device mode. In Host mode, it always returns zero.

- bit 29 MODE: Endpoint Direction Control bit
 - 1 = Endpoint is TX
 - 0 = Endpoint is RX

This bit only has any effect where the same endpoint FIFO is used for both TX and RX transactions.

- bit 28 DMAREQEN: Endpoint DMA Request Enable bit
 - 1 = DMA requests are enabled for this endpoint
 - 0 = DMA requests are disabled for this endpoint
- bit 27 FRCDATTG: Force Endpoint Data Toggle Control bit
 - 1 = Forces the endpoint data toggle to switch and the data packet to be cleared from the FIFO, regardless of whether an ACK was received.
 - 0 = No forced behavior
- bit 26 DMAREQMD: Endpoint DMA Request Mode Control bit
 - 1 = DMA Request Mode 1
 - 0 = DMA Request Mode 0

This bit must not be cleared either before or in the same cycle as the DMAREQEN bit is cleared.

- bit 25 **DATAWEN:** Data Toggle Write Enable bit (Host mode)
 - 1 = Enable the current state of the TX Endpoint data toggle (DATATGGL) to be written
 - 0 = Disables writing the DATATGGL bit
- bit 24 **DATATGGL:** Data Toggle Control bit (Host mode)

When read, this bit indicates the current state of the TX Endpoint data toggle. If DATAWEN = 1, this bit may be written with the required setting of the data toggle. If DATAWEN = 0, any value written to this bit is ignored.

REGISTER 11-8: USBIENCSR0: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 0 (ENDPOINT 1-7) (CONTINUED)

- bit 23 INCOMPTX: Incomplete TX Status bit (Device mode)
 - 1 = For high-bandwidth Isochronous endpoint, a large packet has been split into 2 or 3 packets for transmission but insufficient IN tokens have been received to send all the parts
 - 0 = Normal operation

In anything other than isochronous transfers, this bit will always return 0.

NAKTMOUT: NAK Time-out status bit (Host mode)

- 1 = TX endpoint is halted following the receipt of NAK responses for longer than the NAKLIM setting
- 0 = Written by software to clear this bit
- bit 22 CLRDT: Clear Data Toggle Control bit
 - 1 = Resets the endpoint data toggle to 0
 - 0 = Do not clear the data toggle
- bit 21 SENTSTALL: STALL handshake transmission status bit (Device mode)
 - 1 = STALL handshake is transmitted. The FIFO is flushed and the TXPKTRDY bit is cleared.
 - 0 = Written by software to clear this bit

RXSTALL: STALL receipt bit (Host mode)

- 1 = STALL handshake is received. Any DMA request in progress is stopped, the FIFO is completely flushed and the TXPKTRDY bit is cleared.
- 0 = Written by software to clear this bit
- bit 20 SENDSTALL: STALL handshake transmission control bit (Device mode)
 - 1 = Issue a STALL handshake to an IN token
 - 0 = Terminate stall condition

This bit has no effect when the endpoint is being used for Isochronous transfers.

SETUPPKT: Definition bit (Host mode)

- 1 = When set at the same time as the TXPKTRDY bit is set, send a SETUP token instead of an OUT token for the transaction. This also clears the Data Toggle.
- 0 = Normal OUT token for the transaction
- bit 19 FLUSH: FIFO Flush control bit
 - 1 = Flush the latest packet from the endpoint TX FIFO. The FIFO pointer is reset, the TXPKTRDY bit is cleared and an interrupt is generated.
 - 0 = Do not flush the FIFO
- bit 18 UNDERRUN: Underrun status bit (Device mode)
 - 1 = An IN token has been received when the TXPKTRDY bit is not set.
 - 0 = Written by software to clear this bit.

ERROR: Handshake failure status bit (Host mode)

- 1 = Three attempts have been made to send a packet and no handshake packet has been received
- 0 = Written by software to clear this bit.
- bit 17 FIFONE: FIFO Not Empty status bit
 - 1 = There is at least 1 packet in the TX FIFO
 - 0 = TX FIFO is empty
- bit 16 TXPKTRDY: TX Packet Ready Control bit

The software sets this bit after loading a data packet into the FIFO. It is cleared automatically when a data packet has been transmitted. This bit is also automatically cleared prior to loading a second packet into a double-buffered FIFO.

REGISTER 11-8: USBIENCSR0: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 0 (ENDPOINT 1-7) (CONTINUED)

bit 15-11 MULT<4:0>: Multiplier Control bits

For Isochronous/Interrupt endpoints or of packet splitting on Bulk endpoints, multiplies TXMAXP by MULT+1 for the payload size.

For Bulk endpoints, MULT can be up to 32 and defines the number of "USB" packets of the specified payload into which a single data packet placed in the FIFO should be split, prior to transfer. The data packet is required to be an exact multiple of the payload specified by TXMAXP.

For Isochronous/Interrupts endpoints operating in Hi-Speed mode, MULT may be either 2 or 3 and specifies the maximum number of such transactions that can take place in a single microframe.

bit 10-0 TXMAXP<10:0>: Maximum TX Payload per transaction Control bits

This field sets the maximum payload (in bytes) transmitted in a single transaction. The value is subject to the constraints placed by the USB Specification on packet sizes for Bulk, Interrupt and Isochronous transfers in Full-Speed and Hi-Speed operations.

TXMAXP must be set to an even number of bytes for proper interrupt generation in DMA Mode 1.

REGISTER 11-9: USBIENCSR1: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 1 (ENDPOINT 1-7)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HC	R-0	R/W-0			
31:24	AUTOCLR	ISO	DMAREQEN	DISNYET	DMAREQMD	ı	_	INCOMPRX			
	AUTOCLK	AUTORQ	DIVIANEQUIN	PIDERR		DATATWEN	DATATGGL	INCOMERX			
	R/W-0, HC	R/W-0, HS	R/W-0	R/W-0, HC	R-0, HS	R/W-0, HS	R-0, HS, HC	R/W-0, HS			
23:16	CLRDT	SENTSTALL	SENDSTALL	FLUSH	DATAERR	OVERRUN	FIFOFULL	RXPKTRDY			
	CLRDI	RXSTALL	REQPKT		DERRNAKT	ERROR	FIFOFULL	KAPKIKUI			
45.0	R/W-0 R/W-0										
15:8			MULT<4:0>		R	XMAXP<10:8	i>				
7:0	R/W-0 R/W-0										
7.0		RXMAXP<7:0>									

Legend: HC = Hardware Cleared HS = Hardware Set

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31 AUTOCLR: RXPKTRDY Automatic Clear Control bit

- 1 = RXPKTRDY will be automatically cleared when a packet of RXMAXP bytes has been unloaded from the RX FIFO. When packets of less than the maximum packet size are unloaded, RXPKTRDY will have to be cleared manually. When using a DMA to unload the RX FIFO, data is read from the RX FIFO in 4-byte chunks regardless of the RXMAXP.
- 0 = No automatic clearing of RXPKTRDY

This bit should not be set for high-bandwidth Isochronous endpoints.

- bit 30 ISO: Isochronous Endpoint Control bit (Device mode)
 - 1 = Enable the RX endpoint for Isochronous transfers
 - 0 = Enable the RX endpoint for Bulk/Interrupt transfers

AUTORQ: Automatic Packet Request Control bit (Host mode)

- 1 = REQPKT will be automatically set when RXPKTRDY bit is cleared.
- 0 = No automatic packet request

This bit is automatically cleared when a short packet is received.

- bit 29 DMAREQEN: DMA Request Enable Control bit
 - 1 = Enable DMA requests for the RX endpoint.
 - 0 = Disable DMA requests for the RX endpoint.
- bit 28 **DISNYET:** Disable NYET Handshakes Control/PID Error Status bit (*Device mode*)
 - 1 = In Bulk/Interrupt transactions, disables the sending of NYET handshakes. All successfully received RX packets are ACKed including at the point at which the FIFO becomes full.
 - 0 = Normal operation.

In Bulk/Interrupt transactions, this bit only has any effect in Hi-Speed mode, in which mode it should be set for all Interrupt endpoints.

PIDERR: PID Error Status bit (Host mode)

- 1 = In ISO transactions, this indicates a PID error in the received packet.
- 0 = No error
- bit 27 DMAREQMD: DMA Request Mode Selection bit
 - 1 = DMA Request Mode 1
 - 0 = DMA Request Mode 0

REGISTER 11-9: USBIENCSR1: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 1 (ENDPOINT 1-7) (CONTINUED)

- bit 26 DATATWEN: Data Toggle Write Enable Control bit (Host mode)
 - 1 = DATATGGL can be written
 - 0 = DATATGGL is not writable
- bit 25 DATATGGL: Data Toggle bit (Host mode)

When read, this bit indicates the current state of the endpoint data toggle.

If DATATWEN = 1, this bit may be written with the required setting of the data toggle.

If DATATWEN = 0, any value written to this bit is ignored.

- bit 24 INCOMPRX: Incomplete Packet Status bit
 - 1 = The packet in the RX FIFO during a high-bandwidth Isochronous/Interrupt transfer is incomplete because parts of the data were not received
 - 0 = Written by then software to clear this bit

In anything other than Isochronous transfer, this bit will always return 0.

- bit 23 CLRDT: Clear Data Toggle Control bit
 - 1 = Reset the endpoint data toggle to 0
 - 0 = Leave endpoint data toggle alone
- bit 22 SENTSTALL: STALL Handshake Status bit (Device mode)
 - 1 = STALL handshake is transmitted
 - 0 = Written by the software to clear this bit

RXSTALL: STALL Handshake Receive Status bit (*Host mode*)

- 1 = A STALL handshake has been received. An interrupt is generated.
- 0 = Written by the software to clear this bit
- bit 21 **SENDSTALL:** STALL Handshake Control bit (*Device mode*)
 - 1 = Issue a STALL handshake
 - 0 = Terminate stall condition

REQPKT: IN Transaction Request Control bit (*Host mode*)

- 1 = Request an IN transaction.
- 0 = No request

This bit is cleared when RXPKTRDY is set.

- bit 20 FLUSH: Flush FIFO Control bit
 - 1 = Flush the next packet to be read from the endpoint RX FIFO. The FIFO pointer is reset and the RXPKTRDY bit is cleared. This should only be used when RXPKTRDY is set. If the FIFO is doublebuffered, FLUSH may need to be set twice to completely clear the FIFO.
 - 0 = Normal FIFO operation

This bit is automatically cleared.

- bit 19 DATAERR: Data Packet Error Status bit (Device mode)
 - 1 = The data packet has a CRC or bit-stuff error.
 - 0 = No data error

This bit is cleared when RXPKTRDY is cleared. This bit is only valid when the endpoint is operating in ISO mode. In Bulk mode, it always returns zero.

DERRNAKT: Data Error/NAK Time-out Status bit (*Host mode*)

- 1 = The data packet has a CRC or bit-stuff error. In Bulk mode, the RX endpoint is halted following the receipt of NAK responses for longer than the time set as the NAK limit.
- 0 = No data or NAK time-out error

REGISTER 11-9: USBIENCSR1: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 1 (ENDPOINT 1-7) (CONTINUED)

- bit 18 **OVERRUN:** Data Overrun Status bit (Device mode)
 - 1 = An OUT packet cannot be loaded into the RX FIFO.
 - 0 = Written by software to clear this bit

This bit is only valid when the endpoint is operating in ISO mode. In Bulk mode, it always returns zero.

ERROR: No Data Packet Received Status bit (Host mode)

- 1 = Three attempts have been made to receive a packet and no data packet has been received. An interrupt is generated.
- 0 = Written by the software to clear this bit.

This bit is only valid when the RX endpoint is operating in Bulk or Interrupt mode. In ISO mode, it always returns zero.

- bit 17 FIFOFULL: FIFO Full Status bit
 - 1 = No more packets can be loaded into the RX FIFO
 - 0 = The RX FIFO has at least one free space
- bit 16 RXPKTRDY: Data Packet Reception Status bit
 - 1 = A data packet has been received. An interrupt is generated.
 - 0 = Written by software to clear this bit when the packet has been unloaded from the RX FIFO.
- bit 15-11 MULT<4:0>: Multiplier Control bits

For Isochronous/Interrupt endpoints or of packet splitting on Bulk endpoints, multiplies TXMAXP by MULT+1 for the payload size.

For Bulk endpoints, MULT can be up to 32 and defines the number of "USB" packets of the specified payload into which a single data packet placed in the FIFO should be split, prior to transfer. The data packet is required to be an exact multiple of the payload specified by TXMAXP.

For Isochronous/Interrupts endpoints operating in Hi-Speed mode, MULT may be either 2 or 3 and specifies the maximum number of such transactions that can take place in a single microframe.

bit 10-0 RXMAXP<10:0>: Maximum RX Payload Per Transaction Control bits

This field sets the maximum payload (in bytes) transmitted in a single transaction. The value is subject to the constraints placed by the USB Specification on packet sizes for Bulk, Interrupt and Isochronous transfers in Full-Speed and Hi-Speed operations.

RXMAXP must be set to an even number of bytes for proper interrupt generation in DMA Mode 1.

REGISTER 11-10: USBIENCSR2: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 2 (ENDPOINT 1-7)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	R/W-0 R/W-0										
31.24	TXINTERV<7:0>										
00.40	R/W-0 R/W-0										
23:16	SPEED<1:0>		PROTOCOL<1:0>			TEP<	3:0>				
15.0	U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0			
15:8	_	_		RXCNT<13:8>							
7:0	R-0 R-0										
7.0		RXCNT<7:0>									

Legend:	HC = Hardware Cleared	HS = Hardware Set	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 TXINTERV<7:0>: Endpoint TX Polling Interval/NAK Limit bits (Host mode)

For Interrupt and Isochronous transfers, this field defines the polling interval for the endpoint. For Bulk endpoints, this field sets the number of frames/microframes after which the endpoint should time out on receiving a stream of NAK responses.

The following table describes the valid values and interpretation for these bits:

Transfer Type	Speed	Valid Values (m)	Interpretation
Interrupt	Low/Full	0x01 to 0xFF	Polling interval is 'm' frames.
	High	0x01 to 0x10	Polling interval is 2 ^(m-1) frames.
Isochronous	Full or High	0x01 to 0x10	Polling interval is 2 ^(m-1) frames/microframes.
Bulk	Full or High	0x02 to 0x10	NAK limit is 2 ^(m-1) frames/microframes. A value of '0' or '1' disables the NAK time-out function.

bit 23-22 **SPEED<1:0>:** TX Endpoint Operating Speed Control bits (*Host mode*)

- 11 = Low-Speed
- 10 = Full-Speed
- 01 = Hi-Speed
- 00 = Reserved

bit 21-20 PROTOCOL<1:0>: TX Endpoint Protocol Control bits

- 11 = Interrupt
- 10 **= Bulk**
- 01 = Isochronous
- 00 = Control

bit 19-16 TEP<3:0>: TX Target Endpoint Number bits

This value is the endpoint number contained in the TX endpoint descriptor returned to the USB module during device enumeration.

bit 15-14 Unimplemented: Read as '0'

bit 13-0 RXCNT<13:0>: Receive Count bits

The number of received data bytes in the endpoint RX FIFO. The value returned changes as the contents of the FIFO change and is only valid while RXPKTRDY is set.

REGISTER 11-11: USBIENCSR3: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 3 (ENDPOINT 1-7)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R-x R-x							
31.24		RXFIFC)SZ<3:0>			TXFIFO	SZ<3:0>	
22:46	U-0 U-0							
23:16	_	_	_	_	_	-	_	_
15:8	R/W-0 R/W-0							
15.6				RXINTE	RV<7:0>			
7:0	R/W-0 R/W-0							
7:0	SPEE	D<1:0>	PROTO	COL<1:0>		TEP	<3:0>	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-28 RXFIFOSZ<3:0>: Receive FIFO Size bits

1111 = Reserved

1110 = Reserved

1101 **= 8192** bytes

1100 = 4096 bytes

•

•

0011 = 8 bytes

0010 = Reserved

0001 = Reserved

0000 = Reserved or endpoint has not been configured

This register only has this interpretation when dynamic sizing is not selected. It is not valid where dynamic FIFO sizing is used.

bit 27-24 TXFIFOSZ<3:0>: Transmit FIFO Size bits

1111 = Reserved

1110 = Reserved

1101 = 8192 bytes

1100 = 4096 bytes

•

•

0011 = 8 bytes

0010 = Reserved

0001 = Reserved

0000 = Reserved or endpoint has not been configured

This register only has this interpretation when dynamic sizing is not selected. It is not valid where dynamic FIFO sizing is used.

bit 23-16 Unimplemented: Read as '0'

REGISTER 11-11: USBIENCSR3: USB INDEXED ENDPOINT CONTROL STATUS REGISTER 3 (ENDPOINT 1-7) (CONTINUED)

bit 15-8 RXINTERV<7:0>: Endpoint RX Polling Interval/NAK Limit bits

For Interrupt and Isochronous transfers, this field defines the polling interval for the endpoint. For Bulk endpoints, this field sets the number of frames/microframes after which the endpoint should time out on receiving a stream of NAK responses.

The following table describes the valid values and meaning for this field:

Transfer Type	Speed	Valid Values (m)	Interpretation
Interrupt	Low/Full	0x01 to 0xFF	Polling interval is 'm' frames.
	High	0x01 to 0x10	Polling interval is 2 ^(m-1) frames.
Isochronous	Full or High	0x01 to 0x10	Polling interval is 2 ^(m-1) frames/microframes.
Bulk	Full or High	0x02 to 0x10	NAK limit is 2 ^(m-1) frames/microframes. A value of '0' or '1' disables the NAK time-out function.

- bit 7-6 SPEED<1:0>: RX Endpoint Operating Speed Control bits
 - 11 = Low-Speed
 - 10 = Full-Speed
 - 01 = Hi-Speed
 - 00 = Reserved
- bit 5-4 PROTOCOL<1:0>: RX Endpoint Protocol Control bits
 - 11 = Interrupt
 - 10 = Bulk
 - 01 = Isochronous
 - 00 = Control
- bit 3-0 TEP<3:0>: RX Target Endpoint Number bits

This value is the endpoint number contained in the TX endpoint descriptor returned to the USB module during device enumeration.

REGISTER 11-12: USBFIFOx: USB FIFO DATA REGISTER 'x' ('x' = 0-7)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	R/W-0 R/W-0									
31.24				DATA<	31:24>					
22:46	R/W-0 R/W-0									
23:16	DATA<23:16>									
15.0	R/W-0 R/W-0									
15:8	DATA<15:8>									
7:0	R/W-0 R/W-0									
7.0				DATA	<7:0>					

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 DATA<31:0>: USB Transmit/Receive FIFO Data bits

Writes to this register loads data into the TxFIFO for the corresponding endpoint. Reading from this register unloads data from the RxFIFO for the corresponding endpoint.

Transfers may be 8-bit, 16-bit or 32-bit as required, and any combination of access is allowed provided the data accessed is contiguous. However, all transfers associated with one packet must be of the same width so that data is consistently byte-, word- or double-word aligned. The last transfer may contain fewer bytes than the previous transfers in order to complete an odd-byte or odd-word transfer.

REGISTER 11-13: USBOTG: USB OTG CONTROL/STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24	_	-	_	RXDPB	RXFIFOSZ<3:0>				
22.40	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	_	_	_	TXDPB	TXFIFOSZ<3:0>				
45.0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
15:8	_	_	_	_	_	_	TXEDMA	RXEDMA	
7:0	R-1	R-0	R-0	R-0	R-0	R-0	R/W-0, HC	R/W-0	
7:0	BDEV	FSDEV	LSDEV	VBUS	S<1:0>	HOSTMODE	HOSTREQ	SESSION	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28 RXDPB: RX Endpoint Double-packet Buffering Control bit

1 = Double-packet buffer is supported. This doubles the size set in RXFIFOSZ.

0 = Double-packet buffer is not supported

bit 27-24 RXFIFOSZ<3:0>: RX Endpoint FIFO Packet Size bits

The maximum packet size to allowed for (before any splitting within the FIFO of Bulk/High-Bandwidth packets prior to transmission)

1111 = Reserved

•

•

1010 = Reserved

1001 **= 4096** bytes

1000 **= 2048 bytes**

0111 **= 1024** bytes

0110 **= 512** bytes

0101 **= 256** bytes

0100 **= 128 bytes**

0011 **= 64 bytes**

0010 **= 32** bytes

0001 **= 16 bytes**

0000 **= 8 bytes**

bit 23-21 Unimplemented: Read as '0'

bit 20 TXDPB: TX Endpoint Double-packet Buffering Control bit

- 1 = Double-packet buffer is supported. This doubles the size set in TXFIFOSZ.
- 0 = Double-packet buffer is not supported

REGISTER 11-13: USBOTG: USB OTG CONTROL/STATUS REGISTER (CONTINUED)

bit 19-16 TXFIFOSZ<3:0>: TX Endpoint FIFO packet size bits

The maximum packet size to allowed for (before any splitting within the FIFO of Bulk/High-Bandwidth packets prior to transmission)

- 1111 = Reserved
- •
- •
- .
- 1010 = Reserved
- 1001 = 4096 bytes
- 1000 **= 2048** bytes
- 0111 = 1024 bytes
- 0110 **= 512** bytes
- 0101 **= 256 bytes**
- 0100 = 128 bytes
- 0011 = 64 bytes
- 0010 = 32 bytes
- 0001 **= 16 bytes**
- 0000 = 8 bytes

bit 15-10 Unimplemented: Read as '0'

- bit 9 TXEDMA: TX Endpoint DMA Assertion Control bit
 - 1 = DMA_REQ signal for all IN endpoints will be deasserted when MAXP-8 bytes have been written to an endpoint. This is Early mode.
 - 0 = DMA_REQ signal for all IN endpoints will be deasserted when MAXP bytes have been written to an endpoint. This is Late mode.
- bit 8 RXEDMA: RX Endpoint DMA Assertion Control bit
 - 1 = DMA_REQ signal for all OUT endpoints will be deasserted when MAXP-8 bytes have been written to an endpoint. This is Early mode.
 - 0 = DMA_REQ signal for all OUT endpoints will be deasserted when MAXP bytes have been written to an endpoint. This is Late mode.
- bit 7 **BDEV:** USB Device Type bit
 - 1 = USB is operating as a 'B' device
 - 0 = USB is operating as an 'A' device
- bit 6 **FSDEV:** Full-Speed/Hi-Speed device detection bit (*Host mode*)
 - 1 = A Full-Speed or Hi-Speed device has been detected being connected to the port
 - 0 = No Full-Speed or Hi-Speed device detected
- bit 5 LSDEV: Low-Speed Device Detection bit (Host mode)
 - 1 = A Low-Speed device has been detected being connected to the port
 - 0 = No Low-Speed device detected
- bit 4-3 VBUS<1:0>: VBUS Level Detection bits
 - 11 = Above VBUS Valid
 - 10 = Above AValid, below VBUS Valid
 - 11 = Above Session End, below AValid
 - 00 = Below Session End
- bit 2 **HOSTMODE:** Host Mode bit
 - 1 = USB module is acting as a Host
 - 0 = USB module is not acting as a Host
- bit 1 HOSTREQ: Host Request Control bit

'B' device only:

- 1 = USB module initiates the Host Negotiation when Suspend mode is entered. This bit is cleared when Host Negotiation is completed.
- 0 = Host Negotiation is not taking place

REGISTER 11-13: USBOTG: USB OTG CONTROL/STATUS REGISTER (CONTINUED)

bit 0 **SESSION:** Active Session Control/Status bit

'A' device:

- 1 = Start a session
- 0 = End a session

'B' device:

- 1 = (Read) Session has started or is in progress, (Write) Initiate the Session Request Protocol
- 0 = When USB module is in Suspend mode, clearing this bit will cause a software disconnect

Clearing this bit when the USB module is not suspended will result in undefined behavior.

REGISTER 11-14: USBFIFOA: USB FIFO ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31.24	_	_		RXFIFOAD<12:8>						
23:16	R/W-0 R/W-0									
	RXFIFOAD<7:0>									
15.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	_	-	-	TXFIFOAD<12:8>						
7:0	R/W-0 R/W-0									
7:0				TXFIFO	AD<7:0>					

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28-16 RXFIFOAD<12:0>: Receive Endpoint FIFO Address bits

Start address of the endpoint FIFO in units of 8 bytes as follows:

111111111111 = 0xFFF8

٠

0000000000010 = 0x0010 0000000000001 = 0x0008

0000000000000 **= 0x0000**

bit 15-13 Unimplemented: Read as '0'

bit 12-0 TXFIFOAD<12:0>: Transmit Endpoint FIFO Address bits

Start address of the endpoint FIFO in units of 8 bytes as follows:

1111111111111 = 0xFFF8

•

0000000000010 = 0x0010

00000000000001 = 0x0008

000000000000 **= 0x0000**

REGISTER 11-15: USBHWVER: USB HARDWARE VERSION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	_	_	_	_	_	_	_	_		
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	_	_	-	_	-	-	-	_		
15.0	R-0	R-0	R-0	R-0	R-1	R-0	R-0	R-0		
15:8	RC		VERMAJOR<4:0> VERMINOR<9:8>							
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
7:0				VERMIN	OR<7:0>					

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 RC: Release Candidate bit

1 = USB module was created using a release candidate

0 = USB module was created using a full release

bit 14-10 VERMAJOR<4:0>: USB Module Major Version number bits

This read-only number is the Major version number for the USB module.

bit 9-0 VERMINOR<9:0>: USB Module Minor Version number bits

This read-only number is the Minor version number for the USB module.

REGISTER 11-16: USBINFO: USB INFORMATION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0
31.24				VPLE	N<7:0>			
00.40	R/W-0	R/W-1	R/W-0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0
23:16		WTCO	N<3:0>		WTID<3:0>			
45.0	R-1	R-0	R-0	R-0	R-1	R-1	R-0	R-0
15:8		DMACHA	NS<3:0>		RAMBITS<3:0>			
7:0	R-0	R-1	R-1	R-1	R-0	R-1	R-1	R-1
		RXENDF	PTS<3:0>			TXENDP	PTS<3:0>	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-24 VPLEN<7:0>: VBUS pulsing charge length bits

Sets the duration of the VBUS pulsing charge in units of 546.1 µs. (The default setting corresponds to 32.77 ms.)

bit 23-20 WTCON<3:0>: Connect/Disconnect filter control bits

Sets the wait to be applied to allow for the connect/disconnect filter in units of 533.3 ns. The default setting corresponds to $2.667 \, \mu s$.

bit 19-6 WTID<3:0>: ID delay valid control bits

Sets the delay to be applied from IDPULLUP being asserted to IDDIG being considered valid in units of 4.369ms. The default setting corresponds to 52.43ms.

bit 15-12 DMACHANS<3:0>: DMA Channels bits

These read-only bits provide the number of DMA channels in the USB module. For the PIC32MZ DA family, this number is 8.

bit 11-8 RAMBITS<3:0>: RAM address bus width bits

These read-only bits provide the width of the RAM address bus. For the PIC32MZ DA family, this number is

bit 7-4 RXENDPTS<3:0>: Included RX Endpoints bits

This read-only register gives the number of RX endpoints in the design. For the PIC32MZ DA family, this number is 7.

bit 3-0 **TXENDPTS<3:0>:** Included TX Endpoints bits

These read-only bits provide the number of TX endpoints in the design. For the PIC32MZ DA family, this number is 7.

REGISTER 11-17: USBEOFRST: USB END-OF-FRAME/SOFT RESET CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
	_	_	_	_	_	_	NRSTX	NRST		
22.40	R/W-0	R/W-1	R/W-1	R/W-1	R/W-0	R.W-0	R/W-1	R/W-0		
23:16	LSEOF<7:0>									
15.0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-0	R.W-1	R/W-1	R/W-1		
15:8	FSEOF<7:0>									
7:0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R.W-0	R/W-0	R/W-0		
7:0				HSEO	F<7:0>					

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-26 Unimplemented: Read as '0'

bit 25 NRSTX: Reset of XCLK Domain bit

1 = Reset the XCLK domain, which is clock recovered from the received data by the PHY

0 = Normal operation

bit 24 NRST: Reset of CLK Domain bit

1 = Reset the CLK domain, which is clock recovered from the peripheral bus

0 = Normal operation

bit 23-16 LSEOF<7:0>: Low-Speed EOF bits

These bits set the Low-Speed transaction in units of 1.067 μ s (default setting is 121.6 μ s) prior to the EOF to stop new transactions from beginning.

bit 15-8 FSEOF<7:0>: Full-Speed EOF bits

These bits set the Full-Speed transaction in units of $533.3 \,\mu s$ (default setting is $63.46 \,\mu s$) prior to the EOF to stop new transactions from beginning.

bit 7-0 **HSEOF<7:0>:** Hi-Speed EOF bits

These bits set the Hi-Speed transaction in units of 133.3 μ s (default setting is 17.07 μ s) prior to the EOF to stop new transactions from beginning.

REGISTER 11-18: USBExTXA: USB ENDPOINT 'x' TRANSMIT ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31.24	_			T	(HUBPRT<6:	0>				
23:16	R/W-0 R/W-0									
23:16	MULTTRAN	TXHUBADD<6:0>								
45.0	U-0 U-0									
15:8	_	_	_	_	_	_	_	_		
7:0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	_			Т	XFADDR<6:0	>				

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31 Unimplemented: Read as '0'

bit 30-24 **TXHUBPRT<6:0>:** TX Hub Port bits (*Host mode*)

When a Low-Speed or Full-Speed device is connected to this endpoint via a Hi-Speed USB 2.0 hub, this field records the port number of that USB 2.0 hub.

bit 23 **MULTTRAN:** TX Hub Multiple Translators bit (*Host mode*)

1 = The USB 2.0 hub has multiple transaction translators

0 = The USB 2.0 hub has a single transaction translator

bit 22-16 **TXHUBADD<6:0>:** TX Hub Address bits (*Host mode*)

When a Low-Speed or Full-Speed device is connected to this endpoint via a Hi-Speed USB 2.0 hub, these bits record the address of the USB 2.0 hub.

bit 15-7 Unimplemented: Read as '0'

bit 6-0 **TXFADDR<6:0>:** TX Functional Address bits (*Host mode*)

Specifies the address for the target function that is be accessed through the associated endpoint. It needs to be defined for each TX endpoint that is used.

REGISTER 11-19: USBExRXA: USB ENDPOINT 'x' RECEIVE ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
31:24	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31.24	_		RXHUBPRT<6:0>									
22:46	R/W-0 R/W-0											
23:16	MULTTRAN	RXHUBADD<6:0>										
45.0	U-0 U-0											
15:8	_	_	_	_	_	_	_	_				
7:0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0	_			F	RXFADDR<6:0	>						

Legend:HC = Hardware ClearedHS = Hardware SetR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31 Unimplemented: Read as '0'

bit 30-24 RXHUBPRT<6:0>: RX Hub Port bits (Host mode)

When a Low- Speed or Full-Speed device is connected to this endpoint via a Hi-Speed USB 2.0 hub, this field records the port number of that USB 2.0 hub.

bit 23 MULTTRAN: RX Hub Multiple Translators bit (Host mode)

1 = The USB 2.0 hub has multiple transaction translators

0 = The USB 2.0 hub has a single transaction translator

bit 22-16 **TXHUBADD<6:0>:** RX Hub Address bits (*Host mode*)

When a Low-Speed or Full-Speed device is connected to this endpoint via a Hi-Speed USB 2.0 hub, these bits record the address of the USB 2.0 hub.

bit 15-7 Unimplemented: Read as '0'

bit 6-0 **RXFADDR<6:0>:** RX Functional Address bits (*Host mode*)

Specifies the address for the target function that is be accessed through the associated endpoint. It needs to be defined for each RX endpoint that is used.

REGISTER 11-20: USBDMAINT: USB DMA INTERRUPT REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0 U-0							
31.24	_	_	_	_	_	_	_	_
22:16	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	U-0 U-0							
15:8	_	_	_	_	_	_	_	_
7:0	R/W-0, HS R/W-0, HS							
	DMA8IF	DMA7IF	DMA6IF	DMA5IF	DMA4IF	DMA3IF	DMA2IF	DMA1IF

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **DMAxIF:** DMA Channel 'x' Interrupt bit

1 = The DMA channel has an interrupt event

0 = No interrupt event

All bits are cleared on a read of the register.

REGISTER 11-21: USBDMAxC: USB DMA CHANNEL 'x' CONTROL REGISTER ('x' = 1-8)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0						
31:24	_	_	_	_	_	_	_	_
22:46	U-0	U-0						
23:16	_	_	_	_	_	_	_	_
45.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
15:8	_	_	_	_	_	DMABRS	TM<1:0>	DMAERR
7:0	R/W-0	R/W-0						
7:0		DMAE	P<3:0>		DMAIE	DMAMODE	U-0 U-0 U-0 U-0 U-0 U-0 RW-0 RW-0 RSTM<1:0> DMAEF	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-11 Unimplemented: Read as '0'

bit 10-9 DMABRSTM<1:0>: DMA Burst Mode Selection bit

11 = Burst Mode 3: INCR16, INCR8, INCR4 or unspecified length

10 = Burst Mode 2: INCR8, INCR4 or unspecified length

01 = Burst Mode 1: INCR4 or unspecified length00 = Burst Mode 0: Bursts of unspecified length

bit 8 DMAERR: Bus Error bit

1 = A bus error has been observed on the input 0 = The software writes this to clear the error

bit 7-4 DMAEP<3:0>: DMA Endpoint Assignment bits

These bits hold the endpoint that the DMA channel is assigned to. Valid values are 0-7.

bit 3 **DMAIE:** DMA Interrupt Enable bit

1 = Interrupt is enabled for this channel

0 = Interrupt is disabled for this channel

bit 2 **DMAMODE:** DMA Transfer Mode bit

1 = DMA Mode1 Transfers0 = DMA Mode0 Transfers

bit 1 **DMADIR:** DMA Transfer Direction bit

1 = DMA Read (TX endpoint)

0 = DMA Write (RX endpoint)

bit 0 **DMAEN:** DMA Enable bit

1 = Enable the DMA transfer and start the transfer

0 = Disable the DMA transfer

REGISTER 11-22: USBDMAxA: USB DMA CHANNEL 'x' MEMORY ADDRESS REGISTER ('x' = 1-8)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R/W-0 R/W-0										
31:24				DMAADD	R<31:24>						
22:46	R/W-0 R/W-0										
23:16	DMAADDR<23:16>										
45.0	R/W-0 R/W-0										
15:8	DMAADDR<15:8>										
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0			
7:0				DMAADI	DR<7:0>						

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 DMAADDR<31:0>: DMA Memory Address bits

This register identifies the current memory address of the corresponding DMA channel. The initial memory address written to this register during initialization must have a value such that its modulo 4 value is equal to '0'. The lower two bits of this register are read only and cannot be set by software. As the DMA transfer progresses, the memory address will increment as bytes are transferred.

REGISTER 11-23: USBDMAXN: USB DMA CHANNEL 'x' COUNT REGISTER ('X' = 1-8)

						'	- /			
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R/W-0 R/W-0									
31:24				DMACOU	NT<31:24>					
22.46	R/W-0 R/W-0									
23:16	DMACOUNT<23:16>									
15.0	R/W-0 R/W-0									
15:8	DMACOUNT<15:8>									
7:0	R/W-0 R/W-0									
7:0				DMACOL	JNT<7:0>					

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 DMACOUNT<31:0>: DMA Transfer Count bits

This register identifies the current DMA count of the transfer. Software will set the initial count of the transfer which identifies the entire transfer length. As the count progresses this count is decremented as bytes are transferred.

REGISTER 11-24: USBEXRPC: USB ENDPOINT 'x' REQUEST PACKET COUNT REGISTER (HOST MODE ONLY) ('x' = 1-7)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0 U-0									
31:24	_	_	_	_	_	_	_	_		
22:46	U-0 U-0									
23:16	_	_	_	_	_	_	_	_		
15.0	R/W-0 R/W-0									
15:8	RQPKTCNT<15:8>									
7:0	R/W-0 R/W-0									
7:0				RQPKTC	NT<7:0>					

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 RQPKTCNT<15:0>: Request Packet Count bits

Sets the number of packets of size MAXP that are to be transferred in a block transfer. This register is only available in *Host mode* when AUTOREQ is set.

REGISTER 11-25: USBDPBFD: USB DOUBLE PACKET BUFFER DISABLE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0 U-0							
31:24	_	_	_	_	_	_	_	_
22:46	R/W-0 U-0							
23:16	EP7TXD	EP6TXD	EP5TXD	EP4TXD	EP3TXD	EP2TXD	EP1TXD	_
15:8	U-0 U-0							
13.6	_	_	_	_	_	_	_	_
7:0	R/W-0 U-0							
	EP7RXD	EP6RXD	EP5RXD	EP4RXD	EP3RXD	EP2RXD	EP1RXD	_

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-17 EP7TXD:EP1TXD: TX Endpoint 'x' Double Packet Buffer Disable bits

1 = TX double packet buffering is disabled for endpoint 'x'

0 = TX double packet buffering is enabled for endpoint 'x'

bit 16 Unimplemented: Read as '0'

bit 15-1 EP7RXD:EP1RXD: RX Endpoint 'x' Double Packet Buffer Disable bits

1 = RX double packet buffering is disabled for endpoint 'x'

0 = RX double packet buffering is enabled for endpoint 'x'

bit 0 **Unimplemented:** Read as '0'

REGISTER 11-26: USBTMCON1: USB TIMING CONTROL REGISTER 1

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1	
	THHSRTN<15:8>								
00.40	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	
23:16	THHSRTN<7:0>								
15:8	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	TUCH<15:8>								
7:0	R/W-0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-1	R/W-0	R/W-0	
				TUCH	<7:0>				

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 THHSRTN:<15:0>: Hi-Speed Resume Signaling Delay bits

These bits set the delay from the end of Hi-Speed resume signaling (acting as a Host) to enable the UTM normal operating mode.

bit 15-0 TUCH<15:0>: Chirp Time-out bits

These bits set the chirp time-out. This number, when multiplied by 4, represents the number of USB module clock cycles before the time-out occurs.

Note: Use of this register will allow the Hi-Speed time-out to be set to values that are greater than the maximum specified in the USB 2.0 specification, making the USB module non-compliant.

REGISTER 11-27: USBTMCON2: USB TIMING CONTROL REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0 U-0							
31.24	_	_	_	_	_			_
23:16	U-0 U-0							
	_	_	_	_	_			_
15:8	U-0 U-0							
15.8	_	_	_	_	_			_
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	_	_	_		THBS	Γ<3:0>	•

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

bit 3-0 THBST<3:0>: High Speed Time-out Adder bits

These bits represent the value to be added to the minimum high speed time-out period of 736 bit times. The time-out period can be increased in increments of 64 Hi-Speed bit times (133 ns).

Note: Use of this register will allow the Hi-Speed time-out to be set to values that are greater than the maximum specified in the USB 2.0 specification, making the USB module non-compliant.

REGISTER 11-28: USBLPMR1: USB LINK POWER MANAGEMENT CONTROL REGISTER 1

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	_	LPMERRIE	LPMRESIE	LPMACKIE	LPMNYIE	LPMSTIE	LPMTOIE
23:16	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC
	_	_	_	LPMNAK	LPMEN<1:0>		LPMRES	LPMXMT
45.0	R-0	R-0	R-0	R-0	U-0	U-0	U-0	R-0
15:8		ENDPOI	NT<3:0>		_	_	_	RMTWAK
7:0	R-0 R-0							
		HIRD	<3:0>		LNKSTATE<3:0>			

Legend: HC = Hardware Cleared

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-30 Unimplemented: Read as '0'

bit 29 LPMERRIE: LPM Error Interrupt Enable bit

1 = LPMERR interrupt is enabled

0 = LPMERR interrupt is disabled

bit 28 LPMRESIE: LPM Resume Interrupt Enable bit

1 = LPMRES interrupt is enabled0 = LPMRES interrupt is disabled

bit 27 LPMACKIE: LPM Acknowledge Interrupt Enable bit

1 = Enable the LPMACK Interrupt0 = Disable the LPMACK Interrupt

bit 26 LPMNYIE: LPM NYET Interrupt Enable bit

1 = Enable the LPMNYET Interrupt

0 = Disable the LPMNYET Interrupt

bit 25 LPMSTIE: LPM STALL Interrupt Enable bit

1 = Enable the LPMST Interrupt

0 = Disable the LPMST Interrupt

bit 24 LPMTOIE: LPM Time-out Interrupt Enable bit

1 = Enable the LPMTO Interrupt

0 = Disable the LPMTO Interrupt

bit 23-21 Unimplemented: Read as '0'

bit 20 LPMNAK: LPM-only Transaction Setting bit

1 = All endpoints will respond to all transactions other than a LPM transaction with a NAK

0 = Normal transaction operation

Setting this bit to '1' will only take effect after the USB module as been LPM suspended.

bit 19-18 LPMEN<1:0>: LPM Enable bits (Device mode)

11 = LPM Extended transactions are supported

10 = LPM and Extended transactions are not supported

01 = LPM mode is not supported but Extended transactions are supported

00 = LPM Extended transactions are supported

bit 17 LPMRES: LPM Resume bit

1 = Initiate resume (remote wake-up). Resume signaling is asserted for 50 μ s.

0 = No resume operation

This bit is self-clearing.

REGISTER 11-28: USBLPMR1: USB LINK POWER MANAGEMENT CONTROL REGISTER 1 (CONTINUED)

bit 16 LPMXMT: LPM Transition to the L1 State bit

When in Device mode:

- 1 = USB module will transition to the L1 state upon the receipt of the next LPM transaction. LPMEN must be set to `0b11. Both LPMXMT and LPMEN must be set in the same cycle.
- 0 = Maintain current state

When LPMXMT and LPMEN are set, the USB module can respond in the following ways:

- If no data is pending (all TX FIFOs are empty), the USB module will respond with an ACK. The bit will self clear and a software interrupt will be generated.
- If data is pending (data resides in at least one TX FIFO), the USB module will respond with a NYET. In this case, the bit will not self clear however a software interrupt will be generated.

When in Host mode:

- 1 = USB module will transmit an LPM transaction. This bit is self clearing, and will be immediately cleared upon receipt of any Token or three time-outs have occurred.
- 0 = Maintain current state

bit 15-12 ENDPOINT<3:0>: LPM Token Packet Endpoint bits

This is the endpoint in the token packet of the LPM transaction.

bit 11-9 Unimplemented: Read as '0'

bit 8 RMTWAK: Remote Wake-up Enable bit

This bit is applied on a temporary basis only and is only applied to the current suspend state.

- 1 = Remote wake-up is enabled
- 0 = Remote wake-up is disabled

bit 7-4 HIRD<3:0>: Host Initiated Resume Duration bits

The minimum time the host will drive resume on the bus. The value in this register corresponds to an actual resume time of:

Resume Time = 50 μ s + HIRD * 75 μ s. The resulting range is 50 μ s to 1200 μ s.

bit 3-0 LNKSTATE<3:0>: Link State bits

This value is provided by the host to the peripheral to indicate what state the peripheral must transition to after the receipt and acceptance of a LPM transaction. The only valid value for this register is '1' for Sleep State (L1). All other values are reserved.

REGISTER 11-29: USBLPMR2: USB LINK POWER MANAGEMENT CONTROL REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	_	_	_	_	_	_	_	_
23:16	U-0 U-0							
	_	_	_	_	_	_		
15:8	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	LPMFADDR<6:0>						
7:0	U-0	U-0	R-0	R-0, HS	R-0, HS	R-0, HS	R-0, HS	R-0, HS
	_	_	LPMERRIF	LPMRESIF	LPMNCIF	LPMACKIF	LPMNYIF	LPMSTIF

Legend:HS = Hardware SetR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-15 Unimplemented: Read as '0'

bit 14-8 LPMFADDR<6:0>: LPM Payload Function Address bits

These bits contain the address of the LPM payload function.

bit 7-6 Unimplemented: Read as '0'

bit 5 LPMERRIF: LPM Error Interrupt Flag bit (Device mode)

1 = An LPM transaction was received that had a LINKSTATE field that is not supported. The response will be a STALL.

0 = No error condition

bit 4 LPMRESIF: LPM Resume Interrupt Flag bit

1 = The USB module has resumed (for any reason)

0 = No Resume condition

bit 3 LPMNCIF: LPM NC Interrupt Flag bit

When in Device mode:

1 = The USB module received a LPM transaction and responded with a NYET due to data pending in the RX FIFOs.

0 = No NC interrupt condition

When in Host mode:

1 = A LPM transaction is transmitted and the device responded with an ACK

0 = No NC interrupt condition

bit 2 LPMACKIF: LPM ACK Interrupt Flag bit

When in Device mode:

1 = A LPM transaction was received and the USB Module responded with an ACK

0 = No ACK interrupt condition

When in Host mode:

1 = The LPM transaction is transmitted and the device responds with an ACK

0 = No ACK interrupt condition

bit 1 LPMNYIF: LPM NYET Interrupt Flag bit

When in Device mode:

1 = A LPM transaction is received and the USB Module responded with a NYET

0 = No NYET interrupt flag

When in Host mode:

1 = A LPM transaction is transmitted and the device responded with an NYET

0 = No NYET interrupt flag

REGISTER 11-29: USBLPMR2: USB LINK POWER MANAGEMENT CONTROL REGISTER 2

bit 0 LPMSTIF: LPM STALL Interrupt Flag bit

When in Device mode:

- 1 = A LPM transaction was received and the USB Module responded with a STALL
- 0 = No Stall condition

When in Host mode:

- 1 = A LPM transaction was transmitted and the device responded with a STALL
- 0 = No Stall condition

REGISTER 11-30: USBCRCON: USB CLOCK/RESET CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	R-0, HS, HC	R-0, HS, HC	R/W-1, HS
31:24	_	-	-	_	_	USBIF	USBRF	USBWKUP
23:16	U-0 U-0							
	_	_	_	_	_	_	_	_
	r-1	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
15:8	_	-	-	_	_	_	USB IDOVEN	USB IDVAL
7:0	R/W-0 R/W-0							
	PHYIDEN	VBUS MONEN	ASVAL MONEN	BSVAL MONEN	SEND MONEN	USBIE	USBRIE	USB WKUPEN

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

bit 26 **USBIF:** USB General Interrupt Flag bit

1 = An event on the USB Bus has occurred

 \circ = No interrupt from USB module or interrupts have not been enabled

bit 25 USBRF: USB Resume Flag bit

1 = Resume from Suspend state. Device wake-up activity can be started.

0 = No Resume activity detected during Suspend, or not in Suspend state

bit 24 USBWKUP: USB Activity Status bit

1 = Connect, disconnect, or other activity on USB detected since last cleared

0 = No activity detected on USB

Note: This bit should be cleared just prior to entering sleep, but it should be checked that no activity

has already occurred on USB before actually entering sleep.

bit 23-16 Unimplemented: Read as '0'

bit 15 Reserved: Read as '1'

bit 14-10 Unimplemented: Read as '0'

bit 9 USBIDOVEN: USB ID Override Enable bit

1 = Enable use of USBIDVAL bit

0 = Disable use of USBIDVAL and instead use the PHY value

bit 8 USBIDVAL: USB ID Value bit

1 = ID override value is 1

0 = ID override value is 0

bit 7 PHYIDEN: PHY ID Monitoring Enable bit

 ${\tt 1}$ = Enable monitoring of the ID bit from the USB PHY

0 = Disable monitoring of the ID bit from the USB PHY

bit 6 VBUSMONEN: VBUS Monitoring for OTG Enable bit

1 = Enable monitoring for VBUS in VBUS Valid range (between 4.4V and 4.75V)

0 = Disable monitoring for VBUS in VBUS Valid range

bit 5 ASVALMONEN: A-Device VBUS Monitoring for OTG Enable bit

1 = Enable monitoring for VBUS in Session Valid range for A-device (between 0.8V and 2.0V)

0 = Disable monitoring for VBUs in Session Valid range for A-device

bit 4 BSVALMONEN: B-Device VBUS Monitoring for OTG Enable bit

1 = Enable monitoring for VBUS in Session Valid range for B-device (between 0.8V and 4.0V)

0 = Disable monitoring for VBUS in Session Valid range for B-device

REGISTER 11-30: USBCRCON: USB CLOCK/RESET CONTROL REGISTER (CONTINUED)

- bit 3 SENDMONEN: Session End VBus Monitoring for OTG Enable bit
 - 1 = Enable monitoring for VBUS in Session End range (between 0.2V and 0.8V)
 - 0 = Disable monitoring for VBUS in Session End range
- bit 2 USBIE: USB General Interrupt Enable bit
 - 1 = Enables general interrupt from USB module
 - 0 = Disables general interrupt from USB module
- bit 1 USBRIE: USB Resume Interrupt Enable bit
 - 1 = Enable remote resume from suspend Interrupt
 - 0 = Disable interrupt to a Remote Devices USB resume signaling
- bit 0 USBWKUPEN: USB Activity Detection Interrupt Enable bit
 - 1 = Enable interrupt for detection of activity on USB bus in Sleep mode
 - 0 = Disable interrupt for detection of activity on USB bus in Sleep mode

12.0 I/O PORTS

Note:

This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 12.** "I/O Ports" (DS60001120), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

General purpose I/O pins are the simplest of peripherals. They allow the PIC32MZ DA family device to monitor and control other devices. To add flexibility and functionality, some pins are multiplexed with alternate function(s). These functions depend on which peripheral features are on the device. In general, when a peripheral is functioning, that pin may not be used as a general purpose I/O pin.

Some of the key features of the I/O ports are as follows:

- · Individual output pin open-drain enable/disable
- · Individual input pin weak pull-up and pull-down
- Monitor selective inputs and generate interrupt when change in pin state is detected
- · Operation during Sleep and Idle modes
- Fast bit manipulation using CLR, SET, and INV registers

Figure 12-1 illustrates a block diagram of a typical multiplexed I/O port.

FIGURE 12-1: BLOCK DIAGRAM OF A TYPICAL MULTIPLEXED PORT STRUCTURE

12.1 Parallel I/O (PIO) Ports

All port pins have ten registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

12.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx, and TRISx registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDDIO (e.g., 5V) on any desired 5V-tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

Refer to the pin name tables (Table 5 and Table 7) for the available pins and their functionality.

12.1.2 CONFIGURING ANALOG AND DIGITAL PORT PINS

The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs must have their corresponding ANSEL and TRIS bits set. In order to use port pins for I/O functionality with digital modules, such as Timers, UARTs, etc., the corresponding ANSELx bit must be cleared.

The ANSELx register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default.

If the TRIS bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or Comparator module.

When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

12.1.3 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be an NOP.

12.1.4 INPUT CHANGE NOTIFICATION

The input change notification function of the I/O ports allows the PIC32MZ DA devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature can detect input change-of-states even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a change-of-state.

Five control registers are associated with the CN functionality of each I/O port. The CNENx/CNNEx registers contain the CN interrupt enable control bits for each of the input pins. Setting any of these bits enables a CN interrupt for the corresponding pins. CNENx enables a mismatch CN interrupt condition when the EDGEDETECT bit (CNCONx<11>) is not set. When the EDGEDETECT bit is set, CNNEx controls the negative edge while CNENx controls the positive.

The CNSTATx/CNFx registers indicate the status of change notice based on the setting of the EDGEDETECT bit. If the EDGEDETECT bit is set to '0', the CNSTATx register indicates whether a change occurred on the corresponding pin since the last read of the PORTx bit. If the EDGEDETECT bit is set to '1', the CNFx register indicates whether a change has occurred and through the CNNEx/CNENx registers the edge type of the change that occurred is also indicated.

Each I/O pin also has a weak pull-up and a weak pull-down connected to it. The pull-ups act as a current source or sink source connected to the pin, and eliminate the need for external resistors when push-button or keypad devices are connected. The pull-ups and pull-downs are enabled separately using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

Note: Pull-ups and pull-downs on change notification pins should always be disabled when the port pin is configured as a digital output.

An additional control register (CNCONx) is shown in Register 12-3.

12.2 CLR, SET, and INV Registers

Every I/O module register has a corresponding CLR (clear), SET (set) and INV (invert) register designed to provide fast atomic bit manipulations. As the name of the register implies, a value written to a SET, CLR or INV register effectively performs the implied operation, but only on the corresponding base register and only bits specified as '1' are modified. Bits specified as '0' are not modified.

Reading SET, CLR and INV registers returns undefined values. To see the affects of a write operation to a SET, CLR or INV register, the base register must be read.

12.3 Slew Rate Registers

Each I/O pin can be configured for various types of slew rate control on its associated port. This is controlled by the Slew Rate Control bits in the SRCON1x and SRCON0x registers that are associated with each I/O port.

12.4 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin-count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient workarounds in application code or a complete redesign may be the only option.

PPS configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The PPS configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to these I/O pins. PPS is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

12.4.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the PPS feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable port number.

12.4.2 AVAILABLE PERIPHERALS

The peripherals managed by the PPS are all digitalonly peripherals. These include general serial communications (UART, SPI, and CAN), general purpose timer clock inputs, timer-related peripherals (input capture and output compare), interrupt-on-change inputs, and reference clocks (input and output).

In comparison, some digital-only peripheral modules are never included in the PPS feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include I²C among others. A similar requirement excludes all modules with analog inputs, such as the Analog-to-Digital Converter (ADC).

A key difference between remappable and non-remappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/O and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

12.4.3 CONTROLLING PPS

PPS features are controlled through two sets of SFRs: one to map peripheral inputs, and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

12.4.4 INPUT MAPPING

The inputs of the PPS options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The [pin name]R registers, where [pin name] refers to the peripheral pins listed in Table 12-1, are used to configure peripheral input mapping (see Register 12-1). Each register contains sets of 4 bit fields. Programming these bit fields with an appropriate value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field is shown in Table 12-1.

For example, Figure 12-2 illustrates the remappable pin selection for the U1RX input.

FIGURE 12-2: REMAPPABLE INPUT EXAMPLE FOR U1RX

TABLE 12-1: INPUT PIN SELECTION

Peripheral Pin	[pin name]R SFR	[pin name]R bits	[pin name]R Value to RPn Pin Selection
INT3	INT3R	INT3R<3:0>	0000 = RPD2
T2CK	T2CKR	T2CKR<3:0>	0001 = RPG8
T6CK	T6CKR	T6CKR<3:0>	0010 = RPF4
IC3	IC3R	IC3R<3:0>	0011 = Reserved
IC7	IC7R	IC7R<3:0>	0100 = RPF1 0101 = RPB9
U1RX	U1RXR	U1RXR<3:0>	0101 = RPB9 0110 = RPB10
U2CTS	U2CTSR	U2CTSR<3:0>	0111 = RPC14
U5RX	U5RXR	U5RXR<3:0>	1000 = RPB5
U6CTS	U6CTSR	U6CTSR<3:0>	1001 = Reserved
SDI1	SDI1R	SDI1R<3:0>	1010 = RPC1
SDI3	SDI3R	SDI3R<3:0>	1011 = RPD14
SDI5	SDI5R	SDI5R<3:0>	1100 = RPG1 1101 = RPA14
SS6	SS6R	SS6R<3:0>	1110 = RPD6
REFCLKI1	REFCLKI1R	REFCLKI1R<3:0>	1111 = Reserved
INT4	INT4R	INT4R<3:0>	0000 = RPD3
T5CK	T5CKR	T5CKR<3:0>	0001 = RPG7 0010 = RPF5
T7CK	T7CKR	T7CKR<3:0>	0010 = RFD11
IC4	IC4R	IC4R<3:0>	0100 = RPF0 0101 = RPB1
IC8	IC8R	IC8R<3:0>	0110 = RPE5
U3RX	U3RXR	U3RXR<3:0>	0111 = RPC13 1000 = RPB3
U4CTS	U4CTSR	U4CTSR<3:0>	1000 = RPB3 1001 = Reserved
SDI2	SDI2R	SDI2R<3:0>	1010 = RPC4
SDI4	SDI4R	SDI4R<3:0>	1011 = Reserved 1100 = RPG0
C1RX	C1RXR	C1RXR<3:0>	1101 = RPA15
REFCLKI4	REFCLKI4R	REFCLKI4R<3:0>	1110 = RPD7 1111 = Reserved

TABLE 12-1: INPUT PIN SELECTION (CONTINUED)

Peripheral Pin	[pin name]R SFR	[pin name]R bits	[pin name]R Value to RPn Pin Selection
INT2	INT2R	INT2R<3:0>	0000 = RPD9
T3CK	T3CKR	T3CKR<3:0>	0001 = Reserved
T8CK	T8CKR	T8CKR<3:0>	0010 = RPB8
IC2	IC2R	IC2R<3:0>	0011 = RPB15
IC5	IC5R	IC5R<3:0>	0100 = RPD4 0101 = RPB0
IC9	IC9R	IC9R<3:0>	0101 = RPB0 0110 = RPE3
U1CTS	U1CTSR	U1CTSR<3:0>	0111 = RPB7
U2RX	U2RXR	U2RXR<3:0>	1000 = Reserved
U5CTS	U5CTSR	U5CTSR<3:0>	1001 = RPF12
SS1	SS1R	SS1R<3:0>	1010 = RPD12
<u>SS3</u>	SS3R	SS3R<3:0>	1011 = RPF8
SS4	SS4R	SS4R<3:0>	1100 = RPC3 1101 = RPE9
<u>SS5</u>	SS5R	SS5R<3:0>	11101 = Ri L9
C2RX	C2RXR	C2RXR<3:0>	1111 = Reserved
INT1	INT1R	INT1R<3:0>	0000 = Reserved
T4CK	T4CKR	T4CKR<3:0>	0001 = RPG9
T9CK	T9CKR	T9CKR<3:0>	0010 = Reserved 0011 = RPD0
IC1	IC1R	IC1R<3:0>	0100 = Reserved
IC6	IC6R	IC6R<3:0>	0101 = RPB6
U3CTS	U3CTSR	U3CTSR<3:0>	0110 = RPD5 0111 = RPB2
U4RX	U4RXR	U4RXR<3:0>	1000 = RPF3
U6RX	U6RXR	U6RXR<3:0>	1001 = Reserved 1010 = Reserved
SS2	SS2R	SS2R<3:0>	1010 = Reserved
SDI6	SDI6R	SDI6R<3:0>	1100 = RPC2
OCFA	OCFAR	OCFAR<3:0>	1101 = RPE8 1110 = Reserved
REFCLKI3	REFCLKI3R	REFCLKI3R<3:0>	1111 = Reserved

12.4.5 OUTPUT MAPPING

In contrast to inputs, the outputs of the PPS options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPnR registers (Register 12-2) are used to control output mapping. Like the [pin name]R registers, each register contains sets of 4 bit fields. The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 12-2 and Figure 12-3).

A null output is associated with the output register reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

FIGURE 12-3: EXAMPLE OF MULTIPLEXING OF REMAPPABLE OUTPUT FOR RPF0

12.4.6 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC32MZ DA devices include two features to prevent alterations to the peripheral map:

- · Control register lock sequence
- · Configuration bit select lock

12.4.6.1 Control Register Lock

Under normal operation, writes to the RPnR and [pin name]R registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK Configuration bit (CFGCON<13>). Setting the IOLOCK bit prevents writes to the control registers and clearing the IOLOCK bit allows writes.

To set or clear the IOLOCK bit, an unlock sequence must be executed. Refer to **Section 42. "Oscillators with Enhanced PLL"** (DS60001250) in the "PIC32 Family Reference Manual" for details.

12.4.6.2 Configuration Bit Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPnR and [pin name]R registers. The IOL1WAY Configuration bit (DEVCFG3<29>) blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure does not execute, and the PPS control registers cannot be written to. The only way to clear the bit and reenable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session.

TABLE 12-2: OUTPUT PIN SELECTION

RPn Port Pin	RPnR SFR	RPnR bits	RPnR Value to Peripheral Selection
RPD2	RPD2R	RPD2R<3:0>	0000 = No Connect
RPG8	RPG8R	RPG8R<3:0>	0001 = U3TX 0010 = U4RTS
RPF4	RPF4R	RPF4R<3:0>	0010 = C4 1(10
RPF1	RPF1R	RPF1R<3:0>	0100 = Reserved
RPB9	RPB9R	RPB9R<3:0>	0101 = SDO1 0110 = SDO2
RPB10	RPB10R	RPB10R<3:0>	0110 - SDO2 0111 - SDO3
RPB5	RPB5R	RPB5R<3:0>	1000 = Reserved
RPC1	RPC1R	RPC1R<3:0>	1001 = SDO5
RPD14	RPD14R	RPD14R<3:0>	
RPG1	RPG1R	RPG1R<3:0>	1100 = OC6
RPA14	RPA14R	RPA14R<3:0>	1101 = REFCLKO4
RPD6	RPD6R	RPD6R<3:0>	1110 = C2OUT 1111 = C1TX
RPD3	RPD3R	RPD3R<3:0>	0000 = No Connect
RPG7	RPG7R	RPG7R<3:0>	0001 = U1TX 0010 = U2RTS
RPF5	RPF5R	RPF5R<3:0>	0010 = USTX
RPD11	RPD11R	RPD11R<3:0>	0100 = U6RTS
RPF0	RPF0R	RPF0R<3:0>	0101 = SDO1 0110 = SDO2
RPB1	RPB1R	RPB1R<3:0>	0111 = SDO3
RPE5	RPE5R	RPE5R<3:0>	1000 = SDO4
RPB3	RPB3R	RPB3R<3:0>	1001 = SDO5 1010 = Reserved
RPC4	RPC4R	RPC4R<3:0>	1011 = OC4
RPG0	RPG0R	RPG0R<3:0>	1100 = OC7 1101 = Reserved
RPA15	RPA15R	RPA15R<3:0>	11101 = Reserved
RPD7	RPD7R	RPD7R<3:0>	1111 = REFCLKO1

TABLE 12-2: OUTPUT PIN SELECTION (CONTINUED)

RPn Port Pin	RPnR SFR	RPnR bits	RPnR Value to Peripheral Selection
RPD9	RPD9R	RPD9R<3:0>	0000 = No Connect
RPB8	RPB8R	RPB8R<3:0>	0001 = U3RTS 0010 = U4TX
RPB15	RPB15R	RPB15R<3:0>	0010 = G47X 0011 = Reserved
RPD4	RPD4R	RPD4R<3:0>	0100 = <u>U6T</u> X
RPB0	RPB0R	RPB0R<3:0>	0101 = SS1 0110 = Reserved
RPE3	RPE3R	RPE3R<3:0>	0111 = SS3
RPB7	RPB7R	RPB7R<3:0>	1000 = <u>SS4</u>
RPF12	RPF12R	RPF12R<3:0>	1001 = SS5 1010 = SDO6
RPD12	RPD12R	RPD12R<3:0>	1011 = OC5
RPF8	RPF8R	RPF8R<3:0>	1100 = OC8
RPC3	RPC3R	RPC3R<3:0>	1101 = Reserved 1110 = C1OUT
RPE9	RPE9R	RPE9R<3:0>	1111 = REFCLKO3
RPG9	RPG9R	RPG9R<3:0>	0000 = No Connect 0001 = U1RTS
RPD0	RPD0R	RPD0R<3:0>	0010 = <u>U2TX</u>
RPB6	RPB6R	RPB6R<3:0>	- 0011 = U5RTS 0100 = U6TX
RPD5	RPD5R	RPD5R<3:0>	0101 = Reserved 0110 = SS2
RPB2	RPB2R	RPB2R<3:0>	0111 = Reserved 1000 = SDO4
RPF3	RPF3R	RPF3R<3:0>	1001 = Reserved 1010 = SDO6
RPC2	RPC2R	RPC2R<3:0>	1011 = OC2
RPE8	RPE8R	RPE8R<3:0>	- 1100 = OC1 1101 = OC9
RPF2	RPF2R	RPF2R<3:0>	1110 = Reserved 1111 = C2TX

12.5 I/O Ports Control Registers

TABLE 12-3: PORTA REGISTER MAP

	All Resets	0000	0622	0000	CGFF	0000	XXXX	0000	XXXX	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	
	16/0	I	I	Ι	TRISA0	Ι	RA0	Ι	LATA0	I	ODCA0	Ι	CNPUA0	Ι	CNPDA0	Ι	I	Ι	CNIEA0	Ι	CN STATA0	I	CNNEA0	I	CNFA0	Ι	SR1A0	Ι	SR0A0	
	17/1	1	ANSA1	1	TRISA1	1	RA1	I	LATA1	-	ODCA1	I	CNPUA1	I	CNPDA1	I	I	1	CNIEA1	I	CN STATA1	I	CNNEA1	-	CNFA1	I	SR1A1	I	SR0A1	
	18/2	I	I	I	TRISA2	Ι	RA2	Ι	LATA2	I	ODCA2	Ι	CNPUA2	Ι	CNPDA2	Ι	Ι	I	CNIEA2	Ι	CN STATA2	I	CNNEA2	I	CNFA2	Ι	SR1A2	Ι	SR0A2	
	19/3	I	I	I	TRISA3	_	RA3	_	LATA3	I	ODCA3	_	CNPUA3	_	CNPDA3	-	I	I	CNIEA3	_	CN STATA3	I	CNNEA3	I	CNFA3	-	SR1A3	-	SR0A3	
	20/4	I	I	I	TRISA4	_	RA4	_	LATA4	I	ODCA4	-	CNPUA4	-	CNPDA4	-	I	I	CNIEA4	-	CN STATA4	I	CNNEA4	I	CNFA4	-	SR1A4	-	SR0A4	
	21/5	1	ANSA5	1	TRISA5	-	RA5	_	LATA5	I	ODCA5	_	CNPUA5	_	CNPDA5	-	I	I	CNIEA5	_	CN STATA5	I	CNNEA5	I	CNFA5	-	SR1A5	-	SR0A5	
	22/6	I	I	I	TRISA6	I	RA6	I	LATA6	I	ODCA6	I	CNPUA6	1	CNPDA6	I	I	I	CNIEA6	I	CN STATA6	1	CNNEA6	I	CNFA76	I	SR1A6	I	SR0A6	
s	23/7	I	I	I	TRISA7	I	RA7	I	LATA7	I	ODCA7	I	CNPUA7	1	CNPDA7	I	I	I	CNIEA7	I	CN STATA7	1	CNNEA7	I	CNFA7	I	SR1A7	I	SR0A7	=:
Bits	24/8	I	I	I	-	I	-	I	1	I	I	I	I	1	1	I	I	I	-	I	ı	1	I	1	I	I	I	I	ı	nexadecima
	25/9	I	ANSA9	I	TRISA9	1	RA9	I	LATA9	I	ODCA9	I	CNPUA9	I	CNPDA9	I	ı	I	CNIEA9	I	CN STATA9	I	CNNEA9	I	CNFA9	I	SR1A9	I	SR0A9	shown in h
	26/10	Ι	ANSA10	1	TRISA10	1	RA10	1	LATA10	_	ODCA10	1	CNPUA10	1	CNPDA10	I	ı	Ι	CNIEA10	1	CN STATA10	1	CNNEA10	_	CNFA10	I	SR1A10	I	SR0A10	t values are
	27/11	I	I	I		I		-	I	I	I	1	I	Ι	I	I	EDGE DETECT	I		1	I	I	I	I	I	I	1	I	1	as '0'; Rese
	28/12	ı	I	1	1	I	1	I	I	1	I	I	I	I	I	I	ı	I	1	I	1	1	I	1	I	I	Ι	I	1	nted, read
	29/13	1	I	1	-	_	-	_	I	I	I	-	I	_	I	-	I	I	-	-	1	I	I	I	I	-	_	-	ı	Unimpleme
	30/14	Ι	I	1	TRISA14	I	RA14	1	LATA14	I	ODCA14	I	CNPUA14	1	CNPDA14	I	Ι	I	CNIEA14	I	CN STATA14	I	CNNEA14	I	CNFA14	I	SR1A14	I	SR0A14	Reset; — =
	31/15	Ι	1	1	TRISA15	Ι	RA15	Ι	LATA15	I	ODCA15	Ι	CNPUA15 CNPUA14	Ι	CNPDA15 CNPDA14	Ι	NO	Ι	CNIEA15	Ι	CN STATA15	I	CNNEA15	1	CNFA15	Ι	SR1A15	Ι	SR0A15	x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal
e	Bit Range	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	Jnknowi
	Register Name ⁽¹⁾	L	ANSELA	TDICA	ACINI	ATGOG	A NOT	V_V	¥ ¥ ¥	0	4 000	2 0 0	¥010	0	CNFUA		CNCONA	V IV	CINEINA		CNSTATA	L	CNNEA		K L N	VOINCOOL	10100V	A PICONIA	Z 2002	
ssə.	Virtual Addr (#_8878)		0000	5	000	0000	0020	0000	0000	0,00	0040	0200	ncon	0000	0000		0020	0000	0000		0600	0	0040	000	0000	0000	3	0000	3	Legend:

All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

LATE ATTE ANSB15 ANSB13					Bits									
STATE STAT													_	
ANSELB 15:0 ANSB15 ANSB14 ANSB13 ANSB12 TRISB 1 TRISB		2 27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	1//1	16/0	All Resets
TRISB 15:0 ANSB15 ANSB14 ANSB13 ANSB12 TRISB 1 17:0 — — — — — — — — — — — — — — — — — — —		1	I	I	I	1	I	I	ı	Ι	ı	ı	1	0000
TRISB 31:16 — — — — — — — — — — — — — — — — — — —		12 ANSB11	ANSB10	ANSB9	ANSB8	ANSB7	1	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	FFBF
15.0 TRISB15 TRISB14 TRISB13 TRISB15 TRISB15 15.0 RB15 RB14 RB13 RB12 15.0 RB15 RB14 RB13 RB12 15.0 LATB15 LATB14 LATB13 LATB12 LATB12 LATB12 LATB12 LATB13 LATB12 LATB12 LATB13 CNPUB1 15.0 CNPUB15 CNPUB14 CNPUB13 CNPUB1 15.0 CNPUB15 CNPUB14 CNPUB13 CNPUB1 15.0 CNPUB15 CNPUB14 CNPUB13 CNPUB1 15.0 CNPUB15 CNIEB14 CNIEB13 CNIEB15 CNIEB13 CNEB15 CNIEB15 CNIE		1	I	-	1	1	1	-	1	1	1	1	1	0000
11:16		12 TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
15.0 RB15 RB14 RB13 RB12 13.16 15.0 LATB15 LATB13 LATB12 15.0 LATB15 LATB14 LATB13 LATB12 15.0 LATB15 LATB14 LATB13 LATB12 15.0 CNPUB15 CNPUB14 CNPUB13 CNPUB1 15.0 CNPUB15 CNPUB14 CNPUB13 CNPUB1 15.0 CNPUB15 CNPUB14 CNPUB13 CNPUB1 15.0 CNIEB15 CNIEB14 CNIEB13 CNIEB15 15.0 CNNEB15 CNNEB14 CNNEB13 CNNEB13 15.0 CNNEB15 CNNEB14 CNNEB13 CNPUB13 15.0 CNNEB15 CNNEB14 CNNEB13 CNPUB13 15.0 CNPUB15 CNPUB13 CNPUB13 15.0 CNPUB15 CNPUB14 CNPUB13 CNPUB15 15.0 CNPUB15 CNPUB14 CNPUB13 CNPUB13 15.0 CNPUB15 CNPUB14 CNPUB13 CNPUB15 15.0 CNPUB15 CNPUB14 CNPUB15 15.0 CNPUB15 CNPUB15 CNPUB15 15.0 CNPUB15 CNPUB15 15.0 CNPUB15 CNPUB15 C	-	1	Ι	I	I	Ī	Ι	I	I	I	Ι	ı	1	0000
DDCB 31:16 —<		2 RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
ODCB 15:0 LATB15 LATB14 LATB13 LATB12 ODCB 13:16 — — — — — — — — — — — — — — — — — — —	1	1	I	-	1	1	1	-	1	1	1	1	1	0000
ODCB 31:16 —<		12 LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
CNPUB 15:0 ODCB15 ODCB13 ODCB12 CNPUB 13:16 — — — — — — — — — — — — — — — — — — —	1	I	I	I	I	I	Ι	Ι	I	I	ı	I	I	0000
CNPUB 15:0 CNPUB15 CNPUB14 CNPUB13 CNPUB1 CNPUB1 CNPUB13 CNPUB1 CNPUB13 CNPUB1 CNPUB13 CNPUB1 CNPUB13 CNPUB1 CNPUB13 CNPUB1 CNPUB13 CNPUB1 CNPUB1 CNPUB13 CNPUB1 CNNTAB1 CNNTAB1 CNNTAB1 STATB1 STATB1 CNNTAB1 CNTAB1 C		12 ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000
CNPDB 15:0 CNPUB15 CNPUB14 CNPUB13 CNPUB1 15:0 CNPDB15 CNPDB14 CNPDB13 CNPDB1 15:0 CNPUB15 CNPUB14 CNPDB13 CNPDB1 15:0 CNIEB15 CNIEB14 CNIEB13 CNIEB15 CNIEB15 CNIEB15 CNIEB15 CNIEB15 CNIEB15 CNIEB15 CNIEB15 CNIEB15 CNIEB15 CNIEB15 CNNEB14 CNIEB13 CNNEB15 CNNEB15 CNNEB14 CNNEB13 CNNEB15 CNNEB15 CNNEB15 CNNEB13 CNFB15	1	1	1	I	I	I	I	I	I	I	ı	I	1	0000
CNPDB 15:0 CNPDB15 CNPDB14 CNPDB13 CNPDB1 15:0 CNPDB1 15:0 CNIEB15 CNIEB14 CNIEB13 CNIEB15 CNIEB15 CNIEB15 CNIEB15 CNIEB15 CNIEB15 CNIEB15 CNIEB15 CNNEB1 15:0 CNNEB15 CNNEB14 CNIEB13 CNNEB15 CNNEB15 CNNEB14 CNIEB13 CNNEB15			CNPUB10	CNPUB9 (CNPUB8 (CNPUB7	CNPUB6	CNPUB5	CNPUB4	CNPUB3 (CNPUB2	CNPUB1	CNPUB0	0000
CNEONB 15:0 CNPDB15 CNPDB14 CNPDB13 CNPDB1 31:16 — — — — — — — — — — — — — — — — — — —	1	1	I	Ι	1	Ι	1	1	1	1	1	1	1	0000
CNCONB 15:0 ON — — — — — — — — — — — — — — — — — —	-		CNPDB10	CNPDB9 (CNPDB8	CNPDB7	CNPDB6	CNPDB5	CNPDB4	CNPDB3 (CNPDB2	CNPDB1	CNPDB0	0000
CNCONB 15:0 ON — — — — — — — — — — — — — — — — — —	1	1	I	1	1	I	I	I	1	I	-	1	1	0000
CNENB 15:0 CNIEB15 CNIEB14 CNIEB13 CNIEB13 CNIEB15 CNIEB15 CNIEB15 CNIEB15 CNIEB15 CNIEB15 STATB15 STATB15 STATB15 STATB15 CNNEB14 CNINEB13 CNNEB15 CNNEB14 CNINEB13 CNIEB15 C		EDGE DETECT	Ι	1	1	1	1	1	1	I	1	1	-	0000
CNNTATB 15:0 CNIEB15 CNIEB14 CNIEB13 CNIEB15 CNIEB15 CNIEB15 CNIEB15 STATB14 STATB13 STATB15 CNNEB1 CNNEB14 CNNEB13 CNNEB15 CNNEB15 CNNEB14 CNNEB13 CNNEB15 CNNEB15 CNNEB14 CNNEB13 CNNEB15 CN	- -	-	I	Ι	Ι	Ι	I	1	I	Ι	I	I	I	0000
CNSTATB 15:0 CN CN CN CN CN CN CN CN CN CN CN CN CN	\vdash	112 CNIEB11	CNIEB10	CNIEB9	CNIEB8	CNIEB7	CNIEB6	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEBO	0000
CNSTATB 15:0 CN CN CN CN CN CN CN CN CN CN CN CN CN	1	I	I	1	I	Ī	I	I	I	Ι	I	I	1	0000
CNNEB 31:16 — — — — — — — — — — — — — — — — — — —			CN STATB10	CN STATB9	CN STATB8	CN STATB7	CN STATB6	CN STATB5	CN STATB4	CN STATB3	CN STATB2	CN STATB1	CN STATB0	0000
CNFB 15:0 CNNEB15 CNNEB14 CNNEB13 CNNEB1 31:16 — — — — — — — — — — — — — — — — — — —	1	I	I	I	I	I	Ι	Ι	I	I	ı	I	I	0000
CNFB 31:16 — — — — — — — — — — — — — — — — — — —			CNNEB10	CNNEB9 (CNNEB8 (CNNEB7	CNNEB6	CNNEB5	CNNEB4	CNNEB3 (CNNEB2	CNNEB1 (CNNEB0	0000
31:16 — — — — — — — — — — — — — — — — — — —	1	1	I	1	1	1	Ι	1	1	1	1	1	1	0000
		12 CNFB11	CNFB10	CNFB9	CNFB8	CNFB7	CNFB76	CNFB5	CNFB4	CNFB3	CNFB2	CNFB1	CNFB0	0000
			I	I	1	I	I	I	I	1	I	1		0000
		12 SR1B11	SR1B10	SR1B9	SR1B8	SR1B7	SR1B6	SR1B5	SR1B4	SR1B3	SR1B2	SR1B1	SR1B0	0000
1			I	I	1	I	I	I	I	1	I	1		0000
15:0 SR0B15 SR0B14 SR0B13 SR0B12	SR0B13 SR0B		SR0B11 SR0B10 SR0B9 SR0B8	SR0B9	SR0B8	SR0B7	SR0B6	SR0B5	SR0B4	SR0B3	SR0B2	SR0B1	SROBO	0000

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

TAB	TABLE 12-5 :		PORTC REGISTER MAP	GISTER A	ИАР														
SSƏ		e								Bits									
Virtual Addr (#_8878)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	1//1	16/0	IIA steseЯ
0		31:16	1	1	1	1	I	1	1	1	1	1	1	1	I	1	I	I	0000
0200	ANSELC	15:0	I	1	1	1	Ι	I	1	1	1	1	1	ANSC4	ANSC3	ANSC2	ANSC1	I	001E
0.50	TOIGE	31:16	1	-	1	1	-	1	1	-	-	-	-	-	-	-	_	-	0000
02.0		15:0	TRISC15	1	1	TRISC12	-	1	1	1	1	1	1	TRISC4	TRISC3	TRISC2	TRISC1	1	901E
0000	OTAGO	31:16	-	_	1	1	-	1	1	-	1	1	1	1	I	1	1	1	0000
0220		15:0	RC15	RC14	RC13	RC12	Ι	1	1	1	1	1	_	RC4	RC3	RC2	RC1	-	xxxx
0220	O.E.V	31:16	1	-	1	1	I	I	I	1	1	1	1	Ι	I	Ι	I	I	0000
0230		15:0	LATC15	LATC14	LATC13	LATC12	-	1	1	1	1	1	-	LATC4	LATC3	LATC2	LATC1	-	XXXX
0770	0000	31:16	1	-	1	1	I	I	I	1	1	1	1	Ι	I	Ι	I	I	0000
0440		15:0	ODCC15	ODCC14	ODCC13	ODCC12	_	_	1	1	1	1	_	ODCC4	ODCC3	ODCC2	ODCC1	-	0000
0360	Cligito	31:16	1	-	1	1	I	I	I	1	1	1	1	Ι	I	Ι	I	I	0000
0530		15:0	CNPUC15	CNPUC14	CNPUC13	CNPUC12	_	_	1	1	1	1	_	CNPUC4	CNPUC3	CNPUC2	CNPUC1	-	0000
0360	CAGINO	31:16	1	-	1	1	-	ı	I	1	1	1	1	Ι	I	Ι	I	I	0000
0200		15:0	CNPDC15	CNPDC14	CNPDC13	CNPDC12	_	_	1	1	1	1	_	CNPDC4	CNPDC3	CNPDC2	CNPDC1	-	0000
		31:16	1	1	1	1	Ι	I	1	1	1	1	1	1	1	1	1	1	0000
0270	CNCONC	15:0	NO	1	Ι	I	EDGE DETECT	1	1	1	1	1	1	1	ı	1	ı	-	0000
0000	CNENC	31:16	1	_		1	1	1	1	1	1	1	1	1	I	Ι	1	1	0000
0200		15:0	CNIEC15	CNIEC14	CNIEC13	CNIEC12	Ι	Ι	1	1	1	1	1	CNIEC4	CNIEC3	CNIEC2	CNIEC1	1	0000
0000	OTATOMO	31:16	1	-	1	1	I	1	1	1	1	1	1	1	I	I	I	I	0000
0230		15:0	CNSTATC15	CNSTATC14	CNSTATC13	CNSTATC12	1	1	1	1	1	1) -	CNSTATC4 CNSTATC3	CNSTATC3	CNSTATC2 CNSTATC1	CNSTATC1	1	0000
0 0 0	CHIMING	31:16	1	-	Ι	I	-	I	I	I	I	1	ı	Ι	I	I	I	I	0000
0240		15:0	CNNEC15	CNNEC14	CNNEC13	CNNEC12	1	I	1	1	1	1	1	CNNEC4	CNNEC3	CNNEC2	CNNEC1	I	0000
0000		31:16	Ι	Ι	I	I	1	I	1	1	1	1	1	1	I	I	I	I	0000
0250		15:0	CNFC15	CNFC14	CNFC13	CNFC12	Ι	Ι	1	1	1	1	1	CNFC4	CNFC3	CNFC2	CNFC1	1	0000
0000	JUNOJAS UJEO	31:16	Ι	-	Ī	1	I	I	1	I	ı	1	1	1	Ī	I	ı	1	0000
200			SR1C15	SR1C14	SR1C13	SR1C12	I	I	1	Ī	1	1	I	SR1C4	SR1C3	SR1C2	SR1C1	I	0000
טטט	OPPOSITE OFFICE		Ι	-	Ī	1	I	I	1	ı	1	1	1	I	1	Ī	I	ı	0000
747	010000	15:0	SR0C15	SR0C14	SR0C13	SR0C12	1	1	1		1	1		SR0C4	SR0C3	SR0C2	SR0C1	1	0000
-		. Inknow	of ac culou an	Dooot: - 1 laim	you potaomolar	,o, oo po	001107	i di cho or	opoxod a	lowicob									

x = Unknown value on Reset. — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

DS60001361E-page 262

TAB	TABLE 12-6:		PORTD REGISTER MAP	EGISTE	R MAP														
ssə		•								Bits									
Virtual Addro (#_8878)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
		31:16	1	1	I	Ι	1	I	I	I	I	I	I	1	1	ı	ı	I	0000
0300	ANSELD	15:0	ANSD15	ANSD14	I	1	I	I	I	I	I	I	I	Ι	I	ı	I	I	C000
0.00		31:16	I	1	I	I	I	I	I	I	I	I	1	I	I	I	1	1	0000
00 00	ואוא	15:0	TRISD15	TRISD14	TRISD13	TRISD12	TRISD11	TRISD10	TRISD9	1	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	FEFF
0320	DORTD	31:16		Ι	I	Ι	1	I	I	ı	Ι	I	I	Ι	Ī	1	1		0000
0250		15:0	RD15	RD14	RD13	RD12	RD11	RD10	RD9	I	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	XXXX
0000	OTV I	31:16	Ι	Ι	I	Ι	1	I	I	I	I	I	I	I	I	I	-	I	0000
0000		15:0	LATD15	LATD14	LATD13	LATD12	LATD11	LATD10	LATD9	1	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
0.00		31:16	Ι	Ι	I	Ι	1	I	I	I	I	I	I	I	I	I	-	I	0000
0340	מחמח	15:0	ODCD15	ODCD14	ODCD13	ODCD12	ODCD11	ODCD10	ODCD9	1	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000
0360	מומוט	31:16	Ι	Ι	Ι	Ι	I	I	I	Ι	I	I	I	I	Ι	I	ı	ı	0000
0000		15:0	CNPUD15	CNPUD14	CNPUD13	CNPUD12	CNPUD11	CNPUD10	CNPUD9	-	CNPUD7	CNPUD6	CNPUD5	CNPUD4	CNPUD3	CNPUD2	CNPUD1	CNPUD0	0000
0360	CNDNO	31:16	1	_	-	Ι	-	I	1	1	1	1	Ι	1	1	1	_	1	0000
0000		15:0	CNPDD15	CNPDD14	CNPDD13	CNPDD12	CNPDD11	CNPDD10	CNPDD9	-	CNPDD7	CNPDD6	CNPDD5	CNPDD4	CNPDD3	CNPDD2	CNPDD1	CNPDD0	0000
		31:16	Ι	Ι	I	Ι	1	1	1	1	1	1	1	1	1	1	1	1	0000
0370	CNCOND	15:0	NO	_	1	-	EDGE DETECT	1	1	Ι	I	1	1	ı	1	1	-	-	0000
0380	CINE	31:16	Ī	Ι	I	Ι	I	I	I	1	I	1	I	I	I	1	1	1	0000
0000		15:0	CNIED15	CNIED14	CNIED13	CNIED12	CNIED11	CNIED10	CNIED9	I	CNIED7	CNIED6	CNIED5	CNIED4	CNIED3	CNIED2	CNIED1	CNIED0	0000
		31:16	I	1	I	l	1	I	1	1	1	I	1	1	1	I	1	1	0000
0380	CNSTATD	15:0	CNS TATD15	CN STATD14	CN STATD13	CN STATD12	CN STATD11	CN STATD10	CN STATD9	I	CN STATD7	CN STATD6	CN STATD5	CN STATD4	CN STATD3	CN STATD2	CN STATD1	CN STATD0	0000
03.00	CAINIED	31:16		_	-	-		Ι	-	1	1	1	Ι	1	-	1	_		0000
0250		15:0	CNNED15	CNNED14	CNNED13	CNNED12	CNNED11	CNNED10	CNNED9	-	CNNED7	CNNED6	CNNED5	CNNED4	CNNED3	CNNED2	CNNED1	CNNED0	0000
0000	CAIC	31:16	Ι	Ι	Ι	Ι	1	I	Ι	I	I	I	Ι	I	Ι	ı	ı	ı	0000
0000		15:0	CNFD15	CNFD14	CNFD13	CNFD12	CNFD11	CNFD10	CNFD9	I	CNFD7	CNFD6	CNFD5	CNFD4	CNFD3	CNFD2	CNFD1	CNFD0	0000
030		31:16	I	_	I	Ι	_	I	ı	1	I	I	I	1	I	I	1	I	0000
			SR1D15	SR1D14	SR1D13	SR1D12	SR1D11	SR1D10	SR1D9	I	SR1D7	SR1D6	SR1D5	SR1D4	SR1D3	SR1D2	SR1D1	SR1D0	0000
0300	GRCON1D	(1)		Ι	1	Ι		I	I	1	1	I	1	1	I	1	1	I	0000
)	5	15:0	SR0D15	SR0D14	SR0D13	SR0D12	SR0D11	SR0D10	SR0D9	I	SR0D7	SR0D6	SR0D5	SR0D4	SR0D3	SR0D2	SR0D1	SR0D0	0000
Legend:		Unknow	x = Unknown value on Reset; — = Unimplemented, read	Reset; — = 1	Unimplemer		; '0'; Reset ∿	alues are sl	as '0'; Reset values are shown in hexadecimal	adecimal.									

÷

	All Resets	0000	03D2	0000	OSFF	0000	××××	0000	××××	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
	16/0	I	-		TRISE0	I	RE0	_	LATE0	_	ODCEO	-	CNPUE0	_	CNPDE0	-	_	_	CNIEE0	_	CN STATE0	_	CNNEE0	_	CNFE0	-	SR1E0	I	SR0E0
	1/11	1	ANSE1	_	TRISE1	I	RE1	_	LATE1	_	ODCE1	_	CNPUE1	_	CNPDE1	_	—	_	CNIEE1	_	CN STATE1	_	CNNEE1	_	CNFE1	_	SR1E1	I	SR0E1
	18/2	I	I	_	TRISE2	I	RE2	_	LATE2	_	ODCE2	_	CNPUE2	_	CNPDE2	_	_	-	CNIEE2	_	CN STATE2	_	CNNEE2	_	CNFE2	I	SR1E2	I	SR0E2
	19/3	1	Ι	I	TRISE3	Ι	RE3	I	LATE3	I	ODCE3	I	CNPUE3	I	CNPDE3	I	1	Ι	CNIEE3	I	CN STATE3	I	CNNEE3	Ι	CNFE3	I	SR1E3	I	SR0E3
	20/4	1	ANSE4	_	TRISE4	I	RE4	_	LATE4	_	ODCE4	_	CNPUE4	_	CNPDE4	_	_	-	CNIEE4	_	CN STATE4	_	CNNEE4	_	CNFE4	I	SR1E4	I	SR0E4
	21/5	I	-	_	TRISE5	I	SES	_	LATE5	_	ODCES	_	CNPUE5	_	CNPDE5	_	—	—	CNIEE5	_	CN STATE5	_	CNNEE5	_	CNFE5	_	SR1E5	I	SR0E5
	22/6	I	ANSE6	I	TRISE6	1	RE6	I	LATE6	I	ODCE6	ı	CNPUE6	I	CNPDE6	ı	_	I	CNIEE6	I	CN STATE6	ı	CNNEE6	1	CNFE6	_	SR1E6	ı	SR0E6
Bits	23/7	I	ANSE7	I	TRISE7	I	RE7	I	LATE7	I	ODCE7	I	CNPUE7	I	CNPDE7	I	-	I	CNIEE7	I	CN STATE7	I	CNNEE7	I	CNFE7	I	SR1E7	I	SR0E7
В	24/8	I	ANSE8	I	TRISE8	I	RE8	I	LATE8	I	ODCE8	I	CNPUE8	I	CNPDE8	I	_	Ι	CNIEE8	I	CN STATE8	Ι	CNNEE8	Ι	CNFE8	I	SR1E8	I	SR0E8
	25/9	I	ANSE9		TRISE9	I	RE9	_	LATE9	_	ODCE9	-	CNPUE9	_	CNPDE9	-	_	_	CNIEE9	_	CN STATE9	_	CNNEE9	_	CNFE9	-	SR1E9	I	SR0E9
	26/10	I	1	I	1	I	-	I	1	I	1	I	-	I	1	I	_	1	1	I	_	ı	I	-	1	I	1	I	I
	27/11	I	-	_	-	I	_	-	1	-	-	Ι	_	-	-	Ι	EDGE DETECT	-	1	Ι	Ι	Ι	I	_	1	Ι	1	I	1
	28/12	I	I	I	I	I	-	I	1	I	I	I	-	I	I	I	_	Ι	Ι	I	-	-	I	Ι	I	I	Ι	I	I
	29/13	1	Ι	I	Ι	I	1	I	1	I	Ι	I	1	I	Ι	I	-	Ι	Ι	I	-	Ι	I	Ι	1	I	1	I	1
	30/14	1	1	I	1	1	1	I	1	I	Ι	ı	1	I	Ι	ı	1	I	1	I	Ι	I	1	I	1	I	1	I	1
	31/15	I	I	Ι	I	I	1	Ι	1	Ι	I	Ι	1	Ι	Ι	Ι	NO	Ι	I	I	1	Ι	I	I	1	1	Ι	I	I
e	Bit Range	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0
	netsigeЯ ^(†) emsM	L	ANSELE	TOIGE	NOT I	THUC	PORIE	LLV	LAIE	1000	ODC E		CINTOE	חמוזים	I CINC		CNCONE		CINEINE		CNSTATE				ON L	TONOCIO	SACCINOE	7110000	ם אוסטאט
	1bbA Isu11iV (#_8878)	0.70	040	27	5 40	00.70	0420	00.00	0430	0770	0440	0370	04:00	0370	04400		0470	0070	0400		0490	0.000	2440	0400	0400	0,70		2	, ,

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

Al registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

DS60001361E-page 264

PORTE REGISTER MAP

TABLE 12-7:

TAB	TABLE 12-8 :		ORTF R	EGIST	PORTF REGISTER MAP														
ssə		(Bits	s								
Virtual Addro (#_8878)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/4	16/0	All Resets
0	L	31:16	1	Ι	1	1	1	1	1	1	1	ı	1	1	1	ı	1	I	0000
0000		15:0	1	I	ANSF13	ANSF12	I	I	I	I	I	Ι	I	I	Ι	1	I	I	3000
7	TOIGE	31:16	ı	I	I	I	I	I	I	I	I	I	I	I	I	1	I	I	0000
0100	TCIN I	15:0	1	1	TRISF13	TRISF12	-	1	1	TRISF8	1	Ι	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	313F
0620	этаОа	31:16	-	1	I	1	1	1	1	1	1	I	1	-	-	ı	_	1	0000
0250		15:0	1	1	RF13	RF12	1	1	Ι	RF8	1	1	RF5	RF4	RF3	RF2	RF1	RF0	XXXX
0630	JLV I	31:16	I	Ι	I	1	I	I	Ι	Ι	I	I	I	I	I	I	1	I	0000
0000		15:0	1		LATF13	LATF12	-	1	1	LATF8	1	1	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
0640	טטט	31:16	I	I	I	I	I	I	Ι	I	Ι	I	I	I	1	I	Ι	I	0000
040	2000	15:0	I		ODCF13	ODCF12	I	Ι	I	ODCF8	I	I	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000
1	1	31:16	I	I	I	I	I	I	I	I	I	1	I	I	I	I	I	I	0000
0000		15:0	I		CNPUF13	CNPUF12	I	Ι	1	CNPUF8	I	I	CNPUF5	CNPUF4	CNPUF3	CNPUF2	CNPUF1	CNPUF0	0000
0890	בעמועט	31:16	I	I	I	I	I	I	Ι	I	I	I	I	I	1	I	-	I	0000
0000		15:0	1	-	CNPDF13	CNPDF12	-	1	-	CNPDF8	1	I	CNPDF5	CNPDF4	CNPDF3	CNPDF2	CNPDF1	CNPDF0	0000
		31:16	1	Ι	1	1	1	1	1	I	1	1	1	1	Ι	1	ı	1	0000
0570	CNCONF	15:0	NO	1	ı	Ι	EDGE DETECT	1	1	1	Ι	Ι	Ι	Ι	I	-	1	_	0000
080	CNICNIC	31:16	1	Ι	I	1	Ι	1	Ι	Ι	1	1	1	1	1	1	I	1	0000
0000		15:0	1	Ι	CNIEF13	CNIEF12	1	1	Ι	CNIEF8	Ι	1	CNIEF5	CNIEF4	CNIEF3	CNIEF2	CNIEF1	CNIEF0	0000
		31:16	ı	I	I	1	1	I	I	Ī	l	I	I	1	1	I	1	I	0000
0290	CNSTATF	15:0	Ι	_	CN STATF13	CN STATF12	Ι	Ι	Ι	CN STATF8	Ι	Ι	CN STATF5	CN STATF4	CN STATF3	CN STATF2	CN STATF1	CN STATF0	0000
0500	T I	31:16	I	I	I	1	I	I	Ι	Ī	1	1	1	1	Ι	_	I	1	0000
		15:0	I	Ι	CNNEF13	CNNEF12	1	1	1	CNNEF8	1	1	CNNEF5	CNNEF4	CNNEF3	CNNEF2	CNNEF1	CNNEF0	0000
050	ONE TI	31:16	ı	I	I	1	1	1	Ι	I	1	I	1	-	1	ı	-	I	0000
220	5	15:0	I	I	CNFF13	CNFF12	1	I	1	CNFF8	I	1	CNFF5	CNFF4	CNFF3	CNFF2	CNFF1	CNFF0	0000
020	SPOONDE	31:16	ı	I	1	1	1	I	Ι	I	1	Ι	I	1	l	I	I	1	0000
			1	I	SR1F13	SR1F12	I	I	1	SR1F8	I	1	SR1F5	SR1F4	SR1F3	SR1F2	SR1F1	SR1F0	0000
0500	OSDO SECONTE	(,)	I	I	I	I	I	I	Ι	I	1	I	1	I	1	I	I	I	0000
)		15:0	1	I	SR0F13	SR0F12	1	I	1	SR0F8	1	1	SR0F5	SR0F4	SR0F3	SR0F2	SR0F1	SR0F0	0000
Legend:		Unknow	vn value on	Reset; —	x = Unknown value on Reset; — = Unimplemented, read	ented, read	as '0'; Rese	et values an	e shown in	as '0'; Reset values are shown in hexadecimal	 		1						

All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information. ÷

	All Resets	0000	8300	0000	F3C3	0000	XXXX	0000	XXXX	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
	16/0	1	Ι	Ι	TRISG0	I	RG0	_	LATG0	-	09000	_	CNPUG0	_	CNPDG0	_	_	Ι	CNIEG0	Ι	CN STATG0	Ι	CNNEG0	_	CNFG0	_	SR1G0	-	SR0G0
	17/1	I	ı	I	TRISG1	I	RG1	I	LATG1	Ι	ODCG1	I	CNPUG1	I	CNPDG1	-	-	I	CNIEG1	I	CN STATG1	I	CNNEG1	I	CNFG1	Ι	SR1G1	1	SR0G1
	18/2	I	Ι	I	1	I	I	I	1	I	I	I	Ι	I	1	1	1	I	1	I	1	Ι	-	1	-	I	-	1	I
	19/3	1	1	I	Ι	I	I	I	1	Ι	Ι	I	1	I	1	Ι	Ι	I	Ι	I	ı	1	-	Ι	-	Ι	-	Ι	I
	20/4	1	I	I	1	1	I	I	Ι	I	I	I	I	I	1	1	-	I	1	I	Ι	I	1	I	1	I	1	1	I
	21/5	1	I	Ι	Ι	I	_	_	Ι	Ι	Ι	_	I	_	1	_	_	Ι	-	Ι	Ι	I	-	_	-	_	-	_	I
	22/6	I	ANSG6	I	TRISG6	I	RG6	-	LATG6	_	950GO	-	CNPUG6	-	CNPDG6	_	_	I	CNIEG6	I	CN STATG6	_	CNNEG6	_	CNFG6	-	SR1G6	_	SR0G6
	23/7	I	ANSG7	Ι	TRISG7	I	RG7	_	LATG7	Ι	ODCG7	_	CNPUG7	_	CNPDG7	1		I	CNIEG7	I	CN STATG7	I	CNNEG7	-	CNFG7	Ι	SR1G7	1	SR0G7
Bits	24/8	I	ANSG8	I	TRISG8	I	RG8	I	LATG8	I	ODCG8	I	CNPUG8	I	CNPDG8	1	_	I	CNIEG8	I	CN STATG8	1	CNNEG8	I	CNFG8	ı	SR1G9	_	SR0G8
	25/9	ı	ANSG9	I	TRISG9	I	RG9	I	LATG9	I	690G0	I	CNPUG9	I	CNPDG9	1	_	I	CNIEG9	I	CN STATG9	1	CNNEG9	I	CNFG9	ı	SR1G9	1	4 SR0G13 SR0G12 — — SR0G9 SR0G8
	26/10	ı	1	ı	1	I	Ι	I	Ι	I	I	I	1	I	_	1		I	1	I	ı	1	_	I	_	ı	_	1	
	27/11	I	I	I	I	I	I	I	I	I	I	I	I	I	1	I	EDGE DETECT	I	1	I	ı	I	_	I	_	ı	_	1	1
	28/12	I	I	1	TRISG12	I	RG12	Ι	LATG12	I	ODCG12	Ι	CNPUG12	Ι	CNPDG12	I	_	I	CNIEG12	I	CN STATG12	I	CNNEG12	I	CNFG12	I	SR1G12	Ι	SR0G12
	29/13	I	1	-	TRISG13	I	RG13	_	LATG13	_	ODCG13	_	CNPUG13	_	CNPDG13	_		I	CNIEG13	I	CN STATG13	1	CNNEG13	_	CNFG13	_	SR1G13	1	SR0G13
	30/14	I	1	I	TRISG14	I	RG14	I	LATG14	I	ODCG14	I	CNPUG14	I	CNPDG14	ı	_	I	CNIEG14	I	CN STATG14	1	CNNEG14	I	CNFG14	ı	SR1G14	-	31
	31/15	I	ANSG15	I	TRISG15	I	RG15	-	LATG15	I	ODCG15	-	CNPUG15 (-	CNPDG15	-	NO	I	CNIEG15	ı	CN STATG15	I	CNNEG15 (Ι	CNFG15	1	SR1G15	1	15:0 SR0G15 SR0G
e	Bit Range	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0
	Register ⁽¹⁾ ems N		ANSELG		ם מאר		ם פול פול		<u>ه</u>	3000		S O I GIAO		S			CNCONG	SIGNO		.,	CNSTATG	CHIMING		S CAIN		SOLVOIDA		3 SPCON16	
SSƏ	nbbA IsuhiV (#_8878)		2000	0.00	01.00	0000	0200	0000	0500	0640	0400	0230	nean	0990	0000		0670	0000	0000		0690	0 4 90	OPAO	0000	OGOO	3 0030	2000	ง	no no no no no no no no no no no no no n

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

PORTG REGISTER MAP

TABLE 12-9:

TAB	TABLE 12-10 :		ORTH R	EGISTI	PORTH REGISTER MAP														
ssə.		e								Bits									
Virtual Addr (#_8878)	Register ^(†)	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	IIA steseЯ
0400	ANICELL	31:16	I	I	I	Ι	Ι	I	I	Ι	I	I	Ι	I	I	I	I	I	0000
00 /0		15:0	1	I	I	I	ANSH11	I	I	I	ANSH7	I	Ι	ANSH4	ANSH3	I	I	I	0898
0740	TDICH	31:16	1	I	-		-	Ι	1		I	1	1	-	1	1	1	1	0000
2		15:0 TI	TRISH15	TRISH14	TRISH13	TRISH12	TRISH11	TRISH10	TRISH9	TRISH8	TRISH7	TRISH6	TRISH5	TRISH4	TRISH3	TRISH2	TRISH1	TRISH0	FFFF
0220	HLGCG	31:16	1	I	I	Ι	Ι	I	I	Ι	Ι	I	I	Ι	I	_	I	1	0000
07.50	ואסר	15:0	RH15	RH14	RH13	RH12	RH11	RH10	RH9	RH8	RH7	RH6	RH5	RH4	RH3	RH2	RH1	RH0	XXXX
0420		31:16	Ι	Ι	Ι	1	Ι	I	I	Ι	Ι	I	I	I	-	I	I	I	0000
06/0	<u> </u>	15:0 L	LATH15	LATH14	LATH13	LATH12	LATH11	LATH10	LATH9	LATH8	LATH7	LATH6	LATH5	LATH4	LATH3	LATH2	LATH1	LATHO	XXXX
04.40		31:16	1	I	I	I	Ι	I	1	I	I	Ι	ı	I	I	I	I	I	0000
0,40	הטטט	15:0 0	ODCH15	ODCH14	ODCH13	ODCH12	ODCH11	ODCH10	0РСН9	9НОДО	ODCH7	9НОДО	ODCH5	ODCH4	ОРСНЗ	ODCH2	ODCH1	ОРСНО	0000
0440		31:16	Ι	Ι	Ι	1	Ι	I	I	Ι	Ι	I	I	I	-	I	I	I	0000
06/0	CNFOR	15:0 CI	CNPUH15 (CNPUH14	CNPUH13	CNPUH12	CNPUH11	CNPUH10	CNPUH9	CNPUH8	CNPUH7	CNPUH6	CNPUH5	CNPUH4	CNPUH3	CNPUH2	CNPUH1	CNPUH0	0000
0320	חסועט	31:16	1	I	1	-	1	Ι	1	1	Ι	1	1	1	I	1	1	1	0000
00 / 0		15:0 CI	CNPDH15 (CNPDH14	CNPDH13	CNPDH12	CNPDH11	CNPDH10	CNPDH9	CNPDH8	CNPDH7	CNPDH6	CNPDH5	CNPDH4	CNPDH3	CNPDH2	CNPDH1	CNPDH0	0000
		31:16	1	I	1	-	1	Ι	1	1	Ι	1	1	1	I	1	1	1	0000
0770	CNCONH	15:0	NO	-	1	I	EDGE DETECT	I	Ι	I	I	Ι	Ι	I	I	1	-	-	0000
0820		31:16	1	I	1	_	1	I	1	1	_	1	1	I	I	-	ı	1	0000
	CIALIN		CNIEH15	CNIEH14	CNIEH13	CNIEH12	CNIEH11	CNIEH10	CNIEH9	CNIEH8	CNIEH7	CNIEH6	CNIEH5	CNIEH4	CNIEH3	CNIEH2	CNIEH1	CNIEHO	0000
		31:16	1	I	I	1	Ι	I	I	1	I	I	I	1	1	1	1	1	0000
020	0790 CNSTATH	15:0 S	CN STATH15	CN STATH14	CN STATH13	CN STATH12	CN STATH11	CN STATH10	CN STATH9	CN STATH8	CN STATH7	CN STATH6	CN STATH5	CN STATH4	CN STATH3	CN STATH2	CN STATH1	CN STATH0	0000
0.470	CNINIEL	31:16	1	1	1	_	1	I	1	1	Ι	1	1	Ι	I	1	1	1	0000
		15:0 CI	CNNEH15 (CNNEH14	CNNEH13	CNNEH12	CNNEH11	CNNEH10	CNNEH9	CNNEH8	CNNEH7	CNNEH6	CNNEH5	CNNEH4	CNNEH3	CNNEH2	CNNEH1	CNNEHO 00000	0000
0780	ONE HE	31:16	1	I	I	I	Ι	I	I	1	Ι	I	I	I	1	-	1	1	0000
	5	15:0 C	CNFH15	CNFH14	CNFH13	CNFH12	CNFH11	CNFH10	CNFH9	CNFH8	CNFH7	CNFH6	CNFH5	CNFH4	CNFH3	CNFH2	CNFH1	CNFH0	0000
0200	HUNOCIAS	31:16	1	1	I	I	I	1	I	I	I	I	I	I	I	I	1	I	0000
5		15:0	SR1H15	SR1H14	SR1H13	SR1H12	SR1H11	SR1H10	SR1H9	SR1H8	SR1H7	SR1H6	SR1H5	SR1H4	SR1H3	SR1H2	SR1H1	SR1H0	0000
0470	HTNO SECONTH	31:16	1		1	1	I	I	1	1	1	I	1	1	1	1	1		0000
3		15:0	SR0H15	SR0H14	SR0H13	SR0H12	SR0H11	SR0H10	SR0H9	SR0H8	SR0H7	SR0H6	SR0H5	SR0H4	SR0H3	SR0H2	SR0H1	SROHO	0000
Legend:		Unknown	ν value on	Reset: —=	x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal	inted, read a	s '0': Reset	values are s	hown in hex	adecimal.									

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

	IIA stesefa	0000	0004	0000	FFFF	0000	xxxx	0000	xxxx	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
	16/0	ı	1	I	TRISJO	I	RJO	ı	LATJ0	1	ODC10	I	CNPU _J 0	ı	CNPDJ0	1	1	I	CNIEJ0	1	CN STATJ0	ı	CNNEJ0	1	CNFJ0	1	SR1J0	1	SR0J0
	17/1	I	I	1	TRISJ1	_	RJ1	I	LATJ1	_	ODCJ1	_	CNPUJ1	I	CNPDJ1	1	1	1	CNIEJ1	_	CN STATJ1	I	CNNEJ1	_	CNFJ1	1	SR1J1	1	SR0J1
	18/2	I	ANSJ2	I	TRISJ2	I	RJ2	ı	LATJ2	1	ODCJ2	I	CNPUJ2	ı	CNPDJ2	1	-	I	CNIEJ2	1	CN STATJ2	ı	CNNEJ2	1	CNFJ2	1	SR1J2	1	SR0J2
	19/3	ı	I	I	TRISJ3	I	RJ3	I	LATJ3	1	ODCJ3	I	CNPUJ3	I	CNPDJ3	1	I	ı	CNIEJ3	1	CN STATJ3	I	CNNEJ3	1	CNFJ3	1	SR1J3	1	SR0J3
	20/4	I	ı	I	TRISJ4	I	RJ4	I	LATJ4	I	ODCJ4	I	CNPUJ4	I	CNPDJ4	I	-	I	CNIEJ4	1	CN STATJ4	I	CNNEJ4	I	CNFJ4	I	SR1J4	1	SR0J4
	21/5	I	1	ı	TRISJ5	_	RJ5	-	LATJ5	_	ODCJS	_	CNPUJ5	-	CNPDJ5	1	1	I	CNIEJ5	_	CN STATJ5	-	CNNEJS	_	CNFJ5	1	SR1J5	1	SR0J5
	22/6	I	I	I	TRISJ6	Ι	RJ6	I	LATJ6	_	ODCJ6	_	CNPUJ6	I	CNPDJ6			I	CNIEJ6	-	CN STATJ6	I	CNNE J6	_	CNFJ6		SR1J6	1	SR0J6
	23/7	ı	ı	I	TRISJ7	I	RJ7	I	LATJ7	1	ODCJ7	I	CNPUJ7	I	CNPDJ7	I	1	I	CNIEJ7	I	CN STATJ7	I	CNNEJ7	1	CNFJ7	I	SR1J7	1	SR0J7
Bits	24/8	ı	1	1	TRISJ8	ı	RJ8	ı	LATJ8	-	ODCJ18	ı	CNPUJ8	ı	CNPDJ8	1	1	ı	CNIEJ8	1	CN STATJ8	ı	CNNEJ8	-	CNFJ8	1	SR1J8	1	SR0J8
	25/9	ı	1	I	TRISJ9	ı	RJ9	ı	LATJ9	_	ODC19	ı	CNPUJ9	ı	CNPDJ9	1	I	ı	CNIEJ9	1	CN STATJ9	ı	CNNE J9	_	CNFJ9	1	SR1J9	1	SR0J9
	26/10	ı	1	I	TRISJ10	ı	RJ10	ı	LATJ10	1	ODCJ10	ı	CNPUJ10	ı	CNPDJ10	1	1	ı	CNIEJ10	1	CN STATJ10	ı	CNNEJ10	1	CNFJ10	1	SR1J10	1	SR0J10
	27/11	I	ı	I	TRISJ11	I	RJ11	I	LATJ11	1	ODCJ11	I		I		I	EDGE DETECT	ı	CNIEJ11	1	CN STATJ11	I		1	CNFJ11	I	SR1J11	1	SR0J11
	28/12	ı	ı	I	TRISJ12	I	RJ12	ı	LATJ12	1	ODCJ12	ı	112	ı	12	1	-	ı	CNIEJ12	1	12	ı	112	1	CNFJ12	1	SR1J12	1	SR0J12
	29/13	ı	1	1	TRISJ13	ı	RJ13	ı	LATJ13	-	ODCJ13	ı	-	ı	_	1	1	ı	CNIEJ13	1	CN STATJ13	ı		-	CNFJ13	1	SR1J13	1	SR0J13
	30/14	ı	1	I	TRISJ14	I	RJ14	Ι	LATJ14	-	ODCJ14	Ι	\vdash	Ι	-	1	Ι	I	CNIEJ14	-	CN STATJ14	Ι		-	CNFJ14	1	SR1J14	1	SR0J14
	31/15	I	1	I	TRISJ15	I	RJ15	Ι	LATJ15	-	ODCJ15	Ι	-	Ι	-	I	NO	1	CNIEJ15		CN STATJ15	Ι	_	-	CNFJ15	Ι	SR1J15	1	SR0J15
9	Bit Range	1:16	15:0	1:16	·	1:16	12:0	1:16	15:0	1:16		1:16		1:16		1:16	15:0	1:16		1:16		1:16		1:16		1:16	12:0	1:16	15:0
	neteigeЯ ^(†) emsM		-		20 E				1	3.			CNP UJ	3,	_									3.		-			_
	Virtual Addr (#_8878)							0000	0630	0700	0040										0680			טםמנ	OGDO	000	2000	יט טרופיר	2000
	### 31/15 30/14 29/13 28/12 27/11		U800 ANSEL 15:0		15:0 TRISJ15 TRISJ14 TRISJ13 TRISJ12 TRISJ11		15:0 RJ15 RJ14 RJ13 RJ12 RJ11		15:0 LATJ15 LATJ14 LATJ13 LATJ12 LATJ11	- - - - - - - - -	15:0 ODCJ15 ODCJ14 ODCJ13 ODCJ12 ODCJ11		15:0 CNPUJ15 CNPUJ14 CNPUJ13 CNPUJ12 CNPUJ11	31:16 — — — — — — — — — — — — — — — — — — —	UNF D3 15:0 CNPDJ15 CNPDJ14 CNPDJ13 CNPDJ12 CNPDJ11	31:16	EDGE — DETECT .	31:16	15:0 CNIEJ15 CNIEJ14 CNIEJ13 CNIEJ12 CNIEJ11	31:16 — — — — — —	CN CN CN CN STATJ12 STATJ11	31:16 — — — — — — — — — — — — — — — — — — —	15:0 CNNEJ15 CNNEJ14 CNNEJ13 CNNEJ12 CNNEJ11	31:16 — — — —	ONF.) 15:0 CNF.)15 CNF.)14 CNF.)13 CNF.)12 CNF.)11	31:16	15:0 SR1J15 SR1J14 SR1J13 SR1J12 SR1J11	31:16 — — — — — — — — — — —	SR0.115 SR0.114 SR0.113 SR0.112 SR0.111

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

DS60001361E-page 268

TABLE 12-11: PORTJ REGISTER MAP

TAE	TABLE 12-12 :		ORTK F	PORTK REGISTER MAP	ER MAP	_													
ssə.		e								Bits									
Virtual Addr (#_8878)	Register ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	1//1	16/0	IIA steseЯ
	7 130144	31:16	I	I	-	I	Ι	I	I	I	I	I	I	I	I	I	I	I	0000
OSO		15:0	I	1	Ι	Ι	1	Ι	I	1	1	1	-	1	1	ANSK2	ANSK1	-	9000
0700	TOIGH	31:16	Ι	I	Ι	Ι	Ι	I	I	I	I	I	I	I	I	I	Ι	I	0000
200		15:0	1	1	1	Ι	1	I	I	1	TRISK7	TRISK6	TRISK5	TRISK4	TRISK3	TRISK2	TRISK1	TRISK0	00E9
0000	VITACIA	31:16	Ι	1	-	Ι	-	1	1	1	1	1	1	1	1	1	1	1	0000
09ZL		15:0	1	Ι	1	Ι	1	I	I	1	RK7	RK6	RK5	RK4	RK3	RK2	RK1	RK0	xxxx
000		31:16	Ι	I	Ι	Ι	Ι	I	I	I	I	I	I	I	I	I	Ι	I	0000
0820	4	15:0	I	1	I	I	I	I	I	1	LATK7	LATK6	LATK5	LATK4	LATK3	LATK2	LATK1	LATK0	XXXX
0,00	700	31:16	I	I	I	Ι	Ι	I	I	I	I	I	I	I	I	I	I	I	0000
1460		15:0	1	Ι	1	Ι	1	I	I	1	ODCK7	ODCK6	ODCK5	ODCK4	ODCK3	ODCK2	ODCK1	ODCK0	0000
0	1	31:16	Ι	I	Ι	I	Ι	I	I	I	I	I	I	I	Ι	-	I	1	0000
neen		15:0	I	1	Ι	Ι	1	Ι	I	-	CNPUK7	CNPUK6	CNPUK5	CNPUK4	CNPUK3	CNPUK2	CNPUK1	CNPUK0	0000
0000	YOUND	31:16	I	I	_	I	Ι	I	I	I	I	I	I	I	Ι	I	I	I	0000
0360		15:0	1	Ι	1	Ι	1	I	I	1	CNPDK7	CNPDK6	CNPDK5	CNPDK4	CNPDK3	CNPDK2	CNPDK1	CNPDK0	0000
		31:16	Ι	1	Ι	Ι	1	I	I	1	1	1	1	I	1	I	I	1	0000
0970	CNCONK	15:0	NO	1	_	-	EDGE DETECT	1	1	I	Ι	Ι	ı	1	1	1	1	1	0000
0000	CNICNIC	31:16	Ι	Ι	Ι	Ι	Ι	I	I	Ι	I	I	1	I	I	1	Ι	I	0000
080		15:0	1	Ι	_	Ι	1	1	I	-	CNIEK7	CNIEK6	CNIEK5	CNIEK4	CNIEK3	CNIEK2	CNIEK1	CNIEK0	0000
		31:16	1	1	1	Ι	1	I	I	Ι	I	I	1	I	I	ı	1	1	0000
0660	CNSTATK	15:0	I	I	_	I	I	1	Ι	I	CN STATK7	CN STATK6	CN STATK5	CN STATK4	CN STATK3	CN STATK2	CN STATK1	CN STATK0	0000
0 0 0	ZINING	31:16	Ι	ı	_	Ι	Ι	I	I	I	I	I	I	Ι	Ι	ı	ı	I	0000
760		15:0	1	-	_	Ι	1	I	I	1	CNNEK7	CNNEK6	CNNEK5	CNNEK4	CNNEK3	CNNEK2	CNNEK1	CNNEKO	0000
0000	CAIEV	31:16	I	I	Ι	I	Ι	I	I	I	I	I	I	I	Ι	I	I	I	0000
1960		15:0	1	1	1	1	1	1	I	1	CNFK7	CNFK6	CNFK5	CNFK4	CNFK3	CNFK2	CNFK1	CNFK0	0000
000	31:16 31:16	31:16	I	I	1	I	I	I	I	I	I	I	I	I	1	I	I		0000
3		15:0	I	I	I	I	1	I	I	1	SR1K7	SR1K6	SR1K5	SR1K4	SR1K3	SR1K2	SR1K1	SR1K0	0000
טפט	31:16	31:16	I	1	I	I	I	I	1	1	I	I	1	1	1	1	1		0000
Š		15:0	I	1	I	I	Ι	I	I	I	SR0K7	SR0K6	SR0K5	SR0K4	SR0K3	SR0K2	SR0K1	SROKO	0000
- Puend		- I Inknow	× = Unknown value on Reset		= Unimplemented read		exet values are shown in hexadecima	values are s	xed ni nwod	adecima									

x = Unknown value on Reset; — = Unimplemented, read as '0'; Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8, and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

tegister Name	_																	
Изте	-								ā	Bits								9
	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	1//1	16/0	PII Resets
	31:16	Ι	Ι	1	I	1	I	Ι	Ι	I	Ι	Ι	Ι	I	Ι	I	-	0000
Y E Z	15:0	1	Ι	I	I	I	I	1	Ι	I	I	1	I		INT1R<3:0>	<3:0>		0000
	31:16	1	I	I	Ι	I	I	ı	1	Ι	Ι	I	I	1	ı	I	-	0000
Y N	15:0	1	I	I	I	I	I	1	1	I	Ι	I	I		INT2R<3:0>	<3:0>		0000
	31:16	1	I	I	I	I	I	1	I	I	I	1	I	ı	I	1	1	0000
ZY N	15:0	1	I	I	ı	I	I	1	I	I	I	1	I		INT3R<3:0>	<3:0>		0000
	31:16	1	I	I	I	I	I	1	1	I	Ι	I	I	I	1	I	-	0000
74 Z	15:0	I	I	I	I	I	1	I	I	I	I	I	I		INT4R<3:0>	<3:0>		0000
	31:16	1	I	I	I	I	I	1	1	I	Ι	I	I	I	1	I	-	0000
Z Z Z Z	15:0	1	I	I	I	I	I	1	1	I	Ι	I	I		T2CKR<3:0>	<3:0>		0000
	31:16	1	I	I	Ι	I	I	ı	ı	Ι	Ι	ı	I	ı	I	ı	1	0000
2022 X	15:0	1	I	I	I	I	I	1	ı	I	Ι	I	I		T3CKR<3:0>	<3:0>		0000
	31:16	1	I	I	ı	I	I	1	ı	I	Ι	I	I	I	1	I	-	0000
4 7 7	15:0	1	I	I	I	I	I	ı	ı	Ι	Ι	ı	I		T4CKR<3:0>	<3:0>		0000
	31:16	1	I	I	Ι	I	I	ı	1	Ι	Ι	I	Ι	1	ı	I	-	0000
X X X	15:0	1	Ι	I	Ι	I	I	ı	I	Ι	Ι	ı	I		T5CKR<3:0>	<3:0>		0000
	31:16	1	Ι	I	I	I	I	1	1	I	I	ı	I	I	Ι	I	-	0000
X X X	15:0	1	Ι	I	I	I	I	ı	1	I	I	ı	I		T6CKR<3:0>	<3:0>		0000
	31:16	1	I	I	Ι	I	I	ı	I	Ι	Ι	I	Ι	Ι	ı	I	-	0000
אטיו	15:0	1	1	1	1	1	1	1	_	1	1	1	1		T7CKR<3:0>	<3:0>		0000
	31:16	I	I	I	Ι	I	I	I	1	Ι	Ι	I	ı	1	ı	I	-	0000
אטפו	15:0	1	1	I	Ι	Ι	1	1	_	Ι	Ι	-	1		T8CKR<3:0>	<3:0>		0000
	31:16	ı		ı	ı	ı	1	ı	1	ı	ı	I	I	1	I	I	I	0000
Y 20 20 20 20 20 20 20 20 20 20 20 20 20	15:0	ı	I	I	Ι	I	I	ı	I	Ι	Ι	I	Ι		T9CKR<3:0>	<3:0>		0000
	31:16	1	I	I	Ι	I	I	I	1	Ι	Ι	I	Ι	Ι	ı	I	-	0000
<u> </u>	15:0	1	I	I	Ι	I	I	I	1	Ι	Ι	I	Ι		IC1R<3:0>	:3:0>		0000
	31:16	1	I	I	Ι	I	I	ı	1	Ι	Ι	I	Ι	Ι	ı	I	-	0000
וכבת	15:0	1	1	1	1	1	1	1	-	1	Ι	1	1		IC2R<3:0>	:3:0>		0000
000	31:16	1	1	1	1	1	1	1	-	1	1	1	1	_	1	-	_	0000
Y 3	15:0	I	I	I	1	I	I	I	I	I	I	I	I		IC3R<3:0>	:3:0>		0000

DS60001361E-page 270

TABLE	E 12-13:	PER	IPHER4	PERIPHERAL PIN SELECT INP	SELECT		REGIS	TER M.	UT REGISTER MAP (CONTINUED)	NTINUE	<u> </u>								
sse		i								Ä	Bits								,
Virtual Addre (#_0878)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	1//1	16/0	stəsəЯ IIA
4400	0	31:16	Ι	Ι	I	Ι	Ι	I	Ι	I	1	Ι	I	I	I	1	I	I	0000
24 88	USKXK	15:0	I	I	I	I	Ι	I	I	I	Ι	I	I	I		U5RXR<3:0>	<3:0>		0000
7		31:16	I	Ι	I	I	I	Ι	I	Ι	I	I	I	I	I	I	I	I	0000
784	USCISK	15:0	1	I	1	I	I	I	1	I	I	I	1	I		U5CTSR<3:0>	R<3:0>		0000
2	2	31:16	Ι	1	Ι	Ι	Ι	I	I	I	I	Ι	I	I	I	I	I	I	0000
1490	UORXK	15:0	I	I	I	I	Ι	I	I	I	ı	I	I	I		U6RXR<3:0>	<3:0>		0000
		31:16	I	Ι	I	I	I	Ι	I	Ι	I	I	I	I	ı	I	I	I	0000
4. 4.	U8C 13R	15:0	I	Ι	I	I	I	Ι	I	Ι	I	I	I	I		U6CTSR<3:0>	R<3:0>		0000
7	2	31:16	I	Ι	I	I	I	Ι	I	Ι	I	I	I	I	I	I	I	I	0000
14gC	SUIR	15:0	1	I	1	I	I	I	1	I	I	I	1	I		SDI1R<3:0>	<3:0>		0000
4	0.70	31:16	I	I	I	I	Ι	I	I	I	Ι	I	I	I	I	I	I	I	0000
14 AO	Z 00	15:0	1	Ι	-	Ι	_	I	I	I	I	I	I	I		SS1R<3:0>	<3:0>		0000
0 4	מממט	31:16	1	I	1	-	-	Ι	I	I	I	I	I	I	I	I	I	I	0000
4 A &	SDIZK	15:0	I	I	I	I	I	I	I	I	I	I	I	I		SDI2R<3:0>	<3:0>		0000
7	בניטיט	31:16	1	I	I	l	I	Ι	I	I	I	I	Ι	I	I	I	I	I	0000
	332K	15:0	I	I	I	I	I	I	I	I	I	I	I	I		SS2R<3:0>	<3:0>		0000
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	מממט	31:16	1	I	I	l	I	Ι	I	I	I	I	Ι	I	I	I	I	I	0000
4 0 4	Reide	15:0	1	I	I	l	I	Ι	I	I	I	I	Ι	I		SDI3R<3:0>	<3:0>		0000
4 7 0 0	0000	31:16	1	I	1	l	I	Ι	I	I	I	I	Ι	I	I	I	I	I	0000
004	SSSR	15:0	_	1	_	1	-	1	1	1	1	1	1	1		SS3R<3:0>	<3:0>		0000
7	0.100	31:16	_	I	_	Ι	-	1	I	1	I	I	1	1	I	I	I	Ι	0000
1400	N-1100	15:0	_	1	_	1	-	1	1	1	1	1	1	1		SDI4R<3:0>	<3:0>		0000
7 7 7	0733	31:16	_	1	_	1	-	1	I	1	I	I	1	1	I	I	I	Ι	0000
- - - - - -	X 4400	15:0	I	I	I	l	-	Ι	I	I	I	I	Ι	I		SS4R<3:0>	<3:0>		0000
7	2	31:16	Ι	Ι	I	Ι	Ι	Ι	I	Ι	I	I	Ι	I	I	I	I	I	0000
7 7	SUISK	15:0	ı	1	1	I	I	I	1	1	I	I	1	I		SDI5R<3:0>	<3:0>		0000
77	0200	31:16	_	1	_	-	_	Ι	1	-	1	1	Ι	I	I		1	1	0000
5	Loco	15:0	1	1		1	I	Ι	I	Ι	ı	I	Ι	I		SS5R<3:0>	<3:0>		0000
440	Galda	31:16	_	1	_	-	-	Ι	1	-	1		Ι	1	I		1	1	0000
- - 5	רטועט	15:0	Ι	Ι	1	Ι	I	1	I	1	ı	Ι	I	I		SDI6R<3:0>	<3:0>		0000
Legend:		known ve	alue on Res	x = unknown value on Reset; — = unimplemented, read	implement	ed, read as	'0'. Reset	values are	as '0'. Reset values are shown in hexadecimal	xadecimal.									

DS60001361E-page 272

0000 0000 0000 0000 0000 0000 etesef IIA 16/0 REFCLKI3R<3:0> REFCLKI4R<3:0> REFCLKI1R<3:0> 17/1 C2RXR<3:0> C1RXR<3:0> SS6R<3:0> 19/3 20/4 22/6 23/7 Reset values are shown in hexadecimal 25/9 26/10 — = unimplemented, read as 28/12 29/13 30/14 x = unknown value on Reset; 15:0 15:0 15:0 15:0 15:0 Bit Range REFCLK11R Register Name 14E4 Virtual Address (BF80_#)

PERIPHERAL PIN SELECT INPUT REGISTER MAP (CONTINUED)

TABLE 12-13:

TABLE	E 12-14:	PER	PERIPHERAL PIN SELECT OU	\L PIN	SELEC		TPUT REGISTER MAP	SISTER	MAP										
SS										Bits	ş								
Virtual Addre (#_0878)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	steseЯ IIA
ŗ		31:16	1	I	1	I	1	1	1	1	1	ı	1	I	1	1	1	I	0000
1538	KPA14K	15:0	I	Ι	-	-	I	1	1	ı	1	-	-	I		RPA14R<3:0>	<3:0>		0000
7	7	31:16	1	1	I	I	1	I	I	I	I	I	I	Ι	Ι	I	Ι	1	0000
၁၃၄၂	YEA 19K	15:0	I	1	1	I	I	I	1	1	1	1	I	I		RPA15R<3:0>	<3:0>		0000
7540	90999	31:16	-	Ι	_	_	_	1	1	1	1	1	_	I	-	1	1	Ι	0000
	אטפאא	15:0	-	Ι	_	_	-	1	1	I	1	1	-	I		RPB0R<3:0>	<3:0>		0000
1511	00010	31:16	Ι	I	1	Ι	I	1	1	I	1	1	1	ı	1	1	1	1	0000
	אופוא	15:0	I	I	I	I	I	1	1	I	1	1	1	1		RPB1R<3:0>	<3:0>		0000
7570	90999	31:16	1	Ι	1	Ι	Ι	1	1	I	1	1	1	I	1	1	1	I	0000
040	RP52R	15:0	-	Ι	1	-	-	1	1	1	1	-	_	1		RPB2R<3:0>	<3:0>		0000
	0	31:16	I	I	I	I	I	ı	I	I	1	ı	ı	I	ı	I	I	I	0000
7 7	72977	15:0	Ι	I	I	I	I	I	1	1	1	I	I	I		RPB3R<3:0>	<3:0>		0000
	0	31:16	I	I	I	I	I	I	I	I	1	I	ı	I	I	ı	I	I	0000
1554	ストロンス	15:0	I	I	I	I	I	1	I	I	1	I	I	1		RPB5R<3:0>	<3:0>		0000
0.1.1	0	31:16	1	1	I	I	1	I	I	I	I	I	I	Ι	Ι	I	Ι	1	0000
000	KPBOK	15:0	-	Ι	_	-	-	1	1	1	1	1	_	1		RPB6R<3:0>	<3:0>		0000
711	07000	31:16	1	Ι	1	Ι	1	1	1	I	1	1	1	1	1	1	1	1	0000
) (1)	איסרא	15:0	I	I	1	I	I	1	1	I	1	1	1	1		RPB7R<3:0>	<3:0>		0000
000	00000	31:16	I	I	I	I	Ι	I	ı	I	1	I	Ι	I	1	I	Ι	I	0000
	אספאא	15:0	1	1	I	I	1	1	1	1	1	I	1	1		RPB8R<3:0>	<3:0>		0000
7007	00000	31:16	I	I	I	I	I	I	1	I	I	1	1	I	1	I	I	I	0000
	אפטרא	15:0	I	I	I	1	I	I	I	I	I	I	1	ı		RPB9R<3:0>	<3:0>		0000
750	00100	31:16	Ī	I	I	I	Ī	I	I	I	1	1	1	I	Ι	_	I	I	0000
000	אטופוא	15:0	1	I	I	l	1	1	I	1	1	I	I	I	•	RPB10R	<3:0>		0000
1570	000160	31:16	1	_	1	1	1	I	1	Ι	1	_	_	1	_	I	Ι	1	0000
2	אכוסדאו	15:0	Ι	I	_	1	Ι	I	I	1	1	Ι	1	I	•	RPB15R<3:0>	<3:0>		0000
1587	01,700	31:16	I	I	I	I	I	1	1	1	1	1	1	I	1	1	1	1	0000
		15:0	Ι	I	1	Ι	Ι	1	1	1	1	1	1	I	•	RPC1R<3:0>	<3:0>		0000
1,500	90099	31:16	I	I	I	Ι	I	I	I	I	1	I	1	I	1	ı	I	1	0000
	ואר סבוא	15:0	1	1	1	1	1	I	1	1	1	1	1	I		RPC2R<3:0>	<3:0>		0000
707	00000	31:16	Ι	I	Ι	Ι	Ι	Ι	I	I	I	Ι	-	I	-	I	I	I	0000
	ACOLA	15:0	1	1	1	ı	1	1	1	I	1	1	1	1		RPC3R<3:0>	<3:0>		0000
	200	31:16	I	ı	I	I	1	I	1	1	1	1	1	I	ı	ı	1	1	0000
1304	אנוטאא	15:0	Ι	1	1	-	1	1	1	1	1	1	1	I		RPC13R<3:0>	<3:0>		0000
0027	007770	31:16	I	I	I	Ι	Ι	I	ı	I	1	I	Ι	I	1	I	Ι	I	0000
000	110 11	15:0	Ī	I	Ι	Ι	Ī	1	I	ı	1	1	1	1		RPC14R<3:0>	<3:0>		0000
7	90099	31:16	Ι	1	Ι	1	1	Ι	1	Ι	1	1	_	1	_	I	Ι	1	0000
	לטטרא	15:0	1	1	1	I	1	1	1	1	1	1	1	1		RPD0R<3:0>	<3:0>	<u> </u>	0000
Legend:		known v	alue on Re	set; — = ur	nimplemen	ted, read a	x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal	values are	shown in h€	exadecimal									

TABLE	E 12-14:		PERIPHERAL PIN SELECT OU	\L PIN	SELEC		UT RE	TPUT REGISTER MAP (CONTINUED)	MAP (C	NITNO	UED)								
SS										Bits	ts.								
Virtual Addre (#_0878)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	steseЯ IIA
	0	31:16	1	1	1	1	1	1	1	1	1	1	1	I	1	1	1	1	0000
1508	KPDZK	15:0	I	I	I	I	ı	I	1	1	I	I	I	I		RPD2R<3:0>	<3:0>		0000
7	0	31:16	Ι	I	1	I	I	Ι	I	I	I	I	ı	Ι	I	ı	ı	I	0000
ر ا	RPD3R	15:0	1	Ι	-	1	1	-	1	1	-	1	1	-		RPD3R<3:0>	<3:0>		0000
7	0.00	31:16	I	I	I	-	I	I	I	I	I	I	I	I	I	I	ı	I	0000
000	7 7 7 7	15:0	Ι	I	Ι	I	I	I	1	1	1	1	1	1		RPD4R<3:0>	<3:0>		0000
7	מאלים	31:16	Ι	I	I	I	I	I	I	I	I	I	ı	Ι	I	ı	ı	I	0000
5 5 7	אנטאא	15:0	I	I	I	-	I	I	I	I	I	I	I	I		RPD5R<3:0>	<3:0>		0000
000	0900	31:16	I	I	I	I	I	I	I	I	I	I	I	Ι	I	ı	ı	I	0000
1308	RPD0R	15:0	I	I	I	I	I	ı	I	I	ı	ı	ı	I		RPD6R<3:0>	<3:0>		0000
0	1	31:16	I	I	I	-	I	I	1	I	I	ı	I	I	I	ı	ı	I	0000
SUST	7707X	15:0	I	I	I	I	I	I	1	1	Ι	I	ı	I		RPD7R<3:0>	<3:0>		0000
į	1	31:16	1	1	I	ı	1	1	1	1	1	1	ı	1	1	1	1	1	0000
15E4	YFD9X	15:0	I	I	I	I	I	ı	1	1	1	I	ı	I		RPD9R<3:0>	<3:0>		0000
L	0	31:16	I	I	I	I	I	I	1	I	I	ı	I	I	I	ı	ı	I	0000
Jaci	אווטקא אוויטקא	15:0	I	I	I	I	I	ı	ı	ı	I	I	I	I		RPD11R<3:0>	<3:0>		0000
ŗ	200	31:16	I	I	I	_	I	I	1	I	I	I	I	I	I	I	I	I	0000
0161	איוטוא	15:0	1	1	_	_	1	1	1	1	-	1	1	1		RPD12R<3:0>	<3:0>		0000
710	97709	31:16	1	1	1	-	I	1	1	1	1	1	ı	1	Ι	1	1	1	0000
0101	Z+1017	15:0	I	1	1	1	I	I	1	1	1	I	1	I		RPD14R<3:0>	<3:0>		0000
7600	0000	31:16	I	I	I	1	I	I	1	1	1	I	I	I	I	I	ı	1	0000
١٥٥١	ארם אר	15:0	1	1	I	1	1	ı	1	1	1	1	1	1		RPE3R<3:0>	<3:0>		0000
77	02100	31:16	I	I	I	I	I	I	1	1	I	1	I	I	I	I	ı	1	0000
10	אנםוא	15:0	Ι	I	1	1	I	ı	1	1	I	I	1	I		RPE5R<3:0>	<3:0>		0000
1620	0000	31:16	Ι	I	I	I	I	I	1	1	1	I	I	1	I	1	1	1	0000
020	NLEON	15:0	Ι	I	I	I	I	I	1	1	1	1	I	I		RPE8R<3:0>	<3:0>		0000
1604	0000	31:16	Ι	I	I	_	I	Ι	I	1	I	Ι	I	I	I	I	I	I	0000
±30	NE TAIL	15:0	Ι	I	I	I	I	I	1	1	1	I	I	I		RPE9R<3:0>	<3:0>		0000
7640		31:16	I	I	I	I	I	I	1	1	1	I	I	I	I	-	1	1	0000
0+0	V011V	15:0	I	I	I	I	I	I	1	1	1	1	I	I		RPF0R<3:0>	<3:0>		0000
770	07100	31:16	I	I	ı	-	I	I	1	1	I	I	I	I	I	ı	ı	1	0000
5	Ľ L	15:0	Ι	I	I	I	I	Ι	I	I	I	I	I	I		RPF1R<3:0>	<3:0>		0000
1610	00200	31:16		1	-	1	1			-		1	1	1		1	1	1	0000
0+0-	אדובא	15:0	1	1	1	1	1	1	1	1	1	1	1	1		RPF2R<3:0>	<3:0>		0000
7640	00030	31:16	Ι	Ι	Ι	Ι	Ι	Ι	I	I	1	-	I	1	Ι	_	-	1	0000
) 5 -	5	15:0	1	I	Ι	1	1	1	1	1	1	ı	1	1		RPF3R<3:0>	<3:0>		0000
1650	RPF4R	31:16	1	I	1	_	1	1	1	1	1	1	1	1	1	1	1	1	0000
2	ב ב	15:0	1	1	1	1	1	1	1	1	1	1	1	1		RPF4R<3:0>	<3:0>		0000
Legend:		v nknown v	alue on Re	set; — = ur	nimplement	ted, read a	s '0'. Reset	x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal	shown in he	exadecimal									

	stəsəЯ IIA	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	
	16/0	I	0	1		1	0	1	0	1		I		ı		1		
	17/1	I	<3:0>	I	<3:0>	Ι	R<3:0>	Ι	<3:0>	Ι	<3:0>	I	<3:0>	I	<3:0>	I	<3:0>	
	18/2	ı	RPF5R<3:0>	I	RPF8R<3:0>	I	RPG12R<3:0>	I	RPG1R<3:0>	I	RPG1R<3:0>	I	RPG7R<3:0>	I	RPG8R<3:0>	I	RPG9R<3:0>	
	19/3	I		I		Ι		-		-		I		I		I		
	20/4	Ι	I	I	I	-	_	_	-	_	I	I	I	I	Ι	I	I	
	21/5	I	I	I	I	I	I	I	1	I	I	I	I	I	Ι	I	I	
	22/6	I	1	1	1	I	I	ı	1	I	1	1	I	I	1	I	I	
Bits	23/7	I	I	I	I	I	I	I	1	I	I	I	I	I	Ι	I	I	-
_	24/8	I	1	I	I	I	I	I	1	Ι	I	1	I	I	1	I	I	rio obovod
	25/9	I	I	I	I	I	I	I	1	I	I	I	I	I	Ι	I	I	di di odo o
	26/10	I	1	I	I	I	I	I	1	I	I	1	I	I	1	I	I	20 001101.4
	27/11	I	I	I	I	Ι	I	Ι	Ι	Ι	I	I	I	I	I	I	I	Lowisoboxed at attacks one souler force (c) so b
	28/12	1	I	I	I	I	I	I	Ι	I	I	1	1	1	I	1	1	
	29/13	I	I	I	I	I	I	I	1	I	I	I	I	1	Ι	I	1	omolomia
	30/14	I	I	I	I	I	I	1	1	1	I	1	I	1	I	I	1	or botomological - toood to other amondan -
	31/15	1	I	I	I	1	I	I	1	1	I	1	I	1	I	I	1	G ac cillor
	Bit Range	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	2,000
	Register Name	0 1	X7.17X	מסבים	אטר אטר אטר	001400	771 IZR	0000	RPGUR	0,000	או ה	0.00	7 2 2 3	0	אר ה אר	000	7 2 2 2 2 4 3	
ss	Virtual Addre (#_0878)	, 10,	1654	000	0001	1670	0/01	0007	0001	1001	1004	7007) 601	0,0	TOAU	7	10A4	l occord.

TABLE 12-14: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP (CONTINUED)

REGISTER 12-1: [pin name]R: PERIPHERAL PIN SELECT INPUT REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	_	_	-	_	_		_	_
23:16	U-0 U-0							
23.10	_	_	-	_	_	_	_	_
45.0	U-0 U-0							
15:8	_	_	-	_	_		_	_
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0		_		_		[pin name	e]R<3:0>	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

bit 3-0 [pin name]R<3:0>: Peripheral Pin Select Input bits

Where [pin name] refers to the pins that are used to configure peripheral input mapping. See Table for input pin selection values.

Note: Register values can only be changed if the IOLOCK Configuration bit (CFGCON<13>) = 0.

REGISTER 12-2: RPnR: PERIPHERAL PIN SELECT OUTPUT REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0 U-0							
31:24	_	_	-	_	-		_	_
23:16	U-0 U-0							
23.10	_	_	-	_			_	_
45.0	U-0 U-0							
15:8	_	_	-	_	-	-	_	_
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_	1	_		RPnR	<3:0>	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

bit 3-0 RPnR<3:0>: Peripheral Pin Select Output bits

See Table for output pin selection values.

Note: Register values can only be changed if the IOLOCK Configuration bit (CFGCON<13>) = 0.

REGISTER 12-3: CNCONx: CHANGE NOTICE CONTROL FOR PORTx REGISTER ('x' = A - G)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	_	_	_	_	_	_	_	_
22:16	U-0 U-0							
23:16	_	_	_	_	_		_	_
	R/W-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
15:8	ON	_	_	_	EDGE DETECT	_	_	_
7:0	U-0 U-0							
7.0	_		1	1	-		1	_

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 **ON:** Change Notice (CN) Control ON bit

1 = CN is enabled 0 = CN is disabled

bit 14-12 Unimplemented: Read as '0'

bit 11 **EDGEDETECT:** Edge Detection Type Control bit

1 = Detects any edge on the pin (CNFx is used for the CN event)
 0 = Detects any edge on the pin (CNSTATx is used for the CN event)

bit 10-0 Unimplemented: Read as '0'

13.0 TIMER1

Note:

This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 14.** "Timers" (DS60001105), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MZ DA devices feature one synchronous/asynchronous 16-bit timer that can operate as a free-running interval timer for various timing applications and counting external events. This timer can also be used with the low-power Secondary Oscillator (Sosc) for real-time clock applications.

The following modes are supported by Timer1:

- Synchronous Internal Timer
- · Synchronous Internal Gated Timer
- · Synchronous External Timer
- · Asynchronous External Timer

13.1 Additional Supported Features

- · Selectable clock prescaler
- Timer operation during Sleep and Idle modes
- Fast bit manipulation using CLR, SET and INV registers
- Asynchronous mode can be used with the Sosc to function as a real-time clock
- · ADC event trigger

FIGURE 13-1: TIMER1 BLOCK DIAGRAM

13.2 Timer1 Control Register
TABLE 13-1: TIMER1 REGISTER MAP

s	steseR IIA	0000	0000	0000	0000	0000	FFFF	
	16/0	ı	Ι	I		I		
	1//1	I	TCS	_		I		
	18/2	ı	TSYNC	I		I		
	19/3	I	Ι	I		I		
	20/4	I	TCKPS<1:0>	Ι		I		
	21/5	I	TCKP	_		-		
	22/6	1	Ι	I		I		
Bits	23/7	1	TGATE	I	TMR1<15:0>	I	PR1<15:0>	
B	24/8	1	TECS<1:0>	I	TMR1	I	PR1<	
	25/9	I	TECS	_		-		
	26/10	-	_	_		_		
	27/11	1	TWIP	I		Ι		0 (0)
	28/12	I	SIGML	I		I		
	29/13	1	SIDL	_		_		-1
	30/14	I	_	_		_		
	31/15	1	NO	_		I		
(Bit Range	31:16	15:0	31:16	15:0	31:16	15:0	1
	Register (†)	1400			<u> </u>	100	2	
ssə	Virtual Addr (#_4878)	0000	200	FORT OFF	2	0600	0000	

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

REGISTER 13-1: T1CON: TYPE A TIMER CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24:24	U-0 U-0							
31:24	-	_	_	_	_	-	_	_
22:16	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	R/W-0	U-0	R/W-0	R/W-0	R-0	U-0	R/W-0	R/W-0
15:8	ON	_	SIDL	TWDIS	TWIP	_	TECS	S<1:0>
7:0	R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
7:0	TGATE	_	TCKPS	S<1:0>	_	TSYNC	TCS	_

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 **ON:** Timer On bit

1 = Timer is enabled

0 = Timer is disabled

bit 14 Unimplemented: Read as '0'

bit 13 SIDL: Stop in Idle Mode bit

1 = Discontinue operation when device enters Idle mode

0 = Continue operation even in Idle mode

bit 12 **TWDIS:** Asynchronous Timer Write Disable bit

1 = Writes to TMR1 are ignored until pending write operation completes

0 = Back-to-back writes are enabled (Legacy Asynchronous Timer functionality)

bit 11 **TWIP:** Asynchronous Timer Write in Progress bit

In Asynchronous Timer mode:

1 = Asynchronous write to TMR1 register in progress

0 = Asynchronous write to TMR1 register complete

In Synchronous Timer mode:

This bit is read as '0'.

bit 10 Unimplemented: Read as '0'

bit TECS<1:0>: Timer1 External Clock Selection bits

11 = Reserved

10 = External clock comes from the LPRC

01 = External clock comes from the T1CK pin

00 = External clock comes from the Sosc

bit 7 TGATE: Timer Gated Time Accumulation Enable bit

 $\frac{\text{When TCS} = 1:}{\text{This bit is ignored.}}$

When TCS = 0:

1 = Gated time accumulation is enabled

0 = Gated time accumulation is disabled

bit 6 **Unimplemented:** Read as '0'

REGISTER 13-1: T1CON: TYPE A TIMER CONTROL REGISTER (CONTINUED)

bit 5-4 TCKPS<1:0>: Timer Input Clock Prescale Select bits

11 = 1:256 prescale value

10 = 1:64 prescale value

01 = 1:8 prescale value

00 = 1:1 prescale value

bit 3 Unimplemented: Read as '0'

bit 2 TSYNC: Timer External Clock Input Synchronization Selection bit

When TCS = 1:

1 = External clock input is synchronized

0 = External clock input is not synchronized

When TCS = 0:

This bit is ignored.

bit 1 TCS: Timer Clock Source Select bit

1 = External clock is defined by the TECS<1:0> bits

0 = Internal peripheral clock

bit 0 **Unimplemented:** Read as '0'

14.0 TIMER2/3, TIMER4/5, TIMER6/7, AND TIMER8/9

Note:

This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 14.** "Timers" (DS60001105), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

This family of devices features eight synchronous 16-bit timers (default) that can operate as a freerunning interval timer for various timing applications and counting external events.

The following modes are supported:

- · Synchronous internal 16-bit timer
- · Synchronous internal 16-bit gated timer
- · Synchronous external 16-bit timer

Four 32-bit synchronous timers are available by combining Timer2 with Timer3, Timer4 with Timer5, Timer6 with Timer7, and Timer8 with Timer9.

The 32-bit timers can operate in one of three modes:

- · Synchronous internal 32-bit timer
- · Synchronous internal 32-bit gated timer
- · Synchronous external 32-bit timer

14.1 Additional Features

- · Selectable clock prescaler
- · Timers operational during CPU idle
- Time base for Input Capture and Output Compare modules (Timer2 through Timer7 only)
- ADC event trigger (Timer3 and Timer5 only)
- Fast bit manipulation using CLR, SET and INV registers

FIGURE 14-1: TIMER2 THROUGH TIMER9 BLOCK DIAGRAM (16-BIT)

FIGURE 14-2: TIMER2/3, TIMER4/5, TIMER6/7, AND TIMER8/9 BLOCK DIAGRAM (32-BIT)

14.2 Timer2-Timer9 Control Registers
TABLE 14-1: TIMER2 THROUGH TIMER9 REGISTER MAP

	0000	0000	0000	0000	0000	FFFF	0000	0000	0000	0000	0000	FFFF	0000	0000	0000	0000	0000	FFFF	0000	0000	0000	0000	0000	FFFF	0000	0000	0000	0000	0000	FFFF	0000	0000																
16/0	1	1	1		1		1		1		1		1		1		1		1	1	1		1		1	1	1		1		1	1																
1//1	1	TCS	1		I		I	TCS		I		I	TCS	I		I		I	TCS	1		I		1	TCS	1		1		1	CS																	
18/2	I	1	I		I		I	Ι	I		1		1	1	1		1		1	I	1		I		I	1	I		I		I	ı																
19/3	I	T32	_		I		I	1	I		1		1	T32	1		1		1	1	1		I		1	T32	1		I		I	I																
20/4	ı		ı		I		I		I		I		I		I		I		I		I		I		I		I		I		I																	
21/5	I	CKPS<2:0>	I		I		I	:CKPS<2:0	I		1		1	CKPS<2:0>	1		1		1	CKPS<2:0	1		I		1	CKPS<2:0>	1		I		I	TCKPS<2:0>																
22/6	I		I		I		I	T	I		1		1	_			1			T	1		-		I	L	1		l		l																	
23/7	I	TGATE	I	<15:0>	<15:0>	<15:0>	<15:0>	:15:0>	<15:0>	<15:0>	<15:0>	<15:0>	<15:0>	:15:0>	:15:0>	<15:0>	<15:0>	<15:0>	<15:0>	<15:0>	I	15:0>	I	TGATE	TGATE —	<15:0>	1	15:0>	1	TGATE	1	:15:0>	1	<0:9	1	TGATE	— 	<15:0>	1	15:0>	1	TGATE	I	<15:0>	1	15:0>	1	TGATE
24/8	I	I	I	TMR2	I	PR2<	I	1	I	TMR3	1	PR3<	1	1	1	TMR4	1	PR4<	1	1	1	TMR5	1	PR5<	I	I	1	TMR2	1	PR2<	1	1																
25/9	I	I	I		I		I	I	I		I		I	-	I		I		I	1	I		I		I	1	I		I		I	1																
26/10	I	I	I		I		I	1	I		1		1	-	1		1		1	1	I		-		I	1	I		I		I	1																
27/11	I	1	I		I		_	1	1		-		-	-	1		1		-	1	I		_		I	1	1		Ι		Ι	1																
28/12	I	I	1		I		I	Ι	Ι		I		Ι	I	Ι		Ι		I	1	l		Ι		I	I	1		I		I																	
29/13	I	SIDL	I		I		I	SIDL	I		I		I	SIDL	I		I		I	SIDL	I		I		I	SIDL	I		Ι		Ι	SIDL																
30/14	I	1	Ι		I		1	1	1		-		-		-		-		-	1	1		1		I	I	1		1		1	1																
31/15	I	NO	Ι		I		-	NO	Ι		1		1	ON	1		1		1	NO	1		1				1		Ι		Ι	NO																
	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0			31:16	15:0	31:16				_		31:16	15:0				15:0		15:0	31:16	15:0																
(BF84_#)															_							_			OO TECO	200					12CO	7																
	30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1	다 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 20/3 13/16	# # # # # # # # # #	12 12 13 14 15 15 15 15 15 15 15	1	15 16 17 16 17 17 17 17 17	BEAT NATE NATIONAL STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE	BEST LIST 30/14 29/13 28/12 27/11 26/10 25/9 24/8 23/7 22/6 21/15 20/4 19/3 18/2 17/1 16/0 TZCON 15:0 31:16 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —	150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150	14 15 15 15 15 15 15 15	120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120	11 12 13 14 15 14 15 14 15 14 15 14 15 15	14 15 15 15 15 15 15 15	14 15 15 15 15 15 15 15	BEC NATIONAL STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE	14 15 15 15 15 15 15 15	14 15 15 15 15 15 15 15	Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second S	Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size	Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second S	Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure Figure F	Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size Size	Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig.	Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Companies Comp	12 12 13 14 15 15 15 15 15 15 15	Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second S	12 12 13 14 15 15 15 15 15 15 15	Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Section Sect	12 12 13 14 15 15 15 15 15 15 15	1	1	1																

9	steseЯ IIA	0000	0000	0000	FFFF	0000	0000	0000	0000	0000	FFFF	0000	0000	0000	0000	0000	FFFF						
	16/0	1		I		Ι	I	Ι		1		1	Ι	1		1							
	1/21	1		1			SOL			_		_	CS	_		_							
	18/2	1		I		_	_	_		_		_	1	_		_							
	19/3	I		I	v					I	T32	I		I		I	Ι	I		I			
	20/4	1		I		Ι	٨	Ι		I		I	_	I		I							
	21/5	Ι		I		1	TCKPS<2:0>	Ι		Ι		Ι	TCKPS<2:0>	Ι		Ι							
Bits	22/6	Ι		I	PR3<15:0>	PR3<15:0>	_	•	_		_		_		_		_						
	23/7	1	TMR3<15:0>	I			PR3<15:0>	PR3<15:0>	PR3<15:0>	<15:0>	Ι	TGATE	Ι	TMR4<15:0>	Ι	PR4<15:0>	Ι	TGATE	Ι	TMR5<15:0>	Ι	PR5<15:0>	len
	24/8	I	TMR3	I						Ι	Ι	Ι	TMR4	Ι	PR4<	Ι	-	Ι	TMR5	Ι	PR5<	n hexadecir	
	25/9	I		1		I	Ι	I		Ι		Ι	Ι	Ι		Ι		are shown i					
	26/10	I				Ι	Ι	Ι		Ι		Ι	-	Ι		Ι		as '∩' Reset values are shown in hexadecimal					
	27/11	Ι					Ι	-	Ι		Ι		1	I	Ι		Ι		y ,∪, se pe				
	28/12	Ι		I		_	_	_		_		_	-	_		_		* = unknown value on Reset* — = unimplemented read					
	29/13	I		I		I	SIDL	I		I		I	SIDL	I		I		- = Inimple					
	30/14	I		I		I	I	I		I		I	Ι	I		I		on Reset					
	31/15	I		I		I	NO	I		Ι		Ι	NO	Ι		Ι		alley awo					
Bit Range		31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	= unkn					
Register Name ⁽¹⁾		TAMPA		700	Ž L	TAC COL		CONT		,	0	, NO COL		TMDO		,							
Virtual Address (BF84_#)		0C10 T			0020		0000	7		000	0520	1000	8	7,0	2	1000	020	Legend					

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

TABLE 14-1:

TIMER2 THROUGH TIMER9 REGISTER MAP (CONTINUED)

REGISTER 14-1: TxCON: TYPE B TIMER CONTROL REGISTER ('x' = 2-9)

						-,		
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	_	_	_	_	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	_	_	_	_	_	_	_
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	ON ⁽¹⁾	_	SIDL ⁽²⁾	_	_	_	_	_
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
7:0	TGATE ⁽¹⁾	Т	CKPS<2:0>(1)	T32 ⁽³⁾	_	TCS ⁽¹⁾	_

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 ON: Timer On bit(1)

1 = Module is enabled

0 = Module is disabled

Unimplemented: Read as '0' bit 14

SIDL: Stop in Idle Mode bit(2) bit 13

1 = Discontinue operation when device enters Idle mode

0 = Continue operation even in Idle mode

bit 12-8 Unimplemented: Read as '0'

TGATE: Timer Gated Time Accumulation Enable bit(1) bit 7

When TCS = 1:

This bit is ignored and is read as '0'.

When TCS = 0:

1 = Gated time accumulation is enabled

0 = Gated time accumulation is disabled

TCKPS<2:0>: Timer Input Clock Prescale Select bits(1) bit 6-4

111 = 1:256 prescale value

110 = 1:64 prescale value

101 = 1:32 prescale value

100 = 1:16 prescale value 011 = 1:8 prescale value

010 = 1:4 prescale value 001 = 1:2 prescale value

000 = 1:1 prescale value

T32: 32-Bit Timer Mode Select bit (3) bit 3

1 = Odd numbered and even numbered timers form a 32-bit timer

0 = Odd numbered and even numbered timers form a separate 16-bit timer

- While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer1, Timer3, Timer5, Timer7, and Timer9). All timer functions are set through the even numbered timers.
 - 2: While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer in Idle mode.
 - 3: This bit is available only on even numbered timers (Timer2, Timer4, Timer6, and Timer8).

REGISTER 14-1: TxCON: TYPE B TIMER CONTROL REGISTER ('x' = 2-9) (CONTINUED)

bit 2 Unimplemented: Read as '0'

bit 1 TCS: Timer Clock Source Select bit⁽¹⁾

1 = External clock from TxCK pin

0 = Internal peripheral clock

bit 0 **Unimplemented:** Read as '0'

- **Note 1:** While operating in 32-bit mode, this bit has no effect for odd numbered timers (Timer1, Timer3, Timer5, Timer7, and Timer9). All timer functions are set through the even numbered timers.
 - 2: While operating in 32-bit mode, this bit must be cleared on odd numbered timers to enable the 32-bit timer in Idle mode.
 - 3: This bit is available only on even numbered timers (Timer2, Timer4, Timer6, and Timer8).

15.0 INPUT CAPTURE

Note:

This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. Capture" (DS60001122), available from the Documentation Reference Manual section the Microchip PIC32 web site (www.microchip.com/pic32).

The Input Capture module is useful in applications requiring frequency (period) and pulse measurement.

The Input Capture module captures the 16-bit or 32-bit value of the selected Time Base registers when an event occurs at the ICx pin.

Capture events are caused by the following:

- Capture timer value on every edge (rising and falling), specified edge first
- · Prescaler capture event modes:
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select between one of six 16-bit timers for the time base, or two of six 16-bit timers together to form a 32-bit timer. The selected timer can use either an internal or external clock.

Other operational features include:

- Device wake-up from capture pin during Sleep and Idle modes
- · Interrupt on input capture event
- 4-word FIFO buffer for capture values; Interrupt optionally generated after 1, 2, 3, or 4 buffer locations are filled
- Input capture can also be used to provide additional sources of external interrupts

The timer source for each Input Capture module depends on the setting of the ICACLK bit in the CFGCON register. The available configurations are shown in Table 15-1.

TABLE 15-1: TIMER SOURCE CONFIGURATIONS

Input Capture Module	Timerx	Timery
ICACLK (CFGCC)N<17>) = 0	
IC1	Timer2	Timer3
•	•	•
•	•	•
•	•	•
IC9	Timer 2	Timer 3
ICACLK (CFGCC)N<17>) = 1	
IC1	Timer4	Timer5
IC2	Timer4	Timer5
IC3	Timer4	Timer5
IC4	Timer2	Timer3
IC5	Timer2	Timer3
IC6	Timer2	Timer3
IC7	Timer6	Timer7
IC8	Timer6	Timer7
IC9	Timer6	Timer7

15.1 Input Capture Control Registers
TABLE 15-2: INPUT CAPTURE 1 THROUGH INPUT CAPTURE 9 REGISTER MAP

	All Resets	0000	0000	X X X X	0000	0000	XXXX	0000	0000	XXXX	0000	0000	XXXX XXXX	0000	0000	XXXX	0000	0000	XXXX	0000	0000	××××	0000	0000	XXXX	XXXX	0000	X X X X	1
	16/0	1			I			1	_		I			I			I			I	_		1			I			x= unimplemented, read as '0'. Reset values are shown in hexadecimal.
	17/1	1	ICM<2:0>		1	ICM<2:0>		I	ICM<2:0>		I	ICM<2:0>		1	ICM<2:0>		I	ICM<2:0>											
	18/2	-			1			I			I			-			1			I			1			I			
	19/3	-	ICBNE		I	ICBNE		I	ICBNE		ı	ICBNE		Ι	ICBNE		I	ICBNE		I	ICBNE		1	ICBNE		I	ICBNE		
	20/4	I	ICOV		1	ICOV		I	ICOV		I	ICOV		Ι	ICOV		I	ICOV		I	ICOV		1	ICOV		I	ICOV		
	21/5	1	1:0>		I	1:0>		I	1:0>		I	1:0>		I	1:0>		I	1:0>		I	1:0>		I	1:0>		I	1:0>		
	22/6	I	ICI<1:0>		1	ICI<1:0>		I	ICI<1:0>		1	ICI<1:0>		I	ICI<1:0>		1	ICI<1:0>		I	ICI<1:0>		1	ICI<1:0>		I	ICI<1:0>		
Bits	23/7	I	ICTMR	:31:0>	I	ICTMR	<31:0>	I	ICTMR	<31:0>	I	ICTMR	<31:0>		ICTMR	<31:0>	I	ICTMR	<31:0>	I	ICTMR	<31:0>	1	ICTMR	:31:0>	I	ICTMR	<31:0>	
Bits	24/8	1	C32	IC1BUF<31:0>	1	C32	IC2BUF<31:0>	I	C32	IC3BUF<31:0>	1	C32	IC4BUF<31:0>	I	C32	IC5BUF<31:0>	1	C32	IC6BUF<31:0>	I	C32	IC7BUF<31:0>	1	C32	IC8BUF<31:0>	I	C32	IC9BUF<31:0>	yadecimal
	25/9	1	FEDGE		1	FEDGE		I	FEDGE		1	FEDGE		I	FEDGE		1	FEDGE		I	FEDGE		1	FEDGE		I	FEDGE		sh own in he
	26/10	1	I		1	I		I	1		1	I		I	I		1	1		I	-		1	I		I	1		values are
	27/11	1	I		I	Ι		I	1		I	I		1	I		I	Ι		I	1		1	1		ı	1		as 'o' Reset values are shown in hexadecimal
	28/12	1	I	•	ı	1		I	1		ı	ı		1	ı		ı	1		I	Ι		I	1		ı	I		ted read as
	29/13	1	SIDL		ı	SIDL		I	SIDL		I	SIDL		1	SIDL		I	SIDL		I	SIDL		1	SIDL		I	SIDL		nimplemen
	30/14	I	I	•	I	1		I	1		I	I		1	I		1	1		I	1		1	ı		I	I		=jese
	31/15	I	NO		I	NO		I	NO		I	NO		1	NO		1	NO		I	NO		1	NO		ı	NO		* = unknown value on Reset* — = unimplemented read
	Bit Range	31:16		31:16	31:16	15:0	31:16 15:0	31:16		31:16 15:0	31:16	15:0	31:16 15:0	31:16	15:0	31:16 15:0	31:16		31:16	, ,	15:0	31:16	``		31:16	31.16	15:0	31:16	ınknown
	Register Name	(1)	IC1CON'	IC1BUF	(1)	ICZCOIN	IC2BUF	(1)	COCOINC	IC3BUF	(1)	10400N:	IC4BUF	(1)	Cacon	IC5BUF	(1)	COCONC	IC6BUF	(1)	IC/ COINC	IC7BUF	(4)	IC8CON(1)	IC8BUF	\$	1C9CON(1) 15:0	IC9BUF	
ss	Virtual Addres (BF84_#)		7000	2010		2200	2210		7400	2410		0007	2610		7800	2810		ZA00	2A10		2000	2C10		2E00	2E10		3000	3010	Legend:

© 2015-2017 Microchip Technology Inc.

REGISTER 15-1: ICXCON: INPUT CAPTURE x CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0 U-0							
31.24	_	_	_	_	_	_	_	_
22:46	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
15:8	ON	_	SIDL	_	_	_	FEDGE	C32
7.0	R/W-0	R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0
7:0	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit

-n = Bit Value at POR: ('0', '1', x = unknown) P = Programmable bit r = Reserved bit

bit 31-16 Unimplemented: Read as '0'

bit 15 ON: Input Capture Module Enable bit

1 = Module enabled

0 = Disable and reset module, disable clocks, disable interrupt generation and allow SFR modifications

bit 14 **Unimplemented:** Read as '0' bit 13 **SIDL:** Stop in Idle Control bit

1 = Halt in CPU Idle mode

0 = Continue to operate in CPU Idle mode

bit 12-10 Unimplemented: Read as '0'

bit 9 **FEDGE:** First Capture Edge Select bit (only used in mode 6, ICM<2:0> = 110)

1 = Capture rising edge first0 = Capture falling edge first

bit 8 C32: 32-bit Capture Select bit

1 = 32-bit timer resource capture 0 = 16-bit timer resource capture

bit 7 ICTMR: Timer Select bit (Does not affect timer selection when C32 (ICxCON<8>) is '1')(1)

0 = Timery is the counter source for capture 1 = Timerx is the counter source for capture

bit 6-5 ICI<1:0>: Interrupt Control bits

11 = Interrupt on every fourth capture event
10 = Interrupt on every third capture event
01 = Interrupt on every second capture event

00 = Interrupt on every capture event

bit 4 ICOV: Input Capture Overflow Status Flag bit (read-only)

1 = Input capture overflow occurred0 = No input capture overflow occurred

bit 3 ICBNE: Input Capture Buffer Not Empty Status bit (read-only)

1 = Input capture buffer is not empty; at least one more capture value can be read

0 = Input capture buffer is empty

bit 2-0 ICM<2:0>: Input Capture Mode Select bits

111 = Interrupt-Only mode (only supported while in Sleep mode or Idle mode)

110 = Simple Capture Event mode – every edge, specified edge first and every edge thereafter

101 = Prescaled Capture Event mode – every sixteenth rising edge100 = Prescaled Capture Event mode – every fourth rising edge

011 = Simple Capture Event mode – every rising edge010 = Simple Capture Event mode – every falling edge

001 = Edge Detect mode – every edge (rising and falling)

000 = Input Capture module is disabled

Note 1: Refer to Table 15-1 for Timerx and Timery selections.

16.0 OUTPUT COMPARE

Note: data sheet summarizes features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer Section to "Output Compare" (DS60001111), which available from Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Output Compare module is used to generate a single pulse or a train of pulses in response to selected time base events.

For all modes of operation, the Output Compare module compares the values stored in the OCxR and/or the OCxRS registers to the value in the selected timer. When a match occurs, the Output Compare module generates an event based on the selected mode of operation.

The following are some of the key features of the Output Compare module:

- · Multiple Output Compare modules in a device
- Programmable interrupt generation on compare event
- · Single and Dual Compare modes
- Single and continuous output pulse generation
- · Pulse-Width Modulation (PWM) mode
- Hardware-based PWM Fault detection and automatic output disable
- Programmable selection of 16-bit or 32-bit time bases
- Can operate from either of two available 16-bit time bases or a single 32-bit time base
- · ADC event trigger

FIGURE 16-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

- **Note 1:** Where 'x' is shown, reference is made to the registers associated with the respective output compare channels, 1 through 9.
 - 2: The OCFA pin controls the OC1, OC3, and OC7-OC9 channels. The OCFB pin controls the OC4-OC6 channels.
 - 3: Refer to Table 16-1 for Timerx and Timery selections.
 - 4: The ADC event trigger is only available on OC1,OC3, and OC 5.

The timer source for each Output Compare module depends on the setting of the OCACLK bit in the CFGCON register. The available configurations are shown in Table 16-1.

TABLE 16-1: TIMER SOURCE CONFIGURATIONS

Output Compare Module	Timerx	Timery
OCACLK (CFGC	ON<16>) = 0	
OC1	Timer2	Timer3
•	•	•
•	•	•
•	•	
OC9	Timer 2	Timer 3
OCACLK (CFGC	ON<16>) = 1	
OC1	Timer4	Timer5
OC2	Timer4	Timer5
OC3	Timer4	Timer5
OC4	Timer2	Timer3
OC5	Timer2	Timer3
OC6	Timer2	Timer3
OC7	Timer6	Timer7
OC8	Timer6	Timer7
OC9	Timer6	Timer7

16.1 Output Compare Control Registers
TABLE 16-2: OUTPUT COMPARE 1 THROUGH OUTPUT COMPARE 9 REGISTER MAP

25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 - - - - - - - - -											Bits	ts								
OC1RS-31:0> OC1RS-31:0> OC2RS-31:0> OC2RS-31:0> OC2RS-31:0> OC2RS-31:0> OC3RS-31:0> OC4RS-31:0> OC5RS-31:0>	한 한 한 한 한 한 한 한 한 한 한 한 한 한 한 한 한 한 한	31/15 30/14 29/13 28/12 27/11	30/14 29/13 28/12 27/11	29/13 28/12 27/11	28/12 27/11	27/11		26/10		25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	MA Basate
- - - 0 0 0 0 0 0 0	31:16 — — — — — — — — — — — — — — — — — — —	31:16 — — — — — —	1 1	 	-	1	1	1		1	1	1	ı	1	I	ı	1	1	1	000
- - - - - - - - - -	15:0 ON — SIDL — —	ON - SIDL - NO	SIDL	- SIDL	1			1		1	1	1	1	OC32	OCFLT	OCTSEL		OCM<2:0>		000
	OC1R 31:16 15:0	31:16 15:0									OC1R•	<31:0>							·	× ×
- - - - - - - - - - - - - - - - - - - -	OC1RS 31:16 15:0	<u>31:16</u> 15:0									OC1RS	<31:0>								XXX
- OC32 OCFLT OCTSEL OCM<2:0> OCM	31:16 — — — — — — — — — — — — — — — — — — —	31:16 —				-	-	1	-	-	-	1	-	1	1	1	_	1	1	000
	7022001 ON	ON — SIDL —	- SIDL -	- SIDIT -	I	_	1	ı		1	1	1	1	OC32	OCFLT	OCTSEL		OCM<2:0>		000
- - - - - - - - - -	OC2R $\frac{31:16}{15:0}$	31:16 15:0									OC2R•	<31:0>								XXX
	OC2RS 31:16 15:0	<u>31:16</u> 15:0									OC2RS	<31:0>							·	×××
- OC32 OCFLT OCTSEL OCM<2:0>	OC3CON 31:16 - - - - -	31:16 — — — — —		- - -		 - -	-	1		1	1	1	1	1	1	1	_	1	1	000
	- - SIDL - - - - -	ON - SIDL - NO	- SIDL -	- SIDL -	1		1	1		1	1	1	1	OC32	OCFLT	OCTSEL		OCM<2:0>		000
	OC3R 31:16 15:0	31:16 15:0									OC3R	<31:0>							·	X X
- - - - - - - - - -	OC3RS 31:16 15:0	31:16 15:0									OC3RS	<31:0>								XXXX XXX
- OC32 OCFLT OCTSEL OCM<2:0>	31:16 — — — — — — — — — — — — — — — — — — —	31:16 — — — — — —				- - -	-	'	_	1	-	Ι	-	1	1	1	_	1	1	0000
	70400N - SIDL	ON — SIDL —	- SIDL -	- SIDIT -	1	 	1	ı	_	1	1	1	1	OC32	OCFLT	OCTSEL		OCM<2:0>		000
	OC4R 31:16 15:0	31:16 15:0									OC4R	<31:0>								X X
- - - - - - - - - -	OC4RS 31:16 15:0	31:16 15:0									OC4RS	<31:0>							·	×××
- 0C32 OCFLT OCTSEL OCM<2:0>	31:16 — — — — — — —	31:16 — — — — — —			-	-	-	1	_	1	-	Ι	-	1	1	1	_	1	1	000
	755CON	ON — SIDL —	- SIDL -	- SIDIT -	1	 	1	ı	_	1	1	1	1	OC32	OCFLT	OCTSEL		OCM<2:0>		000
	OC5R 31:16 15:0	31:16 15:0									OC5R	<31:0>							·	XXX XXX
	OC5RS 31:16 15:0	<u>31:16</u> 15:0									OC5RS	<31:0>								X X X

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information. x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Note 1:

© 2015-2017 Microchip Technology Inc.

Stesets 16/0 OCM<2:0> OCM<2:0> OCM<2:0> OCM<2:0> 171 OCTSEL OCTSEL OCTSEL OCTSE 19/3 OCFLT OCFLT OCFLT OCFLT 20/4 OC32 OC32 OC32 OC32 21/5 22/6 1 23/7 OC7RS<31:0> OC9RS<31:0> 1 OC6RS<31:0> 1 OC8RS<31:0> OC6R<31:0> OC7R<31:0> OC8R<31:0> OC9R<31:0> I 25/9 1 26/10 1 28/12 1 29/13 SIDL SIDL SIDL SIDL 1 30/14 1 1 Ö 8 8 NO 31:16 31:16 15:0 31:16 15:0 31:16 15:0 31:16 15:0 15:0 15:0 15:0 15:0 15:0 15:0 15:0 Bit Range OC9RS OCGRS OC7RS OC8RS OC8R OC9R OCECON OC7R OC6R 00800 Register Name⁽¹⁾ 4E10 4E20 5020 (BF84_#) Virtual Address

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information. x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal

DS60001361E-page 296

© 2015-2017 Microchip Technology Inc.

16-2:

TABLE

OUTPUT COMPARE 1 THROUGH OUTPUT COMPARE 9 REGISTER MAP (CONTINUED)

REGISTER 16-1: OCxCON: OUTPUT COMPARE 'x' CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	-	_	_	_		_	_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		_	_	_	_	-	_	_
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	ON	_	SIDL	_	_	_	_	_
7.0	U-0	U-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_	OC32	OCFLT ⁽¹⁾	OCTSEL ⁽²⁾		OCM<2:0>	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 ON: Output Compare Peripheral On bit

1 = Output Compare peripheral is enabled

0 = Output Compare peripheral is disabled

bit 14 Unimplemented: Read as '0'

bit 13 SIDL: Stop in Idle Mode bit

1 = Discontinue operation when CPU enters Idle mode

0 = Continue operation in Idle mode

bit 12-6 Unimplemented: Read as '0'

bit 5 OC32: 32-bit Compare Mode bit

1 = OCxR<31:0> and/or OCxRS<31:0> are used for comparisions to the 32-bit timer source

0 = OCxR<15:0> and OCxRS<15:0> are used for comparisons to the 16-bit timer source

bit 4 **OCFLT**: PWM Fault Condition Status bit⁽¹⁾

1 = PWM Fault condition has occurred (cleared in HW only)

0 = No PWM Fault condition has occurred

bit 3 OCTSEL: Output Compare Timer Select bit(2)

1 = Timery is the clock source for this Output Compare module

0 = Timerx is the clock source for this Output Compare module

bit 2-0 OCM<2:0>: Output Compare Mode Select bits

111 = PWM mode on OCx; Fault pin enabled

110 = PWM mode on OCx; Fault pin disabled

101 = Initialize OCx pin low; generate continuous output pulses on OCx pin

100 = Initialize OCx pin low; generate single output pulse on OCx pin

011 = Compare event toggles OCx pin

010 = Initialize OCx pin high; compare event forces OCx pin low

001 = Initialize OCx pin low; compare event forces OCx pin high

000 = Output compare peripheral is disabled but continues to draw current

Note 1: This bit is only used when OCM<2:0> = '111'. It is read as '0' in all other modes.

2: Refer to Table 16-1 for Timerx and Timery selections.

	\ /		
NOTES:			
NOTES.			

17.0 DEADMAN TIMER (DMT)

Note: This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data

sheet, refer to Section 9. "Watchdog, Deadman, and Power-up Timers" (DS60001114), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The primary function of the Deadman Timer (DMT) is to reset the processor in the event of a software malfunction. The DMT is a free-running instruction fetch timer, which is clocked whenever an instruction fetch occurs until a count match occurs. Instructions are not fetched when the processor is in Sleep mode.

The DMT consists of a 32-bit counter with a time-out count match value as specified by the DMTCNT<3:0> bits in the DEVCFG1 Configuration register.

A Deadman Timer is typically used in mission critical and safety critical applications, where any single failure of the software functionality and sequencing must be detected.

Figure 17-1 shows a block diagram of the Deadman Timer module.

FIGURE 17-1: DEADMAN TIMER BLOCK DIAGRAM

TABLE 17-1: DEADMAN TIMER REGISTER MAP Deadman Timer Control Registers

•	etseЯ IIA	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	
	16/0	1	1	1	1	1		1	MINOPN 0000							
	17/1	1	I	_	_	_		I	_							
	18/2	I	1	_	_	_		I	_							
	19/3	I	1	_	_	_	STEP2<7:0>	I	_							
	20/4	I	I	Ι	Ι	Ι	STEP	I	Ι							
	21/5	1	1	1	1	1		I	BAD2 DMTEVENT							
	22/6	1	1	_	_	_		I	BAD2	۲.						
Bits	23/7	1	I	I	I	I		I	BAD1	COLINTER<31:0>	115.0	PSCNT/34:0>	0.00	SCINITY/231:0>	00/	la c
	24/8	I	1	_		_	_	1	_	1100		000	2	100	ה ב	hexadecin
	25/9	I	-	1		1	1	-	1							ni nwo ya
	26/10	I	1	I		I	I	1	I							values are
	27/11	1	1	Ι	<0:2>	Ι	Ι	1	Ι							× = iinknown value on Reset: — = iinimplemented read as '∩' Reset values are shown in hexaderimal
	28/12	I	1	_	STEP1<7:0>	_	_	1	_							ed read as
	29/13	1	I	Ι		Ι	Ι	I	Ι							implement
	30/14	1	1	_		_	_	1	_							pt: — = 110
	31/15	1	NO	I		I	I	1	I							an Res
,	Bit Range	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	lev nwc
	Register Mame			a ISSUED	ראדונים איז דיייים		א א	TATOTAG		TINOTING		TINDSCAT		VTINISOTMO		
	Virtual Addre (#_0878)	0	OAOO			000	0440	000	0420	0770		0900		0200		- busha

REGISTER 17-1: DMTCON: DEADMAN TIMER CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	_	_	-	_	_	-	-	
22:46	U-0 U-0							
23:16	_	_	_	_	_	-	_	_
45.0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	ON ⁽¹⁾	_	_	_	_	_	_	_
7.0	U-0 U-0							
7:0	_	_	_	_	_	_	_	_

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit

-n = Bit Value at POR: ('0', '1', x = unknown) P = Programmable bit r = Reserved bit

bit 31-16 Unimplemented: Read as '0'

bit 15 **ON:** Deadman Timer Module Enable bit⁽¹⁾

1 = Deadman Timer module is enabled0 = Deadman Timer module is disabled

bit 13-0 **Unimplemented:** Read as '0'

Note 1: This bit only has control when FDMTEN (DEVCFG1<3>) = 0.

REGISTER 17-2: DMTPRECLR: DEADMAN TIMER PRECLEAR REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0 U-0							
31.24	_	_	-	_	_	_	_	-
00:40	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	R/W-0 R/W-0							
15:8				STEP1	<7:0>			
7.0	U-0 U-0							
7:0	_	_	1	_	_	1	1	1

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit

-n = Bit Value at POR: ('0', '1', x = unknown) P = Programmable bit r = Reserved bit

bit 31-16 Unimplemented: Read as '0'

bit 15-8 STEP1<7:0>: Preclear Enable bits

01000000 = Enables the Deadman Timer Preclear (Step 1)

All other write patterns = Set BAD1 flag.

These bits are cleared when a DMT reset event occurs. STEP1<7:0> is also cleared if the

STEP2<7:0> bits are loaded with the correct value in the correct sequence.

bit 7-0 **Unimplemented:** Read as '0'

REGISTER 17-3: DMTCLR: DEADMAN TIMER CLEAR REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0 U-0							
31.24	_	_	_	_	_	_	_	_
23:16	U-0 U-0							
23.10	_	_	_	_	_	_	_	_
15:8	U-0 U-0							
15.6	_	_	_	_	_	_	_	_
7:0	R/W-0 R/W-0							
7.0				STEP2	<7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit

-n = Bit Value at POR: ('0', '1', x = unknown) P = Programmable bit r = Reserved bit

bit 31-8 **Unimplemented:** Read as '0' bit 7-0 **STEP2<7:0>:** Clear Timer bits

00001000 = Clears STEP1<7:0>, STEP2<7:0> and the Deadman Timer if, and only if, preceded by correct loading of STEP1<7:0> bits in the correct sequence. The write to these bits may be verified by reading the DMTCNT bit and observing the counter being reset.

All other write patterns = Set BAD2 bit, the value of STEP1<7:0> will remain unchanged, and the new value being written STEP2<7:0> will be captured. These bits are also cleared when a DMT reset event occurs.

REGISTER 17-4: DMTSTAT: DEADMAN TIMER STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0 U-0							
31.24	_	_		_		_	_	_
23:16	U-0 U-0							
23.10	_	_		_		_	_	_
15:8	U-0 U-0							
13.6	_	_		_		_	_	_
7:0	R-0, HC	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R-0
7.0	BAD1	BAD2	DMTEVENT					WINOPN

Legend: HC = Cleared by Hardware

R = Readable bit W = Writable bit U = Unimplemented bit

-n = Bit Value at POR: ('0', '1', x = unknown) P = Programmable bit r = Reserved bit

bit 31-8 **Unimplemented:** Read as '0'

bit 7 BAD1: Bad STEP1<7:0> Value Detect bit

1 = Incorrect STEP1<7:0> value was detected

0 = Incorrect STEP1<7:0> value was not detected

bit 6 BAD2: Bad STEP2<7:0> Value Detect bit

1 = Incorrect STEP2<7:0> value was detected 0 = Incorrect STEP2<7:0> value was not detected

bit 5 **DMTEVENT:** Deadman Timer Event bit

1 = Deadman timer event was detected (counter expired or bad STEP1<7:0> or STEP2<7:0> value was entered prior to counter increment)

0 = Deadman timer event was not detected

bit 4-1 **Unimplemented:** Read as '0'

bit 0 WINOPN: Deadman Timer Clear Window bit

1 = Deadman timer clear window is open0 = Deadman timer clear window is not open

REGISTER 17-5: DMTCNT: DEADMAN TIMER COUNT REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	R-0 R-0								
31:24	COUNTER<31:24>								
22:16	R-0 R-0								
23:16	COUNTER<23:16>								
45.0	R-0 R-0								
15:8	COUNTER<15:8>								
7:0	R-0 R-0								
7:0				COUNTE	R<7:0>				

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit

-n = Bit Value at POR: ('0', '1', x = unknown) P = Programmable bit r = Reserved bit

bit 31-8 **COUNTER<31:0>:** Read current contents of DMT counter

REGISTER 17-6: DMTPSCNT: POST STATUS CONFIGURE DMT COUNT STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.04	R-0 R-0								
31:24	PSCNT<31:24>								
00.40	R-0 R-0								
23:16	PSCNT<23:16>								
45.0	R-0 R-0								
15:8	PSCNT<15:8>								
7.0	R-0 R-0								
7:0				PSCNT	<7:0>				

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit

-n = Bit Value at POR: ('0', '1', x = unknown) P = Programmable bit r = Reserved bit

bit 31-8 **PSCNT<31:0>:** DMT Instruction Count Value Configuration Status bits

This is always the value of the DMTCNT<3:0> bits in the DEVCFG1 Configuration register.

REGISTER 17-7: DMTPSINTV: POST STATUS CONFIGURE DMT INTERVAL STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	R-0 R-0								
31.24	PSINTV<31:24>								
23:16	R-0 R-0								
23.16	PSINTV<23:16>								
15:8	R-0 R-0								
15.6	PSINTV<15:8>								
7:0	R-0 R-0								
7:0				PSINTV	<7:0>				

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	
-n = Rit Value at POR: ('0' '1' x)	= unknown)	P = Programmable bit	r = Reserved hit

bit 31-8 **PSINTV<31:0>:** DMT Window Interval Configuration Status bits

This is always the value of the DMTINTV<2:0> bits in the DEVCFG1 Configuration register.

NOTES:			

18.0 WATCHDOG TIMER (WDT)

Note: This

This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 9. "Watchdog, Deadman, and Power-up Timers"** (DS60001114), which is available from the *Documentation > Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

When enabled, the Watchdog Timer (WDT) operates from the internal Low-Power Oscillator (LPRC) clock source and can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode.

The following are some of the key features of the WDT module:

- · Configuration or software controlled
- · User-configurable time-out period
- · Can wake the device from Sleep or Idle

FIGURE 18-1: WATCHDOG TIMER BLOCK DIAGRAM

18.1 Watchdog Timer Control Registers

	S	steseЯ IIA	0000	XXXX
		16/0		WDTWINEN
		1//1		
		18/2		><
		19/3		SLPDIV<4:0>
		20/4		0)
		21/5		
		22/6	<0:3	I
	Bits	23/7	WDTCLRKEY<15:0>	1
		24/8	WDT	
		25/9		<0
		26/10		RUNDIV<4:0>
MAP		27/11		æ
STER		28/12		
R REG		29/13		1
G TIME		30/14		I
CHDO		31/15		NO
×	•	Bit Range	31:16	15:0
TABLE 18-1: WATCHDOG TIMER REGISTER		(1) (1)	WOLCON	
TAB		Virtual Addr (#_0878)	0	0000

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

REGISTER 18-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	W-0 W-0									
31.24	WDTCLRKEY<15:8>									
22:46	W-0 W-0									
23:16	WDTCLRKEY<7:0>									
45.0	R/W-0	U-0	U-0	R-y	R-y	R-y	R-y	R-y		
15:8	ON ⁽¹⁾	_	_			RUNDIV<4:0)>			
7.0	U-0 R/W-0									
7:0		_		SLPDIV<4:0>						

Legend:y = Values set from Configuration bits on PORR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 WDTCLRKEY<15:0>: Watchdog Timer Clear Key bits

To clear the Watchdog Timer to prevent a time-out, software must write the value 0x5743 to these bits using a single 16-bit write.

bit 15 **ON:** Watchdog Timer Enable bit⁽¹⁾

1 = The Watchdog Timer module is enabled

0 = The Watchdog Timer module is disabled

bit 14-13 Unimplemented: Read as '0'

bit 12-8 RUNDIV<4:0>: Watchdog Timer Postscaler Value in Run Mode bits

In Run mode, these bits are set to the values of the WDTPS<4:0> Configuration bits in DEVCFG1.

bit 7-6 Unimplemented: Read as '0'

bit 5-1 SLPDIV<4:0>: Watchdog Timer Postscaler Value in Sleep Mode bits

In Sleep mode, these bits are set to the values of the SWDTPS <4:0> Configuration bits in DEVCFG4.

bit 0 WDTWINEN: Watchdog Timer Window Enable bit

1 = Enable windowed Watchdog Timer

0 = Disable windowed Watchdog Timer

Note 1: This bit only has control when FWDTEN (DEVCFG1<23>) = 0.

NOTES:			

19.0 DEEP SLEEP WATCHDOG TIMER (DSWDT)

Note:

This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 9. "Watchdog, Deadman, and Power-up Timers"** (DS60001114), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Deep Sleep Watchdog Timer (DSWDT) is a dedicated Watchdog Timer for Deep Sleep mode operations of the device. The DSWDT is very useful in Battery-powered applications and in Low-Power modes of operations.

The primary function of the DSWDT is to automatically exit Deep Sleep mode after a prescribed amount of time has elapsed.

The DSWDT is controlled through the DEVCFG2 Configuration register at boot time (one-time programmable per POR). When enabled through the DSWDTEN bit in DEVCFG2, the DSWDT operates either from the internal Low-Power RC (LPRC) clock or from the Secondary Oscillator (Sosc). The clock selection for the DSWDT is done through the DSWDTOSC bit in the DEVCFG2 register.

FIGURE 19-1: DEEP SLEEP WATCHDOG TIMER BLOCK DIAGRAM

NOTES:			

20.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note:

This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 29. "Real-Time Clock and Calendar (RTCC)" (DS60001125), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The RTCC module is intended for applications in which accurate time must be maintained for extended periods of time with minimal or no CPU intervention. Low-power optimization provides extended battery lifetime while keeping track of time.

The RTCC module can operate in VBAT mode when there is a power loss on the VDDIO pin. The RTCC will continue to operate if the VBAT pin is powered on (it is usually connected to the battery).

Key features of the RTCC module include:

- · Time: hours, minutes and seconds
- 24-hour format (military time)
- · Visibility of one-half second period
- Provides calendar: Weekday, date, month and year
- Alarm intervals are configurable for half of a second, one second, 10 seconds, one minute, 10 minutes, one hour, one day, one week, one month, and one year
- · Alarm repeat with decrementing counter
- · Alarm with indefinite repeat: Chime
- Year range: 2000 to 2099
- · Leap year correction
- · BCD format for smaller firmware overhead
- · Optimized for long-term battery operation
- · Fractional second synchronization
- User calibration of the clock crystal frequency with auto-adjust
- Calibration range: ±0.66 seconds error per month
- Calibrates up to 260 ppm of crystal error
- · Uses external crystal or internal oscillator
- Alarm pulse, seconds clock, or internal clock output on RTCC pin

Note: RTCC pin function is not available during VBAT operation.

FIGURE 20-1: RTCC BLOCK DIAGRAM

20.1 RTCC Control Registers
TABLE 20-1: RTCC REGISTER MAP

DS60001361E-page 314

REGISTER 20-1: RTCCON: REAL-TIME CLOCK AND CALENDAR CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
31:24	_	_	_	_	_	_	CAL<9:8>		
00.46	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	CAL<7:0>								
	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
15:8	ON ⁽¹⁾	_	SIDL	_	_	RTCCLK	(SEL<1:0>	RTC OUTSEL<1> ⁽²⁾	
	R/W-0	R-0	U-0	U-0	R/W-0	R-0	R-0	R/W-0	
7:0	RTC OUTSEL<0>(2)	RTC CLKON	_	_	RTC WREN ⁽³⁾	RTC SYNC	HALFSEC ⁽⁴⁾	RTCOE	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-26 Unimplemented: Read as '0'

bit 25-16 CAL<9:0>: Real-Time Clock Drift Calibration bits, which contain a signed 10-bit integer value

0111111111 = Maximum positive adjustment, adds 511 real-time clock pulses every one minute

•

000000001 = Minimum positive adjustment, adds 1 real-time clock pulse every one minute

0000000000 **= No adjustment**

1111111111 = Minimum negative adjustment, subtracts 1 real-time clock pulse every one minute

•

1000000000 = Minimum negative adjustment, subtracts 512 real-time clock pulses every one minute

bit 15 **ON:** RTCC On bit⁽¹⁾

1 = RTCC module is enabled

0 = RTCC module is disabled

bit 14 Unimplemented: Read as '0'

bit 13 SIDL: Stop in Idle Mode bit

1 = Disables RTCC operation when CPU enters Idle mode

0 = Continue normal operation when CPU enters Idle mode

bit 12-11 Unimplemented: Read as '0'

Note 1: The ON bit is only writable when RTCWREN = 1.

2: Requires RTCOE = 1 (RTCCON<0>) for the output to be active.

3: The RTCWREN bit can be set only when the write sequence is enabled.

4: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>).

REGISTER 20-1: RTCCON: REAL-TIME CLOCK AND CALENDAR CONTROL REGISTER

bit 10-9 RTCCLKSEL<1:0>: RTCC Clock Select bits

When a new value is written to these bits, the Seconds Value register should also be written to properly reset the clock prescalers in the RTCC.

- 11 = Reserved
- 10 = Reserved
- 01 = RTCC uses the external 32.768 kHz Secondary Oscillator (SOSC)
- 00 = RTCC uses the internal 32 kHz oscillator (LPRC)
- bit 8-7 RTCOUTSEL<1:0>: RTCC Output Data Select bits⁽²⁾
 - 11 = Reserved
 - 10 = RTCC Clock is presented on the RTCC pin
 - 01 = Seconds Clock is presented on the RTCC pin
 - 00 = Alarm Pulse is presented on the RTCC pin when the alarm interrupt is triggered
- bit 6 RTCCLKON: RTCC Clock Enable Status bit
 - 1 = RTCC Clock is actively running
 - 0 = RTCC Clock is not running
- bit 5-4 Unimplemented: Read as '0'
- bit 3 RTCWREN: Real-Time Clock Value Registers Write Enable bit (3)
 - 1 = Real-Time Clock Value registers can be written to by the user
 - 0 = Real-Time Clock Value registers are locked out from being written to by the user
- bit 2 RTCSYNC: Real-Time Clock Value Registers Read Synchronization bit
 - 1 = Real-time clock value registers can change while reading (due to a rollover ripple that results in an invalid data read). If the register is read twice and results in the same data, the data can be assumed to be valid.
 - 0 = Real-time clock value registers can be read without concern about a rollover ripple
- bit 1 HALFSEC: Half-Second Status bit⁽⁴⁾
 - 1 = Second half period of a second
 - 0 = First half period of a second
- bit 0 RTCOE: RTCC Output Enable bit
 - 1 = RTCC output is enabled
 - 0 = RTCC output is not enabled
- **Note 1:** The ON bit is only writable when RTCWREN = 1.
 - 2: Requires RTCOE = 1 (RTCCON<0>) for the output to be active.
 - 3: The RTCWREN bit can be set only when the write sequence is enabled.
 - 4: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>).

REGISTER 20-2: RTCALRM: REAL-TIME CLOCK ALARM CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	_	_	_	_		_	_	_		
22.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	_	_	_	_		_	_	_		
45.0	R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	ALRMEN ^(1,2)	CHIME ⁽²⁾	PIV ⁽²⁾	ALRMSYNC	AMASK<3:0> ⁽²⁾					
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	ARPT<7:0> ⁽²⁾									

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 ALRMEN: Alarm Enable bit (1,2)

1 = Alarm is enabled

0 = Alarm is disabled

bit 14 CHIME: Chime Enable bit⁽²⁾

1 = Chime is enabled - ARPT<7:0> is allowed to rollover from 0x00 to 0xFF

0 = Chime is disabled - ARPT<7:0> stops once it reaches 0x00

bit 13 **PIV:** Alarm Pulse Initial Value bit⁽²⁾

When ALRMEN = 0, PIV is writable and determines the initial value of the Alarm Pulse.

When ALRMEN = 1, PIV is read-only and returns the state of the Alarm Pulse.

bit 12 ALRMSYNC: Alarm Sync bit

1 = ARPT<7:0> and ALRMEN may change as a result of a half second rollover during a read. The ARPT must be read repeatedly until the same value is read twice. This must be done since multiple bits may be changing.

0 = ARPT<7:0> and ALRMEN can be read without concerns of rollover because the prescaler is more than 32 real-time clocks away from a half-second rollover

bit 11-8 AMASK<3:0>: Alarm Mask Configuration bits(2)

0000 = Every half-second

0001 = Every second

0010 = Every 10 seconds

0011 = Every minute

0100 = Every 10 minutes

0101 = Every hour

0110 = Once a day

0111 = Once a week

1000 = Once a month

1001 = Once a year (except when configured for February 29, once every four years)

1010 = Reserved

1011 = Reserved

11xx = Reserved

Note 1: Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> = 00 and CHIME = 0.

2: This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.

REGISTER 20-2: RTCALRM: REAL-TIME CLOCK ALARM CONTROL REGISTER (CONTINUED)

bit 7-0 **ARPT<7:0>:** Alarm Repeat Counter Value bits⁽²⁾

11111111 = Alarm will trigger 256 times

•

00000000 = Alarm will trigger one time

The counter decrements on any alarm event. The counter only rolls over from 0x00 to 0xFF if CHIME = 1.

- **Note 1:** Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT<7:0> = 00 and CHIME = 0.
 - 2: This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.

REGISTER 20-3: RTCTIME: REAL-TIME CLOCK TIME VALUE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R/W-x R/W-x											
31:24		HR10	<3:0>		HR01<3:0>							
00:40	R/W-x R/W-x											
23:16		MIN10	<3:0>		MIN01<3:0>							
45.0	R/W-x R/W-x											
15:8		SEC10	<3:0>		SEC01<3:0>							
7.0	U-0 U-0											
7:0	_	_	_	_	_	_	_	_				

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-28 HR10<3:0>: Binary-Coded Decimal Value of Hours bits, 10 digits; contains a value from 0 to 2

bit 27-24 HR01<3:0>: Binary-Coded Decimal Value of Hours bits, 1 digit; contains a value from 0 to 9

bit 23-20 MIN10<3:0>: Binary-Coded Decimal Value of Minutes bits, 10 digits; contains a value from 0 to 5

bit 19-16 MIN01<3:0>: Binary-Coded Decimal Value of Minutes bits, 1 digit; contains a value from 0 to 9

bit 15-12 SEC10<3:0>: Binary-Coded Decimal Value of Seconds bits, 10 digits; contains a value from 0 to 5

bit 11-8 SEC01<3:0>: Binary-Coded Decimal Value of Seconds bits, 1 digit; contains a value from 0 to 9

bit 7-0 Unimplemented: Read as '0'

Note: This register is only writable when RTCWREN = 1 (RTCCON<3>).

REGISTER 20-4: RTCDATE: REAL-TIME CLOCK DATE VALUE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
24.24	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x					
31:24		YEAR1	0<3:0>		YEAR01<3:0>								
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x					
23:16		MONTH ²	10<3:0>			MONTH	01<3:0>						
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x R/W-x						
15:8		DAY10	<3:0>		DAY01<3:0>								
7.0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x					
7:0	_	_	_	_	WDAY01<3:0>								

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-28 YEAR10<3:0>: Binary-Coded Decimal Value of Years bits, 10 digits

bit 27-24 YEAR01<3:0>: Binary-Coded Decimal Value of Years bits, 1 digit

bit 23-20 MONTH10<3:0>: Binary-Coded Decimal Value of Months bits, 10 digits; contains a value from 0 to 1

bit 19-16 MONTH01<3:0>: Binary-Coded Decimal Value of Months bits, 1 digit; contains a value from 0 to 9

bit 15-12 DAY10<3:0>: Binary-Coded Decimal Value of Days bits, 10 digits; contains a value from 0 to 3

bit 11-8 DAY01<3:0>: Binary-Coded Decimal Value of Days bits, 1 digit; contains a value from 0 to 9

bit 7-4 Unimplemented: Read as '0'

bit 3-0 WDAY01<3:0>: Binary-Coded Decimal Value of Weekdays bits,1 digit; contains a value from 0 to 6

Note: This register is only writable when RTCWREN = 1 (RTCCON<3>).

REGISTER 20-5: ALRMTIME: ALARM TIME VALUE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
24.24	R/W-x R/W-x												
31:24		HR10	<3:0>		HR01<3:0>								
00:40	R/W-x R/W-x												
23:16		MIN10	<3:0>		MIN01<3:0>								
45.0	R/W-x R/W-x												
15:8		SEC10	<3:0>			SEC01	<3:0>						
7.0	U-0 U-0		U-0	U-0	U-0	U-0	U-0	U-0					
7:0	_	_	_	_	_	_	_	_					

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-28 **HR10<3:0>:** Binary Coded Decimal value of hours bits, 10 digits; contains a value from 0 to 2 bit 27-24 **HR01<3:0>:** Binary Coded Decimal value of hours bits, 1 digit; contains a value from 0 to 9 bit 23-20 **MIN10<3:0>:** Binary Coded Decimal value of minutes bits, 10 digits; contains a value from 0 to 5 bit 19-16 **MIN01<3:0>:** Binary Coded Decimal value of minutes bits, 1 digit; contains a value from 0 to 9 bit 15-12 **SEC10<3:0>:** Binary Coded Decimal value of seconds bits, 10 digits; contains a value from 0 to 5 bit 11-8 **SEC01<3:0>:** Binary Coded Decimal value of seconds bits, 1 digit; contains a value from 0 to 9

bit 7-0 Unimplemented: Read as '0'

REGISTER 20-6: ALRMDATE: ALARM DATE VALUE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
24.24	U-0 U-0												
31:24	_	_	_	-	_	_	_	_					
00:40	R/W-x R/W-x												
23:16		MONT	H10<3:0>		MONTH01<3:0>								
45.0	R/W-x R/W-x												
15:8		DAY'	10<1:0>		DAY01<3:0>								
7.0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x					
7:0	_	_	_	_	WDAY01<3:0>								

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23-20 MONTH10<3:0>: Binary Coded Decimal value of months bits, 10 digits; contains a value from 0 to 1

bit 19-16 MONTH01<3:0>: Binary Coded Decimal value of months bits, 1 digit; contains a value from 0 to 9

bit 15-12 DAY10<3:0>: Binary Coded Decimal value of days bits, 10 digits; contains a value from 0 to 3

bit 11-8 DAY01<3:0>: Binary Coded Decimal value of days bits, 1 digit; contains a value from 0 to 9

bit 7-4 Unimplemented: Read as '0'

bit 3-0 WDAY01<3:0>: Binary Coded Decimal value of weekdays bits, 1 digit; contains a value from 0 to 6

21.0 SERIAL PERIPHERAL INTERFACE (SPI) AND INTER-IC SOUND (I²S)

Note: This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. "Serial Peripheral Interface (SPI)" (DS60001106), which is available from the Documentation > Reference Manual

The SPI/I²S module is a synchronous serial interface that is useful for communicating with external peripherals and other microcontroller devices, as well as digital audio devices. These peripheral devices may be Serial EEPROMs, Shift registers, display drivers, Analog-to-Digital Converters (ADC), etc.

(www.microchip.com/pic32).

The SPI/I²S module is compatible with Motorola® SPI and SIOP interfaces.

Some of the key features of the SPI module are:

- · Master and Slave modes support
- · Four different clock formats
- · Enhanced Framed SPI protocol support
- · User-configurable 8-bit, 16-bit and 32-bit data width
- Separate SPI FIFO buffers for receive and transmit
 - FIFO buffers act as 4/8/16-level deep FIFOs based on 32/16/8-bit data width
- Programmable interrupt event on every 8-bit, 16-bit and 32-bit data transfer
- · Operation during Sleep and Idle modes
- · Audio Codec Support:
 - I²S protocol
 - Left-justified
 - Right-justified
 - PCM

FIGURE 21-1: SPI/I²S MODULE BLOCK DIAGRAM

section of the Microchip PIC32 web site

21.1 SPI Control Registers
TABLE 21-1: SPI1 THROUGH SPI6 REGISTER MAP

	stets	S9A IIA	F 0000	0000	0000	F 00A8	0000	0000	0000	0000	0000	0000	F 0000	0000	0000	F 0008	0000	0000	0000	0000	0000	F 0000	0000	0000	F 0008	0000	0000	0000	0000	0000																						
		16/0	ENHBUF	SRXISEL<1:0>		SPIRBF			1		I	AUDMOD<1:0>	ENHBUF	SRXISEL<1:0>		SPIRBF		-		Ι	AUDMOD<1:0>	ENHBUF	SRXISEL<1:0>		SPIRBF		1		1	AUDMOD<1:0>																						
		17/1	SPIFE	SRXIS	4:0>	SPITBF			1		I	AUDMG	SPIFE	SIXXS	<0:	SPITBF		_		_	Маик	SPIFE	SRXIS	<0:	SPITBF		I		_	AUDMC																						
		18/2	I	L<1:0>	TXBUFELM<4:0>	_			_		1	-	1	L<1:0>	TXBUFELM<4:0>	_		-		ı	1	1	L<1:0>	TXBUFELM<4:0>	_		1		I	1																						
		19/3	I	STXISEL<1:0> TXBUFELN	SPITBE			I		I	AUD MONO	I	STXISEL<1:0>	TXE	SPITBE		Ι		Ι	AUD MONO	I	STXISEL<1:0>	TXE	SPITBE		I		I	AUD																							
		20/4	I	DISSDI		-			-		ı	I	ı	DISSDI		_		-	BRG<8:0>	-	Ι	I	DISSDI		1		I	BRG<8:0>	-	I																						
		21/5	I	MSTEN	ı	SPIRBE			1		I	I	ı	MSTEN	I	SPIRBE		1		I	I	I	MSTEN	I	SPIRBE		I		I	I																						
		22/6	I	CKP	ı	SPIROV			ı	BRG<12:0>	I	ı	ı	CKP	I	SPIROV		I		ı	ı	I	CKP	I	SPIROV		I		ı	ı																						
u		23/7	MCLKSEL	SSEN	-	SRMT	31:0>		-	В	I	AUDEN	MCLKSEL	SSEN	I	SRMT	11:0>	1		ı	AUDEN	MCLKSEL	SSEN	I	SRMT	31:0>	1		I	AUDEN																						
Rife	i	24/8	Δ	CKE		SPITUR	DATA<31:0>	DATA<3	1		I	IGNTUR	Δ	CKE		SPITUR SR DATA<31:0>	I		I	IGNTUR		CKE		SPITUR	DATA<31:0>	I		I	IGNTUR																							
		25/9	FRMCNT<2:0>	SMP	<u>^</u>	-																										1		I	IGNROV	FRMCNT<2:0>	SMP	<(_		Ι	-	Ι	IGNROV	FRMCNT<2:0>	SMP	<(1		I	I	I
		26/10	H	MODE16	RXBUFELM<4:0>	RXBUFELM<4:0	-		1	1		I	SPI TUREN	H	MODE16	RXBUFELM<4:0>	_		Ι	-	Ι	SPI TUREN	出	MODE 16	RXBUFELM<4:0>	1		I	I	I	SPI																					
		27/11	FRMSYPW	MODE32			SPIBUSY					ı	SPI ROVEN	FRMSYPW	MODE32	RXB	SPIBUSY		I	_	ı	SPI ROVEN	FRMSYPW	MODE32	RXB	SPIBUSY		1	1	ı	SPI																					
		28/12	MSSEN	DISSDO		FRMERR			I		I	FRM ERREN	MSSEN	DISSDO		FRMERR		Ι	-	Ι	FRM ERREN	MSSEN	DISSDO		FRMERR		I	I	I	FRM																						
	29/13	29/13	FRMPOL	SIDL	I	1			I	I	I	ı	FRMPOL	SIDL	I	1		I	-	Ι	Ι	-RMPOL	SIDL	I	1		ı	ı	I	ı																						
		30/14	FRMSYNCF	I	I	1			I	I	I	I	FRMSYNCF	I	I	1		I	1	I	I	FRMSYNC FRMPOL	_	I	1		I	I	I	I																						
		31/15	FRMEN F	NO	I	1			I	I	I	SPI SGNEXT	FRMEN F	NO	I	-		I	-	I	SPI SGNEXT	FRMEN F	NO	I	1		I	I	I	SPI																						
	əßu	nsA tiB	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16 15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	31:16	15:0	31:16	15:0																						
	ter (1)	Regish Mame		NOOLLAN		SPIISIAI	SPI1BUF		000100			SPI1CON2		SPIZCON	TATOCIOO	SPIZSIAI	SPIZBUF	Cagalas			SPI2CON2	1400000	SPISCON	TATOCIOO	SPISSIAI	SPI3BUF	00000	SPISBRG		1440 SPI3CON2																						
SS		bA IsuhiV _2878)		0001		1010	1020			0501		1040		1200		1210	1220		1230		1240		1400	0,7	14.10	1420		1430		1440																						

lend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

SPIRBF

ENHBUF

<1:0>

D<1:0>

	17/1	SPIFE E	SRXISEL<		SPITBF		1		I	AUDMOD•	SPIFE E	SRXISEL<		SPITBF		ı		L	AUDMOD∙	SPIFE E	SRXISEL<		SPITBF					AUDMOD
		SF		1<4:0>	SPI					Ā	SF		/<4:0>	SPI		_		_	Ā	SF	S	/<4:0>	SPI		_		Í	∢
	18/2	1	STXISEL<1:0>	TXBUFELM<4:0>	I		1		1	1	1	STXISEL<1:0>	TXBUFELM<4:0>	-		I			1	-	STXISEL<1:0>	TXBUFELM<4:0>	-					ı
	19/3	I	SIXIS	Ê	SPITBE		I		I	AUD MONO	I	STXIS	Ţ	SPITBE		I		1	AUD MONO	Ι	STXIS	1	SPITBE		1		1	AUD MONO
	20/4	I	DISSDI		I		I	BRG<8:0>	I	I	I	DISSDI		I		I	BRG<8:0>	1	1	I	DISSDI		Ι		-	BRG<8:0>	1	1
	21/5	I	MSTEN	1	SPIRBE		I		I	_	1	MSTEN	-	SPIRBE		I		_	_	_	MSTEN	1	SPIRBE		_		-	1
	22/6	I	CKP	I	SPIROV		I		I	1	I	CKP	I	SPIROV		I		1	Ι	I	CKP	I	SPIROV		1		1	1
s	23/7	MCLKSEL	SSEN	I	SRMT	31:0>	I		I	AUDEN	MCLKSEL	SSEN	I	SRMT	31:0>	I		I	AUDEN	MCLKSEL	SSEN	Ι	SRMT	31:0>	1		1	AUDEN
Bits	24/8	Λ	CKE		SPITUR	DATA<31:0>	I		I	IGNTUR	^	CKE		SPITUR	DATA<31:0>	I		I	IGNTUR	Δ	CKE		SPITUR	DATA<31:0>	Ι		1	IGNTUR
	25/9	FRMCNT<2:0>	SMP	<u>^</u>	Ι		I	I	I	IGNROV	FRMCNT<2:0>	SMP	^	I		I	I	I	IGNROV	FRMCNT<2:0>	SMP	<	Ι		I	-	1	IGNROV
	26/10	H	MODE 16	RXBUFELM<4:0>	Ι		ı	1	I	SPI TUREN	FF	MODE 16	RXBUFELM<4:0>	1		1	1	1	SPI TUREN	H.	MODE 16	RXBUFELM<4:0>	-		1	1	1	SPI TUREN
	27/11	FRMSYPW	MODE32	RXB	SPIBUSY		1	ı	1	SPI ROVEN	FRMSYPW	MODE32	RXB	SPIBUSY		I	1	1	SPI ROVEN	FRMSYPW	MODE32	RXB	SPIBUSY	•	1	1	1	SPI
	28/12	MSSEN	DISSDO		FRMERR		1	I	I	FRM ERREN	MSSEN	DISSDO		FRMERR		I	1	1	FRM ERREN	MSSEN	DISSDO		FRMERR				1	FRM
	29/13	FRMPOL	SIDL	I	-		I	I	ı	ı	FRMPOL	SIDL	-	_		Ι	Ι	1	1	FRMPOL	SIDL	-	_			-	1	1
	30/14	FRMSYNCF	ı	I	Ι		I	I	I	I	FRMSYNCF	I	I	Ι		I	Ι	Ι	ı	FRMSYNCF	Ι	Ι	Ι		-	Ι	1	
	31/15	FRMEN	NO	I	I		I	I	I	SPI SGNEXT	FRMEN	NO	I	I		I	1	I	SPI SGNEXT	FRMEN	NO	I	I			I	1	SPI
-	Bit Range	31:16	15:0	31:16	15:0	31:16	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16 15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	31:16	15:0	31:16	15:0
	Register Name ⁽¹⁾		SPI4CON		071401A1	SPI4BUF		SPI4BRG		SPI4CON2		NOOGLA	CDIFCTAT	SPISSIAI	SPI5BUF	Coasias	SPISBRG		1840 SPI5CON2	CDIGCON	SPIBCON	TATOSIGO	SPIGSIAI	SPI6BUF -	Jaaylas	GLIODING		1A40 SPI6CONZ
ssə	Virtual Addr (#_2878)		1600	9	1610	1620		1630		1640		1800		01.81	1820		1830		1840		TAU	4) 	1A20		HSO		1A40

ENHBUF

<1:0>

D<1:0>

SPIRBF

All registers in this table except SPIxBUF have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information. x = unknown value on Reset; --= unimplemented, read as `0'. Reset values are shown in hexadecimal. Legend: Note 1:

steseR IIA

16/0

SPIRBF

SPI1 THROUGH SPI6 REGISTER MAP (CONTINUED)

TABLE 21-1:

REGISTER 21-1: SPIXCON: SPI CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	FRMEN	FRMSYNC	FRMPOL	MSSEN	FRMSYPW	F	RMCNT<2:0	>
00:40	R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
23:16	MCLKSEL ⁽¹⁾	_	_	_	_	_	SPIFE	ENHBUF ⁽¹⁾
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	ON	_	SIDL	DISSDO ⁽⁴⁾	MODE32	MODE16	SMP	CKE ⁽²⁾
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	SSEN	CKP ⁽³⁾	MSTEN	DISSDI ⁽⁴⁾	STXISE	L<1:0>	SRXIS	EL<1:0>

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

- bit 31 FRMEN: Framed SPI Support bit
 - 1 = Framed SPI support is enabled (SSx pin used as FSYNC input/output)
 - 0 = Framed SPI support is disabled
- bit 30 FRMSYNC: Frame Sync Pulse Direction Control on SSx pin bit (Framed SPI mode only)
 - 1 = Frame sync pulse input (Slave mode)
 - 0 = Frame sync pulse output (Master mode)
- bit 29 FRMPOL: Frame Sync Polarity bit (Framed SPI mode only)
 - 1 = Frame pulse is active-high
 - 0 = Frame pulse is active-low
- bit 28 MSSEN: Master Mode Slave Select Enable bit
 - 1 = Slave select SPI support enabled. The SS pin is automatically driven during transmission in Master mode. Polarity is determined by the FRMPOL bit.
 - 0 = Slave select SPI support is disabled.
- bit 27 FRMSYPW: Frame Sync Pulse Width bit
 - 1 = Frame sync pulse is one character wide
 - 0 = Frame sync pulse is one clock wide
- bit 26-24 **FRMCNT<2:0>:** Frame Sync Pulse Counter bits. Controls the number of data characters transmitted per pulse. This bit is only valid in Framed mode.
 - 111 = Reserved
 - 110 = Reserved
 - 101 = Generate a frame sync pulse on every 32 data characters
 - 100 = Generate a frame sync pulse on every 16 data characters
 - 011 = Generate a frame sync pulse on every 8 data characters
 - 010 = Generate a frame sync pulse on every 4 data characters
 - 001 = Generate a frame sync pulse on every 2 data characters
 - 000 = Generate a frame sync pulse on every data character
- bit 23 MCLKSEL: Master Clock Enable bit (1)
 - 1 = REFCLKO1 is used by the Baud Rate Generator
 - 0 = PBCLK2 is used by the Baud Rate Generator
- bit 22-18 Unimplemented: Read as '0'
- **Note 1:** This bit can only be written when the ON bit = 0. Refer to **Section 44.0 "Electrical Characteristics"** for maximum clock frequency requirements.
 - 2: This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).
 - **3:** When AUDEN = 1, the SPI/I²S module functions as if the CKP bit is equal to '1', regardless of the actual value of the CKP bit.
 - 4: This bit present for legacy compatibility and is superseded by PPS functionality on these devices (see Section 12.4 "Peripheral Pin Select (PPS)" for more information).

REGISTER 21-1: SPIXCON: SPI CONTROL REGISTER (CONTINUED)

- bit 17 SPIFE: Frame Sync Pulse Edge Select bit (Framed SPI mode only)
 - 1 = Frame synchronization pulse coincides with the first bit clock
 - 0 = Frame synchronization pulse precedes the first bit clock
- bit 16 **ENHBUF:** Enhanced Buffer Enable bit⁽¹⁾
 - 1 = Enhanced Buffer mode is enabled
 - 0 = Enhanced Buffer mode is disabled
- bit 15 **ON:** SPI/I²S Module On bit
 - $1 = SPI/I^2S$ module is enabled
 - $0 = SPI/I^2S$ module is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 SIDL: Stop in Idle Mode bit
 - 1 = Discontinue operation when CPU enters in Idle mode
 - 0 = Continue operation in Idle mode
- bit 12 **DISSDO:** Disable SDOx pin bit⁽⁴⁾
 - 1 = SDOx pin is not used by the module. Pin is controlled by associated PORT register
 - 0 = SDOx pin is controlled by the module
- bit 11-10 MODE<32,16>: 32/16-Bit Communication Select bits

When AUDEN = 1:

MODE32	MODE16	Communication
1	1	24-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame
1	0	32-bit Data, 32-bit FIFO, 32-bit Channel/64-bit Frame
0	1	16-bit Data, 16-bit FIFO, 32-bit Channel/64-bit Frame
0	0	16-bit Data, 16-bit FIFO, 16-bit Channel/32-bit Frame

When AUDEN = 0:

MODE32	MODE16	Communication
1	X	32-bit
0	1	16-bit
0	0	8-bit

bit 9 SMP: SPI Data Input Sample Phase bit

Master mode (MSTEN = 1):

- 1 = Input data sampled at end of data output time
- 0 = Input data sampled at middle of data output time

Slave mode (MSTEN = 0):

SMP value is ignored when SPI is used in Slave mode. The module always uses SMP = 0.

- bit 8 **CKE:** SPI Clock Edge Select bit⁽²⁾
 - 1 = Serial output data changes on transition from active clock state to Idle clock state (see CKP bit)
 - 0 = Serial output data changes on transition from Idle clock state to active clock state (see CKP bit)
- bit 7 SSEN: Slave Select Enable (Slave mode) bit
 - 1 = \overline{SSx} pin used for Slave mode
 - $0 = \overline{SSx}$ pin not used for Slave mode, pin controlled by port function.
- bit 6 **CKP:** Clock Polarity Select bit⁽³⁾
 - 1 = Idle state for clock is a high level; active state is a low level
 - 0 = Idle state for clock is a low level; active state is a high level
- **Note 1:** This bit can only be written when the ON bit = 0. Refer to **Section 44.0 "Electrical Characteristics"** for maximum clock frequency requirements.
 - 2: This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).
 - 3: When AUDEN = 1, the SPI/I²S module functions as if the CKP bit is equal to '1', regardless of the actual value of the CKP bit.
 - **4:** This bit present for legacy compatibility and is superseded by PPS functionality on these devices (see **Section 12.4 "Peripheral Pin Select (PPS)"** for more information).

REGISTER 21-1: SPIXCON: SPI CONTROL REGISTER (CONTINUED)

- bit 5 MSTEN: Master Mode Enable bit
 - 1 = Master mode
 - 0 = Slave mode
- bit 4 DISSDI: Disable SDI bit⁽⁴⁾
 - 1 = SDI pin is not used by the SPI module (pin is controlled by PORT function)
 - 0 = SDI pin is controlled by the SPI module
- bit 3-2 STXISEL<1:0>: SPI Transmit Buffer Empty Interrupt Mode bits
 - 11 = Interrupt is generated when the buffer is not full (has one or more empty elements)
 - 10 = Interrupt is generated when the buffer is empty by one-half or more
 - 01 = Interrupt is generated when the buffer is completely empty
 - 00 = Interrupt is generated when the last transfer is shifted out of SPISR and transmit operations are complete
- bit 1-0 SRXISEL<1:0>: SPI Receive Buffer Full Interrupt Mode bits
 - 11 = Interrupt is generated when the buffer is full
 - 10 = Interrupt is generated when the buffer is full by one-half or more
 - 01 = Interrupt is generated when the buffer is not empty
 - 00 = Interrupt is generated when the last word in the receive buffer is read (i.e., buffer is empty)
- Note 1: This bit can only be written when the ON bit = 0. Refer to Section 44.0 "Electrical Characteristics" for maximum clock frequency requirements.
 - 2: This bit is not used in the Framed SPI mode. The user should program this bit to '0' for the Framed SPI mode (FRMEN = 1).
 - 3: When AUDEN = 1, the SPI/ I^2 S module functions as if the CKP bit is equal to '1', regardless of the actual value of the CKP bit.
 - 4: This bit present for legacy compatibility and is superseded by PPS functionality on these devices (see Section 12.4 "Peripheral Pin Select (PPS)" for more information).

REGISTER 21-2: SPIXCON2: SPI CONTROL REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	1	_	_	-		-	_
22.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	_	_	_	-	_	_
45.0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	SPISGNEXT	_	_	FRMERREN	SPIROVEN	SPITUREN	IGNROV	IGNTUR
7:0	R/W-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
7:0	AUDEN ⁽¹⁾		_	_	AUDMONO ^(1,2)		AUDMOD	<1:0> ^(1,2)

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 SPISGNEXT: Sign Extend Read Data from the RX FIFO bit

1 = Data from RX FIFO is sign extended

0 = Data from RX FIFO is not sign extened

bit 14-13 Unimplemented: Read as '0'

bit 12 FRMERREN: Enable Interrupt Events via FRMERR bit

1 = Frame Error overflow generates error events

0 = Frame Error does not generate error events

bit 11 SPIROVEN: Enable Interrupt Events via SPIROV bit

1 = Receive overflow generates error events

0 = Receive overflow does not generate error events

bit 10 SPITUREN: Enable Interrupt Events via SPITUR bit

1 = Transmit Underrun Generates Error Events

0 = Transmit Underrun Does Not Generates Error Events

bit 9 IGNROV: Ignore Receive Overflow bit (for Audio Data Transmissions)

1 = A ROV is not a critical error; during ROV data in the fifo is not overwritten by receive data

0 = A ROV is a critical error which stop SPI operation

bit 8 IGNTUR: Ignore Transmit Underrun bit (for Audio Data Transmissions)

1 = A TUR is not a critical error and zeros are transmitted until the SPIxTXB is not empty

0 = A TUR is a critical error which stop SPI operation

bit 7 AUDEN: Enable Audio CODEC Support bit⁽¹⁾

1 = Audio protocol enabled

0 = Audio protocol disabled

bit 6-5 **Unimplemented:** Read as '0'

bit 3 **AUDMONO:** Transmit Audio Data Format bit^(1,2)

1 = Audio data is mono (Each data word is transmitted on both left and right channels)

0 = Audio data is stereo

bit 2 Unimplemented: Read as '0'

bit 1-0 AUDMOD<1:0>: Audio Protocol Mode bit(1,2)

11 = PCM/DSP mode

10 = Right Justified mode

01 = Left Justified mode

 $00 = I^2S \text{ mode}$

Note 1: This bit can only be written when the ON bit = 0.

2: This bit is only valid for AUDEN = 1.

REGISTER 21-3: SPIXSTAT: SPI STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
31.24	_	_	_		R)	XBUFELM<4:)>	
00:40	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
23:16	_	_	_		T	KBUFELM<4:0)>	
45.0	U-0	U-0	U-0	R/C-0, HS	R-0	U-0	U-0	R-0
15:8		_	_	FRMERR	SPIBUSY	_	_	SPITUR
7.0	R-0	R/W-0	R-0	U-0	R-1	U-0	R-0	R-0
7:0	SRMT	SPIROV	SPIRBE	ı	SPITBE	_	SPITBF	SPIRBF

Legend:C = Clearable bitHS = Hardware SetR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28-24 RXBUFELM<4:0>: Receive Buffer Element Count bits (valid only when ENHBUF = 1)

bit 23-21 Unimplemented: Read as '0'

bit 20-16 **TXBUFELM<4:0>:** Transmit Buffer Element Count bits (valid only when ENHBUF = 1)

bit 15-13 Unimplemented: Read as '0'

bit 12 FRMERR: SPI Frame Error status bit

1 = Frame error detected

0 = No Frame error detected

This bit is only valid when FRMEN = 1.

bit 11 SPIBUSY: SPI Activity Status bit

1 = SPI peripheral is currently busy with some transactions

0 = SPI peripheral is currently idle

bit 10-9 **Unimplemented:** Read as '0' bit 8 **SPITUR:** Transmit Under Run bit

1 = Transmit buffer has encountered an underrun condition

0 = Transmit buffer has no underrun condition

This bit is only valid in Framed Sync mode; the underrun condition must be cleared by disabling/re-enabling the module.

bit 7 **SRMT:** Shift Register Empty bit (valid only when ENHBUF = 1)

1 = When SPI module shift register is empty

0 = When SPI module shift register is not empty

bit 6 SPIROV: Receive Overflow Flag bit

1 = A new data is completely received and discarded. The user software has not read the previous data in the SPIxBUF register.

0 = No overflow has occurred

This bit is set in hardware; can only be cleared (= 0) in software.

bit 5 **SPIRBE:** RX FIFO Empty bit (valid only when ENHBUF = 1)

1 = RX FIFO is empty (CRPTR = SWPTR)

0 = RX FIFO is not empty (CRPTR ≠ SWPTR)

bit 4 Unimplemented: Read as '0'

REGISTER 21-3: SPIXSTAT: SPI STATUS REGISTER

- bit 3 SPITBE: SPI Transmit Buffer Empty Status bit
 - 1 = Transmit buffer, SPIxTXB is empty
 - 0 = Transmit buffer, SPIxTXB is not empty

Automatically set in hardware when SPI transfers data from SPIxTXB to SPIxSR. Automatically cleared in hardware when SPIxBUF is written to, loading SPIxTXB.

- bit 2 Unimplemented: Read as '0'
- bit 1 SPITBF: SPI Transmit Buffer Full Status bit
 - 1 = Transmit not yet started, SPITXB is full
 - 0 = Transmit buffer is not full

Standard Buffer Mode:

Automatically set in hardware when the core writes to the SPIBUF location, loading SPITXB. Automatically cleared in hardware when the SPI module transfers data from SPITXB to SPISR.

Enhanced Buffer Mode:

Set when CWPTR + 1 = SRPTR; cleared otherwise

- bit 0 SPIRBF: SPI Receive Buffer Full Status bit
 - 1 = Receive buffer, SPIxRXB is full
 - 0 = Receive buffer, SPIxRXB is not full

Standard Buffer Mode:

Automatically set in hardware when the SPI module transfers data from SPIxSR to SPIxRXB.

Automatically cleared in hardware when SPIxBUF is read from, reading SPIxRXB.

Enhanced Buffer Mode:

Set when SWPTR + 1 = CRPTR; cleared otherwise

	 (=: .,		
NOTES:			

22.0 **SERIAL QUAD INTERFACE** (SQI)

Note: This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 46. "Serial Quad Interface (SQI)" (DS60001244), which is available from the Documentation > Manual Reference section the PIC32 Microchip web site (www.microchip.com/pic32).

The SQI module is a synchronous serial interface that provides access to serial Flash memories and other serial devices. The SQI module supports Single Lane (identical to SPI), Dual Lane, and Quad Lane modes.

The following are some of the key features of the SQI module:

- · Supports Single, Dual, and Quad Lane modes
- · Supports Single Data Rate (SDR) and Double Data Rate (DDR) modes
- · Programmable command sequence
- · eXecute-In-Place (XIP)

- · Data transfer:
 - Programmed I/O mode (PIO)
- Buffer descriptor DMA
- · Supports SPI Mode 0 and Mode 3
- · Programmable Clock Polarity (CPOL) and Clock Phase (CPHA) bits
- · Supports up to two Chip Selects
- · Supports up to four bytes of Flash address
- · Programmable interrupt thresholds
- · 32-byte transmit data buffer
- · 32-byte receive data buffer
- 4-word controller buffer

Once the SQI module is configured, external devices are memory mapped into KSEG2 (see Figure 4-1 through Figure 4-2 in Section 4.0 "Memory Organization" for more information). The MMU must be enabled and the TLB must be set up to access this memory (see Section 50. "CPU for Devices with MIPS32[®] microAptiv[™] and M-Class Cores" (DS60001192) in the "PIC32 Family Reference Manual" for more information).

FIGURE 22-1: SQI MODULE BLOCK DIAGRAM

eteseR IIA

22.1 SQI Control Registers

TAB	TABLE 22-1:		SERIAL	QUAD	SERIAL QUADRATURE	E INTE	RFACE	(SQI)	REGIS.	INTERFACE (SQI) REGISTER MAP	ď								
SSƏ		e									Bits								
Virtual Addr (#_3878)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	
2000	SQ11	31:16	1	_	SDRCMD	DDRDATA	DDR DUMMY	DDR MODE	DDR ADDR	DDRCMD	NNG	DUMMYBYTES<2:0>	2:0>	AD	ADDRBYTES<2:0>	<0:	<9:/>LEADOPCODE<7:6>	ODE<7:6>	+
		15:0			READOPCODE<	<0:5			TYPEDATA<1:0>	TA<1:0>	TYPEDUMMY<1:0>	IMY<1:0>	TYPEMO	TYPEMODE<1:0>	TYPEAD	TYPEADDR<1:0>	TYPECMD<1:0>	(D<1:0>	H
7007	SQI1	31:16	1	_	Ι	Ι	1	1	-	I	1	_	_	_	1	_	1	1	
2004		15:0	1	_	Ι	Ι	DEVSEL<1:0>	-<1:0>	MODEBYTES<1:0>	TES<1:0>				MODECODE<7:0>)DE<7:0>				_
2008	SQI1CFG	31:16	1	_	_	_	1	ı	CSEN<1:0>	<1:0>	SQIEN	-	DATAE	DATAEN<1:0>	CON BUFRST	RXBUFST	TXBUFST	RESET	
		15:0	I	Ι	ı	BURSTEN	I	HOLD	WP	I	I	Ι	LSBF	CPOL	CPHA		MODE<2:0>		
0	14001	31:16	I	_	ı	1	1	ı	I	SCHECK	SCHECK DDRMODE DASSERT	DASSERT	DEVSEL<1:0>	L<1:0>	LANEMODE<1:0>	DE<1:0>	CMDINIT<1:0>	T<1:0>	Ë
7007		15:0								TXF	TXRXCOUNT<15:0>	<0:9							_
200	_	31:16	I	I	I	I	I	ı	I	I	1	1	I	Ι	I	0	CLKDIV<10:8>		F
01.07	CLKCON	15:0				CLKDIV<7:0>	<7:0>				1	_	_	_	1	_	STABLE	EN	H
2011	SQI1	31:16		_	-	_	-	-	-	-	1	_	_	_	_	_	_	_	
4102		15:0		_			TXCMDTHR<5:0>	4R<5:0>				_			RXCMDTHR<5:0>	HR<5:0>			_
97.00	SQI1	31:16		_	_	_	_	-	_	_		_	_	_	-	_	_	-	
0107		15:0	I	_			TXINTTHR<5:0>	R<5:0>			I	I			RXINTTHR<5:0>	4R<5:0>			Ë
		31:16	1	1	I	I	1	1	1	I	I	1	1	1	I	1	I	1	_
201C	INTEN	15:0	I	I	I	I	DMAEIE	PKT	BD DONEIE	CON	CON	CON FULLIE	RX THRIE	RX FULLIE	RX EMPTYIE	TX THRIE	TX FULLIE	TX EMPTYIE	
	20	31:16	I	I	I	I	ı	ı	I	ı	I	1	-	I	I	I	ı	I	_
2020	INTSTAT	15:0	I	_	_	I	DMAEIF	PKT COMPIF	BD DONEIF	CON	CON EMPTYIF	CON FULLIF	RX THRIF	RX FULLIF	RX EMPTYIF	TX THRIF	TX FULLIF	TX EMPTYIF	
2024	SQI1	31:16								£	TXDATA<31:16>	<u> </u>							-+
	_	31:16								- &	RXDATA<31:16>								4=
2028	RXDATA	15:0								2	RXDATA<15:0>								+-
000	SQI1	31:16	I	1	ı	1	1	ı	I	I	I	1			TXBUFFREE<5:0>	(EE<5:0>			Ë
2020		15:0	I	1	I	1	1	1	I	I	1	1			RXBUFCNT<5:0>	NT<5:0>			_
2030	SQI1	31:16	1	_	1	1	1	1	1	I	1	_	_	1	1	1	CMDSTAT<1:0>	\T<1:0>	_
		15:0	I	1	1	1	I		CONAV	CONAVAIL<3:0>		SDID3	SDID2	SDID1	SDID0	1	RXUN	TXOV	_
2034	SQI1	31:16	I	I	I	I	I	I	I	I	I	I	I	I	I	1	I	I	_
	_	12:0	I	Ι	I	I	I	ı	I	I	I	_	-	Ι	I	START	POLLEN	DMAEN	_
2038	SQI1BD	()								BDCL	BDCURRADDR<31:16>	1:16>							_
2		15:0								BDC	BDCURRADDR<15:0>	2:0>							_
2040	SQI1BD	31:16								BĽ	BDADDR<31:16>	3>							
2		15:0								B	BDADDR<15:0>	Δ							_

TX EMPTYISE DMAACTV STATBYTES<1:0> 16/0 TX FULLISE DDRDATINDLY<3:0> DMA START CLKOUTDLY<3:0> 17 THRES<3:0> TX THRISE 18/2 TXBUFCNT<5:0> TYPESTAT<1:0> RXBUFCNT<5:0> RX EMPTYISE INIT2CMD3<7:0> 19/3 INIT1CMD3<7:0> INIT1CMD1<7:0> INIT2CMD1<7:0> BDSTATE<3:0> TXCURBUFLEN<8:0> RXCURBUFLEN<8:0> STATPOS RX FULLISE 20/4 RX THRISE SDRDATINDLY<3:0> DATAOUTDLY<3:0> 21/5 SERIAL QUADRATURE INTERFACE (SQI) REGISTER MAP (CONTINUED) CON FULLISE 22/6 POLLCON<15:0> STATCMD<15:0> BDCON<15:0> CON 23/7 CON 24/8 INIT2TYPE<1:0> INIT1TYPE<1:0> PKT BD DONEISE DONEISE 25/9 SDRCLKINDLY<5:0> DDRCLKINDLY<5:0> INIT1 SCHECK INIT1COUNT<1:0> INIT2 SCHECK INIT2COUNT<1:0> 26/10 FXSTATE<3:0> RXSTATE<3:0> DMAEIS E 27/11 INIT1CMD2<7:0> INIT2CMD2<7:0> 28/12 29/13 30/14 31/15 31:16 31:16 31:16 31:16 15:0 15:0 15:0 Bit Range **TABLE 22-1:** SQI1BD POLLCON SQI1BD TXDSTAT SQI1 TAPCON SQI1 MEMSTAT SQI1BD RXDSTAT SQI1THR SQI1BD STAT SQI1INT SIGEN SQI1 XCON3 SQI1 XCON4 Register Name Virtual Address (#_3878) 2048 205C 2068 2060 2050

© 2015-2017 Microchip Technology Inc.

All Resets

REGISTER 22-1: SQI1XCON1: SQI XIP CONTROL REGISTER 1

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	_	_	SDRCMD	DDRDATA	DDRDUMMY	DDRMODE	DDRADDR	DDRCMD ⁽¹⁾
22.40	R/W-0 R/W-0							
23:16	DUN	MMYBYTES<	<2:0>	Al	DDRBYTES<2:	0>	READOPO	CODE<7:6>
45.0	R/W-0 R/W-0							
15:8			READOF	PCODE<5:0>			TYPEDA	ATA<1:0>
7.0	R/W-0 R/W-0							
7:0	TYPEDUN	/MY<1:0>	TYPEMO	DE<1:0>	TYPEADI	DR<1:0>	TYPEC	MD<1:0>

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-30 Unimplemented: Read as '0'

bit 29 SDRCMD: SQI Command in SDR Mode bit

 ${\tt 1}$ = SQI command is in SDR mode and SQI data is in DDR mode

0 = SQI command is in DDR mode and SQI data is in DDR mode

bit 28 DDRDATA: SQI Data DDR Mode bit

1 = SQI data bytes are transferred in DDR mode

0 = SQI data bytes are transferred in SDR mode

bit 27 DDRDUMMY: SQI Dummy DDR Mode bit

1 = SQI dummy bytes are transferred in DDR mode

0 = SQI dummy bytes are transferred in SDR mode

bit 26 DDRMODE: SQI DDR Mode bit

1 = SQI mode bytes are transferred in DDR mode

0 = SQI mode bytes are transferred in SDR mode

bit 25 DDRADDR: SQI Address Mode bit

1 = SQI address bytes are transferred in DDR mode

0 = SQI address bytes are transferred in SDR mode

bit 24 DDRCMD: SQI DDR Command Mode bit(1)

1 = SQI command bytes are transferred in DDR mode

0 = SQI command bytes are transferred in SDR mode

bit 23-21 **DUMMYBYTES<2:0>:** Transmit Dummy Bytes bits

111 = Transmit seven dummy bytes after the address bytes

•

011 = Transmit three dummy bytes after the address bytes

010 = Transmit two dummy bytes after the address bytes

001 = Transmit one dummy bytes after the address bytes

000 = Transmit zero dummy bytes after the address bytes

Note 1: When DDRCMD is set to '0', the SQI module will ignore the value in the SDRCMD bit.

REGISTER 22-1: SQI1XCON1: SQI XIP CONTROL REGISTER 1 (CONTINUED)

bit 20-18 ADDRBYTES<2:0>: Address Cycle bits

111 = Reserved

:

101 = Reserved

100 = Four address bytes

011 = Three address bytes

010 = Two address bytes

001 = One address bytes

000 = Zero address bytes

bit 17-10 READOPCODE<7:0>: Op code Value for Read Operation bits

These bits contain the 8-bit op code value for read operation.

bit 9-8 TYPEDATA<1:0>: SQI Type Data Enable bits

The boot controller will receive the data in Single Lane, Dual Lane, or Quad Lane.

- 11 = Reserved
- 10 = Quad Lane mode data is enabled
- 01 = Dual Lane mode data is enabled
- 00 = Single Lane mode data is enabled

bit 7-6 TYPEDUMMY<1:0>: SQI Type Dummy Enable bits

The boot controller will send the dummy in Single Lane, Dual Lane, or Quad Lane.

- 11 = Reserved
- 10 = Quad Lane mode dummy is enabled
- 01 = Dual Lane mode dummy is enabled
- 00 = Single Lane mode dummy is enabled

bit 5-4 **TYPEMODE<1:0>:** SQI Type Mode Enable bits

The boot controller will send the mode in Single Lane, Dual Lane, or Quad Lane.

- 11 = Reserved
- 10 = Quad Lane mode is enabled
- 01 = Dual Lane mode is enabled
- 00 = Single Lane mode is enabled

bit 3-2 TYPEADDR<1:0>: SQI Type Address Enable bits

The boot controller will send the address in Single Lane, Dual Lane, or Quad Lane.

- 11 = Reserved
- 10 = Quad Lane mode address is enabled
- 01 = Dual Lane mode address is enabled
- 00 = Single Lane mode address is enabled

bit 1-0 **TYPECMD<1:0>:** SQI Type Command Enable bits

The boot controller will send the command in Single Lane, Dual Lane, or Quad Lane.

- 11 = Reserved
- 10 = Quad Lane mode command is enabled
- 01 = Dual Lane mode command is enabled
- 00 = Single Lane mode command is enabled

Note 1: When DDRCMD is set to '0', the SQI module will ignore the value in the SDRCMD bit.

REGISTER 22-2: SQI1XCON2: SQI XIP CONTROL REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	_	_	_	_	_	_	_	_
00:40	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	_	-	_	-	DEVSE	EL<1:0>	MODEBY	TES<1:0>
7.0	R/W-0 R/W-0							
7:0				MODECO	DE<7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-12 Unimplemented: Read as '0'

bit 11-10 DEVSEL<1:0>: Device Select bits

11 = Reserved

10 = Reserved

01 = Device 1 is selected

00 = Device 0 is selected

bit 9-8 MODEBYTES<1:0>: Mode Byte Cycle Enable bits

11 = Three cycles

10 = Two cycles

01 = One cycle

00 = Zero cycles

bit 7-0 MODECODE<7:0>: Mode Code Value bits

These bits contain the 8-bit code value for the mode bits.

REGISTER 22-3: SQI1CFG: SQI CONFIGURATION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
31:24	_	_	_	_	_	_	CSEN	N<1:0>
	R/W-0	U-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC
23:16	SQIEN	_	DATAE	EN<1:0>	CON BUFRST	RX BUFRST	TX BUFRST	RESET
45.0	U-0	r-0	r-0	R/W-0	r-0	R/W-0	R/W-0	U-0
15:8	_	_	_	BURSTEN ⁽¹⁾	_	HOLD	WP	_
7.0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0		_	LSBF	CPOL	CPHA		MODE<2:0>	•

Legend:HC = Hardware Clearedr = ReservedR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-26 Unimplemented: Read as '0'

bit 25-24 CSEN<1:0>: Chip Select Output Enable bits

11 = Chip Select 0 and Chip Select 1 are used

10 = Chip Select 1 is used (Chip Select 0 is not used)

01 = Chip Select 0 is used (Chip Select 1 is not used)

00 = Chip Select 0 and Chip Select 1 are not used

bit 23 SQIEN: SQI Enable bit

1 = SQI module is enabled

0 = SQI module is disabled

bit 22 Unimplemented: Read as '0'

bit 21-20 DATAEN<1:0>: Data Output Enable bits

11 = Reserved

10 = SQID3-SQID0 outputs are enabled

01 = SQID1 and SQID0 data outputs are enabled

00 = SQID0 data output is enabled

bit 19 **CONBUFRST:** Control Buffer Reset bit

1 = A reset pulse is generated clearing the control buffer

0 = A reset pulse is not generated

bit 18 **RXBUFRST:** Receive Buffer Reset bit

1 = A reset pulse is generated clearing the receive buffer

0 = A reset pulse is not generated

bit 17 TXBUFRST: Transmit Buffer Reset bit

1 = A reset pulse is generated clearing the transmit buffer

0 = A reset pulse is not generated

bit 16 RESET: Software Reset Select bit

This bit is automatically cleared by the SQI module. All of the internal state machines and buffer pointers are reset by this reset pulse.

1 = A reset pulse is generated

0 = A reset pulse is not generated

bit 15 Unimplemented: Read as '0'

bit 14-13 Reserved: Must be programmed as '0'

Note 1: This bit must be programmed as '1'.

REGISTER 22-3: SQI1CFG: SQI CONFIGURATION REGISTER (CONTINUED)

- bit 12 **BURSTEN:** Burst Configuration bit⁽¹⁾
 - 1 = Burst is enabled
 - 0 = Burst is not enabled
- bit 11 Reserved: Must be programmed as '0'
- bit 10 HOLD: Hold bit

In Single Lane or Dual Lane mode, this bit is used to drive the SQID3 pin, which can be used for devices with a HOLD input pin. The meaning of the values for this bit will depend on the device to which SQID3 is connected.

bit 9 WP: Write Protect bit

In Single Lane or Dual Lane mode, this bit is used to drive the SQID2 pin, which can be used with devices with a write-protect pin. The meaning of the values for this bit will depend on the device to which SQID2 is connected.

- bit 8-6 **Unimplemented:** Read as '0'
- bit 5 LSBF: Data Format Select bit
 - 1 = LSB is sent or received first
 - 0 = MSB is sent or received first
- bit 4 CPOL: Clock Polarity Select bit
 - 1 = Active-low SQICLK (SQICLK high is the Idle state)
 - 0 = Active-high SQICLK (SQICLK low is the Idle state)
- bit 3 CPHA: Clock Phase Select bit
 - 1 = SQICLK starts toggling at the start of the first data bit
 - 0 = SQICLK starts toggling at the middle of the first data bit
- bit 2-0 MODE<2:0>: Mode Select bits
 - 111 = Reserved
 - •
 - •
 - 100 = Reserved
 - 011 = XIP mode is selected (when this mode is entered, the module behaves as if executing in place (XIP), but uses the register data to control timing)
 - 010 = DMA mode is selected
 - 001 = CPU mode is selected (the module is controlled by the CPU in PIO mode. This mode is entered when leaving Boot or XIP mode)
 - 000 = Reserved

Note 1: This bit must be programmed as '1'.

REGISTER 22-4: SQI1CON: SQI CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	r-0	R/W-0
31:24	_	_	_	_	_	_	_	SCHECK ⁽¹⁾
00:40	R/W-0 R/W-0							
23:16	DDRMODE	DASSERT	DEVSE	L<1:0>	LANEMO	DDE<1:0>	CMDIN	IIT<1:0>
45.0	R/W-0 R/W-0							
15:8				TXRXCOU	NT<15:8>			
7.0	R/W-0 R/W-0							
7:0				TXRXCOU	INT<7:0>			

Legend:r = ReservedR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-26 Unimplemented: Read as '0'

bit 25 Reserved: Must be programmed as '0'

bit 24 SCHECK: Flash Status Check bit⁽¹⁾

1 = Check the status of the Flash

0 = Do not check the status of the Flash

bit 23 DDRMODE: Double Data Rate Mode bit

1 = Set the SQI transfers to DDR mode

0 = Set the SQI transfers to SDR mode

bit 22 DASSERT: Chip Select Assert bit

1 = Chip Select is deasserted after transmission or reception of the specified number of bytes

0 = Chip Select is not deasserted after transmission or reception of the specified number of bytes

bit 21-20 DEVSEL<1:0>: SQI Device Select bits

11 = Reserved

10 = Reserved

01 = Select Device 1

00 = Select Device 0

bit 19-18 LANEMODE<1:0>: SQI Lane Mode Select bits

11 = Reserved

10 = Quad Lane mode

01 = Dual Lane mode

00 = Single Lane mode

bit 17-16 CMDINIT<1:0>: Command Initiation Mode Select bits

If it is Transmit, commands are initiated based on a write to the transmit register or the contents of TX buffer. If CMDINIT is Receive, commands are initiated based on reads to the read register or RX buffer availability.

11 = Reserved

10 = Receive

01 = Transmit

00 = Idle

bit 15-0 TXRXCOUNT<15:0>: Transmit/Receive Count bits

These bits specify the total number of bytes to transmit or received (based on CMDINIT).

Note 1: When this bit is set to '1', the SQI module uses the SQI1MEMSTAT register to control the status check command process.

REGISTER 22-5: SQI1CLKCON: SQI CLOCK CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	_	_	_	_	_	_	_	_		
00:40	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
23:16	_	_	_	_	_	CL	CLKDIV<10:8>(1)			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8				CLKDIV<	:7:0> ⁽¹⁾					
7.0	U-0	U-0	U-0	U-0	U-0	U-0	R-0	R/W-0		
7:0	_	_	_	_	_	_	STABLE	EN		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-19 Unimplemented: Read as '0'

bit 18-8 CLKDIV<10:0>: SQI Clock Tsqi Frequency Select bit(1)

10000000000 = Base clock TBC is divided by 2048

01000000000 = Base clock TBC is divided by 1024

00100000000 = Base clock TBC is divided by 512

00010000000 = Base clock TBC is divided by 256

00001000000 = Base clock TBC is divided by 128

00000100000 = Base clock TBC is divided by 64

00000010000 = Base clock TBC is divided by 32

00000001000 = Base clock TBC is divided by 16

00000000100 = Base clock TBC is divided by 8

0000000010 = Base clock TBC is divided by 4

0000000001 = Base clock TBC is divided by 2

00000000000 = Base clock TBC

Setting these bits to '00000000' specifies the highest frequency of the SQI clock.

bit 7-2 Unimplemented: Read as '0'

bit 1 STABLE: Tsqi Clock Stable Select bit

This bit is set to '1' when the SQI clock, TsQI, is stable after writing a '1' to the EN bit.

1 = Tsqi clock is stable

0 = Tsqi clock is not stable

bit 0 EN: Tsqi Clock Enable Select bit

When clock oscillation is stable, the SQI module will set the STABLE bit to '1'.

- 1 = Enable the SQI clock (TsQI) (when clock oscillation is stable, the SQI module sets the STABLE bit to '1')
- 0 = Disable the SQI clock (TsQI) (the SQI module should stop its clock to enter a low power state); SFRs can still be accessed, as they use PBCLK5
- **Note 1:** Refer to Table 44-41 in **44.0** "Electrical Characteristics" for the maximum clock frequency specifications.

REGISTER 22-6: SQI1CMDTHR: SQI COMMAND THRESHOLD REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		_	-	_	_	_	_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	-	_	-	_	_	_	-	_
45.0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8		_			TXCMDT	HR<5:0>		
7.0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_			RXCMDTI	HR<5:0> ⁽¹⁾		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-14 Unimplemented: Read as '0'

bit 13-8 TXCMDTHR<5:0>: Transmit Command Threshold bits

In transmit initiation mode, the SQI module performs a transmit operation when transmit command threshold bytes are present in the TX buffer. These bits should usually be set to '1' for normal Flash commands, and set to a higher value for page programming. For 16-bit mode, the value should be a multiple of 2.

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RXCMDTHR<5:0>:** Receive Command Threshold bits⁽¹⁾

In receive initiation mode, the SQI module attempts to perform receive operations to fetch the receive command threshold number of bytes in the receive buffer. If space for these bytes is not present in the buffer, the SQI will not initiate a transfer. For 16-bit mode, the value should be a multiple of 2.

If software performs any reads, thereby reducing the buffer count, hardware would initiate a receive transfer to make the buffer count equal to the value in these bits. If software would not like any more words latched into the buffer, command initiation mode needs to be changed to Idle before any buffer reads by software.

In the case of Boot/XIP mode, the SQI module will use the System Bus burst size, instead of the receive command threshold value.

Note 1: These bits should only be programmed when a receive is not active (i.e., during Idle mode or a transmit).

REGISTER 22-7: SQI1INTTHR: SQI INTERRUPT THRESHOLD REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	_	_	_	_	_	_	_	_
00:40	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	_	_			TXINTTI	HR<5:0>		
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_			RXINTT	HR<5:0>		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-14 Unimplemented: Read as '0'

bit 13-8 TXINTTHR<5:0>: Transmit Interrupt Threshold bits

A transmit interrupt is set when the transmit buffer has more space than the set number of bytes. For 16-bit mode, the value should be a multiple of 2.

bit 7-6 Unimplemented: Read as '0'

bit 5-0 RXINTTHR<5:0>: Receive Interrupt Threshold bits

A receive interrupt is set when the receive buffer count is larger than or equal to the set number of bytes.

For 16-bit mode, the value should be multiple of 2.

REGISTER 22-8: SQI1INTEN: SQI INTERRUPT ENABLE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0 U-0									
31:24	_	-		_	1	_	_	_		
23:16	U-0 U-0									
23.10	_	_	_	_	_	_	_	_		
45.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	_	_	_	_	DMAEIE	PKTCOMPIE	BDDONEIE	CONTHRIE		
7:0	R/W-0 R/W-0									
	CONEMPTYIE	CONFULLIE	RXTHRIE	RXFULLIE	RXEMPTYIE	TXTHRIE	TXFULLIE	TXEMPTYIE		

Legend: HS = Hardware Set

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-12 Unimplemented: Read as '0'

bit 11 DMAEIE: DMA Bus Error Interrupt Enable bit

1 = Interrupt is enabled0 = Interrupt is disabled

bit 10 PKTCOMPIE: DMA Buffer Descriptor Packet Complete Interrupt Enable bit

1 = Interrupt is enabled0 = Interrupt is disabled

bit 9 BDDONEIE: DMA Buffer Descriptor Done Interrupt Enable bit

1 = Interrupt is enabled0 = Interrupt is disabled

bit 8 **CONTHRIE:** Control Buffer Threshold Interrupt Enable bit

1 = Interrupt is enabled0 = Interrupt is disabled

bit 7 **CONEMPTYIE:** Control Buffer Empty Interrupt Enable bit

1 = Interrupt is enabled0 = Interrupt is disabled

bit 6 **CONFULLIE:** Control Buffer Full Interrupt Enable bit

This bit enables an interrupt when the receive buffer is full.

1 = Interrupt is enabled0 = Interrupt is disabled

bit 5 RXTHRIE: Receive Buffer Threshold Interrupt Enable bit

1 = Interrupt is enabled0 = Interrupt is disabled

bit 4 RXFULLIE: Receive Buffer Full Interrupt Enable bit

1 = Interrupt is enabled0 = Interrupt is disabled

bit 3 RXEMPTYIE: Receive Buffer Empty Interrupt Enable bit

1 = Interrupt is enabled0 = Interrupt is disabled

bit 2 **TXTHRIE:** Transmit Threshold Interrupt Enable bit

1 = Interrupt is enabled0 = Interrupt is disabled

bit 1 **TXFULLIE:** Transmit Buffer Full Interrupt Enable bit

1 = Interrupt is enabled0 = Interrupt is disabled

bit 0 **TXEMPTYIE:** Transmit Buffer Empty Interrupt Enable bit

1 = Interrupt is enabled0 = Interrupt is disabled

REGISTER 22-9: SQI1INTSTAT: SQI INTERRUPT STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	_	_	_	_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	-	_	_		_	_	_	_
	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS
15:8		_			DMA EIF	PKT COMPIF	BD DONEIF	CON THRIF
	R/W-1, HS	R/W-0, HS	R/W-1, HS	R/W-0, HS	R/W-1, HS	R/W-1, HS	R/W-0, HS	R/W-1, HS
7:0	CON EMPTYIF	CON FULLIF	RXTHRIF ⁽¹⁾	RXFULLIF	RX EMPTYIF	TXTHRIF	TXFULLIF	TX EMPTYIF

Legend: HS = Hardware Set

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-12 Unimplemented: Read as '0'

bit 11 DMAEIF: DMA Bus Error Interrupt Flag bit

1 = DMA bus error has occurred

0 = DMA bus error has not occurred

bit 10 PKTCOMPIF: DMA Buffer Descriptor Processor Packet Completion Interrupt Flag bit

1 = DMA BD packet is complete

0 = DMA BD packet is in progress

bit 9 BDDONEIF: DMA Buffer Descriptor Done Interrupt Flag bit

1 = DMA BD process is done

0 = DMA BD process is in progress

bit 8 CONTHRIF: Control Buffer Threshold Interrupt Flag bit

1 = The control buffer has more than THRES words of space available

0 = The control buffer has less than THRES words of space available

bit 7 CONEMPTYIF: Control Buffer Empty Interrupt Flag bit

1 = Control buffer is empty

0 = Control buffer is not empty

bit 6 CONFULLIF: Control Buffer Full Interrupt Flag bit

1 = Control buffer is full

0 = Control buffer is not full

bit 5 **RXTHRIF:** Receive Buffer Threshold Interrupt Flag bit⁽¹⁾

1 = Receive buffer has more than RXINTTHR words of space available

0 = Receive buffer has less than RXINTTHR words of space available

bit 4 RXFULLIF: Receive Buffer Full Interrupt Flag bit

1 = Receive buffer is full

0 = Receive buffer is not full

bit 3 RXEMPTYIF: Receive Buffer Empty Interrupt Flag bit

1 = Receive buffer is empty

0 = Receive buffer is not empty

Note 1: In the case of Boot/XIP mode, the POR value of the receive buffer threshold is zero. Therefore, this bit will be set to a '1', immediately after a POR until a read request on the System Bus bus is received.

Note: The bits in the register are cleared by writing a '1' to the corresponding bit position.

REGISTER 22-9: SQI1INTSTAT: SQI INTERRUPT STATUS REGISTER (CONTINUED)

- bit 2 **TXTHRIF:** Transmit Buffer Threshold Interrupt Flag bit
 - 1 = Transmit buffer has more than TXINTTHR words of space available
 - 0 = Transmit buffer has less than TXINTTHR words of space available
- bit 1 TXFULLIF: Transmit Buffer Full Interrupt Flag bit
 - 1 = The transmit buffer is full
 - 0 = The transmit buffer is not full
- bit 0 **TXEMPTYIF:** Transmit Buffer Empty Interrupt Flag bit
 - 1 = The transmit buffer is empty
 - 0 = The transmit buffer has content
- **Note 1:** In the case of Boot/XIP mode, the POR value of the receive buffer threshold is zero. Therefore, this bit will be set to a '1', immediately after a POR until a read request on the System Bus bus is received.

Note: The bits in the register are cleared by writing a '1' to the corresponding bit position.

REGISTER 22-10: SQI1TXDATA: SQI TRANSMIT DATA BUFFER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24	TXDATA<31:24> RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0									
22.46	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	TXDATA<23:16>									
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	TXDATA<15:8>									
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0		_		TXDATA	<7:0>	_		·		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 TXDATA<31:0>: Transmit Command Data bits

Data is loaded into this register before being transmitted. Just prior to the beginning of a data transfer, the data in TXDATA is loaded into the shift register (SFDR).

Multiple writes to TXDATA can occur even while a transfer is already in progress. There can be a maximum of eight commands that can be queued.

REGISTER 22-11: SQI1RXDATA: SQI RECEIVE DATA BUFFER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R-0 R-0									
31:24										
22:16	R-0 R-0									
23:16	RXDATA<23:16>									
45.0	R-0 R-0									
15:8	RXDATA<15:8>									
7.0	R-0 R-0									
7:0				RXDATA	\<7:0>		•			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 RXDATA<31:0>: Receive Data Buffer bits

At the end of a data transfer, the data in the shift register is loaded into the RXDATA register. This register works like a buffer. The depth of the receive buffer is eight words.

REGISTER 22-12: SQI1STAT1: SQI STATUS REGISTER 1

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0 U-0									
31:24	_	_	_	_	_	_	_	_		
22.40	U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0		
23:16	_	_	TXBUFFREE<5:0>							
45.0	U-0 U-0									
15:8	_	_	_	_	_	_	_	_		
7:0	U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0		
7:0	_	_			RXBUFC	NT<5:0>				

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-22 Unimplemented: Read as '0'

bit 21-16 TXBUFFREE<5:0>: Transmit buffer Available Word Space bits

bit 15-6 Unimplemented: Read as '0'

bit 5-0 RXBUFCNT<5:0>: Number of words of read data in the buffer

REGISTER 22-13: SQI1STAT2: SQI STATUS REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0 U-0								
31.24	_	_	_	_	_	_	_	_	
23:16	U-0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	
23.10	_	_	_	_	_	_	CMDSTAT<1:0>		
15:8	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0	
13.0	_	_	_	_	_	CC	DNAVAIL<3:1	 >	
7:0	R-0	R-0	R-0	R-0	R-0	U-0	R-0	R-0	
7:0	CONAVAIL<0>	SQID3	SQID2	SQID1	SQID0	_	RXUN	TXOV	

R = Readable bit

Legend:

U = Unimplemented bit, read as '0' W = Writable bit

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-18 Unimplemented: Read as '0'

bit 17-16 CMDSTAT<1:0>: Current Command Status bits

These bits indicate the current command status.

11 = Reserved

10 = Receive

01 = Transmit

00 = Idle

bit 15-11 Unimplemented: Read as '0'

bit 10-7 CONAVAIL<3:0>: Control buffer Space Available bits

These bits indicate the available control word space.

1000 = 8 words are available

0111 = 7 words are available

0001 = 1 word is available

0000 = No words are available

bit 6 SQID3: SQID3 Status bit

1 = Data is present on SQID3

0 = Data is not present on SQID3

bit 5 SQID2: SQID2 Status bit

1 = Data is present on SQID2

0 = Data is not present on SQID2

bit 4 SQID1: SQID1 Status bit

1 = Data is present on SQID1

0 = Data is not present on SQID1

bit 3 SQID0: SQID0 Status bit

1 = Data is present on SQID0

0 = Data is not present on SQID0

bit 2 Unimplemented: Read as '0'

bit 1 **RXUN:** Receive buffer Underflow Status bit

1 = Receive buffer Underflow has occurred

0 = Receive buffer underflow has not occurred

bit 0 TXOV: Transmit buffer Overflow Status bit

1 = Transmit buffer overflow has occurred

0 = Transmit buffer overflow has not occurred

REGISTER 22-14: SQI1BDCON: SQI BUFFER DESCRIPTOR CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0 U-0							
31.24	_	_	_	_	_	_	_	_
00.40	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	U-0 U-0							
15:8	_	_	_	_	_	_	_	_
7.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
7:0	_	_	_	_	_	START	POLLEN	DMAEN

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-3 Unimplemented: Read as '0'

bit 2 START: Buffer Descriptor Processor Start bit

1 = Start the buffer descriptor processor

0 = Disable the buffer descriptor processor

bit 1 POLLEN: Buffer Descriptor Poll Enable bit

1 = BDP poll is enabled

0 = BDP poll is not enabled

bit 0 **DMAEN:** DMA Enable bit

1 = DMA is enabled

0 = DMA is disabled

REGISTER 22-15: SQI1BDCURADD: SQI BUFFER DESCRIPTOR CURRENT ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R-0 R-0									
31:24	BDCURRADDR<31:24>									
00.40	R-0 R-0									
23:16	BDCURRADDR<23:16>									
45.0	R-0 R-0									
15:8	BDCURRADDR<15:8>									
7:0	R-0 R-0									
7:0				BDCURRAD	DR<7:0>					

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 BDCURRADDR<31:0>: Current Buffer Descriptor Address bits

These bits contain the address of the current descriptor being processed by the Buffer Descriptor Processor.

REGISTER 22-16: SQI1BDBASEADD: SQI BUFFER DESCRIPTOR BASE ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	R/W-0 R/W-0									
31.24				BDADDR:	<31:24>					
23:16	R/W-0 R/W-0									
23.10	BDADDR<23:16>									
15:8	R/W-0 R/W-0									
15.6	BDADDR<15:8>									
7:0	R/W-0 R/W-0									
7:0				BDADDF	R<7:0>					

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 BDADDR<31:0>: DMA Base Address bits

These bits contain the physical address of the root buffer descriptor. This register should be updated only when the DMA is idle.

REGISTER 22-17: SQI1BDSTAT: SQI BUFFER DESCRIPTOR STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0 U-0									
31.24	_	_	_	_	_	_	_	_		
23:16	U-0	U-0	R-x	R-x	R-x	R-x	R-x	R-x		
23.10	_	_		BDSTAT	DMASTART	DMAACTV				
15:8	R-x R-x									
15.6	BDCON<15:8>									
7:0	R-x R-x									
				BDCO	N<7:0>					

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-22 Unimplemented: Read as '0'

bit 21-18 BDSTATE<3:0>: DMA Buffer Descriptor Processor State Status bits

These bits return the current state of the buffer descriptor processor:

5 = Fetched buffer descriptor is disabled

4 = Descriptor is done

3 = Data phase

2 = Buffer descriptor is loading

1 = Descriptor fetch request is pending

0 = Idle

bit 17 DMASTART: DMA Buffer Descriptor Processor Start Status bit

1 = DMA has started

0 = DMA has not started

bit 16 DMAACTV: DMA Buffer Descriptor Processor Active Status bit

1 = Buffer Descriptor Processor is active

0 = Buffer Descriptor Processor is idle

bit 15-0 BDCON<15:0>: DMA Buffer Descriptor Control Word bits

These bits contain the current buffer descriptor control word.

REGISTER 22-18: SQI1BDPOLLCON: SQI BUFFER DESCRIPTOR POLL CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0 U-0									
31:24	_	_	_	_	-	_	_			
00.40	U-0 U-0									
23:16	_	_	_	_	1	_	-	_		
45.0	R/W-0 R/W-0									
15:8	POLLCON<15:8>									
7:0	R/W-0 R/W-0									
				POLLCO	N<7:0>					

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 POLLCON<15:0>: Buffer Descriptor Processor Poll Status bits

These bits indicate the number of cycles the BDP would wait before refetching the descriptor control word if the previous descriptor fetched was disabled.

REGISTER 22-19: SQI1BDTXDSTAT: SQI BUFFER DESCRIPTOR DMA TRANSMIT STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	R-x	R-x	R-x	R-x	U-0	
31:24	_	_	_		TXSTATE<3:0>				
00:40	U-0	U-0	U-0	R-x	R-x	R-x	R-x	R-x	
23:16	_	_	_						
45.0	U-0 U-0								
15:8	_	_	_	_	_	_	_	_	
7.0	R-x R-x								
7:0				TXCURBUF	LEN<7:0>				

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28-25 TXSTATE<3:0>: Current DMA Transmit State Status bits

These bits provide information on the current DMA receive states.

bit 24-21 Unimplemented: Read as '0'

bit 20-16 TXBUFCNT<4:0>: DMA Buffer Byte Count Status bits

These bits provide information on the internal buffer space.

bit 15-8 Unimplemented: Read as '0'

bit 7-0 TXCURBUFLEN<7:0>: Current DMA Transmit Buffer Length Status bits

These bits provide the length of the current DMA transmit buffer.

REGISTER 22-20: SQI1BDRXDSTAT: SQI BUFFER DESCRIPTOR DMA RECEIVE STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	R-x	R-x	R-x	R-x	U-0	
31.24	_	_	_		RXSTATE<3:0>				
00:40	U-0	U-0	U-0	R-x	R-x	R-x	R-x	R-x	
23:16	_	_	_						
45.0	U-0 U-0								
15:8	_	_	_	_	_	_	_	_	
7.0	R-x R-x								
7:0		_		RXCURBUF	LEN<7:0>	_			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28-25 RXSTATE<3:0>: Current DMA Receive State Status bits

These bits provide information on the current DMA receive states.

bit 24-21 Unimplemented: Read as '0'

bit 20-16 RXBUFCNT<4:0>: DMA Buffer Byte Count Status bits

These bits provide information on the internal buffer space.

bit 15-8 Unimplemented: Read as '0'

bit 7-0 RXCURBUFLEN<7:0>: Current DMA Receive Buffer Length Status bits

These bits provide the length of the current DMA receive buffer.

REGISTER 22-21: SQI1THR: SQI THRESHOLD CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24		_	_	_	-	_	_	_
22:16	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	U-0 U-0							
15:8	_	_	_	_	_	_	_	_
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	_	_	_		THRES	S<3:0>	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

bit 3-0 THRES<3:0>: SQI Control Threshold Value bits

The SQI control threshold interrupt is asserted when the amount of space indicated by THRES<6:0> is

available in the SQI control buffer.

REGISTER 22-22: SQI1INTSIGEN: SQI INTERRUPT SIGNAL ENABLE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0 U-0							
31.24	_	_	_		_	_	_	_
22:16	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8					DMAEISE	PKT	BD	CON
	_	_	_	_	DIVIACISE	DONEISE	DONEISE	THRISE
	R/W-0 R/W-0							
7:0	CON	CON	RX	RX	RX	TX	TX	TX
	EMPTYISE	FULLISE	THRISE	FULLISE	EMPTYISE	THRISE	FULLISE	EMPTYISE

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-12 Unimplemented: Read as '0'

bit 11 DMAEISE: DMA Bus Error Interrupt Signal Enable bit

1 = Interrupt signal is enabled

0 = Interrupt signal is disabled

bit 10 **PKTDONEISE:** Receive Error Interrupt Signal Enable bit

1 = Interrupt signal is enabled

0 = Interrupt signal is disabled

bit 9 BDDONEISE: Transmit Error Interrupt Signal Enable bit

1 = Interrupt signal is enabled

0 = Interrupt signal is disabled

bit 8 **CONTHRISE:** Control Buffer Threshold Interrupt Signal Enable bit

1 = Interrupt signal is enabled

0 = Interrupt signal is disabled

bit 7 CONEMPTYISE: Control Buffer Empty Interrupt Signal Enable bit

1 = Interrupt signal is enabled

0 = Interrupt signal is disabled

bit 6 CONFULLISE: Control Buffer Full Interrupt Signal Enable bit

1 = Interrupt signal is enabled

0 = Interrupt signal is disabled

bit 5 **RXTHRISE**: Receive Buffer Threshold Interrupt Signal Enable bit

1 = Interrupt signal is enabled

0 = Interrupt signal is disabled

bit 4 RXFULLISE: Receive Buffer Full Interrupt Signal Enable bit

1 = Interrupt signal is enabled

0 = Interrupt signal is disabled

bit 3 RXEMPTYISE: Receive Buffer Empty Interrupt Signal Enable bit

1 = Interrupt signal is enabled

0 = Interrupt signal is disabled

bit 2 **TXTHRISE:** Transmit Buffer Threshold Interrupt Signal Enable bit

1 = Interrupt signal is enabled

0 = Interrupt signal is disabled

bit 1 TXFULLISE: Transmit Buffer Full Interrupt Signal Enable bit

1 = Interrupt signal is enabled

0 = Interrupt signal is disabled

bit 0 TXEMPTYISE: Transmit Buffer Empty Interrupt Signal Enable bit

1 = Interrupt signal is enabled

0 = Interrupt signal is disabled

REGISTER 22-23: SQI1TAPCON: SQI TAP CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24	_	_	DDRCLKINDLY<5:0>						
00:40	R/W-0 R/W-0								
23:16	SDRDATINDLY<3:0>				DDRDATINDLY<3:0>				
45.0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	_	_	SDRCLKINDLY<5:0>						
7:0	R/W-0 R/W-0								
	DATAOUTDLY<3:0>				CLKOUTDLY<3:0>				

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-30 Unimplemented: Read as '0'

bit 29-24 DDRCLKINDLY<5:0>: SQI Clock Input Delay in DDR Mode bits

These bits are used to add fractional delays to SQI Clock Input while sampling the incoming data in DDR mode

111111 = 64 taps added on clock input

111110 = 63 taps added on clock input

_

.

000001 = 2 taps added on clock input

000000 = 1 tap added on clock input

bit 23-20 SDRDATINDLY<3:0>: SQI Data Input Delay in SDR Mode bits

These bits are used to add fractional delays to SQI Data Output while writing the data to the Flash in SDR mode.

1111 = 16 taps added on data input

1110 = 15 taps added on data input

•

•

0001 = 2 taps added on data input

0000 = 1 tap added on data input

bit 19-16 DDRDATINDLY<3:0>: SQI Data Output Delay in DDR Mode bits

These bits are used to add fractional delays to SQI Data Output while writing the data to the Flash in DDR mode.

1111 = 16 taps added on data input

1110 = 15 taps added on data input

.

0001 = 2 taps added on data input

0000 = 1 tap added on data input

bit 15-14 Unimplemented: Read as '0'

REGISTER 22-23: SQI1TAPCON: SQI TAP CONTROL REGISTER (CONTINUED)

bit 13-8 SDRCLKINDLY<5:0>: SQI Clock Input Delay in SDR Mode bits

These bits are used to add fractional delays to SQI Clock Input while sampling the incoming data in DDR mode

```
111111 = 64 taps added on clock input
```

111110 = 63 taps added on clock input

•

.

.

000001 = 2 taps added on clock input

000000 = 1 tap added on clock input

bit 7-4 DATAOUTDLY<3:0>: SQI Data Output Delay bits

These bits are used to add fractional delays to SQI Data Output while writing the data to the Flash in all modes of operation.

```
1111 = 16 taps added on data output
```

1110 = 15 taps added on data output

•

0001 = 2 taps added on data output

0000 = 1 tap added on data output

bit 3-0 CLKOUTDLY<3:0>: SQI Clock Output Delay bits

These bits are used to add fractional delays to SQI Clock Output while writing the data to the Flash in all modes of operation.

1111 = 16 taps added on clock output

1110 = 15 taps added on clock output

•

.

0001 = 2 taps added on clock output

0000 = 1 tap added on clock output

REGISTER 22-24: SQI1MEMSTAT: SQI MEMORY STATUS CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0 U-0									
31:24	_	_	_	-	_	_	_	_		
00.40	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	_	_	_	STATPOS	STATTYPE<1:0>		STATBYTES<1:0>			
45.0	R/W-0 R/W-0									
15:8	STATCMD<15:8>									
7:0	R/W-0 R/W-0									
				STATCM	D<7:0>					

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-21 Unimplemented: Read as '0'

bit 20 STATPOS: Status Bit Position in Flash bit

Indicates the BUSY bit position in the Flash Status register. This bit is added to support all Flash types (with BUSY bit at 0 and at 7).

1 = BUSY bit position is bit 7 in status register

0 = BUSY bit position is bit 0 in status register

bit 19-18 STATTYPE<1:0>: Status Command Lane Mode bits

11 = Reserved

- 10 = Status command and read are executed in Quad Lane mode
- 01 = Status command and read are executed in Dual Lane mode
- 00 = Status command and read are executed in Single Lane mode

bit 17-16 STATBYTES<1:0>: Number of Status Bytes bits

- 11 = Reserved
- 10 = Status command is 2 bytes long
- 01 = Status command is 1 byte long
- 00 = Reserved

bit 15-0 STATCMD<15:0>: Status Command bits

The status check command is written into these bits

REGISTER 22-25: SQI1XCON3: SQI XIP CONTROL REGISTER 3

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24	-	-	_	INIT1SCHECK	INIT1CO	UNT<1:0>	INIT1TYPE<1:0>			
22.46	R/W-0 R/W-0									
23:16	INIT1CMD3<7:0>									
15.0	R/W-0 R/W-0									
15:8	INIT1CMD2<7:0>									
7:0	R/W-0 R/W-0									
				INIT1CMD1	<7:0>					

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28 INIT1SCHECK: Flash Initialization 1 Command Status Check bit

1 = Check the status after executing the INIT1 commands

0 = Do not check the status

bit 27-26 INIT1COUNT<1:0>: Flash Initialization 1 Command Count bits

11 = INIT1CMD1, INIT1CMD2, and INIT1CMD3 are sent

10 = INIT1CMD1 and INIT1CMD2 are sent, but INIT1CMD3 is still pending

01 = INIT1CMD1 is sent, but INIT1CMD2 and INIT1CMD3 are still pending

00 = No commands are sent

bit 25-24 INIT1TYPE<1:0>: Flash Initialization 1 Command Type bits

11 = Reserved

10 = INIT1 commands are sent in Quad Lane mode

01 = INIT1 commands are sent in Dual Lane mode

00 = INIT1 commands are sent in Single Lane mode

bit 24-16 INIT1CMD3<7:0>: Flash Initialization Command 3 bits

Third command of the Flash initialization.

bit 15-8 INIT1CMD2<7:0>: Flash Initialization Command 2 bits

Second command of the Flash initialization.

bit 7-0 INIT1CMD1<7:0>: Flash Initialization Command 1 bits

First command of the Flash initialization.

Note: Some Flash devices require write enable and sector unprotect commands before write/read operations and this register is useful in working with those Flash types (XIP mode only)

REGISTER 22-26: SQI1XCON4: SQI XIP CONTROL REGISTER 4

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24	_	_	_	INIT2SCHECK	INIT2CO	UNT<1:0>	INIT2TYPE<1:0>				
22.46	R/W-0 R/W-0										
23:16	INIT2CMD3<7:0>										
45.0	R/W-0 R/W-0										
15:8	INIT2CMD2<7:0>										
7:0	R/W-0 R/W-0										
				INIT2CMD1	<7:0>			·			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

'1' = Bit is set -n = Value at POR '0' = Bit is cleared x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28 INIT2SCHECK: Flash Initialization 2 Command Status Check bit

1 = Check the status after executing the INIT2 commands

0 = Do not check the status

bit 27-26 INIT2COUNT<1:0>: Flash Initialization 2 Command Count bits

11 = INIT2CMD1, INIT2CMD2, and INIT2CMD3 are sent

10 = INIT2CMD1 and INIT2CMD2 are sent, but INIT2CMD3 is still pending

01 = INIT2CMD1 is sent, but INIT2CMD2 and INIT2CMD3 are still pending

00 = No commands are sent

bit 25-24 INIT2TYPE<1:0>: Flash Initialization 2 Command Type bits

11 = Reserved

10 = INIT2 commands are sent in Quad Lane mode

01 = INIT2 commands are sent in Dual Lane mode

00 = INIT2 commands are sent in Single Lane mode

bit 24-16 INIT2CMD3<7:0>: Flash Initialization Command 3 bits

Third command of the Flash initialization.

bit 15-8 INIT2CMD2<7:0>: Flash Initialization Command 2 bits

Second command of the Flash initialization.

bit 7-0 INIT2CMD1<7:0>: Flash Initialization Command 1 bits

First command of the Flash initialization.

Note: Some Flash devices require write enable and sector unprotect commands before write/read operations and

this register is useful in working with those Flash types (XIP mode only)

23.0 INTER-INTEGRATED CIRCUIT (I²C)

Note:

This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 24. "Inter-Integrated Circuit (I²C)" (DS60001116), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The I²C module provides complete hardware support for both Slave and Multi-Master modes of the I²C serial communication standard.

Each I²C module has a 2-pin interface:

- · SCLx pin is clock
- · SDAx pin is data

Each I²C module offers the following key features:

- I²C interface supporting both master and slave operation
- I²C Slave mode supports 7-bit and 10-bit addressing
- I²C Master mode supports 7-bit and 10-bit addressing
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for the I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation; detects bus collision and arbitrates accordingly
- · Provides support for address bit masking
- · SMBus support

Figure 23-1 illustrates the I²C module block diagram.

FIGURE 23-1: I²C BLOCK DIAGRAM

TABLE 23-1: 12C1 THROUGH 12C5 REGISTER MAP I²C Control Registers

		00	10	00	00	0.0	00	00	0.0	ō	00	00	0.0	0.0	0.0	00	10	0.0	0.0	ō	0.0	0.0	0.0	0.0	00	0.0	0.0	0.0	0.0	0.0	10	0.0	0.0	0	00	ł
	16/0	DHEN	SEN	I	TBF	I		I		I		I		Ι		DHEN	SEN	I	TBF	_		1		I		I		-		DHEN	SEN	Ι	TBF	1		
	17/1	AHEN	RSEN	1	RBF	I		I		I		I		I		AHEN	RSEN	I	RBF			_		1		I		-		AHEN	RSEN	I	RBF	1		
	18/2	SBCDE	PEN	ı	R/W	I		I		I		I		I		SBCDE	PEN	I	R/W	-	•	1		-		I		1		SBCDE	PEN	I	R/W	1		
	19/3	SDAHT	RCEN	ı	S	I		I		I		I	\TA<7:0>	I	\TA<7:0>	SDAHT	RCEN	I	S	1	•	1		ı		I	\TA<7:0>	1	\TA<7:0>	SDAHT	RCEN	I	S	I		
	20/4	BOEN	ACKEN	1	Ь	I	<0:6>	I	<0:6>	-		I	I2C1TXDATA<7:0>	I	I2C1RXDATA<7:0>	BOEN	ACKEN	-	Ь	-	<0:6>	1	<0:6>	1		I	I2C2TXDATA<7:0>	-	I2C2RXDATA<7:0>	BOEN	ACKEN	I	Ь	1	<0:6>	
	21/5	SCIE	ACKDT	I	D/A	I	ADD<9:0>	I	<0:6>QV	I		I		I		SCIE	ACKDT	I	D/A	I	ADD<9:0>	I	MSK<9:0>	I		I		ı		SCIE	ACKDT	I	D/A	I	ADD<9:0>	
	22/6	PCIE	STREN	1	ISCOV	I		I		1		I		I		PCIE	STREN	1	ISCOV	ı		1		I		I		I		PCIE	STREN	I	ISCOV	I		
Bits	23/7	1	GCEN	1	IWCOL	_		I		_	I2C1BRG<15:0>	I		_		_	NEO5	_	IWCOL	-		1		_	I2C2BRG<15:0>	_		Ι		_	CCEN	_	IWCOL	I		
Ē	24/8	I	SMEN	I	ADD10	_		I		_	I2C1BR	I	_	-	_	_	SMEN	_	ADD10	-		1		_	12C2BR	_	-	-	1	-	SMEN	_	ADD10	l		leadecimal Peset values are shown in hexadecimal
	25/9	1	DISSLW	1	GCSTAT	I		I		I		I	_	Ι	Ι	_	MISSID	I	GCSTAT	Ι		I		ı		I	1	I	I	I	MISSID	Ι	GCSTAT	ı		d di dwoda
	26/10	1	A10M	1	BCL	-	_	I	-	_		I	_	_	_	_	A10M	_	BCL	_	I	1	-	_		Ι	-	_	-	-	A10M	_	BCL	I	ı	t value are
	27/11	1	STRICT	1	I	_	_	I	_	_		I	_	—		_	STRICT	_	Ι	_	1	Ι	_	_		_	_	_	—	_	STRICT		Ι	1	1	oaod (∪, ac
	28/12	1	SCLREL	1	_	I	1	-	I	1		I	_	I	I	I	SCLREL	1	_	_	1	_	I	1		I	_	-	_	1	SCLREL	I	_	1	ı	
	29/13	I	SIDL	1	ACKTIM	ı	1	I	ı	1		1	-	I	I	I	SIDL	1	ACKTIM	I	I	I	ı	ı		ı	_	I	I	I	SIDL	I	ACKTIM	I	I	amalumiun
	30/14	1	I	I	TRSTAT	I	1	I	I	1		I	-	I	I	I	_	1	TRSTAT	I	1	I	I	ı		I	_	I	-	1	I	I	TRSTAT	I	I	* = unknown value on Beset: - = unimplemented
	31/15	1	NO	1	ACKSTAT	I	1	1	I	1		I	_	I	I	1	ON	1	ACKSTAT	_	1	_	I	-		I	_	_		1	ON	I	ACKSTAT	1	ı	l no enley n
!	Bit Range	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	nknow
	Register Name ⁽¹⁾		IZCICON		IZCISIAI	004	IZCIADD	70041001	NOW DZ		ולכוופאפ	TAGE TAGE	IZC I RIN	700100	2010	NOOCOCI	IZOZOGIA		IZCZSIAI	חחייים	IZOZADD	NOVICOCI	ISCEMISM	000	IZCZBRG		IZCZIRIN	/\JacJcl	אטאסטפו		IZCOCOIN	TATOCOCI	IZC33IAI	חחקיטטו	עטאנטאן	
ss	Virtual Addre (#_2878)	0	0000	2	0100		0000		0000	0,00	0040	0	nenn	0000	0000	0000	0200	2	0210	0000	0220	0000	0520	0,00	0240	0	0620	0360	0070	040	0400	7	0.4	00,00	0470	- puend

÷ Note

All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

25011 25010 2509 2408 2307 2206 2415 2014 1913 1912 1711 1600 60	2C1 THROUGH I2C5 REGISTE						R MAP (CONTINUED)	NITNO	UED)	Bits	(4)								
24/8 24/8 24/8 237 2266 21/6 2044 1913 1912 1914 1916 1914 1916 1914 1916 1914 1916 1914 1916 1914 1916 1914 1916 1914 1916 1914 1916 1914 1916 1914 1916 1914 1916 1914 1916 1914 1914 1916 1914 1	sude									i									stese
	K 31/15 30/14 BB		30/14		29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	AII RA
Coordinate Coo	31:16 — —	1	I	+	I	Ι	1	I	I	I	1	I	I	I	I	I	I	ı	0000
1	15:0 — —	1	I		Ι	-	1	-					ADD	<0:6>					0000
Color Colo	31:16 — — —		1		1	1	1	1	I	I	-	Ι	1	I	1	-	1	1	0000
No.	15:0									12C3BRG	<15:0>								0000
Color Colo	31:16 — — —		I		I	I	1	1	I	1	1	1	I	1	Ι	I	1	ı	0000
Colored Colo	15:0 — —		1		Ι	-	-	1	I	I				12C3TXD#	4TA<7:0>				0000
Color Colo	31:16 — — —	-	I	-	-	_	_	1	I	I	-	-	-	I	Ι	_	_		0000
No. Colore Colo	15:0 — —		1	-	1	-	_	1	I	I				12C3RXD/	ATA<7:0>				0000
Side Sciret Strict Atom Dissum Smein Sace Strict Ackor Ack	31:16 — -	<u> </u>		_	I	Ι	1	1	I	I	I	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN		0000
Column C	15:0 ON	NO			SIDL	SCLREL	STRICT		DISSLW	SMEN		STREN	ACKDT	ACKEN	RCEN	PEN	RSEN		1000
ACKTIM	31:16 —	_		_	1	1	1	1	I	I	-	Ι	1	I	1	-	1	1	0000
Color Colo	ACKSTAT		IR	TRSTAT	ACKTIM	1	1				IWCOL	IZCOV	D/A	Ь	S	R/W	RBF		0000
Color Colo	31:16 —	1		1	1	1	-	1	Ι	Ι	1	Ι	Ι	Ι	1	1	-	1	0000
Color Colo	15:0 —	1		1	I	1	1	1					ADD.	<0:6>					0000
Color Colo	31:16 —	-		_	-	_	_	1	I	I	-	-	-	I	Ι	_	_		0000
Color Colo	15:0 —	1		_	-	-	-	I					ADD	<0:6>					0000
Name	31:16 —	-		1	I	1	1	1	I	I	1	I	1	I	1	1	1	1	0000
Color Colo	15:0									12C4BRG	<15:0>								0000
	31:16 —	-		1	1	1	-	1	Ι	Ι	1	Ι	Ι	Ι	1	1	-	1	0000
Cartior Cart	15:0	1		1	1	1	1	1	I	ı				I2C4TXD/	4TA<7:0>				0000
California Cal	31:16 —	1		1	1	Ι	1	1	Ι	I	I	Ι	I	Ι	1	1	-	1	0000
POIE SOLE BOEN SBAHT SBCDE AHEN DHEN SIDL SCIREL STRICT 410M DISSLW SMEN GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN	15:0	1		1	1	-	_	1	I	I				I2C4RXD/	ATA<7:0>				0000
SIDL STRICT A10M DISSLW SMEN GCEN STREN ACKDT ACCT ACCT ACCT ACCT ACCT ACCT </td <td></td> <td>1</td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>I</td> <td>1</td> <td>1</td> <td>PCIE</td> <td>SCIE</td> <td>BOEN</td> <td>SDAHT</td> <td>SBCDE</td> <td>AHEN</td> <td></td> <td>0000</td>		1		1	1	1	1	1	I	1	1	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN		0000
- -	15:0 ON	NO		1	SIDL	SCLREL	STRICT	+	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN		1000
ACKTIM	I	_		1	I	I	1		-	-	I	I	I	I	1	I	I		0000
	ACKSTAT	_	F	RSTAT	ACKTIM	I	I	1	\dashv	-	IWCOL	ISCOV	D/A	۵	S	R/W	RBF		0000
- - - ADD-9:0> - - - - - - - - - -	31:16 —	1		1	I	1	1	1	I	I	I	1	I	I	1	1	1	1	0000
- - - - - - - - - -	15:0 —	1		1	I	1	1	I	•	-	•		ADD	<0:6>	•		•		0000
- - ADD<9:0> - - - - - - - - - -	31:16 —	I		I	I	1	1	1	ı	1	ı	I	I	1	I	I	I	1	0000
- - - - - - - - - -	15:0	-		1	I	Ι	1	1					ADD*	<0:6>					0000
C5BBG<15:0>	31:16 —	-		1	I	1	1	1	I	I	1	I	1	I	1	1	1	1	0000
	15:0									12C5BRG	<15:0>								0000
C4TXDATA<7:0>	31:16 —	-		1	1	-	-	-	1	1	-	1	-	1	1	_	-	_	0000
	15:0	1		1	I	1	1	1	I	I				I2C4TXD/	4TA<7:0>				0000
	31:16 —	-		1	I	1	1	1	I	I	1	I	1	I	1	1	1	1	0000
	15:0	1		ı	1	1	1	1	1	I				I2C4RXD/	ATA<7:0>				0000

All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information. ÷

REGISTER 23-1: I2CxCON: I²C CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0 U-0							
31.24	_	_	_	_	_	_	_	_
22:46	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	_	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN
15:8	R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0
15.6	ON	_	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN
7:0	R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC
7:0	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN

Legend:HC = Cleared in HardwareR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

- bit 31-23 Unimplemented: Read as '0'
- bit 22 **PCIE**: Stop Condition Interrupt Enable bit (I²C Slave mode only)
 - 1 = Enable interrupt on detection of Stop condition
 - 0 = Stop detection interrupts are disabled
- bit 21 **SCIE**: Start Condition Interrupt Enable bit (I²C Slave mode only)
 - 1 = Enable interrupt on detection of Start or Restart conditions
 - 0 = Start detection interrupts are disabled
- bit 20 **BOEN:** Buffer Overwrite Enable bit (I²C Slave mode only)
 - 1 = I2CxRCV is updated and ACK is generated for a received address/data byte, ignoring the state of the I2COV bit (I2CxSTAT<6>)only if the RBF bit (I2CxSTAT<2>) = 0
 - 0 = I2CxRCV is only updated when the I2COV bit (I2CxSTAT<6>) is clear
- bit 19 SDAHT: SDA Hold Time Selection bit
 - 1 = Minimum of 300 ns hold time on SDA after the falling edge of SCL
 - 0 = Minimum of 100 ns hold time on SDA after the falling edge of SCL
- bit 18 SBCDE: Slave Mode Bus Collision Detect Enable bit (I²C Slave mode only)
 - 1 = Enable slave bus collision interrupts
 - 0 = Slave bus collision interrupts are disabled
- bit 18 AHEN: Address Hold Enable bit (Slave mode only)
 - 1 = Following the 8th falling edge of SCL for a matching received address byte; SCKREL bit will be cleared and the SCL will be held low.
 - 0 = Address holding is disabled
- bit 16 **DHEN:** Data Hold Enable bit (I²C Slave mode only)
 - 1 = Following the 8th falling edge of SCL for a received data byte; slave hardware clears the SCKREL bit and SCL is held low
 - 0 = Data holding is disabled
- bit 15 **ON:** I²C Enable bit
 - 1 = Enables the I²C module and configures the SDA and SCL pins as serial port pins
 - $0 = \text{Disables the } I^2\text{C module; all } I^2\text{C pins are controlled by PORT functions}$
- bit 14 Unimplemented: Read as '0'
- bit 13 SIDL: Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation in Idle mode

REGISTER 23-1: I2CxCON: I²C CONTROL REGISTER (CONTINUED)

- bit 12 **SCLREL:** SCLx Release Control bit (when operating as I²C slave)
 - 1 = Release SCLx clock
 - 0 = Hold SCLx clock low (clock stretch)

If STREN = 1:

Bit is R/W (i.e., software can write '0' to initiate stretch and write '1' to release clock). Hardware clear at beginning of slave transmission. Hardware clear at end of slave reception.

If STREN = 0:

Bit is R/S (i.e., software can only write '1' to release clock). Hardware clear at beginning of slave transmission.

- bit 11 STRICT: Strict I²C Reserved Address Rule Enable bit
 - 1 = Strict reserved addressing is enforced. Device does not respond to reserved address space or generate addresses in reserved address space.
 - 0 = Strict I²C Reserved Address Rule not enabled
- bit 10 A10M: 10-bit Slave Address bit
 - 1 = I2CxADD is a 10-bit slave address
 - 0 = I2CxADD is a 7-bit slave address
- bit 9 **DISSLW:** Disable Slew Rate Control bit
 - 1 = Slew rate control disabled
 - 0 = Slew rate control enabled
- bit 8 SMEN: SMBus Input Levels bit
 - 1 = Enable I/O pin thresholds compliant with SMBus specification
 - 0 = Disable SMBus input thresholds
- bit 7 **GCEN:** General Call Enable bit (when operating as I²C slave)
 - 1 = Enable interrupt when a general call address is received in the I2CxRSR (module is enabled for reception)
 - 0 = General call address disabled
- bit 6 STREN: SCLx Clock Stretch Enable bit (when operating as I²C slave)

Used in conjunction with SCLREL bit.

- 1 = Enable software or receive clock stretching
- 0 = Disable software or receive clock stretching
- bit 5 **ACKDT:** Acknowledge Data bit (when operating as I²C master, applicable during master receive)

Value that is transmitted when the software initiates an Acknowledge sequence.

- 1 = Send NACK during Acknowledge
- 0 = Send ACK during Acknowledge
- bit 4 ACKEN: Acknowledge Sequence Enable bit

(when operating as I²C master, applicable during master receive)

- 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence.
- 0 = Acknowledge sequence not in progress
- bit 3 **RCEN**: Receive Enable bit (when operating as I²C master)
 - 1 = Enables Receive mode for I²C. Hardware clear at end of eighth bit of master receive data byte.
 - 0 = Receive sequence not in progress
- bit 2 **PEN:** Stop Condition Enable bit (when operating as I²C master)
 - 1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence.
 - 0 = Stop condition not in progress
- bit 1 **RSEN:** Repeated Start Condition Enable bit (when operating as I²C master)
 - 1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence.
 - 0 = Repeated Start condition not in progress
- bit 0 **SEN:** Start Condition Enable bit (when operating as I²C master)
 - 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence.
 - 0 = Start condition not in progress

REGISTER 23-2: I2CxSTAT: I²C STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	_	_	_	-	_	_	-	_
00:40	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	R-0, HS, HC	R-0, HS, HC	R/C-0, HS, HC	U-0	U-0	R/C-0, HS	R-0, HS, HC	R-0, HS, HC
15:8	ACKSTAT	TRSTAT	ACKTIM	_	_	BCL	GCSTAT	ADD10
7.0	R/C-0, HS, SC	R/C-0, HS, SC	R-0, HS, HC	R/C-0, HS, HC	R/C-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC
7:0	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF

Legend:HS = Hardware SetHC = Hardware ClearedSC = Software ClearedR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedC = Clearable bit

bit 31-16 Unimplemented: Read as '0'

bit 15 ACKSTAT: Acknowledge Status bit

(when operating as I²C master, applicable to master transmit operation)

- 1 = NACK received from slave
- 0 = ACK received from slave

Hardware set or clear at end of slave Acknowledge.

- bit 14 **TRSTAT:** Transmit Status bit (when operating as I²C master, applicable to master transmit operation)
 - 1 = Master transmit is in progress (8 bits + ACK)
 - 0 = Master transmit is not in progress

Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge.

- bit 13 ACKTIM: Acknowledge Time Status bit (Valid in I²C Slave mode only)
 - 1 = I²C bus is in an Acknowledge sequence, set on 8th falling edge of SCL clock
 - 0 = Not an Acknowledge sequence, cleared on 9th rising edge of SCL clock
- bit 12-11 Unimplemented: Read as '0'
- bit 10 BCL: Master Bus Collision Detect bit
 - 1 = A bus collision has been detected during a master operation
 - 0 = No collision

Hardware set at detection of bus collision.

- bit 9 GCSTAT: General Call Status bit
 - 1 = General call address was received
 - 0 = General call address was not received

Hardware set when address matches general call address. Hardware clear at Stop detection.

- bit 8 ADD10: 10-bit Address Status bit
 - 1 = 10-bit address was matched
 - 0 = 10-bit address was not matched

Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.

- bit 7 IWCOL: Write Collision Detect bit
 - 1 = An attempt to write the I2CxTRN register failed because the I²C module is busy
 - 0 = No collision

Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).

- bit 6 I2COV: Receive Overflow Flag bit
 - 1 = A byte was received while the I2CxRCV register is still holding the previous byte
 - 0 = No overflow

Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).

REGISTER 23-2: I2CxSTAT: I²C STATUS REGISTER (CONTINUED)

- bit 5 **D_A:** Data/Address bit (when operating as I²C slave)
 - 1 = Indicates that the last byte received was data
 - 0 = Indicates that the last byte received was device address

Hardware clear at device address match. Hardware set by reception of slave byte.

- bit 4 P: Stop bit
 - 1 = Indicates that a Stop bit has been detected last
 - 0 = Stop bit was not detected last

Hardware set or clear when Start, Repeated Start or Stop detected.

- bit 3 S: Start bit
 - 1 = Indicates that a Start (or Repeated Start) bit has been detected last
 - 0 = Start bit was not detected last

Hardware set or clear when Start, Repeated Start or Stop detected.

- bit 2 **R_W**: Read/Write Information bit (when operating as I²C slave)
 - 1 = Read indicates data transfer is output from slave
 - 0 = Write indicates data transfer is input to slave

Hardware set or clear after reception of I²C device address byte.

- bit 1 RBF: Receive Buffer Full Status bit
 - 1 = Receive complete, I2CxRCV is full
 - 0 = Receive not complete, I2CxRCV is empty

Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.

- bit 0 TBF: Transmit Buffer Full Status bit
 - 1 = Transmit in progress, I2CxTRN is full
 - 0 = Transmit complete, I2CxTRN is empty

Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

24.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note:

This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107), which available from the Documentation > section of the Reference Manual PIC32 Microchip web site (www.microchip.com/pic32).

The UART module is one of the serial I/O modules available in PIC32MZ DA family devices. The UART is a full-duplex, asynchronous communication channel that communicates with peripheral devices and personal computers through protocols, such as RS-232, RS-485, LIN, and IrDA®. The module also supports the hardware flow control option, with UxCTS and UxRTS pins, and also includes an IrDA encoder and decoder.

The primary features of the UART module are:

- · Full-duplex, 8-bit or 9-bit data transmission
- Even, Odd or No Parity options (for 8-bit data)
- · One or two Stop bits
- · Hardware auto-baud feature
- · Hardware flow control option
- Fully integrated Baud Rate Generator (BRG) with 16-bit prescaler
- Baud rates ranging from 76 bps to 25 Mbps at 100 MHz (PBCLK2)
- 8-level deep First-In-First-Out (FIFO) transmit data buffer
- · 8-level deep FIFO receive data buffer
- · Parity, framing and buffer overrun error detection
- Support for interrupt-only on address detect (9th bit = 1)
- · Separate transmit and receive interrupts
- · Loopback mode for diagnostic support
- · LIN Protocol support
- IrDA encoder and decoder with 16x baud clock output for external IrDA encoder/decoder support
- · Auto-baud support
- · Ability to receive data during Sleep mode

Figure 24-1 illustrates a simplified block diagram of the UART module.

FIGURE 24-1: UART SIMPLIFIED BLOCK DIAGRAM

24.1 UART Control Registers
TABLE 24-1: UART1 THROUGH UART6 REGISTER MAP

									Biř	Ų								
	ə					=		•	5	ú								S
Register Name	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	JəsəЯ IIA
11110001	31:16	1	1	1	ı	1	1	1	1	SLPEN	ACTIVE	-	-	-	CLKSE	CLKSEL<1:0>	RUNOVF	0000
, L	15:0	NO	_	SIDL	IREN	RTSMD	Ι	UEN<1:0>	1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL<1:0>	-<1:0>	STSEL	0000
111CTA(1)	31:16				MASK<7:0>	<0:2							ADDR<7:0>	<0:2>				0000
, A	15:0	UTXISEL<1:0>	:L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL<1:0>	:L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
CHONT	31:16	1	_	_	I	I	1	I	I	I	ı	_	-	I	_	I	Ι	0000
ה ה	15:0	_	_	_	I	I	1	I	TX8				Transmit	Transmit Register				0000
O D D V D L L	31:16	I	I	_	-	Ι	Ι	Ι	ı	Ι	ı	1	-	_	_	I	I	0000
ם ה	15:0	-	_	_	I	I	1	I	RX8				Receive	Receive Register				0000
(1)	31:16	-	_	_	I	I	1	I	I	I	I	1	1	I	1	I	Ι	0000
בר בר בר	15:0							Baud	Baud Rate Generator Prescaler	rator Presc	caler							0000
(1)	31:16	I	I	I	I	I	I	I	I	SLPEN	ACTIVE	1	1	I	CLKSE	CLKSEL<1:0>	RUNOVF	0000
JUE!	15:0	NO	1	SIDL	IREN	RTSMD	I	UEN<1:0>	1:0>	WAKE	LPBACK	ABAUD	RXINV	ВВСН	PDSEL<1:0>	-<1:0>	STSEL	0000
(1) A T 2 C I	31:16				MASK	K<7:0>							ADDR	ADDR<7:0>				0000
, A.	15:0	UTXISEL<1:0>	:L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL<1:0>	:L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
DIOTYPEC	31:16	I	I	-	-	Ι	I	I	I	Ι	ı	I	-	_	-	I	I	0000
טבאו	15:0	_	_	_	1	I	1	1	TX8				Transmit	Transmit Register				0000
Cadvaci	31:16	I	1	1	Ι	I	I	Ι	I	Ι	I	1	I	_	1	I	I	0000
ם ב ב	15:0	-	_	_	I	I	1	I	RX8				Receive	Receive Register				0000
(1)	31:16	1	-	-	I	I	1	I	1	I	I	1	I	I	1	I	Ι	0000
ָ ֪֖֖֖֖֖֖֖֖֖	15:0							Baud	Baud Rate Generator Prescaler	erator Preso	saler							0000
(1)	13MODE(1) 31:16	I	I	_	-	I	Ι	1	I	SLPEN	ACTIVE	1	1	_	CLKSE	CLKSEL<1:0>	RUNOVF	0000
ODE.	15:0	ON	_	SIDL	IREN	RTSMD	-	UEN<1:0>	1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL<1:0>	-<1:0>	STSEL	0000
113CTA(1)	31:16				MASK<7:0>	<0:2>							ADDR	ADDR<7:0>				0000
		UTXISEL<1:0>	:L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL<1:0>	:L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
INTXPEG	(.)	_	_	_	1	Ι	_	1	-	Ι	_	_	_	Ι	_	Ι	Ι	0000
) 	15:0	1	1	1	1	I	1	1	TX8				Transmit	Transmit Register				0000
Sayası	(.)	_	_	-	1	I	1	I	1	1	1	-	_	I	-	I	Ι	0000
		-	_	1	1	1	1	1	RX8				Receive	Receive Register				0000
13BBG(1)	ന	I	1	1	1	I	1	I	I	I	I	1	1	I	1	I	I	0000
D	15:0							Band	Baud Rate Generator Prescaler	rator Preso	saler							0000
= 	Inknown	value on F	Seset: — =	unimpleme	nted, read a	x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal	values are	shown in h	exadecimal									

This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information. ÷

31/15 30/14 29/13	13 28/12	27/11 ———————————————————————————————————	26/10											!
4	<u>8</u>		26/10											steses
	RU RU	1.V.		25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	A IIA
	R N	I.V.	ı	I	ı	SLPEN	ACTIVE	1	1	1	CLKSEL<1:0>	-<1:0>	RUNOVF	0000
	an in in	K<7:0>	ı	UEN<1:0>	1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL<1:0>	<1:0>	STSEL	0000
									ADDR	ADDR<7:0>				0000
		UTXBRK	UTXEN	UTXBF	TRMT	URXISEL<1:0>	L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
		I	I	1	I	I	-	I	-	_	-	I	I	0000
1 1 1	1 1 1	I	I	I	TX8				Transmit	Transmit Register				0000
1 1	1 1	I	I	1	ı	I	_	-	_	_	_	ı	I	0000
1	1	I	1	ı	RX8				Receive	Receive Register				0000
		ı	I	I	I	I	-	1	1	I	1	1	I	0000
				Baud	Baud Rate Generator Prescaler	rator Presc	aler							0000
1	1	I	1	ı	1	SLPEN	ACTIVE	ı	I	I	CLKSEL<1:0>	-<1:0>	RUNOVF	0000
NO NO	DL IREN	RTSMD	ı	UEN<1:0>	1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL<1:0>	<1:0>	STSEL	0000
	MASK	K<7:0>							ADDR	ADDR<7:0>				0000
UTXISEL<1:0> UTXINV	INV URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL<1:0>	L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
1	1	I	1	I	I	I	1	1	1	I	1	1	I	0000
1	1	I	I	I	TX8				Transmit	Transmit Register				0000
 - -	I	I	I	1	ı	I	_	-	_	_	_	ı	I	0000
1	1	I	I	I	RX8				Receive	Receive Register				0000
1	1	I	I	Ι	I	I	_	-	-	-	-	I	I	0000
				Baud	Baud Rate Generator Prescaler	rator Presc	aler							0000
 	1	I	I	I	I	SLPEN	ACTIVE	-	_	_	CLKSEL<1:0>	-<1:0>	RUNOVF	0000
ON - SIDI	DL IREN	RTSMD	1	UEN<1:0>	1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL<1:0>	<1:0>	STSEL	0000
	MASK	K<7:0>							ADDR	ADDR<7:0>				0000
UTXISEL<1:0> UTXINV	INV URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL<1:0>	L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
1	1	Ι	1	I	1	1	-	_	_	I		1	I	0000
1	-	Ι	1	1	TX8				Transmit	Transmit Register				0000
-		1	1	-	1	1	_		_	_	_	_	1	0000
1	1	1	1	1	RX8				Receive	Receive Register				0000
1	1	1	1	1	1	1	1	-	1	1	1	1	1	0000
				Baud	Baud Rate Generator Prescaler	rator Presc	aler							0000

This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

© 2015-2017 Microchip Technology Inc.

÷

TABLE 24-1: UART1 THROUGH UART6 REGISTER MAP (CONTINUED)

REGISTER 24-1: UxMODE: UARTx MODE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	_	_	-	_	1	_	_	_
00:40	R/W-0	R-0, HS, HC	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
23:16	SLPEN	ACTIVE	_	_	-	CLKSE	L<1:0>	RUNOVF
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
15:8	ON	_	SIDL	IREN	RTSMD	_	UEN<	1:0> ⁽¹⁾
7.0	R/W-0 R/W-0							
7:0	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL	<1:0>	STSEL

Legend:HS = Hardware setHC = Hardware clearedR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23 SLPEN: Run During Sleep Enable bit

1 = UARTx BRG clock runs during Sleep mode

0 = UARTx BRG clock is turned off during Sleep mode

Note: SLPEN = 1 only applies if CLKSEL = FRC. All clocks, as well as the UART, are disabled in Deep

Sleep mode.

bit 22 ACTIVE: UARTx Module Running Status bit

1 = UARTx module is active (UxMODE register should not be updated)

0 = UARTx module is not active (UxMODE register can be updated)

bit 21-19 Unimplemented: Read as '0'

bit 18-17 CLKSEL<1:0>: UARTx Module Clock Selection bits

11 = BRG clock is PBCLK2

10 = BRG clock is FRC

01 = BRG clock is SYSCLK (turned off in Sleep mode)

00 = BRG clock is PBCLK2 (turned off in Sleep mode)

bit 16 **RUNOVF:** Run During Overflow Condition Mode bit

- 1 = When an Overflow Error (OERR) condition is detected, the shift register continues to run to remain synchronized
- 0 = When an Overflow Error (OERR) condition is detected, the shift register stops accepting new data (Legacy mode)

bit 15 ON: UARTx Enable bit

- 1 = UARTx module is enabled. UARTx pins are controlled by UARTx as defined by UEN<1:0> and UTXEN control bits
- 0 = UARTx module is disabled. All UARTx pins are controlled by corresponding bits in the PORTx, TRISx, and LATx registers; UARTx power consumption is minimal
- bit 14 Unimplemented: Read as '0'
- bit 13 SIDL: Stop in Idle Mode bit
 - 1 = Discontinue operation when device enters Idle mode
 - 0 = Continue operation in Idle mode
- Note 1: These bits are present for legacy compatibility, and are superseded by PPS functionality on these devices (see Section 12.4 "Peripheral Pin Select (PPS)" for more information).

REGISTER 24-1: UxMODE: UARTx MODE REGISTER (CONTINUED)

- bit 12 IREN: IrDA® Encoder and Decoder Enable bit
 - 1 = IrDA is enabled
 - 0 = IrDA is disabled
- bit 11 RTSMD: Mode Selection for UxRTS Pin bit
 - $1 = \overline{\text{UxRTS}}$ pin is in Simplex mode
 - $0 = \overline{\text{UxRTS}}$ pin is in Flow Control mode
- bit 10 Unimplemented: Read as '0'
- bit 9-8 **UEN<1:0>:** UARTx Module Enable bits⁽¹⁾
 - 11 = UxTX, UxRX and UxBCLK pins are enabled and used; UxCTS pin is controlled by corresponding bits in the PORTx register
 - 10 = UxTX, UxRX, $\overline{\text{UxCTS}}$ and $\overline{\text{UxRTS}}$ pins are enabled and used
 - 01 = UxTX, UxRX and $\overline{\text{UxRTS}}$ pins are enabled and used; $\overline{\text{UxCTS}}$ pin is controlled by corresponding bits in the PORTx register
 - 00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/UxBCLK pins are controlled by corresponding bits in the PORTx register
- bit 7 WAKE: Enable Wake-up on Start bit Detect During Sleep Mode bit
 - 1 = Wake-up enabled
 - 0 = Wake-up disabled
- bit 6 LPBACK: UARTx Loopback Mode Select bit
 - 1 = Loopback mode is enabled
 - 0 = Loopback mode is disabled
- bit 5 ABAUD: Auto-Baud Enable bit
 - 1 = Enable baud rate measurement on the next character requires reception of Sync character (0x55); cleared by hardware upon completion
 - 0 = Baud rate measurement disabled or completed
- bit 4 RXINV: Receive Polarity Inversion bit
 - 1 = UxRX Idle state is '0'
 - 0 = UxRX Idle state is '1'
- bit 3 BRGH: High Baud Rate Enable bit
 - 1 = High-Speed mode 4x baud clock enabled
 - 0 = Standard Speed mode 16x baud clock enabled
- bit 2-1 PDSEL<1:0>: Parity and Data Selection bits
 - 11 = 9-bit data, no parity
 - 10 = 8-bit data, odd parity
 - 01 = 8-bit data, even parity
 - 00 = 8-bit data, no parity
- bit 0 STSEL: Stop Selection bit
 - 1 = 2 Stop bits
 - 0 = 1 Stop bit
- Note 1: These bits are present for legacy compatibility, and are superseded by PPS functionality on these devices (see Section 12.4 "Peripheral Pin Select (PPS)" for more information).

REGISTER 24-2: UxSTA: UARTX STATUS AND CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0 R/W-0							
31:24				MASK<	<7:0>			
00:40	R/W-0 R/W-0							
23:16				ADDR<	<7:0>			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-1
15:8	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT
7.0	R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/W-0	R-0
7:0	URXISE	L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-25 MASK<7:0>: UARTx Address Match Mask bits

These bits are used to mask the ADDR<7:0> bits.

11111111 = Corresponding ADDRx bits are used to detect the address match

Note: This setting allows the user to assign individual address as well as a group broadcast address to a UART.

00000000 = Corresponding ADDRx bits are not used to detect the address match.

bit 23-16 ADDR<7:0>: Automatic Address Mask bits

When the ADDEN bit is '1', this value defines the address character to use for automatic address detection.

bit 15-14 UTXISEL<1:0>: TX Interrupt Mode Selection bits

- 11 = Reserved, do not use
- 10 = Interrupt is generated and asserted while the transmit buffer is empty
- 01 = Interrupt is generated and asserted when all characters have been transmitted
- 00 = Interrupt is generated and asserted while the transmit buffer contains at least one empty space

bit 13 UTXINV: Transmit Polarity Inversion bit

If IrDA mode is disabled (i.e., IREN (UxMODE<12>) is '0'):

- 1 = UxTX Idle state is '0'
- 0 = UxTX Idle state is '1'

If IrDA mode is enabled (i.e., IREN (UxMODE<12>) is '1'):

- 1 = IrDA encoded UxTX Idle state is '1'
- 0 = IrDA encoded UxTX Idle state is '0'

bit 12 URXEN: Receiver Enable bit

- 1 = UARTx receiver is enabled. UxRX pin is controlled by UARTx (if ON = 1)
- 0 = UARTx receiver is disabled. UxRX pin is ignored by the UARTx module

Note: The event of disabling an enabled receiver will release the RX pin to the PORT function; however, the receive buffers *will not* be reset. Disabling the receiver has no effect on the receive status flags.

bit 11 UTXBRK: Transmit Break bit

- 1 = Send Break on next transmission. Start bit followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
- 0 = Break transmission is disabled or completed

REGISTER 24-2: UXSTA: UARTX STATUS AND CONTROL REGISTER (CONTINUED)

- bit 10 UTXEN: Transmit Enable bit
 - 1 = UARTx transmitter is enabled. UxTX pin is controlled by UARTx (if ON = 1)
 - 0 = UARTx transmitter is disabled. Any pending transmission is aborted and buffer is reset
 - **Note:** The event of disabling an enabled transmitter will release the TX pin to the PORT function and reset the transmit buffers to empty. Any pending transmission is aborted and data characters in the transmit buffers are lost. All transmit status flags are cleared and the TRMT bit is set
- bit 9 **UTXBF:** Transmit Buffer Full Status bit (read-only)
 - 1 = Transmit buffer is full
 - 0 = Transmit buffer is not full, at least one more character can be written
- bit 8 **TRMT:** Transmit Shift Register is Empty bit (read-only)
 - 1 = Transmit shift register is empty and transmit buffer is empty (the last transmission has completed)
 - 0 = Transmit shift register is not empty, a transmission is in progress or queued in the transmit buffer
- bit 7-6 URXISEL<1:0>: Receive Interrupt Mode Selection bit
 - 11 = Reserved
 - 10 = Interrupt flag bit is asserted while receive buffer is 3/4 or more full
 - 01 = Interrupt flag bit is asserted while receive buffer is 1/2 or more full
 - 00 = Interrupt flag bit is asserted while receive buffer is not empty (i.e., has at least 1 data character)
- bit 5 **ADDEN:** Address Character Detect bit (bit 8 of received data = 1)
 - 1 = Address Detect mode is enabled. If 9-bit mode is not selected, this control bit has no effect
 - 0 = Address Detect mode is disabled
- bit 4 RIDLE: Receiver Idle bit (read-only)
 - 1 = Receiver is Idle
 - 0 = Data is being received
- bit 3 **PERR:** Parity Error Status bit (read-only)
 - 1 = Parity error has been detected for the current character
 - 0 = Parity error has not been detected
- bit 2 **FERR:** Framing Error Status bit (read-only)
 - 1 = Framing error has been detected for the current character
 - 0 = Framing error has not been detected
- bit 1 **OERR:** Receive Buffer Overrun Error Status bit.

This bit is set in hardware and can only be cleared (= 0) in software. Clearing a previously set OERR bit resets the receiver buffer and RSR to empty state.

- 1 = Receive buffer has overflowed
- 0 = Receive buffer has not overflowed
- bit 0 **URXDA:** Receive Buffer Data Available bit (read-only)
 - 1 = Receive buffer has data, at least one more character can be read
 - 0 = Receive buffer is empty

Figure 24-2 and Figure 24-3 illustrate typical receive and transmit timing for the UART module.

FIGURE 24-2: UART RECEPTION

FIGURE 24-3: TRANSMISSION (8-BIT OR 9-BIT DATA)

25.0 PARALLEL MASTER PORT (PMP)

Note:

This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 13. "Parallel Master Port (PMP)"** (DS60001128), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

The PMP is a parallel 8-bit/16-bit input/output module specifically designed to communicate with a wide variety of parallel devices, such as communications peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP module is highly configurable.

Key features of the PMP module include:

- 8-bit,16-bit interface
- Up to 16 programmable address lines
- · Up to two Chip Select lines
- · Programmable strobe options:
 - Individual read and write strobes, or
 - Read/write strobe with enable strobe
- · Address auto-increment/auto-decrement
- · Programmable address/data multiplexing
- · Programmable polarity on control signals
- · Parallel Slave Port support:
 - Legacy addressable
 - Address support
 - 4-byte deep auto-incrementing buffer
- · Programmable Wait states
- · Operate during Sleep and Idle modes
- Separate configurable read/write registers or dual buffers for Master mode
- Fast bit manipulation using CLR, SET, and INV registers

FIGURE 25-1: PMP MODULE PINOUT AND CONNECTIONS TO EXTERNAL DEVICES

25.1 Control Registers
TABLE 25-1: PARALLEL MASTER PORT REGISTER MAP

s	Fll Reset	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	008F	0000	0000	0000	0000	0000	0000	0000	0000	
	16/0	1	RDSP	I	<1:0>	I		I		I		1		1	OB0E	I	1		1	1		I		
	17/1	DUALBUF	WRSP	_	WAITE<1:0>	_		-		_		Ι		_	OB1E	1	1		Ι	_		Ι		
	18/2	I	I	I		I		I		I		1		I	OB2E	I	I		1	I		I		
	19/3	_	CS1P	_	WAITM<3:0>	_		_				-		_	OB3E	1	1		-	_		—		
	20/4	I	CS2P	_	WAITN	_		-		Ι		-		_	1	1	1		-	_		Ι		
	21/5	I	ALP	I		I		I		I		1		I	1	1	1		1	I		I		
	22/6	I	CSF<1:0>	Ι	WAITB<1:0>	Ι	ADDR<13:0>	Ι		I		I		I	OBUF	1	1	WADDR<13:0>	I	I	RADDR<13:0>	I		
Bits	23/7	RDSTART	CSF	I	WAITE	I	ADDR	Ι	DATAOUT<15:0>	I	DATAIN<15:0>	1	PTEN<15:0>	I	OBE	1	1	WADDF	1	I	RADDF	I	RDATAIN<15:0>	
В	24/8	I	PTRDEN	I	MODE<1:0>	I		I	DATAOL	I	DATAIN	1	PTEN	I	IB0F	1	1		1	I		I	RDATAI	exadecima
	25/9	I	PTWREN	_	MODE	_		-		Ι		1		_	IB1F	1	1		1	_		Ι		shown in h
	26/10	I	PMPTTL	-	MODE16	-		Ι		_		-		_	IB2F	I	I		-	_		Ι		d as '0'. Reset values are shown in hexadecimal.
	27/11	I	MUX<1:0>	I	INCM<1:0>	I		Ι		I		1		I	IB3F	1	1		1	I		I		s '0'. Rese
	28/12	I	ADRML	_	INCM	_		_		-		1		_	1	I	I		1	_		Ι		nted, read a
	29/13	I	SIDL	-	IRQM<1:0>	-		Ι		_		-		_	1	I	I		-	_		Ι		unimpleme
	30/14	I	I	-	IRQM	-	CS1 ADDR14	Ι		_		Ι		_	IBOV	I	WCS1	WADDR15 WADDR14	Ι	RCS1	RADDR15 RADDR14	Ι		x = unknown value on Reset; — = unimplemented, rea
	31/15	I	NO	_	BUSY	_	CS2 ADDR15	-		_		_		_	IBF	I	WCS2	WADDR15	_	RCS2	RADDR15	_		r value on F
e	Bit Range	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	7	15.0	31:16	0.24	0.61	31:16	15:0	nknowı
_	Register Name ⁽¹⁾	INCOM.					PMADDR				N N		ZMAEN	DMCTAT	Z ONL		PMWADDR			PMRADDR			NICK NICK NICK NICK NICK NICK NICK NICK	
ssə.	Virtual Addr (#_2878)		000	0.00			E020	C	E030	C	E040	L	E020	080	0000		E070 F			E080		C	0803	Legend:

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information. x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS60001361E-page 378

REGISTER 25-1: PMCON: PARALLEL PORT CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	_	_	_	_	_	_	_
00.46	R/W-0, HC	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
23:16	RDSTART	_	_	_	_	_	DUALBUF	_
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	ON ⁽¹⁾	_	SIDL	ADRMU	JX<1:0>	PMPTTL	PTWREN	PTRDEN
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
7:0	CSF<	1:0> ⁽²⁾	ALP ⁽²⁾	CS2P ⁽²⁾	CS1P ⁽²⁾		WRSP	RDSP

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23 RDSTART: Start Read on PMP Bus bit

This bit is cleared by hardware at the end of the read cycle.

1 = Start a read cycle on the PMP bus

0 = No effect

bit 22-18 Unimplemented: Read as '0'

bit 17 **DUALBUF:** Parallel Master Port Dual Read/Write Buffer Enable bit

This bit is only valid in Master mode.

1 = PMP uses separate registers for reads and writes

Reads: PMRADDR and PMRDIN Writes: PMRWADDR and PMDOUT

0 = PMP uses legacy registers for reads and writes

Reads/Writes: PMADDR and PMRDIN

bit 16 Unimplemented: Read as '0'

bit 15 **ON:** Parallel Master Port Enable bit⁽¹⁾

1 = PMP enabled

0 = PMP disabled, no off-chip access performed

bit 14 **Unimplemented:** Read as '0'

bit 13 SIDL: Stop in Idle Mode bit

- 1 = Discontinue module operation when device enters Idle mode
- 0 = Continue module operation in Idle mode
- bit 12-11 ADRMUX<1:0>: Address/Data Multiplexing Selection bits
 - 11 = All 16 bits of address are multiplexed on PMD<15:0>
 - 10 = All 16 bits of address are multiplexed on PMD<7:0>
 - 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper 8 bits are on PMA<15:8>

00 = Address and data appear on separate pins

bit 10 PMPTTL: PMP Module TTL Input Buffer Select bit

1 = PMP module uses TTL input buffers

0 = PMP module uses Schmitt Trigger input buffer

bit 9 PTWREN: Write Enable Strobe Port Enable bit

1 = PMWR/PMENB port is enabled

0 = PMWR/PMENB port is disabled

Note 1: When using 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON control bit.

2: These bits have no effect when their corresponding pins are used as address lines.

```
PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED)
REGISTER 25-1:
          PTRDEN: Read/Write Strobe Port Enable bit
           1 = PMRD/PMWR port is enabled
           0 = PMRD/PMWR port is disabled
bit 7-6
          CSF<1:0>: Chip Select Function bits(2)
           11 = Reserved
           10 = PMCS1 and PMCS2 function as Chip Select
           01 = PMCS1 functions as address bit 14; PMCS2 functions as Chip Select
           00 = PMCS1 and PMCS2 function as address bits 14 and 15, respectively
bit 5
          ALP: Address Latch Polarity bit<sup>(2)</sup>
           1 = Active-high (PMALL and PMALH)
           0 = Active-low (\overline{PMALL} \text{ and } \overline{PMALH})
          CS2P: Chip Select 0 Polarity bit<sup>(2)</sup>
bit 4
           1 = Active-high (PMCS2)
           0 = Active-low (\overline{PMCS2})
          CS1P: Chip Select 0 Polarity bit<sup>(2)</sup>
bit 3
           1 = Active-high (PMCS1)
           0 = Active-low (PMCS1)
bit 2
          Unimplemented: Read as '0'
bit 1
          WRSP: Write Strobe Polarity bit
          For Slave Modes and Master mode 2 (MODE<1:0> = 00,01,10):
           1 = Write strobe active-high (PMWR)
           0 = Write strobe active-low (\overline{PMWR})
          For Master mode 1 (MODE<1:0> = 11):
           1 = Enable strobe active-high (PMENB)
           0 = Enable strobe active-low (PMENB)
bit 0
          RDSP: Read Strobe Polarity bit
          For Slave modes and Master mode 2 (MODE<1:0> = 00,01,10):
           1 = Read Strobe active-high (PMRD)
          0 = Read Strobe active-low (PMRD)
          For Master mode 1 (MODE<1:0> = 11):
           1 = Read/write strobe active-high (PMRD/PMWR)
           0 = Read/write strobe active-low (PMRD/PMWR)
```

Note 1: When using 1:1 PBCLK divisor, the user software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON control bit.

2: These bits have no effect when their corresponding pins are used as address lines.

REGISTER 25-2: PMMODE: PARALLEL PORT MODE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	_	_	_	_	_	_	_
22:40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	_	_	_	_	_	_
45.0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	BUSY	IRQM	<1:0>	INCM	<1:0>	MODE16	MODE	E<1:0>
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	WAITB:	<1:0> ⁽¹⁾		WAITM	<3:0> ⁽¹⁾		WAITE	<1:0> ⁽¹⁾

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 **BUSY:** Busy bit (Master mode only)

1 = Port is busy

0 = Port is not busy

bit 14-13 IRQM<1:0>: Interrupt Request Mode bits

- 11 = Reserved, do not use
- 10 = Interrupt generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode) or on a read or write operation when PMA<1:0> =11 (Addressable Slave mode only)
- 01 = Interrupt generated at the end of the read/write cycle
- 00 = No Interrupt generated
- bit 12-11 INCM<1:0>: Increment Mode bits
 - 11 = Slave mode read and write buffers auto-increment (MODE<1:0> = 00 only)
 - 10 = Decrement ADDR<15:0> by 1 every read/write cycle⁽²⁾
 - 01 = Increment ADDR<15:0> by 1 every read/write cycle⁽²⁾
 - 00 = No increment or decrement of address
- bit 10 MODE16: 8/16-bit Mode bit
 - 1 = 16-bit mode: a read or write to the data register invokes a single 16-bit transfer
 - 0 = 8-bit mode: a read or write to the data register invokes a single 8-bit transfer
- bit 9-8 MODE<1:0>: Parallel Port Mode Select bits
 - 11 = Master mode 1 (PMCSx, PMRD/PMWR, PMENB, PMA<x:0>, PMD<7:0> and PMD<8:15>(3))
 - 10 = Master mode 2 (PMCSx, PMRD, PMWR, PMA<x:0>, PMD<7:0> and PMD<8:15>(3))
 - 01 = Enhanced Slave mode, control signals (PMRD, PMWR, PMCS, PMD<7:0> and PMA<1:0>)
 - 00 = Legacy Parallel Slave Port, control signals (PMRD, PMWR, PMCS and PMD<7:0>)
- bit 7-6 **WAITB<1:0>:** Data Setup to Read/Write Strobe Wait States bits⁽¹⁾
 - 11 = Data wait of 4 TPB; multiplexed address phase of 4 TPB
 - 10 = Data wait of 3 TPB; multiplexed address phase of 3 TPB
 - 01 = Data wait of 2 TPB; multiplexed address phase of 2 TPB 00 = Data wait of 1 TPB; multiplexed address phase of 1 TPB (default)
 - Note 1: Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 ΤΡΒCLK cycle for a write operation; WAITB = 1 ΤΡΒCLK cycle, WAITE = 0 ΤΡΒCLK cycles for a read operation.
 - 2: Address bits, A15 and A14, are not subject to automatic increment/decrement if configured as Chip Select CS2 and CS1.
 - **3:** These pins are active when MODE16 = 1 (16-bit mode).

REGISTER 25-2: PMMODE: PARALLEL PORT MODE REGISTER (CONTINUED)

```
WAITM<3:0>: Data Read/Write Strobe Wait States bits(1)
bit 5-2
          1111 = Wait of 16 TPB
          0001 = Wait of 2 TPB
          0000 = Wait of 1 TPB (default)
          WAITE<1:0>: Data Hold After Read/Write Strobe Wait States bits(1)
bit 1-0
          11 = Wait of 4 TPB
          10 = Wait of 3 TPB
          01 = Wait of 2 TPB
          00 = Wait of 1 TPB (default)
          For Read operations:
          11 = Wait of 3 TPB
          10 = Wait of 2 TPB
          01 = Wait of 1 TPB
          00 = Wait of 0 TPB (default)
```

- **Note 1:** Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 ΤΡΒCLK cycle for a write operation; WAITB = 1 ΤΡΒCLK cycle, WAITE = 0 ΤΡΒCLK cycles for a read operation.
 - 2: Address bits, A15 and A14, are not subject to automatic increment/decrement if configured as Chip Select CS2 and CS1.
 - 3: These pins are active when MODE16 = 1 (16-bit mode).

REGISTER 25-3: PMADDR: PARALLEL PORT ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	_	_	-	_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	_	_	_	-	_	_
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	CS2 ⁽¹⁾	CS1 ⁽³⁾			ADDD	440.05		
	ADDR15 ⁽²⁾	ADDR14 ⁽⁴⁾			ADDR	<13:8>		
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				ADDR<	7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 CS2: Chip Select 2 bit⁽¹⁾

1 = Chip Select 2 is active

0 = Chip Select 2 is inactive

bit 15 ADDR<15>: Target Address bit 15⁽²⁾

bit 14 CS1: Chip Select 1 bit⁽³⁾

1 = Chip Select 1 is active

0 = Chip Select 1 is inactive

bit 14 ADDR<14>: Target Address bit 14⁽⁴⁾

bit 13-0 ADDR<13:0>: Address bits

Note 1: When the CSF<1:0> bits (PMCON<7:6>) = 10 or 01.

2: When the CSF<1:0> bits (PMCON<7:6>) = 00.

3: When the CSF<1:0> bits (PMCON<7:6>) = 10.

4: When the CSF<1:0> bits (PMCON<7:6>) = 00 or 01.

Note: If the DUALBUF bit (PMCON<17>) = 0, the bits in this register control both read and write target addressing. If the DUALBUF bit = 1, the bits in this register are not used. In this instance, use the PMRADDR register for Read operations and the PMWADDR register for Write operations.

REGISTER 25-4: PMDOUT: PARALLEL PORT OUTPUT DATA REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	U-0 U-0											
31:24	_	_	_	_	_	_	_					
22.46	U-0 U-0											
23:16	_	_	_	_	_	_	_	_				
45.0	R/W-0 R/W-0											
15:8				DATAOUT	<15:8>							
7:0	R/W-0 R/W-0											
	DATAOUT<7:0>											

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 DATAOUT<15:0>: Port Data Output bits

This register is used for Read operations in the Enhanced Parallel Slave mode and Write operations for Dual Buffer Master mode.

In Dual Buffer Master mode, the DUALBUF bit (PMPCON<17>) = 1, a write to the MSB triggers the transaction on the PMP port. When MODE16 = 1, MSB = DATAOUT<15:8>. When MODE16 = 0, MSB = DATAOUT<7:0>.

Note: In Master mode, a read will return the last value written to the register. In Slave mode, a read will return indeterminate results.

REGISTER 25-5: PMDIN: PARALLEL PORT INPUT DATA REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	U-0 U-0										
31:24	1	_	_	_	_	_		_			
22.40	U-0 U-0										
23:16	_	_	_	_	_	_	_	_			
45.0	R/W-0 R/W-0										
15:8				DATAIN<	15:8>						
7:0	R/W-0 R/W-0										
	DATAIN<7:0>										

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 DATAIN<15:0>: Port Data Input bits

This register is used for both Parallel Master Port mode and Enhanced Parallel Slave mode.

In Parallel Master mode, a write to the MSB triggers the write transaction on the PMP port. Similarly, a read to the MSB triggers the read transaction on the PMP port.

When MODE16 = 1, MSB = DATAIN<15:8>. When MODE16 = 0, MSB = DATAIN<7:0>.

Note: This register is not used in Dual Buffer Master mode (i.e., DUALBUF bit (PMPCON<17>) = 1).

REGISTER 25-6: PMAEN: PARALLEL PORT PIN ENABLE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	_	_	_	_	_	_	_
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	-	_	-	-	_	_
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	PTEN<1	5:14> ⁽¹⁾			PTEN•	<13:8>		
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0			PTEN	<7:2>		PTEN<1:0> ⁽²⁾		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Write '0'; ignore read

bit 15-14 PTEN<15:14>: PMCSx Address Port Enable bits

1 = PMA15 and PMA14 function as either PMA<15:14> or PMCS2 and PMCS1(1)

0 = PMA15 and PMA14 function as port I/O

bit 13-2 PTEN<13:2>: PMP Address Port Enable bits

1 = PMA<13:2> function as PMP address lines

0 = PMA<13:2> function as port I/O

bit 1-0 PTEN<1:0>: PMALH/PMALL Address Port Enable bits

1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL(2)

0 = PMA1 and PMA0 pads function as port I/O

Note 1: The use of these pins as PMA15/PMA14 or CS2/CS1 is selected by the CSF<1:0> bits (PMCON<7:6>).

2: The use of these pins as PMA1/PMA0 or PMALH/PMALL depends on the Address/Data Multiplex mode selected by the ADRMUX<1:0> bits in the PMCON register.

REGISTER 25-7: PMSTAT: PARALLEL PORT STATUS REGISTER (SLAVE MODES ONLY)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0 U-0							
31:24	_	_	_	_	_	_	_	_
00:40	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	R-0	R/W-0, HS, SC	U-0	U-0	R-0	R-0	R-0	R-0
15:8	IBF	IBOV	_	_	IB3F	IB2F	IB1F	IB0F
7.0	R-1	R/W-0, HS, SC	U-0	U-0	R-1	R-1	R-1	R-1
7:0	OBE	OBUF	_	_	OB3E	OB2E	OB1E	OB0E

Legend: HS = Hardware Set SC = Software Cleared

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 IBF: Input Buffer Full Status bit

1 = All writable input buffer registers are full

0 = Some or all of the writable input buffer registers are empty

bit 14 IBOV: Input Buffer Overflow Status bit

1 = A write attempt to a full input byte buffer occurred (must be cleared in software)

0 = No overflow occurred

bit 13-12 Unimplemented: Read as '0'

bit 11-8 IBxF: Input Buffer 'x' Status Full bits

1 = Input Buffer contains data that has not been read (reading buffer will clear this bit)

0 = Input Buffer does not contain any unread data

bit 7 **OBE:** Output Buffer Empty Status bit

1 = All readable output buffer registers are empty

0 = Some or all of the readable output buffer registers are full

bit 6 **OBUF:** Output Buffer Underflow Status bit

1 = A read occurred from an empty output byte buffer (must be cleared in software)

0 = No underflow occurred

bit 5-4 **Unimplemented:** Read as '0'

bit 3-0 **OBxE:** Output Buffer 'x' Status Empty bits

1 = Output buffer is empty (writing data to the buffer will clear this bit)

0 = Output buffer contains data that has not been transmitted

REGISTER 25-8: PMWADDR: PARALLEL PORT WRITE ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	_	_	_	_	_	_	_	_		
22.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	_	_	_	_	_	_	_	-		
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	WCS2 ⁽¹⁾	WCS1 ⁽³⁾			WADDE	2 440-05				
	WADDR15 ⁽²⁾	WADDR14 ⁽⁴⁾			WADDI	R<13:8>				
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	WADDR<7:0>									

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 WCS2: Chip Select 2 bit⁽¹⁾

1 = Chip Select 2 is active

0 = Chip Select 2 is inactive

bit 15 WADDR<15>: Target Address bit 15⁽²⁾

bit 14 WCS1: Chip Select 1 bit⁽³⁾

1 = Chip Select 1 is active

0 = Chip Select 1 is inactive

bit 14 WADDR<14>: Target Address bit 14⁽⁴⁾

bit 13-0 WADDR<13:0>: Address bits

Note 1: When the CSF<1:0> bits (PMCON<7:6>) = 10 or 01.

2: When the CSF<1:0> bits (PMCON<7:6>) = 00.

3: When the CSF<1:0> bits (PMCON<7:6>) = 10.

4: When the CSF<1:0> bits (PMCON<7:6>) = 00 or 01.

Note: This register is only used when the DUALBUF bit (PMCON<17>) is set to '1'.

REGISTER 25-9: PMRADDR: PARALLEL PORT READ ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	_	_	_	_	_
22.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	-	_	_	_	_	_
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	RCS2 ⁽¹⁾	RCS1 ⁽³⁾				2.42.05		
	RADDR15 ⁽²⁾	RADDR14 ⁽⁴⁾			RADDF	<<13:8>		
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				RADDR<	7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 RCS2: Chip Select 2 bit⁽¹⁾

1 = Chip Select 2 is active

0 = Chip Select 2 is inactive (RADDR15 function is selected)

bit 15 RADDR<15>: Target Address bit 15⁽²⁾

bit 14 RCS1: Chip Select 1 bit⁽³⁾

1 = Chip Select 1 is active

0 = Chip Select 1 is inactive (RADDR14 function is selected)

bit 14 RADDR<14>: Target Address bit 14⁽⁴⁾

bit 13-0 RADDR<13:0>: Address bits

Note 1: When the CSF<1:0> bits (PMCON<7:6>) = 10 or 01.

2: When the CSF<1:0> bits (PMCON<7:6>) = 00.

3: When the CSF<1:0> bits (PMCON<7:6>) = 10.

4: When the CSF<1:0> bits (PMCON<7:6>) = 00 or 01.

Note: This register is only used when the DUALBUF bit (PMCON<17>) is set to '1'.

REGISTER 25-10: PMRDIN: PARALLEL PORT READ INPUT DATA REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	U-0 U-0										
31:24	-		_	_	_	-	_	_			
00:40	U-0 U-0										
23:16	_	_	_	_	_	-	_	_			
45.0	R/W-0 R/W-0										
15:8				RDATAIN<	15:8>						
7:0	R/W-0 R/W-0										
	RDATAIN<7:0>										

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 RDATAIN<15:0>: Port Read Input Data bits

Note: This register is only used when the DUALBUF bit (PMCON<17>) is set to '1' and exclusively for reads. If the DUALBUF bit is '0', the PMDIN register (Register 25-5) is used for reads instead of PMRDIN.

26.0 EXTERNAL BUS INTERFACE (EBI)

Note: This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 47. "External Bus Interface (EBI)", which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The External Bus Interface (EBI) module provides a high-speed, convenient way to interface external parallel memory devices to the PIC32MZ DA family device.

With the EBI module, it is possible to connect asynchronous SRAM and NOR Flash devices, as well as non-memory devices such as camera sensors and LCDs.

- Note 1: Once the EBI module is configured. external devices will be memory mapped and can be access from KSEG2 memory space (see Figure 4-1 through Figure 4-2 in Section 4.0 "Memory Organization" for more information). The MMU must be enabled and the TLB must be set up to access this memory (see Section 50. "CPU for Devices with MIPS32® microAptiv™ and M-Class Cores" (DS60001192) in the "PIC32 Family Reference Manual" for more information).
 - 2: When using the EBI module, Graphics LCD (GLCD) Controller functionality is not available, as most of the I/O between the EBI module and the GLCD is shared.

FIGURE 26-1: EBI SYSTEM BLOCK DIAGRAM

26.1 EBI Control Registers
TABLE 26-1: EBI REGISTER MAP

S	stasaЯ IIA	2000	0000	1000	0000	2040	0000	1040	0000	0000	0020	0000	0020	0000	0120	0000	0120	041C	2D4B	041C	2D4B	041C	2D4B	0000	0008	0000	0201
	16/0		I		I		I		I	I		I		Ι		1								Ι		I	SMRP
	17/1		1		1		1		1	1	^	1	^	1	^	1	^	TBTA<2:0>		TBTA<2:0>		TBTA<2:0>		Ι		1	I
	18/2		1		I		I		1	1	MEMSIZE<4:0>	1	MEMSIZE<4:0>	1	MEMSIZE<4:0>	I	MEMSIZE<4:0>	•	^ 0:	•	^ 0:		<0:	I		I	I
	19/3		ı		1		1		ı	1	ME	ı	ME	ı	ME	1	ME		TRC<5:0>		TRC<5:0>		TRC<5:0>	I		1	ı
	20/4		ı		ı		ı		ı	ı		ı		I		1		3:0>		3:0>		3:0>		I		ı	ı
	21/5		1		1		1		1	1	<u>^</u>	1	<u>^</u>	1	<u>^</u>	1	^	TPRC<3:0>		TPRC<3:0>		TPRC<3:0>		ı	TRPD<11:0>	1	I
	22/6		ı		ı		ı		ı	ı	MEMTYPE<2:0>	ı	MEMTYPE<2:0>	I	MEMTYPE<2:0>	1	MEMTYPE<2:0>		^		^		^ 0:	I	TRP	1	ı
Bits	23/7	CSADDR<15:0>	ı	CSADDR<15:0>	ı	CSADDR<15:0>	ı	CSADDR<15:0>	ı	ı	ME	ı	ME	I	ME	I	ME	RDYMODE PAGESIZE<1:0> PAGEMODE	TAS<1:0>	RDYMODE PAGESIZE<1:0> PAGEMODE	TAS<1:0>	RDYMODE PAGESIZE<1:0> PAGEMODE	TAS<1:0>	I		I	>2:0>
	24/8	SO	I	SS	I	SS	I	SS	I	I	Δ	I	Δ	_	Δ	I	Λ	ZE<1:0> F	TWR<1:0>	ZE<1:0>F	TWR<1:0>	ZE<1:0>F	<1:0>	_		I	SMDWIDTH0<2:0>
	25/9		ı		1		1		ı	1	REGSEL<2:0>	ı	REGSEL<2:0>	I	REGSEL<2:0>	1	REGSEL<2:0>	PAGESI.	TWR	PAGESI.	TWR	PAGESI.	TWR<1:0>	-		1	SM
	26/10		I		1		1		I	I	REC	I	REC	_	REC	1	REC	RDYMODE		RDYMODE		RDYMODE		_		1	2:0>
	27/11		ı		ı		ı		ı	I	I	I	I	I	I	1	I	I		Ι		1		1		1	SMDWIDTH1<2:0>
	28/12		I		I		I		I	I	I	I	I	I	I	1	I	I	TWP<5:0>	I	TWP<5:0>	I	TWP<5:0>	I	I	1	SMI
	29/13		1		1		1		1	1	1	1	1	I	1	1	1	1	TWF	I	TWF	I	TWF	I	I	1	6.
	30/14		I		I		I		I	I	I	I	I	I	I	I	ı	I		Ι		Ι		_	Ι	I	SMDWIDTH2<2:0>
	31/15		I		ı		ı		I	I	I	I	I	1	I	I	Ι	I		Ι		I		I	I	I	SMD
•	Bit Range	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0
	Register Mame	0	EBICSO	200	ERICS	000	EBICSZ	000	EBICSS	021084101	EBIMORO	77.084107	EBIMORI		EBIMORZ		EBIMSK3	1		TA OLG 1		CTMOIGH	EDISMIZ	COLETOD	ב היו היום		EBISMCON
SSƏ	Virtual Addr (#_3878)	3	5	2	20.1	(21.01	0	1020		100	0.0	0.00	0.0	ر ا	000	1060	,	480	4000	080	7007) 601	1000		7	10A4

DS60001361E-page 392

REGISTER 26-1: EBICSx: EXTERNAL BUS INTERFACE CHIP SELECT REGISTER ('x' = 0-3)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0 R/W-0							
31:24				CSADD	R<15:8>			
22.40	R/W-0 R/W-0							
23:16				CSADD	R<7:0>			
45.0	U-0 U-0							
15:8	_	_	_	_	-	-	_	_
7.0	U-0 U-0							
7:0	_	_	_	_	_		_	_

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 CSADDR<15:0>: Base Address for Device bits

Address in physical memory, which will select the external device.

bit 15-0 Unimplemented: Read as '0'

REGISTER 26-2: EBIMSKx: EXTERNAL BUS INTERFACE ADDRESS MASK REGISTER ('x' = 0-3)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0 U-0							
31.24	-	_	-	-	_	-	_	_
00:40	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
15:8	-	-	_	-	_	F	REGSEL<2:0	>
7.0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	M	EMTYPE<2:0)>		N	1EMSIZE<4:0	>	

000 = Use EBISMT0bit 7-5 MEMTYPE<2:0>: Select Memory Type for Chip Select 'x' bits

111 = Reserved

.

011 = Reserved

010 = NOR-Flash

001 = SRAM

000 = Reserved

011 = Reserved 010 = Use EBISMT2 001 = Use EBISMT1

bit 4-0 MEMSIZE<4:0>: Select Memory Size for Chip Select 'x' bits

11111 = Reserved

.

01010 = Reserved

01001 = 16 MB

01000 = 8 MB

00111 = 4 MB

00110 = 2 MB

00101 = 1 MB

00100 = 512 KB

00011 = 256 KB

00010 = 128 KB

00001 = 64 KB (smaller memories alias within this range)

00000 = Chip Select is not used

REGISTER 26-3: EBISMTx: EXTERNAL BUS INTERFACE STATIC MEMORY TIMING REGISTER ('x' = 0-2)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
31:24	_	_	_		_	RDYMODE	PAGESI	ZE<1:0>
22.46	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0
23:16	PAGEMODE		TPRC<	<3:0> ⁽¹⁾			TBTA<2:0> ⁽¹⁾	
45.0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-1
15:8			TWP<5	5:0> ⁽¹⁾			TWR<	1:0> ⁽¹⁾
7.0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0
7:0	TAS<1	:0> ⁽¹⁾			TRC<	<5:0> ⁽¹⁾		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

bit 26 RDYMODE: Data Ready Device Select bit

The device associated with register set 'x' is a data-ready device, and will use the EBIRDYx pin.

1 = EBIRDYx input is used

0 = EBIRDYx input is not used

bit 25-24 PAGESIZE<1:0>: Page Size for Page Mode Device bits

11 = 32-word page

10 = 16-word page

01 = 8-word page

00 = 4-word page

bit 23 PAGEMODE: Memory Device Page Mode Support bit

1 = Device supports Page mode

0 = Device does not support Page mode

bit 22-19 TPRC<3:0>: Page Mode Read Cycle Time bits(1)

Read cycle time is TPRC + 1 clock cycle.

bit 18-16 TBTA<2:0>: Data Bus Turnaround Time bits(1)

Clock cycles (0-7) for static memory between read-to-write, write-to-read, and read-to-read when Chip Select changes.

bit 15-10 TWP<5:0>: Write Pulse Width bits(1)

Write pulse width is TWP + 1 clock cycle.

bit 9-8 TWR<1:0>: Write Address/Data Hold Time bits(1)

Number of clock cycles to hold address or data on the bus.

bit 7-6 **TAS<1:0>:** Write Address Setup Time bits⁽¹⁾

Clock cycles for address setup time. A value of '0' is only valid in the case of SSRAM.

bit 5-0 TRC<5:0>: Read Cycle Time bits⁽¹⁾

Read cycle time is TRC + 1 clock cycle.

Note 1: Refer to Section 47. "External Bus Interface (EBI)" in the "PIC32 Family Reference Manual" for the EBI timing diagrams and additional information.

REGISTER 26-4: EBIFTRPD: EXTERNAL BUS INTERFACE FLASH TIMING REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	_	_	_	_	_	_	_	_
00:40	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	_	_	_	-		TRPD	<11:8>	
7.0	R/W-0 R/W-0							
7:0				TRPD	<7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-12 **Unimplemented:** Read as '0' bit 11-0 **TRPD<11:0>:** Flash Timing bits

These bits define the number of clock cycles to hold the external Flash memory in reset.

REGISTER 26-5: EBISMCON: EXTERNAL BUS INTERFACE STATIC MEMORY CONTROL **REGISTER**

W = Writable bit

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24:24	U-0 U-0							
31:24	_	_	_	_	_	-	_	_
00:40	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0
15:8	SMDV	SM	DWIDTH1<2	SMDWIDTH0<2:1>				
7.0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-1
7:0	SMDWIDTH0<0>	1	1	_	_	ı		SMRP

R = Readable bit -n = Value at POR '1' = Bit is set U = Unimplemented bit, read as '0'

'0' = Bit is cleared

x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-13 SMDWIDTH2<2:0>: Static Memory Width for Register EBISMT2 bits

111 = Reserved

110 = Reserved

101 = Reserved

100 = 8 bits

Legend:

011 = Reserved

010 = Reserved

001 = Reserved

000 **= 16 bits**

bit 12-10 SMDWIDTH1<2:0>: Static Memory Width for Register EBISMT1 bits

111 = Reserved

110 = Reserved

101 = Reserved

100 **= 8 bits**

011 = Reserved

010 = Reserved

001 = Reserved

000 **= 16 bits**

bit 9-7 SMDWIDTH0<2:0>: Static Memory Width for Register EBISMT0 bits

111 = Reserved

110 = Reserved

101 = Reserved

100 **= 8 bits**

011 = Reserved

010 = Reserved

001 = Reserved

000 **= 16 bits**

bit 6-1 Unimplemented: Read as '0'

bit 0 SMRP: Flash Reset/Power-down mode Select bit

After a Reset, the controller internally performs a power-down for Flash, and then sets this bit to '1'.

1 = Flash is taken out of Power-down mode

0 = Flash is forced into Power-down mode

	 (=: ',		
NOTES:			

27.0 CRYPTO ENGINE

Note:

This data sheet summarizes features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 49. "Crypto Engine (CE) and Random Number (RNG)" Generator (DS60001246), which available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Crypto Engine is intended to accelerate applications that need cryptographic functions. By executing these functions in the hardware module, software overhead is reduced, and actions such as encryption, decryption, and authentication can execute much more quickly.

The Crypto Engine uses an internal descriptor-based DMA for efficient programming of the security association data and packet pointers (allowing scatter/gather data fetching). An intelligent state machine schedules the crypto engines based on the protocol selection and packet boundaries. The hardware engines can perform the encryption and authentication in sequence or in parallel.

Key features of the Crypto Engine are:

- · Bulk ciphers and hash engines
- · Integrated DMA to off-load processing:
 - Buffer descriptor-based
 - Secure association per buffer descriptor
- · Some functions can execute in parallel

Bulk ciphers that are handled by the Crypto Engine include:

- · AES:
 - 128-bit, 192-bit, and 256-bit key sizes
 - CBC, ECB, CTR, CFB, and OFB modes
- · DES/TDES:
 - CBC, ECB, CFB, and OFB modes

Authentication engines that are available through the Crypto Engine include:

- SHA-1
- SHA-256
- MD-5
- AES-GCM
- HMAC operation (for all authentication engines)

The rate of data that can be processed by the Crypto Engine depends on a number of factors, including:

- · Which engine is in use
- Whether the engines are used in parallel or in series
- The demands on source and destination memories by other parts of the system (i.e., CPU, DMA, etc.)
- The speed of PBCLK5, which drives the Crypto Engine

Table 27-1 provides typical performance for various engines. Figure 27-1 illustrates the Crypto Engine block diagram.

TABLE 27-1: CRYPTO ENGINE PERFORMANCE

Engine/ Algorithm	Performance Factor (Mbps/MHz)	Maximum Mbps (PBCLK5 = 100 MHz)
DES	14.4	1440
TDES	6.6	660
AES-128	9.0	900
AES-192	7.9	790
AES-256	7.2	720
MD5	15.6	1560
SHA-1	13.2	1320
SHA-256	9.3	930

27.1 Crypto Engine Control Registers
TABLE 27-2: CRYPTO ENGINE REGISTER MAP

26/10 25/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 6/8 26/9 24/8 23/7 22/6 21/5 20/4 19/3 18/2 17/1 16/0 6/8 26/9 24/8 23/7 22/6 2		ә	<u>-</u>		i						Bits								s
Dc15:0s	### 31/15 30/14 29/13 28/12 27/11	31/15 30/14 29/13 28/12	30/14 29/13 28/12	29/13 28/12	28/12		27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	teseR IIA
DC-15:0>	31:16 REVISION<7:0>	REV	REV	REVISION<7:0>	REVISION<7:0>	REVISION<7:0>	<0:Z>N(VERSIO	N<7:0>				00
— —	UEVER 15:0	15:0								>D	15:0>								00
— — SWAPOEN SWAPE — BDPCHST BDPCHST BDPCHST BDPCHST BDPCHST BDPCHST BDMAEN ERRPHASE — — — BDSTATE START ACTIVE — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — <td< td=""><td>31:16 — — — — — — —</td><td></td><td></td><td></td><td></td><td>1</td><td>1</td><td>-</td><td>1</td><td>I</td><td>-</td><td>_</td><td>-</td><td>_</td><td>1</td><td>-</td><td>-</td><td>_</td><td>00</td></td<>	31:16 — — — — — — —					1	1	-	1	I	-	_	-	_	1	-	-	_	00
BDPADDR<31:0+ BDSTATE<	15:0 — — — — — — — — — — — — — — — — — — —				1		1	-	1		SWAPOEN		SWAPEN	_	1	BDPCHST	BDPPLEN		00
SASEADR<31:0> START STAR	CEBDADDR 31:16 15:0									BDPAD	DR<31:0>								0.0
FRRPHASE< 10- Cartional Cartion	CEBDPADDR 31:16 15:0)R 31:16 15:0								BASEAL)DR<31:0>								00
BDCTRL< 5:0>	31:16 ERRMODE<2:0> ERROP<2:0>	ERRMODE<2:0>	ERRMODE<2:0>			ERROP<2:0	RROP<2:0	 ^	ERRPHA	SE<1:0>	I	1		BDSTAT	E<3:0>		START		00
	15:0	15:0								BDCTF	۲L<15:0>								00
	5011 CENTSBC 31:16 — — — — — —	31:16 — — — — —	1	1	1		1	Ι	1	I	1	1	1	1	I	1	1	_	000
	15:0	15:0		- -			I	Ι	Ι	I	Ι	Ι	1	Ι	AREIF	PKTIF	CBDIF	PENDIF	000
	31:16 — — — — —				1		I	1	I	-	_	1	1	I	I	1	1	_	000
	15:0 — — — — — — — — — — — — — — — — — — —	-	1	-	1		1	1	1	I	1	-	1	1	AREIE	PKTIE	CBDIE		0000
Convertision Conv	- - - - 31:16	31:16 — — — — —			1		1	-	1	I	-	_	-	_	1	-	-	_	000
	VET OLLOON 15:0									BDPPLC	;ON<15:0>								000
- - HDRLEN<7:0>	CEUDI EN 31:16 — — — — —			-	1		1	1	Ι	1	-	-	-	_	1	-	1	_	000
- -	15:0	1	<u> </u>		-	1	1	1	1	1				HDRLE	<0:Z>N				000
TRLRLEN<7:0>	CETBILEN 31:16 — — — — —	31:16 — — — — —		-	1			1	1	1	-	-	1	1	1	1	1	_	000
	15:0 — — — — — — — — — — — — — — — — — — —	15:0	1	1	ı			1	1	1				TRLRLE	N<7:0>				000

DS60001361E-page 400

REGISTER 27-1: CEVER: CRYPTO ENGINE REVISION, VERSION, AND ID REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
21:24	R-0 R-0											
31:24				REVISIO	N<7:0>							
00.40	R-0 R-0											
23:16				VERSIO	N<7:0>							
45.0	R-0 R-0											
15:8		ID<15:8>										
7.0	R-0 R-0											
7:0				ID<7	:0>							

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-24 **REVISION<7:0>:** Crypto Engine Revision bits bit 23-16 **VERSION<7:0>:** Crypto Engine Version bits bit 15-0 **ID<15:0>:** Crypto Engine Identification bits

REGISTER 27-2: CECON: CRYPTO ENGINE CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0 U-0							
31:24	_	_	_	_	_		_	-
00:40	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	U-0 U-0							
15:8	_	-	_	_	_		_	
7.0	R/W-0	R/W-0, HC	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
7:0	SWAPOEN	SWRST	SWAPEN	_	_	BDPCHST	BDPPLEN	DMAEN

Legend: HC = Hardware Cleared

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7 SWAPOEN: Swap Output Data Enable bit

1 = Output data is byte swapped when written by dedicated DMA

0 = Output data is not byte swapped when written by dedicated DMA

bit 6 **SWRST:** Software Reset bit

1 = Initiate a software reset of the Crypto Engine

0 = Normal operation

bit 5 **SWAPEN:** I/O Swap Enable bit

1 = TFDMA inputs and RFDMA outputs are swapped

0 = TFDMA inputs and RFDMA outputs are not swapped

bit 4-3 Unimplemented: Read as '0'

bit 2 BDPCHST: Buffer Descriptor Processor (BDP) Fetch Enable bit

This bit should be enabled only after all DMA descriptor programming is completed.

1 = BDP descriptor fetch is enabled

0 = BDP descriptor fetch is disabled

bit 1 BDPPLEN: Buffer Descriptor Processor Poll Enable bit

This bit should be enabled only after all DMA descriptor programming is completed.

1 = Poll for descriptor until valid bit is set

0 = Do not poll

bit 0 DMAEN: DMA Enable bit

1 = Crypto Engine DMA is enabled

0 = Crypto Engine DMA is disabled

REGISTER 27-3: CEBDADDR: CRYPTO ENGINE BUFFER DESCRIPTOR REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21:24	R-0 R-0							
31:24				BDPADDR	<31:24>			
00.40	R-0 R-0							
23:16				BDPADDR	<23:16>			
45.0	R-0 R-0							
15:8	BDPADDR<15:8>							
7.0	R-0 R-0							
7:0				BDPADD	R<7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 BDPADDR<31:0>: Current Buffer Descriptor Process Address Status bits

These bits contain the current descriptor address that is being processed by the Buffer Descriptor Processor (BDP).

REGISTER 27-4: CEBDPADDR: CRYPTO ENGINE BUFFER DESCRIPTOR PROCESSOR REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/w-0 R/w-0							
31.24				BASEADD	R<31:24>			
22.46	R/W-0 R/W-0							
23:16				BASEADD	R<23:16>			
45.0	R/W-0 R/W-0							
15:8				BASEADD	R<15:8>			
7:0	R/W-0 R/W-0							
7:0				BASEADE)R<7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 BASEADDR<31:0>: DMA Base Address Status bits

These bits contain the base address of the DMA controller. After a reset, a fetch starts from this address.

REGISTER 27-5: CESTAT: CRYPTO ENGINE STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.04	R-0 R-0											
31:24	EF	RRMODE<2:0	>		ERROP<2:0	>	ERRPH <i>A</i>	ASE<1:0>				
22.46	U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0				
23:16	_	_		BDS	TATE		START	ACTIVE				
45.0	R-0 R-0											
15:8		BDCTRL<15:8>										
7:0	R-0 R-0											
7:0				BDCTRL	_<7:0>							

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

```
bit 31-29 ERRMOD<2:0>: Internal Error Mode Status bits
```

111 = Reserved

110 = Reserved

101 = Reserved

100 = Reserved

011 = CEK operation

010 = KEK operation

001 = Preboot authentication

000 = Normal operation

bit 28-26 ERROP<2:0>: Internal Error Operation Status bits

111 = Reserved

110 = Reserved

101 = Reserved

100 = Authentication

011 = Reserved

010 = Decryption

001 = Encryption

000 = Reserved

bit 25-24 ERRPHASE<1:0>: Internal Error Phase of DMA Status bits

11 = Destination data

10 = Source data

01 = Security Association (SA) access

00 = Buffer Descriptor (BD) access

bit 23-22 Unimplemented: Read as '0'

bit 21-18 BDSTATE<3:0>: Buffer Descriptor Processor State Status bits

These bits contain a number, which indicates the current state of the BDP:

1111 = Reserved

.

0111 = Reserved

0110 = SA fetch

0101 = Fetch BDP is disabled

0100 = Descriptor is done

0011 = Data phase

0010 = BDP is loading

0001 = Descriptor fetch request is pending

0000 **= BDP** is idle

bit 17 START: DMA Start Status bit

1 = DMA start has occurred

0 = DMA start has not occurred

REGISTER 27-5: CESTAT: CRYPTO ENGINE STATUS REGISTER (CONTINUED)

bit 16 ACTIVE: Buffer Descriptor Processor Status bit

1 = BDP is active0 = BDP is idle

bit 15-0 BDCTRL<15:0>: Descriptor Control Word Status bits

These bits contain the current descriptor control word.

REGISTER 27-6: CEINTSRC: CRYPTO ENGINE INTERRUPT SOURCE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0 U-0							
31.24	_	_	_	_	_	_	_	_
00.40	U-0 U-0							
23:16	_	_	_	-	_	_	_	_
45.0	U-0 U-0							
15:8	_	_	_	_	_	_	_	_
7.0	U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
7:0	_	_	_		AREIF	PKTIF	CBDIF	PENDIF

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

bit 3 AREIF: Access Response Error Interrupt bit

1 = Error occurred trying to access memory outside the Crypto Engine

0 = No error has occurred

bit 2 PKTIF: DMA Packet Completion Interrupt Status bit

1 = DMA packet was completed

0 = DMA packet was not completed

bit 1 CBDIF: BD Transmit Status bit

1 = Last BD transmit was processed

0 = Last BD transmit has not been processed

bit 0 **PENDIF:** Crypto Engine Interrupt Pending Status bit

1 = Crypto Engine interrupt is pending (this value is the result of an OR of all interrupts in the Crypto Engine)

0 = Crypto Engine interrupt is not pending

REGISTER 27-7: CEINTEN: CRYPTO ENGINE INTERRUPT ENABLE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0 U-0							
31.24	_	_	_	_	_	_	_	_
00.40	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	U-0 U-0							
15:8	_	_	_	_	_	_	_	_
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_	_	_	AREIE	PKTIE	BDPIE	PENDIE ⁽¹⁾

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

bit 3 AREIE: Access Response Error Interrupt Enable bit

1 = Access response error interrupts are enabled

0 = Access response error interrupts are not enabled

bit 2 **PKTIE:** DMA Packet Completion Interrupt Enable bit

1 = DMA packet completion interrupts are enabled

0 = DMA packet completion interrupts are not enabled

bit 1 BDPIE: DMA Buffer Descriptor Processor Interrupt Enable bit

1 = BDP interrupts are enabled

0 = BDP interrupts are not enabled

bit 0 **PENDIE:** Master Interrupt Enable bit⁽¹⁾

1 = Crypto Engine interrupts are enabled

0 = Crypto Engine interrupts are not enabled

Note 1: The PENDIE bit is a Global enable bit and must be enabled together with the other interrupts desired.

REGISTER 27-8: CEPOLLCON: CRYPTO ENGINE POLL CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0 U-0										
31.24		_		_	-	_	_	_			
00:40	U-0 U-0										
23:16	_	_	_	_	-	_	_	_			
45.0	R/W-0 R/W-0										
15:8	BDPPLCON<15:8>										
7.0	R/W-0 R/W-0										
7:0				BDPPLCC)N<7:0>						

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 BDPPLCON<15:0>: Buffer Descriptor Processor Poll Control bits

These bits determine the number of cycles that the DMA transmit BDP would wait before refetching the descriptor control word if the previous descriptor fetched was disabled.

REGISTER 27-9: CEHDLEN: CRYPTO ENGINE HEADER LENGTH REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0 U-0									
31:24	_	_	_	_	1	_	_	_		
00:40	U-0 U-0									
23:16	_	_	_	_	_	_	_	_		
45.0	U-0 U-0									
15:8		_	_	-	-	_	_	_		
7.0	R/W-0 R/W-0									
7:0	HDRLEN<7:0>									

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 HDRLEN<7:0>: DMA Header Length bits

For every packet, skip this length of locations and start filling the data.

REGISTER 27-10: CETRLLEN: CRYPTO ENGINE TRAILER LENGTH REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0 U-0									
31:24	_	_	_	_	_	_	_	_		
00:40	U-0 U-0									
23:16	_	_	_	_	_	_	_	_		
45.0	U-0 U-0									
15:8	_	_	_	_	_	_	_	_		
7.0	R/W-0 R/W-0									
7:0	TRLRLEN<7:0>									

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 TRLRLEN<7:0>: DMA Trailer Length bits

For every packet, skip this length of locations at the end of the current packet and start putting the next

packet.

27.2 Crypto Engine Buffer Descriptors

Host software creates a linked list of buffer descriptors and the hardware updates them. Table 27-3 provides a list of the Crypto Engine buffer descriptors, followed by format descriptions of each buffer descriptor (see Figure 27-2 through Figure 27-10).

TABLE 27-3: CRYPTO ENGINE BUFFER DESCRIPTORS

Name (see No	ote 1)	Bit 31/2315/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
BD_CTRL	31:24	DESC_EN	_	(CRY_MODE<2:0	>		_	_			
	23:16	_	SA_FETCH_EN	_	_	LAST_BD	LIFM	PKT_INT_EN	CBD_INT_EN			
	15:8				BD_BUFLEN	<15:8>						
	7:0				BD_BUFLEN	N<7:0>						
BD_SA_ADDR	31:24				BD_SAADDR	<31:24>						
	23:16				BD_SAADDR	<23:16>						
	15:8				BD_SAADDR	R<15:8>						
	7:0				BD_SAADR	<7:0>						
BD_SCRADDR	31:24				BD_SRCADDF	R<31:24>						
	23:16				BD_SRCADDF	R<23:16>						
	15:8				BD_SRCADDI	R<15:8>						
	7:0				BD_SRCADD	R<7:0>						
BD_DSTADDR	31:24				BD_DSTADDF	R<31:24>						
	23:16		BD_DSTADDR<23:16>									
	15:8		BD_DSTADDR<15:8>									
	7:0				BD_DSTADD	R<7:0>						
BD_NXTPTR	31:24				BD_NXTADDF	R<31:24>						
	23:16				BD_NXTADDF	R<23:16>						
	15:8				BD_NXTADDI	R<15:8>						
	7:0				BD_NXTADD	R<7:0>						
BD_UPDPTR	31:24				BD_UPDADDF	R<31:24>						
	23:16				BD_UPDADDF	R<23:16>						
	15:8				BD_UPDADDI	R<15:8>						
	7:0				BD_UPDADD	R<7:0>						
BD_MSG_LEN	-				MSG_LENGTH							
	23:16				MSG_LENGTH							
	15:8				MSG_LENGTI							
	7:0				MSG_LENGT							
BD_ENC_OFF	31:24				ENCR_OFFSE							
	23:16				ENCR_OFFSE							
	15:8				ENCR_OFFSE							
	7:0	7:0 ENCR_OFFSET<7:0>										

Note 1: The buffer descriptor must be allocated in memory on a 64-bit boundary.

FIGURE 27-2: FORMAT OF BD_CTRL

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/ 13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/ 10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31-24	DESC_EN	_	CRY_MODE<2:0>			_	_	_	
23-16	_	SA_FETCH_EN	_	_	LAST_BD	LIFM	PKT_INT_EN	CBD_INT_EN	
15-8		BD_BUFLEN<15:8>							
7-0	BD_BUFLEN<7:0>								

- bit 31 **DESC_EN**: Descriptor Enable
 - 1 = The descriptor is owned by hardware. After processing the BD, hardware resets this bit to '0'.
 - 0 = The descriptor is owned by software
- bit 30 **Unimplemented:** Must be written as '0'
- bit 29-27 CRY_MODE<2:0>: Crypto Mode
 - 111 = Reserved
 - 110 = Reserved
 - 101 = Reserved
 - 100 = Reserved
 - 011 = CEK operation
 - 010 = KEK operation
 - 001 = Preboot authentication
 - 000 = Normal operation
- bit 22 SA_FETCH_EN: Fetch Security Association From External Memory
 - 1 = Fetch SA from the SA pointer. This bit needs to be set to '1' for every new packet.
 - 0 = Use current fetched SA or the internal SA
- bit 21-20 Unimplemented: Must be written as '0'
- bit 19 LAST_BD: Last Buffer Descriptors
 - 1 = Last Buffer Descriptor in the chain
 - 0 = More Buffer Descriptors in the chain

After the last BD, the CEBDADDR goes to the base address in CEBDPADDR.

bit 18 **LIFM:** Last In Frame

In case of Receive Packets (from H/W-> Host), this field is filled by the Hardware to indicate whether the packet goes across multiple buffer descriptors. In case of transmit packets (from Host -> H/W), this field indicates whether this BD is the last in the frame.

bit 17 **PKT_INT_EN:** Packet Interrupt Enable

Generate an interrupt after processing the current buffer descriptor, if it is the end of the packet.

bit 16 CBD_INT_EN: CBD Interrupt Enable

Generate an interrupt after processing the current buffer descriptor.

bit 15-0 BD BUFLEN<15:0>: Buffer Descriptor Length

This field contains the length of the buffer and is updated with the actual length filled by the receiver.

FIGURE 27-3: FORMAT OF BD_SADDR

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31-24		BD_SAADDR<31:24>							
23-16		BD_SAADDR<23:16>							
15-8		BD_SAADDR<15:8>							
7-0				BD_SAAD	DR<7:0>				

bit 31-0 **BD_SAADDR<31:0>:** Security Association IP Session Address The sessions' SA pointer has the keys and IV values.

FIGURE 27-4: FORMAT OF BD_SADDR

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31-24		BD_SAADDR<31:24>								
23-16		BD_SAADDR<23:16>								
15-8		BD_SAADDR<15:8>								
7-0				BD_SAAD	DR<7:0>					

bit 31-0 **BD_SAADDR<31:0>:** Security Association IP Session Address The sessions' SA pointer has the keys and IV values.

FIGURE 27-5: FORMAT OF BD_SRCADDR

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31-24		BD_SCRADDR<31:24>								
23-16		BD_SCRADDR<23:16>								
15-8		BD_SCRADDR<15:8>								
7-0				BD_SCRAI	DDR<7:0>					

bit 31-0 BD_SCRADDR: Buffer Source Address

The source address of the buffer that needs to be passed through the PE-CRDMA for encryption or authentication. This address must be on a 32-bit boundary.

FIGURE 27-6: FORMAT OF BD_DSTADDR

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31-24		BD_DSTADDR<31:24>								
23-16		BD_DSTADDR<23:16>								
15-8		BD_DSTADDR<15:8>								
7-0				BD_DSTAI	DDR<7:0>					

bit 31-0 BD_DSTADDR: Buffer Destination Address

The destination address of the buffer that needs to be passed through the PE-CRDMA for encryption or authentication. This address must be on a 32-bit boundary.

FIGURE 27-7: FORMAT OF BD_NXTADDR

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31-24		BD_NXTADDR<31:24>								
23-16		BD_NXTADDR<23:16>								
15-8		BD_NXTADDR<15:8>								
7-0				BD_NXTAI	DDR<7:0>					

bit 31-0 BD_NXTADDR: Next BD Pointer Address Has Next Buffer Descriptor

The next buffer can be a next segment of the previous buffer or a new packet.

FIGURE 27-8: FORMAT OF BD_UPDPTR

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31-24		BD_UPDADDR<31:24>								
23-16		BD_UPDADDR<23:16>								
15-8		BD_UPDADDR<15:8>								
7-0				BD_UPDAI	DDR<7:0>					

bit 31-0 BD_UPDADDR: UPD Address Location

The update address has the location where the CRDMA results are posted. The updated results are the ICV values, key output values as needed.

FIGURE 27-9: FORMAT OF BD_MSG_LEN

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31-24		MSG_LENGTH<31:24>								
23-16		MSG_LENGTH<23:16>								
15-8		MSG_LENGTH<15:8>								
7-0				MSG_LEN	GTH<7:0>					

bit 31-0 MSG_LENGTH: Total Message Length

Total message length for the hash and HMAC algorithms in bytes. Total number of crypto bytes in case of GCM algorithm (LEN-C).

FIGURE 27-10: FORMAT OF BD_ENC_OFF

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31-24		ENCR_OFFSET<31:24>								
23-16		ENCR_OFFSET<23:16>								
15-8		ENCR_OFFSET<15:8>								
7-0				ENCR_OFF	SET<7:0>					

bit 31-0 ENCR_OFFSET: Encryption Offset

Encryption offset for the multi-task test cases (both encryption and authentication). The number of AAD bytes in the case of GCM algorithm (LEN-A).

27.3 Security Association Structure

Table 27-11 shows the Security Association Structure.

The Crypto Engine uses the Security Association to determine the settings for processing a Buffer Descriptor Processor. The Security Association contains:

- · Which algorithm to use
- Whether to use engines in parallel (for both authentication and encryption/decryption)
- · The size of the key
- Authentication key
- Encryption/decryption key
- · Authentication Initialization Vector (IV)
- · Encryption IV

FIGURE 27-11: CRYPTO ENGINE SECURITY ASSOCIATION STRUCTURE

Name		Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
SA_CTRL	31:24	_	_	VERIFY	_	NO_RX	OR_EN	ICVONLY	IRFLAG
	23:16	LNC	LOADIV	FB	FLAGS	_	_	_	ALGO<6>
	15:8			ALGO<	5:0>			ENCTYPE	KEYSIZE<1>
	7:0	KEYSIZE<0>	М	ULTITASK<2:0	>		CRYPTOA	LGO<3:0>	
SA_AUTHKEY1	31:24				AUTHKEY<	31:24>			
	23:16				AUTHKEY<	23:16>			
	15:8				AUTHKEY<	:15:8>			
	7:0				AUTHKEY-	<7:0>			
SA_AUTHKEY2	31:24				AUTHKEY<	31:24>			
	23:16				AUTHKEY<	23:16>			
	15:8				AUTHKEY<	:15:8>			
	7:0				AUTHKEY	<7:0>			
SA_AUTHKEY3	31:24				AUTHKEY<	31:24>			
	23:16				AUTHKEY<	23:16>			
	15:8				AUTHKEY<	:15:8>			
	7:0				AUTHKEY	<7:0>			
SA_AUTHKEY4	31:24				AUTHKEY<	31:24>			
	23:16				AUTHKEY<	23:16>			
	15:8				AUTHKEY<	:15:8>			
	7:0				AUTHKEY-	<7:0>			
SA_AUTHKEY5	31:24				AUTHKEY<	31:24>			
	23:16				AUTHKEY<	23:16>			
	15:8				AUTHKEY<	:15:8>			
	7:0				AUTHKEY-				
SA_AUTHKEY6					AUTHKEY<				
	23:16				AUTHKEY<				
	15:8				AUTHKEY<				
	7:0				AUTHKEY-				
SA_AUTHKEY7	_				AUTHKEY<				
	23:16				AUTHKEY<				
	15:8				AUTHKEY<				
0.4 441711147140	7:0				AUTHKEY-				
SA_AUTHKEY8					AUTHKEY<				
	23:16				AUTHKEY<				
	15:8				AUTHKEY<				
CA ENGLESS	7:0				AUTHKEY-				
SA_ENCKEY1	31:24				ENCKEY<3				
	23:16				ENCKEY<2				
	15:8 7:0				ENCKEY<				
SA_ENCKEY2	7:0 31:24				ENCKEY<				
JOA_ENUNETZ	J 1.24				ENUNETS	11.44			

FIGURE 27-11: CRYPTO ENGINE SECURITY ASSOCIATION STRUCTURE (CONTINUED)

Name		Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
	23:16			•	ENCKEY<2	23:16>	•	•	•
	15:8				ENCKEY<	15:8>			
	7:0				ENCKEY<	<7:0>			
SA_ENCKEY3	31:24				ENCKEY<	31:24>			
	23:16				ENCKEY<2	23:16>			
	15:8				ENCKEY<	15:8>			
	7:0				ENCKEY<	<7:0>			
SA_ENCKEY4	31:24				ENCKEY<	31:24>			
	23:16				ENCKEY<2	23:16>			
	15:8				ENCKEY<	15:8>			
	7:0				ENCKEY<	<7:0>			
SA_ENCKEY5	31:24				ENCKEY<	31:24>			
_	23:16				ENCKEY<2	23:16>			
	15:8				ENCKEY<	15:8>			
	7:0				ENCKEY				
SA_ENCKEY6	31:24				ENCKEY<				
	23:16				ENCKEY<2				
	15:8				ENCKEY<				
	7:0				ENCKEY<				
SA_ENCKEY7	31:24				ENCKEY<				
	23:16				ENCKEY<2				
	15:8				ENCKEY<				
	7:0				ENCKEY-				
SA_ENCKEY8	31:24				ENCKEY<				
O/ CENORE TO	23:16				ENCKEY<2				
	15:8				ENCKEY<				
	7:0				ENCKEY<				
SA_AUTHIV1	31:24				AUTHIV<3				
OA_AOTTIIVT	23:16				AUTHIV<2				
	15:8				AUTHIV<2				
	7:0				AUTHIV<				
SA_AUTHIV2	31:24				AUTHIV<				
OA_AOTTIV2	23:16				AUTHIV<2				
	15:8				AUTHIV 12				
	7:0				AUTHIV<				
SA_AUTHIV3	31:24				AUTHIV<				
0/1/10/1/11/0	23:16				AUTHIV<2				
	15:8				AUTHIV<2				
	7:0				AUTHIV<				
SA_AUTHIV4	31:24				AUTHIV<				
0/1/10/1/11/4	23:16				AUTHIV<2				
	15:8				AUTHIV<2				
	7:0				AUTHIV<				
SA AUTHIV5	31:24				AUTHIV<				
5, 5, 10 11 11 10	23:16				AUTHIV<2				
	15:8				AUTHIV<2				
	7:0				AUTHIV<				
SA_AUTHIV6	31:24				AUTHIV<				
0A_A01111V0	23:16				AUTHIV<2				
	15:8				AUTHIV<2 AUTHIV<				
	7:0				AUTHIV<				
SA_AUTHIV7	31:24				AUTHIV<				
OA_AUTIIV/	-								
	23:16				AUTHIV<2				
	15:8				AUTHIV<				
CA ALITUMO	7:0				AUTHIV<				
SA_AUTHIV8	31:24				AUTHIV<3				
	23:16				AUTHIV<2				
	15:8				AUTHIV<				
	7:0				AUTHIV<	1.0>			

FIGURE 27-11: CRYPTO ENGINE SECURITY ASSOCIATION STRUCTURE (CONTINUED)

Name		Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
SA_ENCIV1	31:24				ENCIV<31	:24>			
	23:16				ENCIV<23	3:16>			
	15:8				ENCIV<1	5:8>			
	7:0				ENCIV<7	':0>			
SA_ENCIV2	31:24				ENCIV<31	:24>			
	23:16				ENCIV<23	3:16>			
	15:8				ENCIV<1	5:8>			
	7:0				ENCIV<7	':0>			
SA_ENCIV3	31:24				ENCIV<31	:24>			
	23:16				ENCIV<23	3:16>			
	15:8				ENCIV<1	5:8>			
	7:0				ENCIV<7	' :0>			
SA_ENCIV4	31:24				ENCIV<31	:24>			
	23:16				ENCIV<23	3:16>			
	15:8				ENCIV<1	5:8>			
	7:0				ENCIV<7	':0>			

Table 27-12 shows the Security Association control word structure.

The Crypto Engine fetches different structures for different flows and ensures that hardware fetches minimum words from SA required for processing. The structure is ready for hardware optimal data fetches.

FIGURE 27-12: FORMAT OF SA_CTRL

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31-24	_	_	VERIFY	_	NO_RX	OR_EN	ICVONLY	IRFLAG
23-16	LNC	LOADIV	FB	FLAGS	_	_	_	ALGO<6>
15-8			ALGO	<5:0>			ENC	KEY SIZE<1>
7-0	KEY SIZE<0>	ML	JLTITASK<2:	0>		CRYPTOA	LGO<3:0>	

bit 31-30 Reserved: Do not use

bit 29 VERIFY: NIST Procedure Verification Setting

1 = NIST procedures are to be used

0 = Do not use NIST procedures

bit 28 Reserved: Do not use

bit 27 NO_RX: Receive DMA Control Setting

1 = Only calculate ICV for authentication calculations

0 = Normal processing

bit 26 OR_EN: OR Register Bits Enable Setting

1 = OR the register bits with the internal value of the CSR register

0 = Normal processing

bit 25 ICVONLY: Incomplete Check Value Only Flag

This affects the SHA-1 algorithm only. It has no effect on the AES algorithm.

1 = Only three words of the HMAC result are available

0 = All results from the HMAC result are available

bit 24 IRFLAG: Immediate Result of Hash Setting

This bit is set when the immediate result for hashing is requested.

1 = Save the immediate result for hashing

0 = Do not save the immediate result

bit 23 LNC: Load New Keys Setting

1 = Load a new set of keys for encryption and authentication

0 = Do not load new keys

bit 22 LOADIV: Load IV Setting

1 = Load the IV from this Security Association

0 = Use the next IV

bit 21 FB: First Block Setting

This bit indicates that this is the first block of data to feed the IV value.

1 = Indicates this is the first block of data

0 = Indicates this is not the first block of data

bit 20 FLAGS: Incoming/Outgoing Flow Setting

1 = Security Association is associated with an outgoing flow

0 = Security Association is associated with an incoming flow

bit 19-17 Reserved: Do not use

Figure 27-12: Format of SA_CTRL (Continued)

```
bit 16-10 ALGO<6:0>: Type of Algorithm to Use
         x1xxxxx = SHA-256
         xx1xxxx = SHA1
         xxx1xxx = MD5
         xxxx1xx = AES
         xxxxx1x = TDES
         xxxxxx1 = DES
         ENC: Type of Encryption Setting
bit 9
         1 = Encryption
         0 = Decryption
bit 8-7
         KEYSIZE<1:0>: Size of Keys in SA AUTHKEYx or SA ENCKEYx
          11 = Reserved; do not use
          10 = 256 bits
          01 = 192 bits
         00 = 128 bits<sup>(1)</sup>
         MULTITASK<2:0>: How to Combine Parallel Operations in the Crypto Engine
bit 6-4
         111 = Parallel pass (decrypt and authenticate incoming data in parallel)
         101 = Pipe pass (encrypt the incoming data, and then perform authentication on the encrypted data)
         011 = Reserved
         010 = Reserved
         001 = Reserved
         000 = Encryption or authentication or decryption (no pass)
         CRYPTOALGO<3:0>: Mode of operation for the Crypto Algorithm
bit 3-0
         1111 = Reserved
         1110 = AES GCM
                              (for AES processing)
         1101 = RCTR
                              (for AES processing)
         1100 = RCBC_MAC (for AES processing)
                              (for AES processing)
         1011 = ROFB
                              (for AES processing)
         1010 = RCFB
                              (for AES processing)
         1001 = RCBC
                              (for AES processing)
         1000 = REBC
                              (for Triple-DES processing)
         0111 = TOFB
         0110 = TCFB
                              (for Triple-DES processing)
         0101 = TCBC
                              (for Triple-DES processing)
         0100 = TECB
                              (for Triple-DES processing)
         0011 = OFB
                              (for DES processing)
         0010 = CFB
                              (for DES processing)
          0001 = CBC
                              (for DES processing)
                              (for DES processing)
         0000 = ECB
Note 1: This setting does not alter the size of SA AUTHKEYx or SA ENCKEYx in the Security Association,
          only the number of bits of SA_AUTHKEYx and SA_ENCKEYx that are used.
```

	-		
NOTES:			

28.0 RANDOM NUMBER GENERATOR (RNG)

Note:

This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 49. "Crypto Engine (CE) and Random Number Generator (RNG)" (DS60001246), which is available from the Documentation > Reference Manual section of the PIC32 Microchip web site (www.microchip.com/pic32).

The Random Number Generator (RNG) core implements a thermal noise-based, True Random Number Generator (TRNG) and a cryptographically secure Pseudo-Random Number Generator (PRNG).

The TRNG uses multiple ring oscillators and the inherent thermal noise of integrated circuits to generate true random numbers that can initialize the PRNG.

The PRNG is a flexible LSFR, which is capable of manifesting a maximal length LFSR of up to 64-bits.

The following are some of the key features of the Random Number Generator:

- · TRNG:
 - Up to 25 Mbps of random bits
 - Multi-Ring Oscillator based design
 - Built-in Bias Corrector
- PRNG:
 - LSFR-based
 - Up to 64-bit polynomial length
 - Programmable polynomial
 - TRNG can be seed value

FIGURE 28-1: RANDOM NUMBER GENERATOR BLOCK DIAGRAM

28.1 RNG Control Registers
TABLE 28-1: RANDOM NUMBER GENERATOR (RNG) REGISTER MAP

֡֝֝֝֝֜֜֜֝֝֓֜֜֜֜֓֓֓֜֜֜֜֓֓֓֓֜֜֜֜֓֓֓֓֓֜֜֜֜֜֓֓֓֜֜֡֓֜֓֜֡֓֜֜֡֓֜֜֜֡֓֜֜֜֡֓֜֜֡֓֜֡֓		֚֚֚֚֡֝֝֝֜֝֜֜֝֓֓֓֓֓֓֜֜֜֜֓֓֓֓֓֓֜֜֜֜֜֓֓֓֓֓֓֓֜֜֜֡֓֜֓֜֓֓֡֓֜֜֜֡֓֜֡֓					()= <												
ssə		€								Bits	ş								s
Virtual Addr (BF8E_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	1//1	16/0	steseR IIA
0000	0.17	31:16								ID<15:0>	5:0>								XXXX
0000	אור פאר	15:0				VERS	VERSION<7:0>							REVISION<7:0>	<0:Z>N				XXXX
8004	NOODNO	31:16	I	I	_	-	Ι	_	I	I	1	Ι	_	I	I	ı	_	1	0000
4000		15:0	1	1	1	LOAD	TRNGMODE	CONT	PRNGEN TRNGEN	TRNGEN				PLEN<7:0>	<7:0>				0064
8009	RNGPOLY1	31:16								POLY<31:0>	31:0>							<u> </u>	FFFF
2009	RNGPOLY2	31:16								POLY<31:0>	31:0>							H U	FFFF
6010	RNGNUMGEN1	31:16								RNG<31:0>	31:0>							6 6	FFFF
6014	RNGNUMGENZ	31:16								RNG<31:0>	31:0>								11111 11111
6018	RNGSEED1	31:16								SEED<31:0>	:31:0>							0 0	0000
601C	RNGSEED2	31:16								SEED<31:0>	:31:0>							0 0	0000
6020	TINOCING	31:16	1	1	-	-	1	_	ı	I	1	1	_	I	1	1	_	1	0000
0020	NINGOIN	15:0	1	1	1	1	1	1	1	1	1			2	RCNT<6:0>			Ü	0000
Legend:		wn value	e on Reset	; — = unin	x = unknown value on Reset; — = unimplemented, read		as '0'. Reset values are shown in hexadecimal	es are shov	wn in hexa	decimal.									

REGISTER 28-1: RNGVER: RANDOM NUMBER GENERATOR VERSION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21:24	R-0 R-0							
31:24				ID<15	5:8>			
00.40	R-0 R-0							
23:16				ID<7	:0>			
45.0	R-0 R-0							
15:8				VERSIO	N<7:0>			
7.0	R-0 R-0							
7:0				REVISIO	N<7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-6 **ID<15:0>:** Block Identification bits bit 15-8 **VERSION<7:0>:** Block Version bits bit 7-0 **REVISION<7:0>:** Block Revision bits

REGISTER 28-2: RNGCON: RANDOM NUMBER GENERATOR CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	-	-		_			_	_
00:40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	_	_	_	_	_	_
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	-	-	_	LOAD	TRNGMODE ⁽¹⁾	CONT	PRNGEN	TRNGEN
7.0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0
7:0				PLE	N<7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

bit 12 LOAD: Device Select bit

This bit is self-clearing and is used to load the seed from the TRNG (i.e., the random value) as a seed to

the PRNG.

bit 11 **TRNGMODE:** True Random Number Generator Mode bit⁽¹⁾

1 = Enhanced TRNG mode is selected

0 = Normal TRNG mode is selected

bit 10 CONT: PRNG Number Shift Enable bit

1 = The PRNG random number is shifted every cycle

0 = The PRNG random number is shifted when the previous value is removed

bit 9 **PRNGEN:** PRNG Operation Enable bit

1 = PRNG operation is enabled

0 = PRNG operation is not enabled

bit 8 TRNGEN: TRNG Operation Enable bit

1 = TRNG operation is enabled

0 = TRNG operation is not enabled

bit 7-0 PLEN<7:0>: PRNG Polynomial Length bits

These bits contain the length of the polynomial used for the PRNG.

Note 1: This bit is effective only when the TRNGEN bit is set to '1'.

REGISTER 28-3: RNGPOLYx: RANDOM NUMBER GENERATOR POLYNOMIAL REGISTER 'x' ('x' = 1 OR 2)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-1 R/W-1							
31:24				POLY<3	31:24>			
00.40	R/W-1 R/W-1							
23:16				POLY<2	23:16>			
45.0	R/W-0 R/W-0							
15:8				POLY<	15:8>			
7.0	R/W-0 R/W-0							
7:0		_		POLY<	:7:0>	_		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 **POLY<31:0>:** PRNG LFSR Polynomial MSb/LSb bits (RNGPOLY1 = LSb, RNGPOLY2 = MSb)

REGISTER 28-4: RNGNUMGENx: RANDOM NUMBER GENERATOR REGISTER 'x' ('x' = 1 OR 2)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0					
21:24	R/W-1 R/W-1												
31:24				RNG<3	1:24>								
00.40	R/W-1 R/W-1												
23:16				RNG<2	3:16>								
45.0	R/W-1 R/W-1												
15:8		RNG<15:8>											
7:0	R/W-1 R/W-1												
7:0				RNG<	7:0>								

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 RNG<31:0>: Current PRNG MSb/LSb Value bits (RNGNUMGEN1 = LSb, RNGNUMGEN2 = MSb)

REGISTER 28-5: RNGSEEDx: TRUE RANDOM NUMBER GENERATOR SEED REGISTER 'x' ('x' = 1 OR 2)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R-0 R-0							
31.24				SEED<3	31:24>			
00.40	R-0 R-0							
23:16				SEED<2	23:16>			
45.0	R-0 R-0							
15:8				SEED<	15:8>			
7.0	R-0 R-0							
7:0				SEED<	<7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 **SEED<31:0>:** TRNG MSb/LSb Value bits (RNGSEED1 = LSb, RNGSEED2 = MSb)

REGISTER 28-6: RNGCNT: TRUE RANDOM NUMBER GENERATOR COUNT REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0 U-0							
31:24		_	_	_	-	_	_	_
00.40	U-0 U-0							
23:16		_	-	-	1	_	-	_
45.0	U-0 U-0							
15:8	_	_	_	_	_	_	_	_
7:0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	_				RCNT<6:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-7 **Unimplemented:** Read as '0'

bit 6-0 RCNT<6:0>: Number of Valid TRNG MSB 32 bits

29.0 12-BIT HIGH-SPEED SUCCESSIVE APPROXIMATION REGISTER (SAR) ANALOG-TODIGITAL CONVERTER (ADC)

Note:

This data sheet summarizes the features of the PIC32MZ DA family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 22. "12-bit High-Speed Successive Approximation Register (SAR) Analog-to-Digital Converter (ADC)" (DS60001344) in the "PIC32 Family Reference Manual", which is available from the Microchip web site (www.microchip.com/PIC32).

The 12-bit High-Speed Successive Approximation Register (SAR) Analog-to-Digital Converter (ADC) includes the following features:

- 12-bit resolution
- Six ADC modules with dedicated Sample and Hold (S&H) circuits
- Two dedicated ADC modules can be combined in Turbo mode to provide double conversion rate (clock sources for combined ADCs must be synchronous)
- Up to 45 analog input sources, in addition to the internal CTMU, VBAT, internal voltage reference and internal temperature sensor
- · Single-ended and/or differential inputs
- · Can operate during Sleep mode
- · Supports touch sense applications
- Six digital comparators
- · Six digital filters supporting two modes:
 - Oversampling mode
 - Averaging mode
- 16-word FIFO on ADC0 through ADC4 for increased throughput
- Early interrupt generation resulting in faster processing of converted data
- Designed for motor control, power conversion, and general purpose applications
- · Operation during Sleep and Idle modes

A simplified block diagram of the ADC module is illustrated in Figure 29-1.

The 12-bit HS SAR ADC has up to five dedicated ADC modules (ADC0-ADC4) and one shared ADC module (ADC7). The dedicated ADC modules use a single input (or its alternate) and are intended for high-speed and precise sampling of time-sensitive or transient inputs. The the shared ADC module incorporates a multiplexer on the input to facilitate a larger group of inputs, with slower sampling, and provides flexible automated scanning option through the input scan logic.

For each ADC module, the analog inputs are connected to the S&H capacitor. The clock, sampling time, and output data resolution for each ADC module can be set independently. The ADC module performs the conversion of the input analog signal based on the configurations set in the registers. When conversion is complete, the final result is stored in the result buffer for the specific analog input and is passed to the digital filter and digital comparator if configured to use data from this particular sample. Input to ADCx mapping is illustrated in Figure 29-2.

EQUATION 29-1: ADC THROUGHPUT RATE

$$FTP = \frac{T_{AD}}{(T_{SAMP} + T_{CONV})}$$

Where,

 T_{AD} = the frequency of the individual ADC module

- Note 1: Prior to enabling the ADC module, the user application must copy the ADC calibration data (DEVADC0-DEVADC4, DEVADC7; see Register 41-8) from the Configuration memory into the ADC Configuration registers (ADC0CFG-ADC4CFG, ADC7CFG).
 - 2: If VDDIO is greater than 2.5V, set the AICPMPEN bit (ADCCON1<12>) and the IOANCPEN bit (CFGCON<7>) to '0'. If VDDIO is less than 2.5V, set both bits to '1'.

FIGURE 29-1: ADC BLOCK DIAGRAM

FIGURE 29-3: FIFO BLOCK DIAGRAM

29.1 ADC Control Registers TABLE 29-1: ADC REGISTER MAP

									9	Bits			3		9	9			Resets
ι V bΑ		яia		30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	IIA
000	B000 ADCCON1	31:16	TRBEN	TRBERR		TRBMST<2:0>			TRBSLV<2:0>		FRACT	SELRES<1:0>	S<1:0>		STI	STRGSRC<4:0>			0900
		15:0	NO	Ι	SIDL	AICPMPEN	CVDEN	FSSCLKEN FSPBCLKEN	FSPBCLKEN	Ι	1		IRQVS<2:0>		STRGLVL	1	1	Ι	0000
3004	B004 ADCCON2	31:16	BGVRRDY	REFFLT	EOSRDY	0	CVDCPL<2:0>						SAMC<9:0>	<0:6:					0000
-	_	15:0	BGVRIEN	REFFLTIEN	EOSIEN	ADCEIOVR	Ι	4	ADCEIS<2:0>		I			AL	ADCDIV<6:0>				0000
3008	B008 ADCCON3	31:16		ADCSEL<1:0>			CONCLKDIV<5:0>	>N/<5:0>			DIGEN7	I	Ι	DIGEN4	DIGEN3	DIGEN2	DIGEN1	DIGENO	0000
-	_	15:0	_	VREFSEL<2:0>	^	TRGSUSP	NEIDAN	UPDRDY	SAMP	RQCNVRT	GLSWTRG	GSWTRG			ADINSEL<5:0>	<0:9>			0000
300C	B00C ADCTRGMODE	31:16	1	1	-	1	1	1	SH4ALT<1:0>	-<1:0>	SH3ALT<1:0>	T<1:0>	SH2ALT<1:0>	T<1:0>	SH1ALT<1:0>	-<1:0>	SH0ALT<1:0>	T<1:0>	0000
_		15:0	I	ı	1	STRGEN4	STRGEN3	STRGEN2	STRGEN1	STRGENO	I	I	1	SSAMPEN4	SSAMPEN3	SSAMPEN3 SSAMPEN2 SSAMPEN1 SSAMPEN0 0000	SSAMPEN1	SSAMPEN	0000
3010	B010 ADCIMCON1	31:16	DIFF15	SIGN15	DIFF14	SIGN14	DIFF13	SIGN13	DIFF12	SIGN12	DIFF11	SIGN11	DIFF10	SIGN10	DIFF9	SIGN9	DIFF8	SIGN8	0000
		15:0	DIFF7	SIGN7	DIFF6	SIGN6	DIFF5	SIGN5	DIFF4	SIGN4	DIFF3	SIGN3	DIFF2	SIGNZ	DIFF1	SIGN1	DIFF0	SIGNO	0000
3014	B014 ADCIMCON2	31:16	DIFF31	SIGN31	DIFF30	SIGN30	DIFF29	SIGN29	DIFF28	SIGN28	DIFF27	SIGN27	DIFF26	SIGN26	DIFF25	SIGN25	DIFF24	SIGN24	0000
		15:0	DIFF23	SIGN23	DIFF22	SIGN22	DIFF21	SIGN21	DIFF20	SIGN20	DIFF19	SIGN19	DIFF18	SIGN18	DIFF17	SIGN17	DIFF16	SIGN16	0000
B018	B018 ADCIMCON3	31:16	1	1	Ι	1	Ι	Ι	1	1	DIFF43	SIGN43	DIFF42	SIGN42	DIFF41	SIGN41	DIFF40	SIGN40	0000
	_	15:0	DIFF39	SIGN39	DIFF38	SIGN38	DIFF37	SIGN37	DIFF36	SIGN36	DIFF35	SIGN35	DIFF34	SIGN34	DIFF33	SIGN33	DIFF32	SIGN32	0000
B020	B020 ADCGIRQEN1	31:16	AGIEN31	AGIEN30	AGIEN29	AGIEN28	AGIEN27	AGIEN26	AGIEN25	AGIEN24	AGIEN23	AGIEN22	AGIEN21	AGIEN20	AGIEN19	AGIEN18	AGIEN17	AGIEN16	0000
	_	15:0	AGIEN15	AGIEN14	AGIEN13	AGIEN12	AGIEN11	AGIEN10	AGIEN9	AGIEN8	AGIEN7	AGIEN6	AGIEN5	AGIEN4	AGIEN3	AGIEN2	AGIEN1	AGIEN0	0000
B024	B024 ADCGIRQEN2	31:16	Ι	Ι	I	Ι	Ι	I	Ι	I	I	Ι	Ι	Ι	-	I	-	Ι	0000
	_	15:0	I	I	I	I	AGIEN43	AGIEN42	AGIEN41	AGIEN40	AGIEN39	AGIEN38	AGIEN37	AGIEN36	AGIEN35	AGIEN34	AGIEN33	AGIEN32	0000
B028	B028 ADCCSS1	31:16	CSS31	CSS30	CSS29	CSS28	CSS27	CSS26	CSS25	CSS24	CSS23	CSS22	CSS21	CSS20	CSS19	CSS18	CSS17	CSS16	0000
	_	15:0	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	6SSO	CSS8	CSS7	CSS6	SSS CSSS	CSS4	CSS3	CSS2	CSS1	CSS0	0000
B02C	B02C ADCCSS2	31:16	I	I	I	I	Ι	I	I	I	I	Ι	Ι	Ι	Ι	I	I	I	0000
	_	15:0	I	I	I	I	CSS43	CSS42	CSS41	CSS40	CSS39	CSS38	CSS37	CSS36	CSS35	CSS34	CSS33	CSS32	0000
B030	B030 ADCDSTAT1	31:16	ARDY31	ARDY30	ARDY29	ARDY28	ARDY27	ARDY26	ARDY25	ARDY24	ARDY23	ARDY22	ARDY21	ARDY20	ARDY19	ARDY18	ARDY17	ARDY16	0000
		15:0	ARDY15	ARDY14	ARDY13	ARDY12	ARDY11	ARDY10	ARDY9	ARDY8	ARDY7	ARDY6	ARDY5	ARDY4	ARDY3	ARDY2	ARDY1	ARDY0	0000
B034	B034 ADCDSTAT2	31:16	I	I	I	I	Ι	I	1	1	I	I	1	Ι	ı	ı	I	1	0000
		15:0	1	1	I	1	ARDY43	ARDY42	ARDY41	ARDY40	ARDY39	ARDY38	ARDY37	ARDY36	ARDY35	ARDY34	ARDY33	ARDY32	0000
B038	B038 ADCCMPEN1	31:16	CMPE31	CMPE30	CMPE29	CMPE28	CMPE27	CMPE26	CMPE25	CMPE24	CMPE23	CMPE22	CMPE21	CMPE20	CMPE19	CMPE18	CMPE17	CMPE16	0000
	_	15:0	CMPE15	CMPE14	CMPE13	CMPE12	CMPE11	CMPE10	CMPE9	CMPE8	CMPE7	CMPE6	CMPE5	CMPE4	CMPE3	CMPE2	CMPE1	CMPE0	0000
B03C	B03C ADCCMP1	31:16								DCMPHI<15:0>	<15:0>								0000
-	_	15:0								DCMPLO<15:0>	<15:0>								0000
B040	B040 ADCCMPEN2	31:16	CMPE31	CMPE30	CMPE29	CMPE28	CMPE27	CMPE26	CMPE25	CMPE24	CMPE23	CMPE22	CMPE21	CMPE20	CMPE19	CMPE18	CMPE17	CMPE16	0000
		15:0	CMPE15	CMPE14	CMPE13	CMPE12	CMPE11	CMPE10	CMPE9	CMPE8	CMPE7	CMPE6	CMPE5	CMPE4	CMPE3	CMPE2	CMPE1	CMPE0	0000
B044	B044 ADCCMP2	31:16								DCMPHI<15:0>	<15:0>								0000
	_	15:0								DCMPLO<15:0>	<15:0>								0000
B048	B048 ADCCMPEN3	31:16		CMPE30	CMPE29	CMPE28	CMPE27	CMPE26	CMPE25	CMPE24	CMPE23	CMPE22	CMPE21	CMPE20	CMPE19	CMPE18	CMPE17	CMPE16	0000
		15:0	CMPE15	CMPE14	CMPE13	CMPE12	CMPE11	CMPE10	CMPE9	CMPE8	CMPE7	CMPE6	CMPE5	CMPE4	CMPE3	CMPE2	CMPE1	CMPE0	0000
Note	1: Before	enablin	g the ADC, t	he user applic	cation must in	itialize the AD	C calibration v	alues by copy	Before enabling the ADC, the user application must initialize the ADC calibration values by copying them from the factory-programmed DEVADCx Flash registers into the corresponding ADCxCFG registers	the factory-p	rogrammed D	EVADCx Flas	sh registers in	to the corresp.	onding ADCx(CFG registers	,		

TAE	TABLE 29-1:	ADC	ADC REGISTER MAP (CONTINU	ER MA	P (CO		JED)												
•		ə								Bits	ø								S
Virtual Address	Register Name	gnsЯ ji8 31/1 37/1	15 30/14		29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	1//1	16/0	teseЯ IIA
B04C	B04C ADCCMP3	31:16	-				- 1			DCMPHI<15:0>	<15:0>								0000
		15:0								DCMPLO<15:0>	<15:0>								0000
B050	B050 ADCCMPEN4	31:16 CMPE31	E31 CMPE30		CMPE29	CMPE28	CMPE27	CMPE26	CMPE25	CMPE24	CMPE23	CMPE22	CMPE21	CMPE20	CMPE19	CMPE18	CMPE17	CMPE16	0000
		15:0 CMP	CMPE15 CMPE14		CMPE13	CMPE12	CMPE11	CMPE10	CMPE9	CMPE8	CMPE7	CMPE6	CMPE5	CMPE4	CMPE3	CMPE2	CMPE1	CMPE0	0000
B054	B054 ADCCMP4	31:16								DCMPHI<15:0>	<15:0>								0000
		15:0								DCMPLO<15:0>	<15:0>								0000
B058	B058 ADCCMPEN5					CMPE28	CMPE27	CMPE26	CMPE25	CMPE24	CMPE23	CMPE22	CMPE21	CMPE20	CMPE19	CMPE18	CMPE17		0000
			CMPE15 CMPE14		CMPE13 (CMPE12	CMPE11	CMPE10	CMPE9	CMPE8	CMPE7	CMPE6	CMPE5	CMPE4	CMPE3	CMPE2	CMPE1	CMPE0	0000
B05C	B05C ADCCMP5	31:16								DCMPHI<15:0>	<15:0>								0000
		15:0								DCMPLO<15:0>	<15:0>								0000
B060	B060 ADCCMPEN6	31:16 CMP	CMPE31 CMPE30			CMPE28	CMPE27	CMPE26	CMPE25	CMPE24	CMPE23	CMPE22	CMPE21	CMPE20	CMPE19	CMPE18	CMPE17	CMPE16	0000
		15:0 CMP	CMPE15 CMPE14		CMPE13	CMPE12	CMPE11	CMPE10	CMPE9	CMPE8	CMPE7	CMPE6	CMPE5	CMPE4	CMPE3	CMPE2	CMPE1	CMPE0	0000
B064	B064 ADCCMP6	31:16								DCMPHI<15:0>	<15:0>								0000
		15:0								DCMPLO<15:0>	<15:0>								0000
B068	B068 ADCFLTR1	31:16 AFE	AFEN DATA16EN		DFMODE	0	OVRSAM<2:0>		AFGIEN	AFRDY	1	Ι	1		O	CHNLID<4:0>			0000
		15:0								FLTRDATA<15:0>	4<15:0>								0000
B06C	B06C ADCFLTR2	31:16 AFE	AFEN DATA16	DATA16EN DFMODE	MODE	0	OVRSAM<2:0>		AFGIEN	AFRDY	1	1	1		Ö	CHNLID<4:0>			0000
		15:0								FLTRDATA<15:0>	4<15:0>								0000
B070	B070 ADCFLTR3	31:16 AFE	AFEN DATA16EN	SEN DFA	DFMODE	0	OVRSAM<2:0>		AFGIEN	AFRDY	Ι	I	1		O	CHNLID<4:0>			0000
		15:0								FLTRDATA<15:0>	4<15:0>								0000
B074	B074 ADCFLTR4	31:16 AFE	AFEN DATA16EN		DFMODE	0	OVRSAM<2:0>		AFGIEN	AFRDY	-	1	1		C	CHNLID<4:0>			0000
		15:0								FLTRDATA<15:0>	4<15:0>								0000
B078	B078 ADCFLTR5	31:16 AFE	AFEN DATA16EN		DFMODE	6	OVRSAM<2:0>		AFGIEN	AFRDY	Ι	I	ı		Ö	CHNLID<4:0>			0000
		15:0								FLTRDATA<15:0>	4<15:0>								0000
B07C	B07C ADCFLTR6	31:16 AFE	AFEN DATA16EN		DFMODE	6	OVRSAM<2:0>		AFGIEN	AFRDY	Ι	I	ı		Ö	CHNLID<4:0>			0000
		15:0								FLTRDATA<15:0>	4<15:0>								0000
B080	B080 ADCTRG1	31:16 —	1		-		Ŧ	TRGSRC3<4:0>			Ι	I	_		TR	TRGSRC2<4:0>	^		0000
		15:0]		TF	TRGSRC1<4:0>			_	I	1		TR	TRGSRC0<4:0>	^		0000
B084	B084 ADCTRG2	31:16	_	,			TF	TRGSRC7<4:0>			-	I	1		TR	TRGSRC6<4:0>	^		0000
		15:0	_				TF	TRGSRC5<4:0>			1	I	1		TR	TRGSRC4<4:0>	^		0000
B088	B088 ADCTRG3	31:16			ı		TR	TRGSRC11<4:0>	^		1	I	Ι		TRO	TRGSRC10<4:0>	Δ		0000
		15:0	1		-		TT.	TRGSRC9<4:0>			Ι	I	ı		TR	TRGSRC8<4:0>	,		0000
BOAG	B0A0 ADCCMPCON1	31:16								CVDDATA<15:0>	1<15:0>								0000
		15:0	1				AINID<5:0>	<2:0>			ENDCMP	DCMPGIEN	DCMPED	IEBTWN	EHIHI	IEHILO	IELOHI	IELOLO	0000
B0A4	B0A4 ADCCMPCON2	31:16 —	_	,		1	ı	I	ı	I	-	I	1	Ι	I	-	1	-	0000
		15:0					-	AINID<4:0>			ENDCMP	DCMPGIEN	DCMPED	IEBTWN	EHIHI	IEHILO	IELOHI	IELOLO	0000
B0A8	B0A8 ADCCMPCON3 31:16	31:16				1	I	I	I	I	_	I	1	Ι	I	I	ļ	1	0000
		15:0	1		1		-	AINID<4:0>			ENDCMP	ENDCMP DCMPGIEN	DCMPED	IEBTWN	EHIHI	IEHILO	IELOHI	IELOLO	0000
Note	÷	anabling the	Before enabling the ADC, the user application must initialize the ADC calibration values by copying them from the factory-programmed DEVADCx Flash registers into the corresponding ADCxCFG registers.	application	must initia	lize the ADC	calibration va	alues by copy.	ing them from	the factory-p	rogrammed L	EVADCx Flas	h registers int	the corresp.	onding ADCxt	CFG register	s.	İ	

EIEN0

EIEN1

EIEN18

EIRDY16

EIRDY17

EIRDY18

EIEN34 EIEN2

EIRDY0

EIRDY1 EIRDY33 WKIEN1

EIRDY2

EIRDY32 WKIEN0

EIRDY34

EIRDY35

EIRDY37

EIRDY38

EIRDY40

EIRDY41

EIRDY42

EIRDY43

WKUPCLKCNT<3:0>

WKIEN7

ANEN7

WKRDY0

WKRDY1

WKRDY2

WKRDY3

WKRDY4

WKRDY7

15:0

ADCANCON ADCOCFG(1 ADC1CFG1

B100

ADCCFG<31:16> ADCCFG<15:0>

ADCCFG<31:16>

WKIEN2

ANENO

ANEN1

ANEN2

ANEN3

ANEN4

ADCDIV<6:0> ADCDIV<6:0> ADCDIV<6:0> ADCDIV<6:0> ADCDIV<6:0> EIEN19 EIRDY19 EIEN35 **EIRDY3** EHE EHE EHH LVL3 EIEN3 19/3 EIRDY36 WKIEN4 EIRDY4 EIEN20 IEBTWN IEBTWN EIEN36 IEBTWN EIRDY20 EIEN4 LVL4 20/4 SAMC<9:0> SAMC<9:0> SAMC<9:0> SAMC<9:0> SAMC<9:0> WROVERR DCMPED DCMPED DCMPED EIEN21 **EIRDY5** EIEN37 EIEN5 EIRDY21 LVL5 DCMPGIEN **DCMPGIEN** DCMPGIEN EIRDY22 EIEN38 EIRDY6 EIEN6 LVL6 FRDY 22/6 --ENDCMP ENDCMP ENDCMP EIRDY39 EIEN23 EIRDY23 EIEN39 **EIRDY7** FSIGN FIEN EIEN7 LVL7 23/7 ADCBASE<15:0> DATA<31:16> DATA<15:0> **ADCOEN** EIRDY24 EIEN40 **EIRDY8** EIEN8 LVL8 24/8 SELRES<1:0> SELRES<1:0> SELRES<1:0> SELRES<1:0> SELRES<1:0> EIEN25 ADC1EN EIEN41 **EIRDY25** EIRDY9 EIEN9 LVL9 25/9 AINID<4:0> 4INID<4:0> ADC2EN EIEN26 EIRDY26 EIRDY10 EIEN10 EIEN42 LVL10 26/10 ADCEIS<2:0> ADCEIS<2:03 ADCEIS<2:0> ADCEIS<2:0> ADCEIS<2:0> **ADC3EN** EIRDY11 EIEN11 LVL11 EIEN27 EIEN43 EIRDY27 27/11 ADC REGISTER MAP (CONTINUED) ADC4EN EIRDY28 EIRDY12 EIEN12 EIEN28 28/12 EIRDY13 EIRDY29 EIEN29 EIEN13 29/13 Ī EIRDY14 EIRDY30 EIEN30 30/14 EIEN14 Ī EIRDY15 EIRDY31 EIEN31 EIEN15 HEN N Ī 31:16 15:0 15:0 15:0 15:0 15:0 15:0 15:0 15:0 15:0 15:0 Bit Range **TABLE 29-1: ADCCMPCON5** ADCTRGSNS Register Name DCEIENZ ADCFSTAT DC2TIME ADCBASE BOBO, B0B4 BOEO, B0E4 SearbbA B0B8

LVL0

LVL1

LVL2

Before enabling the ADC, the user application must initialize the ADC calibration values by copying them from the factory-programmed DEVADCx Flash registers into the corresponding ADCxCFG registers. ÷

ateseR IIA

16/0

17/1

18/2

IELOLO

IELOHI IELOHI

EHILO

IELOLO ELOLO

IEHILO I I

IELOHI

B604

Part Part	TAE	TABLE 29-1:	ADC RE	ADC REGISTER MAP (CONTINU	MAP (C	ONTINO	ED)												
Mary Mary	•		ə							Bits									s
511 ACCOCCO-CO-CO-CO-CO-CO-CO-CO-CO-CO-CO-CO-	Virtual Address	Register Name		30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	teseЯ IIA
150 ACCOSCIGATION ACCOSCICATION ACCOSCICATION ACCOSCIGATION ACCOSCICATION ACCOSC	B608		31:16							ADCCFG<31	:16>								0000
1911-6 ADDCEGGG118- ADDCEGGGG118- ADDCEGGGG118- ADDCEGGGG118- ADDCEGGGGG118- ADDCEGGGGGG118- ADDCEGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG			15:0							ADCCFG<1	2:0>								0000
150 ACCOTEC-1610-> Beoc		31:16							ADCCFG<31	:16>								0000	
13119 ADDCCREGGS 1149 ADDCCREGGS 1149 ADDCCREGGS 1149 ADDCCREGGS 1149 ADDCCREGGS 1149 ADDCCREGGS 1140 ADDCCREGGS ADDCCREGGS 1140 ADDCCREGGS			15:0							ADCCFG<1	2:0>								0000
511 512 ADCOCGGG150 ADCOCGGG150 ACCGGG150 ACCGGGG150 ACCGGGG150 ACCGGGG150 ACCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	B610		31:16							ADCCFG<31	:16>)	0000
1511 AMONGACHISH- AMONGACHI			15:0							ADCCFG<1	2:0>							0	0000
150 AMCAGUISP B61C	_	31:16							ADCCFG<31	:16>							0	0000	
150 ANA-511-95		15:0							ADCCFG<1	2:0>)	0000	
150 20 20 20 20 20 20 20	B640		31:16							AN<31:16	Δ							0	0000
1970 20 20 20 20 20 20 20			15:0							AN<15:0:	,								0000
150 - - - - AN-4332> AN-4332> AN-4332> AN-4332> AN-4332> AN-4332> AN-4332> AN-4332> AN-4332> AN-43314> AN-4332> AN-43314> AN-4	B644			1	-	-	_	-	1	_	_	_	1	-	_	-	_		0000
3116 DATA-3116P 150 (A) DATA-3116P 150 (A) <td></td> <td></td> <td>15:0</td> <td>1</td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>AN<43:3</td> <td>5></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>0000</td>			15:0	1	1	1						AN<43:3	5>					0	0000
1450 DATACHSOLD 1450 DATACHSOLD 1516 DATACHSOLD 1516 DATACHSOLD 1516 DATACHSOLD 1516 DATACHSOLD 1516 DATACHSOLD 1516 DATACHSOLD 25176 DATACHSOLD 3116 DATACHSOLD 1516 DATACHSOLD 1516 DATACHSOLD 25176 DATACHSOLD 3116 DATACHSOLD 3116 <t< td=""><td>BA00</td><td></td><td>31:16</td><td></td><td></td><td></td><td></td><td></td><td></td><td>DATA<31:1</td><td><9</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>0000</td></t<>	BA00		31:16							DATA<31:1	<9							0	0000
94AA-31149 DATA-31149 1160 DATA-31149 1160 DATA-31149 1516 DATA-31149 1516 DATA-31149 150 DATA-31149 150 DATA-31149 150 DATA-31149 150 DATA-31149 151 DATA-31149 150 DATA-3149 150 DATA-3149 150 DATA-3148 150 DATA-3148 <td></td> <td></td> <td>15:0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>DATA<15:(</td> <td><0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>)</td> <td>0000</td>			15:0							DATA<15:(<0)	0000
456 DATACSIGNE 31:16 DATACSIGNE 150 DATACSIGNE 150 DATACSIGNE 150 DATACSIGNE 151 DATACSIGNE 150 DATACSIGNE 150 DATACSIGNE 1516 DATACSIGNE 150 DATACSIGNE 1516 DATACSIGNE 150 DATACSIGNE	BA04		31:16							DATA<31:1	<9							0	0000
9t/16 DATA-63116> 15.0 DATA-63160> 31.16 DATA-63160> 15.0 DATA-63160> 31.16 DATA-63160> 15.0 DATA-63160> 31.16 DATA-63160> 15.0 DATA-6100> 15.0			15:0							DATA<15:(^0							0	0000
150 DATA-6116> 3116 DATA-6116> 1316 DATA-6116> 150 DATA-6116> 1316 DATA-6116> 1450 DATA-6116> 1450 DATA-6116> 1450 DATA-6116> 150 DATA-6116> 1516 DATA-6116> 152 DATA-6116> 153 DATA-6116> 154 DATA-6116> 155 DATA-6116> 150 DATA-6116> 151 DATA-6116> 152 DATA-6116> 153 DATA-6116> 154 DATA-6116> 155 DATA-6116> 154 DATA-6116> <td>BA08</td> <td></td> <td>31:16</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>DATA<31:1</td> <td><9</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>0000</td>	BA08		31:16							DATA<31:1	<9							0	0000
3116 DATA-45116> 150 DATA-4510- 3116 DATA-450- 3116 DATA-450- 3116 DATA-450- 3116 DATA-4510- 3116 DATA-450- 3116 DATA-450- 450 DATA-450- 3116 DATA-450-			15:0							DATA<15:(^0							0	0000
150 DATA<4150> 3116 DATA<3116> 150 DATA<3116> 3116 DATA<3116> 150 DATA<3116> 3116 DATA<3116> 450 DATA<3116> 5116 DATA<3116> 6 DATA<3116> 7 DATA<3116> 8 DATA<3116> 150 DATA<3116>	BAOC		31:16							DATA<31:1	<9							0	0000
91:16 DATA<31:16> 150 DATA<31:16> 151 DATA<31:16> 150 DATA<31:16> 150 <td< td=""><td></td><td></td><td>15:0</td><td></td><td></td><td></td><td></td><td></td><td></td><td>DATA<15:0</td><td><0</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>0000</td></td<>			15:0							DATA<15:0	<0							0	0000
15.0 DATA<15.0> 31.16 DATA<31.16> 15.0 DATA<41.16>	BA10		31:16							DATA<31:1	<9)	0000
31:16 DATA<31:16> 150 DATA<31:16> 31:16 DATA<15:0> 31:16 DATA<15:0> 150 DATA<15:0> 31:16 DATA<31:16> 150			15:0							DATA<15:0	<0)	0000
45.0 DATA<150> 31.16 DATA<31:16> 45.0 DATA<31:16> 15.0 DATA<31:16> 31.16 DATA<31:16> 45.0 DATA<31:16> 15.0 DATA<31:16>	BA14		31:16							DATA<31:1	<9)	0000
31.16 DATA<31.16> 150 DATA<150> 31.16 DATA<150> 31.16 DATA<150> 31.16 DATA<150> 31.16 DATA<150> 31.16 DATA<150> 450 DATA<150> 51.16 DATA<150> 150 DATA<150>			15:0							DATA<15:(0>							0	0000
45.0 DATA<15.0> 31:16 DATA<31:16> 45.0 DATA<31:16> 15.0 DATA<31:16> 15.0 DATA<31:16> 15.0 DATA<31:16> 15.0 DATA<31:16> 1 5.0 DATA<31:16> 1 5.0 DATA<31:16> 1 5.0 DATA<31:16> 1 5.0 DATA<31:16> 2 31:16 DATA<31:16> 2 31:16 DATA<31:16> 3 31:16 DATA<31:16> 4 5.0 DATA<31:16> 5 31:16 DATA<31:16> 6 4 DATA<31:16> 7 5.0 DATA<31:16> 8 5 DATA<31:16> 9 41:16 DATA<31:16> 1 5.0 DATA<31:16> </td <td>BA18</td> <td></td> <td>31:16</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>DATA<31:1</td> <td><9</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>)</td> <td>0000</td>	BA18		31:16							DATA<31:1	<9)	0000
31:16DATA<31:16>15:0DATA<15:0>31:16DATA<31:16>15:0DATA<31:16>15:0DATA<31:16>15:0DATA<31:16>15:0DATA<31:16>15:0DATA<31:16>15:0DATA<31:16>15:0DATA<31:16>231:16231:16231:1631:16DATA<31:16>4DATA<31:16>5:0DATA<31:16>5:0DATA<31:16>6DATA<31:16>7DATA<31:16>8DATA<31:16>9DATA<31:16>15:0DATA<31:16>			15:0							DATA<15:0	<0)	0000
15.0 DATA<15.0> 31.16 DATA<31.16> 15.0 DATA<15.0> 31.16 DATA<31.16> 15.0 DATA<31.16> 31.16 DATA<31.16> 15.0 DATA<31.16> 31.16 DATA<31.16> 15.0 DATA<31.16> 31.16 DATA<31.16> 15.0 DATA<31.16> DATA<31.16> DATA<31.16> DATA<31.16> DATA<31.16>	BA1C		31:16							DATA<31:1	<9							0	0000
31.16DATA<31:16>15.0DATA<15.0>31.16DATA<31:16>31.16DATA<15.0>31.16DATA<15.0>31.16DATA<15.0>31.16DATA<15.0>31.16DATA<15.0>45.0DATA<15.0>31.16DATA<15.0>45.0DATA<15.0>31.16DATA<15.0>			15:0							DATA<15:(^0							0	0000
15.0 DATA<15.0> 31.16 DATA<31.16> 15.0 DATA<15.0> 31.16 DATA<31.16> 15.0 DATA<31.16> 31.16 DATA<31.16> 15.0 DATA<31.16> 31.16 DATA<31.16> 15.0 DATA<31.16> 15.0 DATA<45.0> 15.0 DATA<45.0>	BA20		31:16							DATA<31:1	<9							0	0000
31:16 DATA<151:16> 15:0 DATA<150> 31:16 DATA<116> 15:0 DATA<150> 31:16 DATA<150> 15:0 DATA<31:16> 31:16 DATA<31:16> 31:16 DATA<15:0> 45:0 DATA<15:0> 51:16 DATA<15:0>			15:0							DATA<15:0	<0								0000
15.0 DATA<15.0> 31.16 DATA<31:16> 15.0 DATA<15.0> 31.16 DATA<15.0> 15.0 DATA<15.0> 31.16 DATA<15.0> 31.16 DATA<15.0> 15.0 DATA<15.0> 15.0 DATA<15.0>	BA24		31:16							DATA<31:1	<9								0000
31:16 DATA<31:16> 15:0 DATA<15:0> 31:16 DATA<31:16> 5:0 DATA<15:0> 31:16 DATA<15:0> 45:0 DATA<15:0>			15:0							DATA<15:0	^0								0000
15.0 DATA<15.0> 31:16 DATA<31:16> 15.0 DATA<15.0> 31:16 DATA<11.6> 15.0 DATA<15.0> 15.0 DATA<15.0>	BA28		31:16							DATA<31:1	<9								0000
31.16 DATA<31:16> DATA<15:0> DATA<15:0> DATA<15:0> DATA<11:0> DATA<11:0> DATA<15:0> DATA<15:0 </td <td></td> <td></td> <td>15:0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>DATA<15:(</td> <td>^0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>0000</td>			15:0							DATA<15:(^0							0	0000
45.0 DATA<15.0> 31.16 DATA<31:16> 45.0 DATA<15.0>	BA2C		31:16							DATA<31:1	<9							0	0000
31:16 DATA<31:16> 15:0 DATA<15:0>			15:0							DATA<15:0	<0)	0000
	BA30		31:16							DATA<31:1	<9)	0000
			15:0							DATA<15:(<0							0	0000

Part	TAE	TABLE 29-1:	ADC	ADC REGISTER MAP (CONTINU	R MAP (C	ONTINO	ED)												
1971 2014 2015 2015 2016	•		ə							Bits									s
2017 of the Convention	Virtual Radress				29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	1//1	16/0	PeseR IIA
1816 DAMACHISON 1816 DAMACHISON 1816 DAMACHISON 1817 DAMACHISON 1818 DAMACHISON 1819 DAMACHISON 1810	BA34	ADCDATA13	31:16	_						DATA<3	1:16>								0000
15116 DAMAGISTIPA 1516 DAMAGISTA 1517 DAMAGISTA 1518 DAMAGISTA			15:0							DATA<1	2:0>								0000
110 DAMACISDA 110 DAMACISDA 110 DAMACISDA 110 DAMACISDA 110 DAMACISDA 110 DAMACISDA 110 DAMACISDA 1110 DAMACISDA	BA38	ADCDATA14	31:16							DATA<3	1:16>								0000
1514 DATACASTER 1515 DATACASTER 1516 DATACASTER 1517 DATACASTER 1518 DATACASTER			15:0							DATA<1	5:0>								0000
110 DAMACHSOP 110 DAMACHSOP 110 DAMACHSOP 111 DAMACHSOP 111 DAMACHSOP 112	BA3C	ADCDATA15	31:16							DATA<3	1:16>								0000
1516 DMACHISP 1516 DMACHISP 1516 DAMACHISP 1516 DAMACHISP 1516 DAMACHISP 1516 DAMACHISP 1516 DAMACHISP 1516 DAMACHISP 1517 DAMACHISP 1518 DAMACHISP 1519 DAMACHISP 1510 DAMACHISP <t< th=""><th></th><th></th><th>15:0</th><th></th><th></th><th></th><th></th><th></th><th></th><th>DATA<1</th><th>5:0></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>0000</th></t<>			15:0							DATA<1	5:0>								0000
150 DAMAGISD-DAMA	BA40	ADCDATA16	31:16							DATA<3	1:16>								0000
9116 DAMACHTIOD 1916 DAMACHTIOD 1916 DAMACHTIOD 1916 DAMACHTIOD 1916 DAMACHTIOD 1916 DAMACHTIOD 1917 DAMACHTIOD 1916 DAMACHTIOD 1917 DAMACHTIOD 1916 DAMACHTIOD 1917 DAMACHTIOD 1918 DAMACHTIOD 1919 DAMACHTIOD 1916 DAMACHTIOD 1916 DAMACHTIOD 1917 DAMACHTIOD 1918 DAMACHTIOD 1916 DAMACHTIOD 1916 DAMACHTIOD 1916 DAMACHTIOD 1916 DAMACHTIOD 1917 DAMACHTIOD 1918 DAMACHTIOD 1916 DAMACHTIOD 1917 DAMACHTIOD 1918 DAMACHTIOD 1918 DAMACHTIOD 1918 DAMACHTIOD 1918 DAMACHTIOD 1911			15:0							DATA<1	2:0>								0000
150 DATACISDO 1510 DATACISDO 1510 DATACISTO 1510 DATACISTO <	BA44	ADCDATA17	31:16							DATA<3	1:16>								0000
91116 DATACATIBA 1510 DATACATIBA 1510 DATACATIBA 1510 DATACATIBA 1510 DATACATIBA 1510 DATACATIBA 1511 DATACATIBA 1510 DATACATIBA 1511 DATACATIBA 1510 DATACATIBA 1510 <th< td=""><th></th><td></td><td>15:0</td><td></td><td></td><td></td><td></td><td></td><td></td><td>DATA<1</td><td>5:0></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0000</td></th<>			15:0							DATA<1	5:0>								0000
15.0 DATACISCO 15.1 DATACISCO 15.1 DATACISCO 21.16 DATACISCO 21.16 DATACISCO 21.16 DATACISCO 21.16 DATACISCO 31.16 DA	BA48	ADCDATA18	31:16							DATA<3	1:16>								0000
911/6 DAIAc45169- 150 DAIAc450- 150 DAIAc450- 150 DAIAc45169- 150 DAIAc45169- 150 DAIAc45169- 151 DAIAc45169- 150 DAIAc45169- 151 DAIAc45169- 151 DAIAc45169- 151 DAIAc45169- 151 DAIAc45169- 151 DAIAc45169- 151 DAIAc45169- 150 DAIAc45169- 151 DAIAc45169- 150 DAI			15:0							DATA<1	2:0>								0000
150 DATACHSDA 31.16 D	BA4C	ADCDATA19	31:16							DATA<3	1:16>								0000
911:16 DATA-651:16> 15.0 DATA-65:16> 15.0 DATA-65:05 15.0			15:0							DATA<1	2:0>								0000
16.0 DATACISDA 15.16 DATACISTICA 16.0 DATACISTICA 16.1 DATACISTICA 15.1 DATACISTICA 15.1 DATACISTICA 15.0 DATACISTICA 15.1 DATACISCA 15.1 DATACISCA 15.1 DATACISCA 15.2 DATACISCA 15.3 DATACISCA 15.4 DATACISCA 15.5 DATACISCA 15.0 DATACISCA 15.1 DATACISCA 15.2 DATACISCA 15.3 DATACISCA 15.4 DATACISCA 15.5 DATACISCA 15.6 DATACISCA 15.7 DATACISCA 15.8 DATACISCA 15.9 DATA	BA50	ADCDATA20	31:16							DATA<3	1:16>								0000
91116 DATA-61169 150 DATA-61169 150 DATA-6160- 3116 DATA-61169- 3116 DATA-6160- 3116 DATA-6160- 3116 DATA-6160- 3116 DATA-6160- 3117 DATA-6160- 3116 DATA-6160- 3116 DATA-6160- 3117 DATA-6160- 3118 DATA-6160- 3119 DATA-6160- 3110 DATA-6160- 3111 DATA-6160- 3110 DATA-6160- 3111 DATA-6160- 3111 DATA-6160- 3110			15:0							DATA<1	2:0>								0000
160 DATACHIGO 2011-6 DATACHIGO	BA54	ADCDATA21	31:16							DATA<3	1:16>								0000
ATT-6 (2) DATA-631:16> ATT-6 (2) DATA-6150- 31:16 DATA-631:16> ATT-6 (2) DATA-631:16> 31:16 DATA-631:16> <			15:0							DATA<1	2:0>								0000
150 DATA-61/16> 1510 DATA-61/16> 1510 DATA-61/16> 31.16 DATA-61/16> 150 DATA-61/16> 31.16 DATA-61/16> 150	BA58	ADCDATA22	31:16							DATA<3	1:16>								0000
11.6 DATA-43116> 15.0 DATA-4510- 13.16 DATA-43116> 15.0 DATA-430.0 15.0 DATA-430.0 15.0 DATA-430.0 15.0 DATA-430.0 15.0 DATA-430.0 15.0 DATA-430.0 <th< td=""><th></th><td></td><td>15:0</td><td></td><td></td><td></td><td></td><td></td><td></td><td>DATA<1</td><td>2:0></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0000</td></th<>			15:0							DATA<1	2:0>								0000
450 DATActiso- 3116 DATActiso- 150 DATActiso- 3116 DATActiso- 3116 DATActiso- 3116 DATActiso- 450 DATActiso- 4150 DATActiso- 4150 DATActiso- 4160 DATActiso- 4170 DATActiso- 4180 DATActiso- 4180 DATActiso-	BA5C	ADCDATA23	31:16							DATA<3	1:16>								0000
911-16 DATA<31:16> 15.0 DATA<31:16> 15.0 DATA<41:16> 31.16 DATA<41:16> 15.0 DATA<41:16> 31.16 DATA<41:16> 15.0 DATA<31:16> 31.16 DATA<31:16> 15.0 DATA<31:16> 31.16 DATA<43:16> 15.0 DATA<43:16> 31.16 DATA<43:16> 15.0 DATA<43:16> 31.16 DATA<43:16> 45.0 DATA<43:16> 31.16 DATA<43:16> 45.0 DATA<43:16> 31.16 DATA<41:16> 45.0 DATA<41:16> ADATA<41:16> DATA<41:16>			15:0							DATA<1	2:0>								0000
15.0 DATA<16> 31.16 DATA<31:16> 15.0 DATA<31:16> 31.16 DATA<31:16>	BA60	ADCDATA24	31:16							DATA<3	1:16>								0000
31.16 DATA<31:16> 15.0 DATA<31:16> 15.0 DATA<31:16> 15.0 DATA<31:16> 15.0 DATA<31:16> 31.16 DATA<41:6> 31.16 DATA<41:6> 31.16 DATA<41:6> 31.16 DATA<41:16> 15.0 DATA<41:16> 31.16 DATA<41:16> 15.0 DATA<41:16> 31.16 DATA<41:16> 15.0 DATA<41:16> 15.0 DATA<41:16> 15.0 DATA<41:16> 15.0 DATA<41:16> 15.0 DATA<45:0>			15:0							DATA<1	2:0>								0000
15.0 DATA<51.6> 15.0 DATA<31.16>	BA64	ADCDATA25	31:16							DATA<3	1:16>								0000
31:16 DATA<431:16> 15:0 DATA<450:0> 31:16 DATA<451:16> 15:0 DATA<451:16> 31:16 DATA<451:16> 15:0 DATA<451:16> 31:16 DATA<451:16> 15:0 DATA<451:16> 31:16 DATA<451:16> 15:0 DATA<451:16> 31:16 DATA<451:16> 15:0 DATA<450> 31:16 DATA<450> 15:0 DATA<450>			15:0							DATA<1	5:0>								0000
15.0 DATA<15.0> 31.16 DATA<16> 15.0 DATA<15.0> 15.0 DATA<15.0> 31.16 DATA<15.0> 15.0 DATA<15.0> 31.16 DATA<15.0> 15.0 DATA<15.0> 31.16 DATA<15.0> 15.0 DATA<15.0> 31.16 DATA<15.0> 15.0 DATA<15.0> 15.0 DATA<15.0> 15.0 DATA<15.0>	BA68	ADCDATA26	31:16							DATA<3	1:16>								0000
31:16 DATA<31:16> 15:0 DATA<15:0> 31:16 DATA<15:0> 45:0 DATA<15:0> 31:16 DATA<15:0> 45:0 DATA<15:0> 31:16 DATA<15:0> 45:0 DATA<15:0> 31:16 DATA<15:0> 45:0 DATA<15:0> 45:0 DATA<15:0> 45:0 DATA<15:0>			15:0							DATA<1	2:0>								0000
15.0 DATA<15.0> 31.16 DATA<15.16> 15.0 DATA<15.16> 15.0 DATA<15.0> 31.16 DATA<15.0> 15.0 DATA<15.0> 15.0 DATA<15.0> 15.0 DATA<15.0> 31.16 DATA<15.0> 15.0 DATA<15.0> 15.0 DATA<15.0> 15.0 DATA<15.0>	BA6C	ADCDATA27	31:16							DATA<3	1:16>								0000
31:16 DATA<31:16> 15:0 DATA<15:0> 31:16 DATA<15:0> 15:0 DATA<15:0> 31:16 DATA<15:0> 15:0 DATA<15:0> 31:16 DATA<15:0> 15:0 DATA<15:0> 31:16 DATA<15:0> 15:0 DATA<15:0>			15:0							DATA<1	2:0>								0000
15.0 DATA<15.0> 31.16 DATA<31:16> 15.0 DATA<15.0> 31.16 DATA<31:16> 15.0 DATA<15.0> 31.16 DATA<15.0> 45.0 DATA<15.0> 15.0 DATA<15.0> 15.0 DATA<15.0>	BA70	ADCDATA28	31:16							DATA<3	1:16>								0000
31:16 DATA<31:16> 15:0 DATA<15:0> 31:16 DATA<31:16> 15:0 DATA<15:0> 31:16 DATA<15:0> 15:0 DATA<15:0> 15:0 DATA<15:0>			15:0							DATA<1	2:0>								0000
15.0 DATA<15.0> 31.16 DATA<31:16> 15.0 DATA<15.0> 31.16 DATA<15.0> 15.0 DATA<15.0> 15.0 DATA<15.0>	BA74	ADCDATA29	31:16							DATA<3	1:16>								0000
31:16 DATA<31:16> 15:0 DATA<15:0> 31:16 DATA<31:16> 15:0 DATA<15:0>			15:0							DATA<1	2:0>								0000
15.0 DATA<15.0> 31.16 DATA<31:16> 15.0 DATA<15.0>	BA78	ADCDATA30	31:16							DATA<3	1:16>								0000
31:16 DATA<31:16> 15:0 DATA<15:0>			15:0							DATA<1	2:0>								0000
	BA7C		31:16							DATA<3	1:16>								0000
			15:0							DATA<1	5:0>								0000

TAB	TABLE 29-1:		C REG	ISTER !	ADC REGISTER MAP (CONTINU	UNITNC	ED)												
,		Э								Bits	s								S
Virtual Redress	Register Name	Bit Rang	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	1//1	16/0	teseЯ IIA
BA80	BA80 ADCDATA32	31:16		1				•		DATA<31:16>	1:16>	1							0000
		15:0								DATA<15:0>	15:0>								0000
BA84	BA84 ADCDATA33	31:16								DATA<31:16>	:1:16>								0000
		15:0								DATA<15:0>	15:0>								0000
BA88	BA88 ADCDATA34	31:16								DATA<31:16>	1:16>								0000
		15:0								DATA<15:0>	15:0>								0000
BA8C,	BA8C ADCDATA35	31:16								DATA<31:16>	1:16>								0000
		15:0								DATA<15:0>	15:0>								0000
BA90	BA90 ADCDATA36	31:16								DATA<31:16>	:1:16>								0000
		15:0								DATA<15:0>	15:0>								0000
BA94 /	BA94 ADCDATA37	31:16								DATA<31:16>	1:16>								0000
		15:0								DATA<15:0>	15:0>								0000
BA98	BA98 ADCDATA38	31:16								DATA<31:16>	1:16>								0000
		15:0								DATA<15:0>	15:0>								0000
BA9C	BA9C ADCDATA39	31:16								DATA<31:16>	1:16>								0000
		15:0								DATA<15:0>	15:0>								0000
BAA0	BAA0 ADCDATA40	31:16								DATA<31:16>	:1:16>								0000
		15:0								DATA<15:0>	15:0>								0000
BAA4	BAA4 ADCDATA41	31:16								DATA<31:16>	:1:16>								0000
		15:0								DATA<15:0>	15:0>								0000
BAA8	BAA8 ADCDATA42	31:16								DATA<31:16>	:1:16>								0000
		15:0								DATA<15:0>	15:0>								0000
BAAC,	BAAC ADCDATA43	31:16								DATA<31:16>	1:16>								0000
		15:0								DATA<15:0>	15:0>								0000
Note	1: Before	enabling	the ADC. th	e user applica	ation must init	Halize the ADC	. calibration	values by conv	ring them from	the factory-n	rogrammed D	Before enabling the ADC, the user annication must initialize the ADC calibration values by conving then from the factory-morrammed DEVADCx Flash registers into the corresponding ADCxCEG registers.	h registers int	o the correspon	anding ADCxC	FG register	y	-	1

REGISTER 29-1: ADCCON1: ADC CONTROL REGISTER 1

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R-0, HS, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	TRBEN	TRBERR	٦	RBMST<2:0	>		TRBSLV<2:0>	
00.40	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	FRACT	SELRES	S<1:0>			STRGSRC<4	:0>	
45.0	R/W-0	U-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	U-0
15:8	ON		SIDL	AICPMPEN	CVDEN	FSSCLKEN	FSPBCLKEN	_
7.0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
7:0	_		RQVS<2:0>		STRGLVL	_	_	_

Legend:HC = Hardware SetHS = Hardware ClearedR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31 TRBEN: Turbo Channel Enable bit

1 = Enable the Turbo channel

0 = Disable the Turbo channel

bit 30 TRBERR: Turbo Channel Error Status bit

1 = An error occurred while setting the Turbo channel and Turbo channel function to be disabled regardless of the TRBEN bit being set to '1'.

0 = Turbo channel error did not occur

Note: The status of this bit is valid only after the TRBEN bit is set.

bit 29-27 TRBMST<2:0>: Turbo Master ADCx bits

111 = Reserved

110 = ADC4 is selected as the Turbo Master

•

000 = ADC0 is selected as the Turbo Master

bit 26-24 TRBSLV<2:0>: Turbo Slave ADCx bits

111 = Reserved

110 = ADC4 is selected as the Turbo Slave

.

000 = ADC0 is selected as the Turbo Slave

bit 23 FRACT: Fractional Data Output Format bit

1 = Fractional

0 = Integer

bit 22-21 SELRES<1:0>: Shared ADC (ADC7) Resolution bits

11 = 12 bits (default)

10 = 10 bits

01 **= 8 bits**

00 **= 6 bits**

Note:

Changing the resolution of the ADC does not shift the result in the corresponding ADCDATAx register. The result will still occupy 12 bits, with the corresponding lower unused bits set to '0'. For example, a resolution of 6 bits will result in ADCDATAx<5:0> being set to '0', and ADCDATAx<11:6> holding the result.

REGISTER 29-1: ADCCON1: ADC CONTROL REGISTER 1 (CONTINUED)

```
bit 20-16 STRGSRC<4:0>: Scan Trigger Source Select bits
         11111 = Reserved
         11110 = Reserved
         11101 = CTMU Event
         11100 = Reserved
         01110 = Reserved
         01101 = CTMU Event
         01100 = Comparator 2 (C2OUT) (1)
         01011 = Comparator 1 (C1OUT) (1)
         01010 = OCMP5 (1)
         01001 = OCMP3 (1)
         01000 = OCMP1 (1)
         00111 = TMR5 match
         00110 = TMR3 match
         00101 = TMR1 match
         00100 = INT0 External interrupt
         00011 = Reserved
         00010 = Global level software trigger (GLSWTRG)
         00001 = Global software edge trigger (GSWTRG)
         00000 = No Trigger
bit 15
         ON: ADC Module Enable bit
```

Note: The ON bit should be set only after the ADC module has been configured.

bit 14 **Unimplemented:** Read as '0' bit 13 **SIDL:** Stop in Idle Mode bit

1 = ADC module is enabled 0 = ADC module is disabled

- 1 = Discontinue module operation when device enters Idle mode
- 0 = Continue module operation in Idle mode
- bit 12 AICPMPEN: Analog Input Charge Pump Enable bit
 - 1 = Analog input charge pump is enabled
 - 0 = Analog input charge pump is disabled
 - **Note 1:** For proper analog operation at VDDIO less than 2.5V, the AICPMPEN bit and the IOANCPEN (CFGCON<7>) bit must be set to `1'. These bits should not be set if VDDIO is greater than 2.5V.
 - 2: ADC throughput rate performance is reduced as defined in the table below if the AICPMPEN (ADCCON1<12>) bit and the IOANCPEN(CFGCON<7>) bit are set to '1'

ADC0	ADC1	ADC2	ADC3	ADC4	ADC7	Maximum combined
ON	OFF	OFF	OFF	OFF	OFF	2 MSPS
ON	ON	OFF	OFF	OFF	OFF	4 MSPS
ON	ON	ON	OFF	OFF	OFF	5 MSPS
OFF	OFF	OFF	ON	OFF	OFF	2 MSPS
OFF	OFF	OFF	ON	ON	OFF	4 MSPS
OFF	OFF	OFF	ON	ON	ON	5 MSPS
ON	ON	ON	ON	OFF	OFF	7 MSPS
ON	ON	ON	ON	ON	OFF	9 MSPS
ON	ON	ON	ON	ON	ON	10 MSPS

- bit 11 **CVDEN:** Capacitive Voltage Division Enable bit
 - 1 = CVD operation is enabled
 - 0 = CVD operation is disabled
- Note 1: The rising edge of the module output signal triggers an ADC conversion. See Figure 16-1 in 16.0 "Output Compare" and Figure 32-1 in 32.0 "Comparator" for more information.

REGISTER 29-1: ADCCON1: ADC CONTROL REGISTER 1 (CONTINUED)

- bit 10 FSSCLKEN: Fast Synchronous System Clock to ADC Control Clock bit
 - 1 = Fast synchronous system clock to ADC control clock is enabled
 - 0 = Fast synchronous system clock to ADC control clock is disabled
- bit 9 FSPBCLKEN: Fast Synchronous Peripheral Clock to ADC Control Clock bit
 - 1 = Fast synchronous peripheral clock to ADC control clock is enabled
 - 0 = Fast synchronous peripheral clock to ADC control clock is disabled
- bit 8-7 **Unimplemented:** Read as '0'
- bit 6-4 IRQVS<2:0>: Interrupt Vector Shift bits

To determine interrupt vector address, this bit specifies the amount of left shift done to the ARDYx status bits in the ADCDSTAT1 and ADCDSTAT2 registers, prior to adding with the ADCBASE register.

Interrupt Vector Address = Read Value of ADCBASE and Read Value of ADCBASE = Value written to ADCBASE + x << IRQVS<2:0>, where 'x' is the smallest active input ID from the ADCDSTAT1 or ADCDSTAT2 registers (which has highest priority).

- 111 = Shift x left 7 bit position
- 110 = Shift x left 6 bit position
- 101 = Shift x left 5 bit position
- 100 = Shift x left 4 bit position
- 011 = Shift x left 3 bit position
- 010 = Shift x left 2 bit position
- 001 = Shift x left 1 bit position
- 000 = Shift x left 0 bit position
- bit 3 STRGLVL: Scan Trigger High Level/Positive Edge Sensitivity bit
 - 1 = Scan trigger is high level sensitive. Once STRIG mode is selected (TRGSRCx<4:0> in the ADCTRGx register), the scan trigger will continue for all selected analog inputs, until the STRIG option is removed.
 - 0 = Scan trigger is positive edge sensitive. Once STRIG mode is selected (TRGSRCx<4:0> in the ADCTRGx register), only a single scan trigger will be generated, which will complete the scan of all selected analog inputs.
- bit 2-0 Unimplemented: Read as '0'
- Note 1: The rising edge of the module output signal triggers an ADC conversion. See Figure 16-1 in 16.0 "Output Compare" and Figure 32-1 in 32.0 "Comparator" for more information.

REGISTER 29-2: ADCCON2: ADC CONTROL REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	BGVRRDY	REFFLT	EOSRDY	C	CVDCPL<2:0>		SAMO	<9:8>
22:46	R/W-0 R/W-0							
23:16				SAMC<7	' :0>			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
15:8	BGVRIEN	REFFLTIEN	EOSIEN	ADCEIOVR	_	А	DCEIS<2:0	>
7.0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_			AD	CDIV<6:0>			

Legend:	HC = Hardware Set	HS = Hardware Cleared r = Reserved
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

- bit 31 BGVRRDY: Band Gap Voltage/ADC Reference Voltage Status bit
 - 1 = Both band gap voltage and ADC reference voltages (VREF) are ready
 - 0 = Either or both band gap voltage and ADC reference voltages (VREF) are not ready

Data processing is valid only after BGVRRDY is set by hardware, so the application code must check that the BGVRRDY bit is set to ensure data validity. This bit set to '0' when ON (ADCCON1<15>) = 0.

- bit 30 REFFLT: Band Gap/VREF/AVDD BOR Fault Status bit
 - 1 = Fault in band gap or the VREF voltage while the ON bit (ADCCON1<15>) was set. Most likely a band gap or VREF fault will be caused by a BOR of the analog VDDIO supply.
 - 0 = Band gap and VREF voltage are working properly

This bit is cleared when the ON bit (ADCCON1<15>) = 0 and the BGVRRDY bit = 1.

- bit 29 **EOSRDY:** End of Scan Interrupt Status bit
 - 1 = All analog inputs are considered for scanning through the scan trigger (all analog inputs specified in the ADCCSS1 and ADCCSS2 registers) have completed scanning
 - 0 = Scanning has not completed

This bit is cleared when ADCCON2<31:24> are read in software.

bit 28-26 CVDCPL<2:0>: Capacitor Voltage Divider (CVD) Setting bit

```
111 = 7 * 2.5 pF = 17.5 pF

110 = 6 * 2.5 pF = 15 pF

101 = 5 * 2.5 pF = 12.5 pF

100 = 4 * 2.5 pF = 10 pF

011 = 3 * 2.5 pF = 7.5 pF

010 = 2 * 2.5 pF = 5 pF

001 = 1 * 2.5 pF = 2.5 pF

000 = 0 * 2.5 pF = 0 pF
```

bit 25-16 **SAMC<9:0>:** Sample Time for the Shared ADC (ADC7) bits

Where TAD7 = period of the ADC conversion clock for the Shared ADC (ADC7) controlled by the ADCDIV<6:0> bits.

- bit 15 BGVRIEN: Band Gap/VREF Voltage Ready Interrupt Enable bit
 - 1 = Interrupt will be generated when the BGVRDDY bit is set
 - 0 = No interrupt is generated when the BGVRRDY bit is set

REGISTER 29-2: ADCCON2: ADC CONTROL REGISTER 2 (CONTINUED)

- bit 14 REFFLTIEN: Band Gap/VREF Voltage Fault Interrupt Enable bit
 - 1 = Interrupt will be generated when the REFFLT bit is set
 - 0 = No interrupt is generated when the REFFLT bit is set
- bit 13 **EOSIEN:** End of Scan Interrupt Enable bit
 - 1 = Interrupt will be generated when EOSRDY bit is set
 - 0 = No interrupt is generated when the EOSRDY bit is set
- bit 12 ADCEIOVR: Early Interrupt Request Override bit
 - 1 = Early interrupt generation is not overridden and interrupt generation is controlled by the ADCEIEN1 and ADCEIEN2 registers
 - 0 = Early interrupt generation is overridden and interrupt generation is controlled by the ADCGIRQEN1 and ADCGIRQEN2 registers
- bit 11 **Unimplemented:** Read as '0'
- bit 10-8 ADCEIS<2:0>: Shared ADC (ADC7) Early Interrupt Select bits

These bits select the number of clocks (TAD7) prior to the arrival of valid data that the associated interrupt is generated.

- 111 = The data ready interrupt is generated 8 ADC clocks prior to end of conversion
- 110 = The data ready interrupt is generated 7 ADC clocks prior to end of conversion
- •
- 001 = The data ready interrupt is generated 2 ADC module clocks prior to end of conversion
- 000 = The data ready interrupt is generated 1 ADC module clock prior to end of conversion

Note: All options are available when the selected resolution, set by the SELRES<1:0> bits (ADCCON1<22:21>), is 12-bit or 10-bit. For a selected resolution of 8-bit, options from '000' to '101' are valid. For a selected resolution of 6-bit, options from '000' to '011' are valid.

- bit 7 **Unimplemented:** Read as '0'
- bit 6-0 ADCDIV<6:0>: Shared ADC (ADC7) Clock Divider bits

The ADCDIV<6:0> bits divide the ADC control clock (TQ) to generate the clock for the Shared ADC, ADC7 (TAD7).

REGISTER 29-3: ADCCON3: ADC CONTROL REGISTER 3

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0						
31:24	ADCSE	L<1:0>			CONCL	KDIV<5:0>		
22.40	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	DIGEN7	_	_	DIGEN4	DIGEN3	DIGEN2	DIGEN1	DIGEN0
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0, HS, HC	R/W-0	R-0, HS, HC
15:8	V	REFSEL<2:0)>	TRGSUSP	UPDIEN	UPDRDY	SAMP ^(1,2,3,4)	RQCNVRT
7.0	R/W-0	R/W, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	GLSWTRG	GSWTRG			ADINS	SEL<5:0>		

```
Legend:HC = Hardware SetHS = Hardware ClearedR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown
```

```
bit 31-30 ADCSEL<1:0>: Analog-to-Digital Clock Source (TCLK) bits
          11 = FRC
          10 = REFCLK3
          01 = System Clock (Tcy)
          00 = PBCLK3
bit 29-24 CONCLKDIV<5:0>: Analog-to-Digital Control Clock (Tq) Divider bits
          1111111 = 64 * TCLK = TQ
         000011 = 4 * TCLK = TQ
         000010 = 3 * TCLK = TQ
         000001 = 2 * TCLK = TQ
         000000 = TCLK = TQ
bit 23
         DIGEN7: Shared ADC (ADC7) Digital Enable bit
          1 = ADC7 is digital enabled
          0 = ADC7 is digital disabled
bit 22-21 Unimplemented: Read as '0'
         DIGEN4: ADC4 Digital Enable bit
bit 20
          1 = ADC4 is digital enabled
          0 = ADC4 is digital disabled
         DIGEN3: ADC3 Digital Enable bit
bit 19
```

1 = ADC3 is digital enabled0 = ADC3 is digital disabled

- **Note 1:** The SAMP bit has the highest priority and setting this bit will keep the S&H circuit in Sample mode until the bit is cleared. Also, usage of the SAMP bit will cause settings of SAMC<9:0> bits (ADCCON2<25:16>) to be ignored.
 - 2: The SAMP bit only connects Class 2 and Class 3 analog inputs to the shared ADC, ADC7. All Class 1 analog inputs are not affected by the SAMP bit.
 - 3: The SAMP bit is not a self-clearing bit and it is the responsibility of application software to first clear this bit and only after setting the RQCNVRT bit to start the analog-to-digital conversion.
 - **4:** Normally, when the SAMP and RQCNVRT bits are used by software routines, all TRGSRCx<4:0> bits and STRGSRC<4:0> bits should be set to '00000' to disable all external hardware triggers and prevent them from interfering with the software-controlled sampling command signal SAMP and with the software-controlled trigger RQCNVRT.

REGISTER 29-3: ADCCON3: ADC CONTROL REGISTER 3 (CONTINUED)

bit 18 DIGEN2: ADC2 Digital Enable bit

1 = ADC2 is digital enabled 0 = ADC2 is digital disabled

bit 17 DIGEN1: ADC1 Digital Enable bit

1 = ADC1 is digital enabled

0 = ADC1 is digital disabled

bit 16 DIGEN0: ADC0 Digital Enable bit

1 = ADC0 is digital enabled

0 = ADC0 is digital disabled

bit 15-13 VREFSEL<2:0>: Voltage Reference (VREF) Input Selection bits

VREFSEL<2:0>	ADREF+	ADREF-
111	AVDD	Internal VREFL
110	Internal VREFH	AVss
101	Internal VREFH	External VREFL
100	Internal VREFH	Internal VREFL
011	Internal VREFH	External VREFL
010	AVDD	External VREFL
001	External VREFH	AVss
000	AVDD	AVss

bit 12 TRGSUSP: Trigger Suspend bit

1 = Triggers are blocked from starting a new analog-to-digital conversion, but the ADC module is not disabled

0 = Triggers are not blocked

bit 11 **UPDIEN:** Update Ready Interrupt Enable bit

1 = Interrupt will be generated when the UPDRDY bit is set by hardware

0 = No interrupt is generated

bit 10 **UPDRDY:** ADC Update Ready Status bit

1 = ADC SFRs can be updated

0 = ADC SFRs cannot be updated

Note: This bit is only active while the TRGSUSP bit is set and there are no more running conversions of

any ADC modules.

bit 9 SAMP: Class 2 and Class 3 Analog Input Sampling Enable bit (1,2,3,4)

1 = The ADC S&H amplifier is sampling

0 = The ADC S&H amplifier is holding

bit 8 RQCNVRT: Individual ADC Input Conversion Request bit

This bit and its associated ADINSEL<5:0> bits enable the user to individually request an analog-to-digital conversion of an analog input through software.

- 1 = Trigger the conversion of the selected ADC input as specified by the ADINSEL<5:0> bits
- 0 = Do not trigger the conversion

Note: This bit is automatically cleared in the next ADC clock cycle.

- **Note 1:** The SAMP bit has the highest priority and setting this bit will keep the S&H circuit in Sample mode until the bit is cleared. Also, usage of the SAMP bit will cause settings of SAMC<9:0> bits (ADCCON2<25:16>) to be ignored.
 - 2: The SAMP bit only connects Class 2 and Class 3 analog inputs to the shared ADC, ADC7. All Class 1 analog inputs are not affected by the SAMP bit.
 - **3:** The SAMP bit is not a self-clearing bit and it is the responsibility of application software to first clear this bit and only after setting the RQCNVRT bit to start the analog-to-digital conversion.
 - **4:** Normally, when the SAMP and RQCNVRT bits are used by software routines, all TRGSRCx<4:0> bits and STRGSRC<4:0> bits should be set to '00000' to disable all external hardware triggers and prevent them from interfering with the software-controlled sampling command signal SAMP and with the software-controlled trigger RQCNVRT.

REGISTER 29-3: ADCCON3: ADC CONTROL REGISTER 3 (CONTINUED)

- bit 7 GLSWTRG: Global Level Software Trigger bit
 - 1 = Trigger conversion for ADC inputs that have selected the GLSWTRG bit as the trigger signal, either through the associated TRGSRC<4:0> bits in the ADCTRGx registers or through the STRGSRC<4:0> bits in the ADCCON1 register
 - 0 = Do not trigger an analog-to-digital conversion
- bit 6 GSWTRG: Global Software Trigger bit
 - 1 = Trigger conversion for ADC inputs that have selected the GSWTRG bit as the trigger signal, either through the associated TRGSRC<4:0> bits in the ADCTRGx registers or through the STRGSRC<4:0> bits in the ADCCON1 register
 - 0 = Do not trigger an analog-to-digital conversion

Note: This bit is automatically cleared in the next ADC clock cycle.

bit 5-0 ADINSEL<5:0>: Analog Input Select bits

These bits select the analog input to be converted when the RQCNVRT bit is set. As a general rule:

```
111111 = Reserved
.
.
101101 = Reserved
101100 = IVTEMP
101011 = IVREF
101010 = VBAT
101000 = CTMU
100111 = AN39
.
.
.
.
000001 = AN1
000000 = AN0
```

- **Note 1:** The SAMP bit has the highest priority and setting this bit will keep the S&H circuit in Sample mode until the bit is cleared. Also, usage of the SAMP bit will cause settings of SAMC<9:0> bits (ADCCON2<25:16>) to be ignored.
 - 2: The SAMP bit only connects Class 2 and Class 3 analog inputs to the shared ADC, ADC7. All Class 1 analog inputs are not affected by the SAMP bit.
 - **3:** The SAMP bit is not a self-clearing bit and it is the responsibility of application software to first clear this bit and only after setting the RQCNVRT bit to start the analog-to-digital conversion.
 - 4: Normally, when the SAMP and RQCNVRT bits are used by software routines, all TRGSRCx<4:0> bits and STRGSRC<4:0> bits should be set to '00000' to disable all external hardware triggers and prevent them from interfering with the software-controlled sampling command signal SAMP and with the software-controlled trigger RQCNVRT.

REGISTER 29-4: ADCTRGMODE: ADC TRIGGERING MODE FOR DEDICATED ADC REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
31:24	_	_	_	_	_	_	SH4AL	T<1:0>
00.40	R/W-0 R/W-0							
23:16	SH3A	LT<1:0>	SH2AL	T<1:0>	SH1AL	T<1:0>	SH0AL	T<1:0>
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	_	_	_	STRGEN4	STRGEN3	STRGEN2	STRGEN1	STRGEN0
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_	_	SSAMPEN4	SSAMPEN3	SSAMPEN2	SSAMPEN1	SSAMPEN0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-26 Unimplemented: Read as '0'

bit 25-24 SH4ALT<1:0>: ADC4 Analog Input Select bit

11 = Reserved

10 = Reserved

01 **= AN49**

00 = AN4

bit 23-22 SH3ALT<1:0>: ADC3 Analog Input Select bit

11 = Reserved

10 = Reserved

01 **= AN48**

00 **= AN3**

bit 21-20 SH2ALT<1:0>: ADC2 Analog Input Select bit

11 = Reserved

10 = Reserved

01 = AN47

00 **= AN2**

bit 19-18 SH1ALT<1:0>: ADC1 Analog Input Select bit

11 = Reserved

10 = Reserved

01 **= AN46**

00 **= AN1**

bit 17-16 SH0ALT<1:0>: ADC0 Analog Input Select bit

11 = Reserved

10 = Reserved

01 **= AN45**

00 **= AN0**

bit 15-13 Unimplemented: Read as 'o'

bit 12 STRGEN4: ADC4 Presynchronized Triggers bit

1 = ADC4 uses presynchronized triggers

0 = ADC4 does not use presynchronized triggers

bit 11 STRGEN3: ADC3 Presynchronized Triggers bit

1 = ADC3 uses presynchronized triggers

0 = ADC3 does not use presynchronized triggers

bit 10 STRGEN2: ADC2 Presynchronized Triggers bit

1 = ADC2 uses presynchronized triggers

0 = ADC2 does not use presynchronized triggers

REGISTER 29-4: ADCTRGMODE: ADC TRIGGERING MODE FOR DEDICATED ADC REGISTER

- bit 9 STRGEN1: ADC1 Presynchronized Triggers bit
 - 1 = ADC1 uses presynchronized triggers
 - 0 = ADC1 does not use presynchronized triggers
- bit 8 STRGEN0: ADC0 Presynchronized Triggers bit
 - 1 = ADC0 uses presynchronized triggers
 - 0 = ADC0 does not use presynchronized triggers
- bit 7-5 Unimplemented: Read as '0'
- bit 4 SSAMPEN4: ADC4 Synchronous Sampling bit
 - 1 = ADC4 uses synchronous sampling for the first sample after being idle or disabled
 - 0 = ADC4 does not use synchronous sampling
- bit 3 SSAMPEN3: ADC3 Synchronous Sampling bit
 - 1 = ADC3 uses synchronous sampling for the first sample after being idle or disabled
 - 0 = ADC3 does not use synchronous sampling
- bit 2 SSAMPEN2: ADC2Synchronous Sampling bit
 - 1 = ADC2 uses synchronous sampling for the first sample after being idle or disabled
 - 0 = ADC2 does not use synchronous sampling
- bit 1 SSAMPEN1: ADC1 Synchronous Sampling bit
 - 1 = ADC1 uses synchronous sampling for the first sample after being idle or disabled
 - 0 = ADC1 does not use synchronous sampling
- bit 0 SSAMPEN0: ADC0 Synchronous Sampling bit
 - 1 = ADC0 uses synchronous sampling for the first sample after being idle or disabled
 - 0 = ADC0 does not use synchronous sampling

REGISTER 29-5: ADCIMCON1: ADC INPUT MODE CONTROL REGISTER 1

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	R/W-0 R/W-0							
31:24	DIFF15	SIGN15	DIFF14	SIGN14	DIFF13	SIGN13	DIFF12	SIGN12
22.46	R/W-0 R/W-0							
23:16	DIFF11	SIGN11	DIFF10	SIGN10	DIFF9	SIGN9	DIFF8	SIGN8
45.0	R/W-0 R/W-0							
15:8	DIFF7	SIGN7	DIFF6	SIGN6	DIFF5	SIGN5	DIFF4	SIGN4
7.0	R/W-0 R/W-0							
7:0	DIFF3	SIGN3	DIFF2	SIGN2	DIFF1	SIGN1	DIFF0	SIGN0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31 DIFF15: AN15 Mode bit

1 = AN15 is using Differential mode

0 = AN15 is using Single-ended mode

bit 30 SIGN:15 AN15 Signed Data Mode bit

1 = AN15 is using Signed Data mode

0 = AN15 is using Unsigned Data mode

bit 29 DIFF14: AN14 Mode bit

1 = AN14 is using Differential mode

0 = AN14 is using Single-ended mode

bit 28 SIGN14: AN14 Signed Data Mode bit

1 = AN14 is using Signed Data mode

0 = AN14 is using Unsigned Data mode

bit 27 DIFF13: AN13 Mode bit

1 = AN13 is using Differential mode

0 = AN13 is using Single-ended mode

bit 26 SIGN13: AN13 Signed Data Mode bit

1 = AN13 is using Signed Data mode

0 = AN13 is using Unsigned Data mode

bit 25 **DIFF12:** AN12 Mode bit

1 = AN12 is using Differential mode

0 = AN12 is using Single-ended mode

bit 24 SIGN12: AN12 Signed Data Mode bit

1 = AN12 is using Signed Data mode

0 = AN12 is using Unsigned Data mode

bit 23 DIFF11: AN11 Mode bit

1 = AN11 is using Differential mode

0 = AN11 is using Single-ended mode

bit 22 SIGN11: AN11 Signed Data Mode bit

1 = AN11 is using Signed Data mode

0 = AN11 is using Unsigned Data mode

bit 21 **DIFF10:** AN10 Mode bit

1 = AN10 is using Differential mode

0 = AN10 is using Single-ended mode

REGISTE	R 29-5: ADCIMCON1: ADC INPUT MODE CONTROL REGISTER 1 (CONTINUED)
bit 20	SIGN10: AN10 Signed Data Mode bit
	1 = AN10 is using Signed Data mode
	0 = AN10 is using Unsigned Data mode
bit 19	DIFF9: AN9 Mode bit
	1 = AN9 is using Differential mode
	0 = AN9 is using Single-ended mode
bit 18	SIGN9: AN9 Signed Data Mode bit
	1 = AN9 is using Signed Data mode
	0 = AN9 is using Unsigned Data mode
bit 17	DIFF8: AN 8 Mode bit
	1 = AN8 is using Differential mode
	0 = AN8 is using Single-ended mode
bit 16	SIGN8: AN8 Signed Data Mode bit
	1 = AN8 is using Signed Data mode
	0 = AN8 is using Unsigned Data mode
bit 15	DIFF7: AN7 Mode bit
	1 = AN7 is using Differential mode
	0 = AN7 is using Single-ended mode
bit 14	SIGN7: AN7 Signed Data Mode bit
	1 = AN7 is using Signed Data mode
	0 = AN7 is using Unsigned Data mode
bit 13	DIFF6: AN6 Mode bit
	1 = AN6 is using Differential mode
	0 = AN6 is using Single-ended mode
bit 12	SIGN6: AN6 Signed Data Mode bit
	1 = AN6 is using Signed Data mode
	0 = AN6 is using Unsigned Data mode
bit 11	DIFF5: AN5 Mode bit
	1 = AN5 is using Differential mode
	0 = AN5 is using Single-ended mode
bit 10	SIGN5: AN5 Signed Data Mode bit
	1 = AN5 is using Signed Data mode
1.11.0	0 = AN5 is using Unsigned Data mode
bit 9	DIFF4: AN4 Mode bit
	1 = AN4 is using Differential mode
hit O	0 = AN4 is using Single-ended mode
bit 8	SIGN4: AN4 Signed Data Mode bit
	1 = AN4 is using Signed Data mode 0 = AN4 is using Unsigned Data mode
bit 7	DIFF3: AN3 Mode bit
DIL 1	1 = AN3 is using Differential mode
	0 = AN3 is using Single-ended mode
hit 6	SIGN3: AN3 Signed Data Mode bit
bit 6	1 = AN3 is using Signed Data mode
	0 = AN3 is using Unsigned Data mode
bit 5	DIFF2: AN2 Mode bit
DIL U	1 = AN2 is using Differential mode
	The state of the s

0 = AN2 is using Single-ended mode

REGISTER 29-5: ADCIMCON1: ADC INPUT MODE CONTROL REGISTER 1 (CONTINUED)

bit 4	SIGN2: AN2 Signed Data Mode bit
	1 = AN2 is using Signed Data mode
	0 = AN2 is using Unsigned Data mode
bit 3	DIFF1: AN1 Mode bit
	1 = AN1 is using Differential mode
	0 = AN1 is using Single-ended mode
bit 2	SIGN1: AN1 Signed Data Mode bit
	1 = AN1 is using Signed Data mode
	0 = AN1 is using Unsigned Data mode
bit 1	DIFF0: AN0 Mode bit
	1 = AN0 is using Differential mode
	0 = AN0 is using Single-ended mode
bit 0	SIGN0: AN0 Signed Data Mode bit
	1 = AN0 is using Signed Data mode

0 = AN0 is using Unsigned Data mode

REGISTER 29-6: ADCIMCON2: ADC INPUT MODE CONTROL REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0 R/W-0							
31:24	DIFF31	SIGN31	DIFF30	SIGN30	DIFF29	SIGN29	DIFF28	SIGN28
22:46	R/W-0 R/W-0							
23:16	DIFF27	SIGN27	DIFF26	SIGN26	DIFF25	SIGN25	DIFF24	SIGN24
45.0	R/W-0 R/W-0							
15:8	DIFF23	SIGN23	DIFF22	SIGN22	DIFF21	SIGN21	DIFF20	SIGN20
7:0	R/W-0 R/W-0							
	DIFF19	SIGN19	DIFF18	SIGN18	DIFF17	SIGN17	DIFF16	SIGN16

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31 DIFF31: AN31 Mode bit

1 = AN31 is using Differential mode

0 = AN31 is using Single-ended mode

bit 30 SIGN31: AN31 Signed Data Mode bit

1 = AN31 is using Signed Data mode

0 = AN31 is using Unsigned Data mode

bit 29 DIFF30: AN30 Mode bit

1 = AN30 is using Differential mode

0 = AN30 is using Single-ended mode

bit 28 SIGN30: AN30 Signed Data Mode bit

1 = AN30 is using Signed Data mode

0 = AN30 is using Unsigned Data mode

bit 27 DIFF29: AN29 Mode bit

1 = AN29 is using Differential mode

0 = AN29 is using Single-ended mode

bit 26 SIGN29: AN29 Signed Data Mode bit

1 = AN29 is using Signed Data mode

0 = AN29 is using Unsigned Data mode

bit 25 DIFF28: AN28 Mode bit

1 = AN28 is using Differential mode

0 = AN28 is using Single-ended mode

bit 24 SIGN28: AN28 Signed Data Mode bit

1 = AN28 is using Signed Data mode

0 = AN28 is using Unsigned Data mode

bit 23 DIFF27: AN27 Mode bit

1 = AN27 is using Differential mode

0 = AN27 is using Single-ended mode

bit 22 SIGN27: AN27 Signed Data Mode bit

1 = AN27 is using Signed Data mode

0 = AN27 is using Unsigned Data mode

REGISTER 29-6: ADCIMCON2: ADC INPUT MODE CONTROL REGISTER 2 (CONTINUED)

bit 21	DIFF26: AN26 Mode bit
	1 = AN26 is using Differential mode
	0 = AN26 is using Single-ended mode
bit 20	SIGN26: AN26 Signed Data Mode bit
	1 = AN26 is using Signed Data mode
	0 = AN26 is using Unsigned Data mode
bit 19	DIFF25: AN25 Mode bit
	1 = AN25 is using Differential mode
	0 = AN25 is using Single-ended mode
bit 18	SIGN25: AN25 Signed Data Mode bit
	1 = AN25 is using Signed Data mode
	0 = AN25 is using Unsigned Data mode
bit 17	DIFF24: AN24 Mode bit
	1 = AN24 is using Differential mode
	0 = AN24 is using Single-ended mode
bit 16	SIGN24: AN24 Signed Data Mode bit
	1 = AN24 is using Signed Data mode
	0 = AN24 is using Unsigned Data mode
bit 15	DIFF23: AN23 Mode bit
	1 = AN23 is using Differential mode
	0 = AN23 is using Single-ended mode
bit 14	SIGN23: AN23 Signed Data Mode bit
	1 = AN23 is using Signed Data mode
	0 = AN23 is using Unsigned Data mode
bit 13	DIFF22: AN22 Mode bit
	1 = AN22 is using Differential mode
	0 = AN22 is using Single-ended mode
bit 12	SIGN22: AN22 Signed Data Mode bit
	1 = AN22 is using Signed Data mode
	0 = AN22 is using Unsigned Data mode
bit 11	DIFF21: AN21 Mode bit
	1 = AN21 is using Differential mode
	0 = AN21 is using Single-ended mode
bit 10	SIGN21: AN21 Signed Data Mode bit
	1 = AN21 is using Signed Data mode
	0 = AN21 is using Unsigned Data mode
bit 9	DIFF20: AN20 Mode bit
	1 = AN20 is using Differential mode
	0 = AN20 is using Single-ended mode
bit 8	SIGN20: AN20 Signed Data Mode bit
	1 = AN20 is using Signed Data mode
=	0 = AN20 is using Unsigned Data mode
bit 7	DIFF19: AN19 Mode bit
	1 = AN19 is using Differential mode
	0 = AN19 is using Single-ended mode

0 = AN16 is using Single-ended mode

SIGN16: AN16 Signed Data Mode bit 1 = AN16 is using Signed Data mode 0 = AN16 is using Unsigned Data mode

REGISTER 29-6: ADCIMCON2: ADC INPUT MODE CONTROL REGISTER 2 (CONTINUED)

bit 6	SIGN19: AN19 Signed Data Mode bit
	1 = AN19 is using Signed Data mode
	0 = AN19 is using Unsigned Data mode
bit 5	DIFF18: AN18 Mode bit
	1 = AN18 is using Differential mode
	0 = AN18 is using Single-ended mode
bit 4	SIGN18: AN18 Signed Data Mode bit
	1 = AN18 is using Signed Data mode
	0 = AN18 is using Unsigned Data mode
bit 3	DIFF17: AN17 Mode bit
	1 = AN17 is using Differential mode
	0 = AN17 is using Single-ended mode
bit 2	SIGN17: AN17 Signed Data Mode bit
	1 = AN17 is using Signed Data mode
	0 = AN17 is using Unsigned Data mode
bit 1	DIFF16: AN16 Mode bit
	1 = AN16 is using Differential mode

bit 0

REGISTER 29-7: ADCIMCON3: ADC INPUT MODE CONTROL REGISTER 3

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	-	-	_	_	_	_	_	_
22:46	R/W-0 R/W-0							
23:16	DIFF43	SIGN43	DIFF42	SIGN42	DIFF41	SIGN41	DIFF40	SIGN40
45.0	R/W-0 R/W-0							
15:8	DIFF39	SIGN39	DIFF38	SIGN38	DIFF37	SIGN37	DIFF36	SIGN36
7:0	R/W-0 R/W-0							
	DIFF35	SIGN35	DIFF34	SIGN34	DIFF33	SIGN33	DIFF32	SIGN32

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23 DIFF43: AN43 Mode bit

 $_1$ = AN43 is using Differential mode

0 = AN43 is using Single-ended mode

bit 22 SIGN43: AN43 Signed Data Mode bit

1 = AN43 is using Signed Data mode0 = AN43 is using Unsigned Data mode

bit 21 DIFF42: AN42 Mode bit

1 = AN42 is using Differential mode

0 = AN42 is using Single-ended mode

bit 20 SIGN42: AN42 Signed Data Mode bit

1 = AN42 is using Signed Data mode

0 = AN42 is using Unsigned Data mode

bit 19 **DIFF41:** AN41 Mode bit

1 = AN41 is using Differential mode

0 = AN41 is using Single-ended mode

bit 18 SIGN41: AN41 Signed Data Mode bit

1 = AN41 is using Signed Data mode

0 = AN41 is using Unsigned Data mode

bit 17 **DIFF40:** AN40 Mode bit

1 = AN40 is using Differential mode

0 = AN40 is using Single-ended mode

bit 16 SIGN40: AN40 Signed Data Mode bit

1 = AN40 is using Signed Data mode

0 = AN40 is using Unsigned Data mode

bit 15 DIFF39: AN39 Mode bit

1 = AN39 is using Differential mode

0 = AN39 is using Single-ended mode

bit 14 SIGN39: AN39 Signed Data Mode bit

1 = AN39 is using Signed Data mode

0 = AN39 is using Unsigned Data mode

REGISTER 29-7: ADCIMCON3: ADC INPUT MODE CONTROL REGISTER 3 (CONTINUED)

bit 13	DIFF38: AN38 Mode bit
	1 = AN38 is using Differential mode
	0 = AN38 is using Single-ended mode
bit 12	SIGN38: AN38 Signed Data Mode bit
	1 = AN38 is using Signed Data mode
	0 = AN38 is using Unsigned Data mode
bit 11	DIFF37: AN37 Mode bit
	1 = AN37 is using Differential mode
	0 = AN37 is using Single-ended mode
bit 10	SIGN37: AN37 Signed Data Mode bit
	1 = AN37 is using Signed Data mode
	0 = AN37 is using Unsigned Data mode
bit 9	DIFF36: AN36 Mode bit
	1 = AN36 is using Differential mode
	0 = AN36 is using Single-ended mode
bit 8	SIGN36: AN36 Signed Data Mode bit
	1 = AN36 is using Signed Data mode
	0 = AN36 is using Unsigned Data mode
bit 7	DIFF35: AN35 Mode bit
	1 = AN35 is using Differential mode
	0 = AN35 is using Single-ended mode
bit 6	SIGN35: AN35 Signed Data Mode bit
	1 = AN35 is using Signed Data mode
	0 = AN35 is using Unsigned Data mode
bit 5	DIFF34: AN34 Mode bit
	1 = AN34 is using Differential mode
	0 = AN34 is using Single-ended mode
bit 4	SIGN34: AN34 Signed Data Mode bit
	1 = AN34 is using Signed Data mode
	0 = AN34 is using Unsigned Data mode
bit 3	DIFF33: AN33 Mode bit
	1 = AN33 is using Differential mode
	0 = AN33 is using Single-ended mode
bit 2	SIGN33: AN33 Signed Data Mode bit
	1 = AN33 is using Signed Data mode
	0 = AN33 is using Unsigned Data mode
bit 1	DIFF32: AN32 Mode bit
	1 = AN32 is using Differential mode
	0 = AN32 is using Single-ended mode
bit 0	SIGN32: AN32 Signed Data Mode bit
	1 = AN32 is using Signed Data mode
	0 = AN32 is using Unsigned Data mode

REGISTER 29-8: ADCGIRQEN1: ADC GLOBAL INTERRUPT ENABLE REGISTER 1

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0 R/W-0							
31:24	AGIEN31	AGIEN30	AGIEN29	AGIEN28	AGIEN27	AGIEN26	AGIEN25	AGIEN24
22.40	R/W-0 R/W-0							
23:16	AGIEN23	AGIEN22	AGIEN21	AGIEN20	AGIEN19	AGIEN18	AGIEN17	AGIEN16
45.0	R/W-0 R/W-0							
15:8	AGIEN15	AGIEN14	AGIEN13	AGIEN12	AGIEN11	AGIEN10	AGIEN9	AGIEN8
7:0	R/W-0 R/W-0							
	AGIEN7	AGIEN6	AGIEN5	AGIEN4	AGIEN3	AGIEN2	AGIEN1	AGIEN0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 AGIEN31:AGIEN0: ADC Global Interrupt Enable bits

- 1 = Interrupts are enabled for the selected analog input. The interrupt is generated after the converted data is ready (indicated by the ARDYx bit ('x' = 31-0) of the ADCDSTAT1 register)
- 0 = Interrupts are disabled

REGISTER 29-9: ADCGIRQEN2: ADC GLOBAL INTERRUPT ENABLE REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	_	_	-	-	_	_	_	
22.40	U-0 U-0							
23:16	_	-	-	-	_	-	_	-
45.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	_	-	-	-	AGIEN43	AGIEN42	AGIEN41	AGIEN40
7:0	R/W-0 R/W-0							
	AGIEN39	AGIEN38	AGIEN37	AGIEN36	AGIEN35	AGIEN34	AGIEN33	AGIEN32

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-12 Unimplemented: Read as '0'

bit 11-0 AGIEN43:AGIEN32 ADC Global Interrupt Enable bits

- 1 = Interrupts are enabled for the selected analog input. The interrupt is generated after the converted data is ready (indicated by the ARDYx bit ('x' = 43-32) of the ADCDSTAT2 register)
- 0 = Interrupts are disabled

REGISTER 29-10: ADCCSS1: ADC COMMON SCAN SELECT REGISTER 1

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	R/W-0 R/W-0							
31:24	CSS31	CSS30	CSS29	CSS28	CSS27	CSS26	CSS25	CSS24
22.46	R/W-0 R/W-0							
23:16	CSS23	CSS22	CSS21	CSS20	CSS19	CSS18	CSS17	CSS16
45.0	R/W-0 R/W-0							
15:8	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8
7:0	R/W-0 R/W-0							
	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 CSS31:CSS0: Analog Common Scan Select bits

1 = Select ANx for input scan0 = Skip ANx for input scan

- **Note 1:** In addition to setting the appropriate bits in this register, Class 1 and Class 2 analog inputs must select the STRIG input as the trigger source if they are to be scanned through the CSS*x* bits. Refer to the bit descriptions in the ADCTRGx registers for selecting the STRIG option.
 - 2: If a Class 1 or Class 2 input is included in the scan by setting the CSSx bit to '1' and by setting the TRGSRCx<4:0> bits to STRIG mode ('0b11), the user application must ensure that no other triggers are generated for that input using the RQCNVRT bit in the ADCCON3 register or the hardware input or any digital filter. Otherwise, the scan behavior is unpredictable.

REGISTER 29-11: ADCCSS2: ADC COMMON SCAN SELECT REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0 U-0							
31:24		-	_	_	_	_	_	_
00.40	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	-	-	_	_	CSS43	CSS42	CSS41	CSS40
7:0	R/W-0 R/W-0							
	CSS39	CSS38	CSS37	CSS36	CSS35	CSS34	CSS33	CSS32

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-12 Unimplemented: Read as '0'

bit 11-0 CSS43:CSS32: Analog Common Scan Select bits

Analog inputs 43 to 32 are always Class 3, as there are only 32 triggers available.

1 = Select ANx for input scan0 = Skip ANx for input scan

REGISTER 29-12: ADCDSTAT1: ADC DATA READY STATUS REGISTER 1

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	R-0, HS, HC R-0, HS, HC							
31:24	ARDY31	ARDY30	ARDY29	ARDY28	ARDY27	ARDY26	ARDY25	ARDY24
22.46	R-0, HS, HC R-0, HS, HC							
23:16	ARDY23	ARDY22	ARDY21	ARDY20	ARDY19	ARDY18	ARDY17	ARDY16
15.0	R-0, HS, HC R-0, HS, HC							
15:8	ARDY15	ARDY14	ARDY13	ARDY12	ARDY11	ARDY10	ARDY9	ARDY8
7:0	R-0, HS, HC R-0, HS, HC							
	ARDY7	ARDY6	ARDY5	ARDY4	ARDY3	ARDY2	ARDY1	ARDY0

Legend:HS = Hardware SetHC = Hardware ClearedR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 ARDY31:ARDY0: Conversion Data Ready for Corresponding Analog Input Ready bits

1 = This bit is set when converted data is ready in the data register

0 = This bit is cleared when the associated data register is read

REGISTER 29-13: ADCDSTAT2: ADC DATA READY STATUS REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0 U-0							
31.24	_	_	_	_	_	_	_	_
22:46	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	U-0	U-0	U-0	U-0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC
15:8	_	_	_	_	ARDY43	ARDY42	ARDY41	ARDY40
7:0	R-0, HS, HC R-0, HS, HC							
	ARDY39	ARDY38	ARDY37	ARDY36	ARDY35	ARDY34	ARDY33	ARDY32

Legend: HS = Hardware Set HC = Hardware Cleared

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

bit 11-0 ARDY43:ARDY32: Conversion Data Ready for Corresponding Analog Input Ready bits

1 = This bit is set when converted data is ready in the data register

 $\ensuremath{\textsc{0}}$ = This bit is cleared when the associated data register is read

REGISTER 29-14: ADCCMPENx: ADC DIGITAL COMPARATOR 'x' ENABLE REGISTER ('x' = 1 THROUGH 6)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0 R/W-0							
31:24	CMPE31	CMPE30	CMPE29	CMPE28	CMPE27	CMPE26	CMPE25	CMPE24
00.40	R/W-0 R/W-0							
23:16	CMPE23	CMPE22	CMPE21	CMPE20	CMPE19	CMPE18	CMPE17	CMPE16
45.0	R/W-0 R/W-0							
15:8	CMPE15	CMPE14	CMPE13	CMPE12	CMPE11	CMPE10	CMPE9	CMPE8
7.0	R/W-0 R/W-0							
7:0	CMPE7	CMPE6	CMPE5	CMPE4	CMPE3	CMPE2	CMPE1	CMPE0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 CMPE31:CMPE0: ADC Digital Comparator 'x' Enable bits

These bits enable conversion results corresponding to the Analog Input to be processed by the Digital Comparator. CMPE0 enables AN0, CMPE1 enables AN1, and so on.

Note 1: CMPEx = ANx, where 'x' = 0-31 (Digital Comparator inputs are limited to AN0 through AN31).

2: Changing the bits in this register while the Digital Comparator is enabled (ENDCMP = 1) can result in unpredictable behavior.

REGISTER 29-15: ADCCMPx: ADC DIGITAL COMPARATOR 'x' LIMIT VALUE REGISTER ('x' = 1 THROUGH 6)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04:04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24	DCMPHI<15:8> ^(1,2,3)									
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16				DCMPHI<	7:0> ^(1,2,3)		R/W-0 R/W			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8				DCMPLO<	15:8> ^(1,2,3)		25/17/9/1 R/W-0			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0		DCMPLO<7:0>(1,2,3)								

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 **DCMPHI<15:0>:** Digital Comparator 'x' High Limit Value bits^(1,2,3)

These bits store the high limit value, which is used by digital comparator for comparisons with ADC converted data.

bit 15-0 **DCMPLO<15:0>:** Digital Comparator 'x' Low Limit Value bits^(1,2,3)

These bits store the low limit value, which is used by digital comparator for comparisons with ADC converted data.

- **Note 1:** Changing theses bits while the Digital Comparator is enabled (ENDCMP = 1) can result in unpredictable behavior.
 - 2: The format of the limit values should match the format of the ADC converted value in terms of sign and fractional settings.
 - **3:** For Digital Comparator 0 used in CVD mode, the DCMPHI<15:0> and DCMPLO<15:0> bits must always be specified in signed format, as the CVD output data is differential and is always signed.

REGISTER 29-16: ADCFLTRx: ADC DIGITAL FILTER 'x' REGISTER ('x' = 1 THROUGH 6)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R/W-0 R-0, HS, HC									
31:24	AFEN	DATA16EN	DFMODE	C	VRSAM<2:0	>	AFGIEN	AFRDY		
22.40	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	_	_	_	CHNLID<4:0>						
45.0	R-0, HS, HC R-0, HS, HC									
15.8	15:8			FLTRDATA<15:8>						
7:0	R-0, HS, HC R-0, HS, HC									
				FLTRDAT	A<7:0>					

Legend:HS = Hardware SetHC = Hardware ClearedR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31 **AFEN:** Digital Filter 'x' Enable bit

1 = Digital filter is enabled

0 = Digital filter is disabled and the AFRDY status bit is cleared

bit 30 DATA16EN: Filter Significant Data Length bit

1 = All 16 bits of the filter output data are significant

0 = Only the first 12 bits are significant, followed by four zeros

Note: This bit is significant only if DFMODE = 1 (Averaging Mode) and FRACT (ADCCON1<23>) = 1 (Fractional Output Mode).

bit **DFMODE:** ADC Filter Mode bit

1 = Filter 'x' works in Averaging mode

0 = Filter 'x' works in Oversampling Filter mode (default)

bit 28-26 OVRSAM<2:0>: Oversampling Filter Ratio bits

If DFMODE is '0':

111 = 128 samples (shift sum 3 bits to right, output data is in 15.1 format)

110 = 32 samples (shift sum 2 bits to right, output data is in 14.1 format)

101 = 8 samples (shift sum 1 bit to right, output data is in 13.1 format)

100 = 2 samples (shift sum 0 bits to right, output data is in 12.1 format)

011 = 256 samples (shift sum 4 bits to right, output data is 16 bits)

010 = 64 samples (shift sum 3 bits to right, output data is 15 bits)

001 = 16 samples (shift sum 2 bits to right, output data is 14 bits)

000 = 4 samples (shift sum 1 bit to right, output data is 13 bits)

If DFMODE is '1':

111 = 256 samples (256 samples to be averaged)

110 = 128 samples (128 samples to be averaged)

101 = 64 samples (64 samples to be averaged)

100 = 32 samples (32 samples to be averaged)

011 = 16 samples (16 samples to be averaged)

010 = 8 samples (8 samples to be averaged) 001 = 4 samples (4 samples to be averaged)

000 = 2 samples (2 samples to be averaged)

bit 25 **AFGIEN:** Digital Filter 'x' Interrupt Enable bit

1 = Digital filter interrupt is enabled and is generated by the AFRDY status bit

0 = Digital filter is disabled

REGISTER 29-16: ADCFLTRx: ADC DIGITAL FILTER 'x' REGISTER ('x' = 1 THROUGH 6)

bit 24 **AFRDY:** Digital Filter 'x' Data Ready Status bit 1 = Data is ready in the FLTRDATA<15:0> bits 0 = Data is not ready

Note: This bit is cleared by reading the FLTRDATA<15:0> bits or by disabling the Digital Filter module (by setting AFEN to '0').

bit 23-21 Unimplemented: Read as '0'

bit 20-16 CHNLID<4:0>: Digital Filter Analog Input Selection bits

These bits specify the analog input to be used as the oversampling filter data source.

Note: Only the first 12 analog inputs, Class 1 (AN0-AN11) and Class 2 (AN5-AN11), can use a digital filter.

bit 15-0 FLTRDATA<15:0>: Digital Filter 'x' Data Output Value bits

The filter output data is as per the fractional format set in the FRACT bit (ADCCON1<23>). The FRACT bit should not be changed while the filter is enabled. Changing the state of the FRACT bit after the operation of the filter ended will not update the value of the FLTRDATA<15:0> bits to reflect the new format.

REGISTER 29-17: ADCTRG1: ADC TRIGGER SOURCE 1 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24	_	_	_	TRGSRC3<4:0>					
22.40	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	_	_	_		Т	RGSRC2<4:0)>		
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	_	_	_		Т	RGSRC1<4:0			
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	_	_	_		Т	RGSRC0<4:0)>		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28-24 TRGSRC3<4:0>: Trigger Source for Conversion of Analog Input AN3 Select bits

11111 = Reserved

11110 = Reserved

11101 = CTMU Event

11100 = Reserved

•

01110 = Reserved

01101 = CTMU Event

01100 = Comparator 2 (C2OUT) (1)

01011 = Comparator 1 (C1OUT) (1)

01010 = OCMP5 (1)

01001 = OCMP3 (1)

01000 = OCMP1 (1)

00111 = TMR5 match

00110 = TMR3 match

00101 = TMR1 match

00100 = INTO External interrupt

00011 **= STRIG**

00010 = Global level software trigger (GLSWTRG)

00001 = Global software edge trigger (GSWTRG)

00000 **= No Trigger**

For STRIG, in addition to setting the trigger, it also requires programming of the STRGSRC<4:0> bits (ADCCON1<20:16>) to select the trigger source, and requires the appropriate CSS bits to be set in the ADCCSSx registers.

bit 23-21 Unimplemented: Read as '0'

bit 20-16 TRGSRC2<4:0>: Trigger Source for Conversion of Analog Input AN2 Select bits

See bits 28-24 for bit value definitions.

bit 15-13 Unimplemented: Read as '0'

bit 12-8 TRGSRC1<4:0>: Trigger Source for Conversion of Analog Input AN1 Select bits

See bits 28-24 for bit value definitions.

bit 7-5 Unimplemented: Read as '0'

bit 4-0 TRGSRC0<4:0>: Trigger Source for Conversion of Analog Input AN0 Select bits

See bits 28-24 for bit value definitions.

REGISTER 29-18: ADCTRG2: ADC TRIGGER SOURCE 2 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	_	_	TRGSRC7<4:0>					
00:40	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	_	_	_		Ţ	RGSRC6<4:0)>	
15:8	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.6	_	_	_		Т	RGSRC5<4:0)>	
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	_	_	_		Т	RGSRC4<4:0)>	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28-24 TRGSRC7<4:0>: Trigger Source for Conversion of Analog Input AN7 Select bits

11111 = Reserved

11110 = Reserved

11101 **= CTMU Event**

11100 = Reserved

•

01110 = Reserved

01101 **= CTMU Event**

01100 = Comparator 2 (C2OUT) (1)

01011 = Comparator 1 (C1OUT) (1)

01010 = OCMP5 (1)

01001 = OCMP3 (1)

01000 = OCMP1 (1)

00111 = TMR5 match

00110 = TMR3 match

00101 = TMR1 match

00100 = INT0 External interrupt

00011 **= STRIG**

00010 = Global level software trigger (GLSWTRG)

00001 = Global software edge trigger (GSWTRG)

00000 = No Trigger

For STRIG, in addition to setting the trigger, it also requires programming of the STRGSRC<4:0> bits (ADCCON1<20:16>) to select the trigger source, and requires the appropriate CSS bits to be set in the ADCCSSx registers.

bit 23-21 Unimplemented: Read as '0'

bit 20-16 TRGSRC6<4:0>: Trigger Source for Conversion of Analog Input AN6 Select bits

See bits 28-24 for bit value definitions.

bit 15-13 Unimplemented: Read as '0'

bit 12-8 TRGSRC5<4:0>: Trigger Source for Conversion of Analog Input AN5 Select bits

See bits 28-24 for bit value definitions.

bit 7-5 **Unimplemented:** Read as '0'

bit 4-0 TRGSRC4<4:0>: Trigger Source for Conversion of Analog Input AN4 Select bits

See bits 28-24 for bit value definitions.

REGISTER 29-19: ADCTRG3: ADC TRIGGER SOURCE 3 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24	_	_	— TRGSRC11<4:0>						
22:16	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	_	_	_		TI	RGSRC10<4:	R/W-0		
15:8	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15.6	_	_	_		Т	RGSRC9<4:0)>		
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7.0	_	_	_		Т	TRGSRC8<4:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28-24 TRGSRC11<4:0>: Trigger Source for Conversion of Analog Input AN11 Select bits

11111 = Reserved

11110 = Reserved

11101 **= CTMU Event**

11100 = Reserved

•

01110 = Reserved

01101 **= CTMU Event**

01100 = Comparator 2 (C2OUT) (1)

01011 = Comparator 1 (C1OUT) (1)

01010 = OCMP5 ⁽¹⁾

01001 = OCMP3 (1)

01000 = OCMP1 (1)

00111 = TMR5 match

00110 = TMR3 match

00101 = TMR1 match

00100 = INT0 External interrupt

00011 **= STRIG**

00010 = Global level software trigger (GLSWTRG)

00001 = Global software edge trigger (GSWTRG)

00000 = No Trigger

For STRIG, in addition to setting the trigger, it also requires programming of the STRGSRC<4:0> bits (ADCCON1<20:16>) to select the trigger source, and requires the appropriate CSS bits to be set in the ADCCSSx registers.

bit 23-21 Unimplemented: Read as '0'

bit 20-16 TRGSRC10<4:0>: Trigger Source for Conversion of Analog Input AN10 Select bits

See bits 28-24 for bit value definitions.

bit 15-13 Unimplemented: Read as '0'

bit 12-8 TRGSRC9<4:0>: Trigger Source for Conversion of Analog Input AN9 Select bits

See bits 28-24 for bit value definitions.

bit 7-5 **Unimplemented:** Read as '0'

bit 4-0 TRGSRC8<4:0>: Trigger Source for Conversion of Analog Input AN8 Select bits

See bits 28-24 for bit value definitions.

REGISTER 29-20: ADCCMPCON1: ADC DIGITAL COMPARATOR 1 CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R-0, HS, HC	R-0, HS, HC						
31.24				CVDDAT	A<15:8>			
23:16	R-0, HS, HC	R-0, HS, HC						
23.10				CVDDA	ΓA<7:0>		2 25/17/9/1 C R-0, HS, HC C R-0, HS, HC	
15.0	U-0	U-0	R-0, HS, HC	R-0, HS, HC				
15:8	_	_			AINID	<5:0>		
7.0	R/W-0	R/W-0	R-0, HS, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	ENDCMP	DCMPGIEN	DCMPED	IEBTWN	IEHIHI	IEHILO	IELOHI	IELOLO

Legend:HS = Hardware SetHC = Hardware ClearedR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 CVDDATA<15:0>: CVD Data Status bits

In CVD mode, these bits obtain the CVD differential output data (subtraction of CVD positive and negative measurement), whenever a Digital Comparator interrupt is generated. The value in these bits is compliant with the FRACT bit (ADCCON1<23>) and is always signed.

bit 15-14 Unimplemented: Read as '0'

bit 13-8 AINID<5:0>: Digital Comparator 0 Analog Input Identification (ID) bits

When a digital comparator event occurs (DCMPED = 1), these bits identify the analog input being monitored by Digital Comparator 0.

Note: In normal ADC mode, only analog inputs <31:0> can be processed by the Digital Comparator 0. The Digital Comparator 0 also supports the CVD mode, in which all Class 2 and Class 3 analog inputs may be stored in the AINID<5:0> bits.

111111 **= Reserved**

•

101100 = Reserved

101011 = AN43 is being monitored

•

000001 = AN1 is being monitored

000000 = AN0 is being monitored

- bit 7 ENDCMP: Digital Comparator 0 Enable bit
 - 1 = Digital Comparator 0 is enabled
 - 0 = Digital Comparator 0 is not enabled, and the DCMPED status bit (ADCCMP0CON<5>) is cleared
- bit 6 **DCMPGIEN:** Digital Comparator 0 Global Interrupt Enable bit
 - 1 = A Digital Comparator 0 interrupt is generated when the DCMPED status bit (ADCCMP0CON<5>) is set
 - 0 = A Digital Comparator 0 interrupt is disabled
- bit 5 DCMPED: Digital Comparator 0 "Output True" Event Status bit

The logical conditions under which the digital comparator gets "True" are defined by the IEBTWN, IEHIHI, IEHILO, IELOHI, and IELOLO bits.

Note: This bit is cleared by reading the AINID<5:0> bits or by disabling the Digital Comparator module (by setting ENDCMP to '0').

- 1 = Digital Comparator 0 output true event has occurred (output of Comparator is '1')
- 0 = Digital Comparator 0 output is false (output of comparator is '0')
- bit 4 **IEBTWN:** Between Low/High Digital Comparator 0 Event bit
 - 1 = Generate a digital comparator event when DCMPLO<15:0> ≤ DATA<31:0> < DCMPHI<15:0>
 - 0 = Do not generate a digital comparator event

REGISTER 29-20: ADCCMPCON1: ADC DIGITAL COMPARATOR 1 CONTROL REGISTER

bit 3	IEHIHI: High/High Digital Comparator 0 Event bit 1 = Generate a Digital Comparator 0 Event when DCMPHI<15:0> ≤ DATA<31:0> 0 = Do not generate an event
bit 2	IEHILO: High/Low Digital Comparator 0 Event bit 1 = Generate a Digital Comparator 0 Event when DATA<31:0> < DCMPHI<15:0> 0 = Do not generate an event
bit 1	IELOHI: Low/High Digital Comparator 0 Event bit 1 = Generate a Digital Comparator 0 Event when DCMPLO<15:0> ≤ DATA<31:0> □ = Do not generate an event

bit 0 IELOLO: Low/Low Digital Comparator 0 Event bit

1 = Generate a Digital Comparator 0 Event when DATA<31:0> < DCMPLO<15:0>

0 = Do not generate an event

REGISTER 29-21: ADCCMPCONX: ADC DIGITAL COMPARATOR 'x' CONTROL REGISTER ('x' = 2 THROUGH 6)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0 U-0							
31.24	_	_		_	_	_		_
22:46	U-0 U-0							
23:16	_	_		_	_	_		_
45.0	U-0	U-0	U-0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC
15:8	_	_	_			AINID<4:0>		
7:0	R/W-0	R/W-0	R-0, HS, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	ENDCMP	DCMPGIEN	DCMPED	IEBTWN	IEHIHI	IEHILO	IELOHI	IELOLO

Legend:HS = Hardware SetHC = Hardware ClearedR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

bit 12-8 AINID<4:0>: Digital Comparator 'x' Analog Input Identification (ID) bits

When a digital comparator event occurs (DCMPED = 1), these bits identify the analog input being monitored by the Digital Comparator.

Note: Only analog inputs <31:0> can be processed by the Digital Comparator module 'x' ('x' = 1-5).

11111 = AN31 is being monitored 11110 = AN30 is being monitored

•

00001 = AN1 is being monitored

00000 = AN0 is being monitored

- bit 7 **ENDCMP:** Digital Comparator 'x' Enable bit
 - 1 = Digital Comparator 'x' is enabled
 - 0 = Digital Comparator 'x' is not enabled, and the DCMPED status bit (ADCCMPxCON<5>) is cleared
- bit 6 **DCMPGIEN:** Digital Comparator 'x' Global Interrupt Enable bit
 - 1 = A Digital Comparator 'x' interrupt is generated when the DCMPED status bit (ADCCMPxCON<5>) is set 0 = A Digital Comparator 'x' interrupt is disabled
- bit 5 **DCMPED:** Digital Comparator 'x' "Output True" Event Status bit

The logical conditions under which the digital comparator gets "True" are defined by the IEBTWN, IEHIHI, IEHILO, IELOHI and IELOLO bits.

Note: This bit is cleared by reading the AINID<5:0> bits (ADCCMP0CON<13:8>) or by disabling the Digital Comparator module (by setting ENDCMP to '0').

- 1 = Digital Comparator 'x' output true event has occurred (output of Comparator is '1')
- 0 = Digital Comparator 'x' output is false (output of Comparator is '0')
- bit 4 **IEBTWN:** Between Low/High Digital Comparator 'x' Event bit
 - 1 = Generate a digital comparator event when the DCMPLO<15:0> bits ≤ DATA<31:0> bits < DCMPHI<15:0> bits
 - 0 = Do not generate a digital comparator event
- bit 3 **IEHIHI:** High/High Digital Comparator 'x' Event bit
 - 1 = Generate a Digital Comparator 'x' Event when the DCMPHI<15:0> bits ≤ DATA<31:0> bits
 - 0 = Do not generate an event
- bit 2 **IEHILO:** High/Low Digital Comparator 'x' Event bit
 - 1 = Generate a Digital Comparator 'x' Event when the DATA<31:0> bits < DCMPHI<15:0> bits
 - 0 = Do not generate an event

REGISTER 29-21: ADCCMPCONx: ADC DIGITAL COMPARATOR 'x' CONTROL REGISTER ('x' = 2 THROUGH 6) (CONTINUED)

- bit 1 **IELOHI:** Low/High Digital Comparator 'x' Event bit
 - 1 = Generate a Digital Comparator 'x' Event when the DCMPLO<15:0> bits ≤ DATA<31:0> bits
 - 0 = Do not generate an event
- bit 0 **IELOLO:** Low/Low Digital Comparator 'x' Event bit
 - 1 = Generate a Digital Comparator 'x' Event when the DATA<31:0> bits < DCMPLO<15:0> bits
 - 0 = Do not generate an event

REGISTER 29-22: ADCFSTAT: ADC FIFO STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04:04	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	FEN	_		ADC4EN	ADC3EN	ADC2EN	ADC1EN	ADC0EN
22:46	R/W-0	R-0, HS, HC	R-0, HS, HC	U-0	U-0	U-0	U-0	U-0
23:16	FIEN	FRDY	FWROVERR	_	_	_	-	-
45.0	R-0 R-0							
15:8	FCNT<7:0>							
7:0	R-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
	FSIGN	_	_	_	_	ADCID<2:0>		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31 **FEN:** FIFO Enable bit

1 = FIFO is enabled

0 = FIFO is disabled; no data is being saved into the FIFO

bit 30-29 Unimplemented: Read as '0'

bit 28-24 **ADC4EN:ADC0EN:** ADCx Enable bits ('x' = 0 through 4)

1 = Converted output data of ADCx is stored in the FIFO

0 = Converted output data of ADCx is not stored in the FIFO

Note: While using FIFO, the output data is additionally stored in the respective output data register

(ADCDATAx).

bit 23 FIEN: FIFO Interrupt Enable bit

1 = FIFO interrupts are enabled; an interrupt is generated once the FRDY bit is set

0 = FIFO interrupts are disabled

bit 22 FRDY: FIFO Data Ready Interrupt Status bit

1 = FIFO has data to be read

0 = No data is available in the FIFO

Note: This bit is cleared when the FIFO output data in ADCFIFO has been read and there is no

additional data ready in the FIFO (that is, the FIFO is empty).

bit 21 FWROVERR: FIFO Write Overflow Error Status bit

1 = A write overflow error in the FIFO has occurred (circular FIFO)

0 = A write overflow error in the FIFO has not occurred

Note: This bit is cleared after ADCFSTAT<23:16> are read by software.

bit 15-8 FCNT<7:0>: FIFO Data Entry Count Status bit

The value in these bits indicates the number of data entries in the FIFO.

bit 7 FSIGN: FIFO Sign Setting bit

This bit reflects the sign of data stored in the ADCFIFO register.

bit 6-3 Unimplemented: Read as '0'

bit 2-0 **ADCID<2:0>:** ADCx Identifier bits ('x' = 0 through 6)

These bits specify the ADC module whose data is stored in the FIFO.

111 = Reserved

110 = Reserved

100 = Converted data of ADC4 is store in FIFO

.

000 = Converted data of ADC0 is stored in FIFO

REGISTER 29-23: ADCFIFO: ADC FIFO DATA REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R-0 R-0											
31:24				DATA<	31:24>			7/9/1 24/16/8/0 R-0 R-0 R-0 R-0 R-0				
00.40	R-0 R-0											
23:16	DATA<23:16>											
45.0	R-0 R-0											
15:8	DATA<15:8>											
7:0	R-0 R-0											
				DATA	<7:0>							

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 DATA<31:0>: FIFO Data Output Value bits

Note: When an alternate input is used as the input source for a dedicated ADC module, the data output is still read from the Primary input Data Output Register.

REGISTER 29-24: ADCBASE: ADC BASE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0 U-0							
31.24	-	_	_	_	_	_		_
00:40	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	R/W-0 R/W-0							
15:8				ADCBAS	E<15:8>			
7:0	R/W-0 R/W-0							
				ADCBAS	SE<7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 Unimplemented: Read as '0'

bit 15-0 ADCBASE<15:0>: ADC ISR Base Address bits

This register, when read, contains the base address of the user's ADC ISR jump table. The interrupt vector address is determined by the IRQVS<2:0> bits of the ADCCON1 register specifying the amount of left shift done to the ARDYx status bits in the ADCDSTAT1 and ADCDSTAT2 registers, prior to adding with ADCBASE register.

Interrupt Vector Address = Read Value of ADCBASE and Read Value of ADCBASE = Value written to ADCBASE + x << IRQVS < 2:0>, where 'x' is the smallest active analog input ID from the ADCDSTAT1 or ADCDSTAT2 registers (which has highest priority).

REGISTER 29-25: ADCDATAX: ADC OUTPUT DATA REGISTER 'x' ('x' = 0 THROUGH 43)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.04	R-0 R-0									
31:24				DATA<	31:24>					
22.40	R-0 R-0									
23:16	DATA<23:16>									
45.0	R-0 R-0									
15:8	DATA<15:8>									
7:0	R-0 R-0									
				DATA	<7:0>					

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 **DATA<31:0>:** ADC Converted Data Output bits.

Note 1: When an alternate input is used as the input source for a dedicated ADC module, the data output is still read from the Primary input Data Output Register.

2: Reading the ADCDATAx register value after changing the FRACT bit converts the data into the format specified by FRACT bit.

REGISTER 29-26: ADCTRGSNS: ADC TRIGGER LEVEL/EDGE SENSITIVITY REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0 U-0							
	_	_	_	_	_	_	_	_
22.46	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	_	_	_	_	LVL11	LVL10	LVL9	LVL8
7:0	R/W-0 R/W-0							
	LVL7	LVL6	LVL5	LVL4	LVL3	LVL2	LVL1	LVL0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-12 Unimplemented: Read as '0'

bit 11-0 LVL11:LVL0: Trigger Level and Edge Sensitivity bits

- 1 = Analog input is sensitive to the high level of its trigger (level sensitivity implies retriggering as long as the trigger signal remains high)
- 0 = Analog input is sensitive to the positive edge of its trigger (this is the value after a reset)
- **Note 1:** This register specifies the trigger level for analog inputs 0 to 11.
 - 2: The higher analog input ID belongs to Class 3, and therefore, is only scan triggered. All Class 3 analog inputs use the Scan Trigger, for which the level/edge is defined by the STRGLVL bit (ADCCON1<3>).

REGISTER 29-27: ADCxTIME: DEDICATED ADCx TIMING REGISTER ('x' = 0 THROUGH 4)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04-04	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	
31:24	_	_	_	ADCEIS<2:0> SELRES<1:0>					
00.40	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	_	ADCDIV<6:0>							
45.0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
15:8	_	_	_	_	_	_	SAMC<9:8>		
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	SAMC<7:0>								

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28-26 ADCEIS<2:0>: ADCx Early Interrupt Select bits

111 = The data ready interrupt is generated 8 ADC clocks prior to the end of conversion

110 = The data ready interrupt is generated 7 ADC clocks prior to the end of conversion

•

001 = The data ready interrupt is generated 2 ADC clocks prior to the end of conversion

000 = The data ready interrupt is generated 1 ADC clock prior to the end of conversion

Note: All options are available when the selected resolution, specified by the SELRES<1:0> bits (ADCxTIME<25:24>), is 12-bit or 10-bit. For a selected resolution of 8-bit, options from '000' to '101' are valid. For a selected resolution of 6-bit, options from '000' to '011' are valid.

bit 25-24 SELRES<1:0>: ADCx Resolution Select bits

11 = 12 bits

10 = 10 bits

01 = 8 bits

00 = 6 bits

Note: Changing the resolution of the ADC does not shift the result in the corresponding ADCDATAx register. The result will still occupy 12 bits, with the corresponding lower unused bits set to '0'.

For example, a resolution of 6 bits will result in ADCDATAx<5:0> being set to '0', and

ADCDATAx<11:6> holding the result.

bit 23 Unimplemented: Read as '0'

bit 22-16 ADCDIV<6:0>: ADCx Clock Divisor bits

These bits divide the ADC control clock with period TQ to generate the clock for ADCx (TADx).

```
1111111 = 254 * TQ = TADx
```

:

0000011 = 6 * TQ = TADx

0000010 = 4 * TQ = TADx

0000001 = 2 * TQ = TADx

0000000 = Reserved

bit 15-10 Unimplemented: Read as '0'

bit 9-0 **SAMC<9:0>:** ADCx Sample Time bits

Where TADx = period of the ADC conversion clock for the dedicated ADC controlled by the ADCDIV<6:0>

11111111111 = **1025** TAD*x*

:

0000000001 **= 3 TAD**x

00000000000 **= 2 TAD**X

REGISTER 29-28: ADCEIEN1: ADC EARLY INTERRUPT ENABLE REGISTER 1

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	R/W-0 R/W-0							
31:24	EIEN31	EIEN30	EIEN29	EIEN28	EIEN27	EIEN26	EIEN25	EIEN24
22.40	R/W-0 R/W-0							
23:16	EIEN23	EIEN22	EIEN21	EIEN20	EIEN19	EIEN18	EIEN17	EIEN16
45.0	R/W-0 R/W-0							
15:8	EIEN15	EIEN14	EIEN13	EIEN12	EIEN11	EIEN10	EIEN9	EIEN8
7.0	R/W-0 R/W-0							
7:0	EIEN7	EIEN6	EIEN5	EIEN4	EIEN3	EIEN2	EIEN1	EIEN0

Legend: HS = Hardware Set C = Clearable bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 **EIEN31:EIEN0:** Early Interrupt Enable for Analog Input bits

- 1 = Early Interrupts are enabled for the selected analog input. The interrupt is generated after the early interrupt event occurs (indicated by the EIRDYx bit ('x' = 31-0) of the ADCEISTAT1 register)
- 0 = Interrupts are disabled

REGISTER 29-29: ADCEIEN2: ADC EARLY INTERRUPT ENABLE REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0 U-0							
31.24		_	_	_	_	_	_	_
22.46	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8		_	_	_	EIEN43	EIEN42	EIEN41	EIEN40
7:0	R/W-0 R/W-0							
	EIEN39	EIEN38	EIEN37	EIEN36	EIEN35	EIEN34	EIEN33	EIEN32

Legend: HS = Hardware Set C = Clearable bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-11 Unimplemented: Read as '0'

bit 11-0 EIEN43:EIEN32: Early Interrupt Enable for Analog Input bits

- 1 = Early Interrupts are enabled for the selected analog input. The interrupt is generated after the early interrupt event occurs (indicated by the EIRDYx bit ('x' = 43-32) of the ADCEISTAT2 register)
- 0 = Interrupts are disabled

REGISTER 29-30: ADCEISTAT1: ADC EARLY INTERRUPT STATUS REGISTER 1

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	R-0, HS, HC R-0, HS, HC							
31:24	EIRDY31	EIRDY30	EIRDY29	EIRDY28	EIRDY27	EIRDY26	EIRDY25	EIRDY24
22.40	R-0, HS, HC R-0, HS, HC							
23:16	EIRDY23	EIRDY22	EIRDY21	EIRDY20	EIRDY19	EIRDY18	EIRDY17	EIRDY16
45.0	R-0, HS, HC R-0, HS, HC							
15:8	EIRDY15	EIRDY14	EIRDY13	EIRDY12	EIRDY11	EIRDY10	EIRDY9	EIRDY8
7.0	R-0, HS, HC R-0, HS, HC							
7:0	EIRDY7	EIRDY6	EIRDY5	EIRDY4	EIRDY3	EIRDY2	EIRDY1	EIRDY0

Legend:HS = Hardware SetHC = Hardware ClearedR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-0 EIRDY31:EIRDY0: Early Interrupt for Corresponding Analog Input Ready bits

- 1 = This bit is set when the early interrupt event occurs for the specified analog input. An interrupt will be generated if early interrupts are enabled in the ADCEIEN1 register. For the Class 1 analog inputs, this bit will set as per the configuration of the ADCEIS<2:0> bits in the ADCXTIME register. For the shared ADC module, this bit will be set as per the configuration of the ADCEIS<2:0> bits in the ADCCON2 register.
- 0 = Interrupts are disabled

REGISTER 29-31: ADCEISTAT2: ADC EARLY INTERRUPT STATUS REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24		_	_	_	_	_		
00.40	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	U-0	U-0	U-0	U-0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC
15:8	_	_	_	_	EIRDY43	EIRDY42	EIRDY41	EIRDY40
7.0	R-0, HS, HC R-0, HS, HC							
7:0	EIRDY39	EIRDY38	EIRDY37	EIRDY36	EIRDY35	EIRDY34	EIRDY33	EIRDY32

Legend: HS = Hardware Set HC = Hardware Cleared

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-12 Unimplemented: Read as '0'

bit 11-0 EIRDY43:EIRDY32: Early Interrupt for Corresponding Analog Input Ready bits

- 1 = This bit is set when the early interrupt event occurs for the specified analog input. An interrupt will be generated if early interrupts are enabled in the ADCEIEN2 register. For the Class 1 analog inputs, this bit will set as per the configuration of the ADCEIS<2:0> bits in the ADCXTIME register. For the shared ADC module, this bit will be set as per the configuration of the ADCEIS<2:0> bits in the ADCCON2 register.
- 0 = Interrupts are disabled

REGISTER 29-32: ADCANCON: ADC ANALOG WARM-UP CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24		_	_	_	WKUPCLKCNT<3:0>				
00.40	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	WKIEN7	_	_	WKIEN4	WKIEN3	WKIEN2	WKIEN1	WKIEN0	
45.0	R-0, HS, HC	U-0	U-0	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	R-0, HS, HC	
15:8	WKRDY7	_	_	WKRDY4	WKRDY3	WKRDY2	WKRDY1	WKRDY0	
7:0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	ANEN7	_	_	ANEN4	ANEN3	ANEN2	ANEN1	ANEN0	

Legend: HS = Hardware Set HC = Hardware Cleared R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-28 Unimplemented: Read as '0'

WKUPCLKCNT<3:0>: Wake-up Clock Count bits bit 27-24

> These bits represent the number of ADC clocks required to warm-up the ADC module before it can perform conversion. Although the clocks are specific to each ADC, the WKUPCLKCNT bit is common to all ADC modules.

 $1111 = 2^{15} = 32,768$ clocks

 $0110 = 2^6 = 64 \text{ clocks}$

 $0101 = 2^5 = 32$ clocks

 $0100 = 2^4 = 16$ clocks $0011 = 2^4 = 16$ clocks

 $0010 = 2^4 = 16 \text{ clocks}$

 $0001 = 2^4 = 16 \text{ clocks}$ $0000 = 2^4 = 16$ clocks

bit 23 WKIEN7: Shared ADC (ADC7) Wake-up Interrupt Enable bit

- 1 = Enable interrupt and generate interrupt when the WKRDY7 status bit is set
- 0 = Disable interrupt
- bit 22-21 Unimplemented: Read as '0'
- bit 20-16 WKIEN4:WKIEN0: ADC4-ADC0 Wake-up Interrupt Enable bit
 - 1 = Enable interrupt and generate interrupt when the WKRDYx status bit is set
 - 0 = Disable interrupt
- bit 15 WKRDY7: Shared ADC (ADC7) Wake-up Status bit
 - 1 = ADC7 Analog and Bias circuitry ready after the wake-up count number 2 WKUPEXP clocks after setting ANEN7 to '1'
 - 0 = ADC7 Analog and Bias circuitry is not ready

This bit is cleared by hardware when the ANEN7 bit is cleared

- bit 14-13 Unimplemented: Read as '0'
- bit 12-8 WKRDY4:WKRDY0: ADC4-ADC0 Wake-up Status bit
 - 1 = ADCx Analog and Bias circuitry ready after the wake-up count number 2WKUPEXP clocks after setting ANENx to '1'
 - 0 = ADCx Analog and Bias circuitry is not ready

Note: These bits are cleared by hardware when the ANENx bit is cleared

REGISTER 29-32: ADCANCON: ADC ANALOG WARM-UP CONTROL REGISTER (CONTINUED)

- bit 7 ANEN7: Shared ADC (ADC7) Analog and Bias Circuitry Enable bit
 - 1 = Analog and bias circuitry enabled. Once the analog and bias circuit is enabled, the ADC module needs a warm-up time, as defined by the WKUPCLKCNT<3:0> bits.
 - 0 = Analog and bias circuitry disabled
- bit 5-6 Unimplemented: Read as '0'
- bit 4-0 ANEN4: ANEN0: ADC4-ADC0 Analog and Bias Circuitry Enable bits
 - 1 = Analog and bias circuitry enabled. Once the analog and bias circuit is enabled, the ADC module needs a warm-up time, as defined by the WKUPCLKCNT<3:0> bits.
 - 0 = Analog and bias circuitry disabled

REGISTER 29-33: ADCxCFG: ADCx CONFIGURATION REGISTER ('x' = 1 THROUGH 4 AND 7)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24:24	R/W-0 R/W-0									
31:24				ADCCF	G<31:24>					
22:46	R/W-0 R/W-0									
23:16	ADCCFG<23:16>									
45.0	R/W-0 R/W-0									
15:8		ADCCFG<15:8>								
7:0	R/W-0 R/W-0									
				ADCCF	G<7:0>					

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 ADCCFG<31:0>: ADC Module Configuration Data bits

Prior to enabling the ADC, these registers should be written with the corresponding value stored in DEVADCx in software during ADC initialization.

Note: These bits can only change when the applicable ANEN*x* bit in the ADCANCON register is cleared. These are calibration values determined at product test time and are provided to the user through DEVADCx fuse bits (see Register 41-8).

REGISTER 29-34: ADCSYSCFG1: ADC SYSTEM CONFIGURATION REGISTER 1

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	R-0, HC, HS R-0, HC, HS							
31:24				AN<3	1:23>			
22.46	R-0, HC, HS R-0, HC, HS							
23:16				AN<2	3:16>			
45.0	R-0, HC, HS R-0, HC, HS							
15:8				AN<1	5:8>			
7.0	R-0, HC, HS R-0, HC, HS							
7:0				AN<	7:0>			

Legend:	HS = Hardware Set	HC = Hardware Cleared
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

bit 31-0 AN<31:0>: ADC Analog Input bits

These bits reflect the system configuration and are updated during boot-up time. By reading these readonly bits, the user application can determine whether or not an analog input in the device is available.

REGISTER 29-35: ADCSYSCFG2: ADC SYSTEM CONFIGURATION REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	1	1	1	-	1	1		-
00.40	U-0 U-0							
23:16	_	-	-	_	_	_	_	_
45.0	U-0	U-0	U-0	U-0	R-0, HC, HS	R-0, HC, HS	R-0, HC, HS	R-0, HC, HS
15:8	_	_	-	_		AN<	13:40>	
7.0	R-0, HC, HS R-0, HC, HS							
7:0				AN<3	9:32>			

Legend:	HS = Hardware Set	HC = Cleared by Software
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

bit 31-13 **Unimplemented:** Read as '0' bit 12-0 **AN<43:32>:** ADC Analog Input bits

These bits reflect the system configuration and are updated during boot-up time. By reading these readonly bits, the user application can determine whether or not an analog input in the device is available.

30.0 CONTROLLER AREA NETWORK (CAN)

Note: This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 34. "Controller Area Network (CAN)" (DS60001154), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Controller Area Network (CAN) module supports the following key features:

- · Standards Compliance:
 - Full CAN 2.0B compliance
 - Programmable bit rate up to 1 Mbps
- · Message Reception and Transmission:
 - 32 message FIFOs
 - Each FIFO can have up to 32 messages for a total of 1024 messages

- FIFO can be a transmit message FIFO or a receive message FIFO
- User-defined priority levels for message FIFOs used for transmission
- 32 acceptance filters for message filtering
- Four acceptance filter mask registers for message filtering
- Automatic response to remote transmit request
- DeviceNet™ addressing support
- · Additional Features:
 - Loopback, Listen All Messages and Listen Only modes for self-test, system diagnostics and bus monitoring
 - Low-power operating modes
 - CAN module is a bus master on the PIC32 System Bus
 - Use of DMA is not required
 - Dedicated time-stamp timer
 - Dedicated DMA channels
 - Data-only Message Reception mode

Figure 30-1 illustrates the general structure of the CAN module.

FIGURE 30-1: PIC32 CAN MODULE BLOCK DIAGRAM

30.1 CAN Control Registers

The 'I' shown in register names denotes CAN1 or CAN2.

CAN1 REGISTER SUMMARY FOR PIC32MZXXXXECF AND PIC32MZXXXXECH DEVICES **TABLE 30-1**:

S	steseЯ IIA	0480	0000	0000	0000	0000	0000	0000	0040	0000	0000	0000	0000	0000	0000	0000	0000	××××	×××	XXXX	XXXX	××××	XXXX	XXXX	xxxx	0000	0000	0000	0000	0000	0000	
	16/0	1		^		TBIE	TBIF	Ι		EWARN		FIFOIP16	FIFOIP0	RXOVF16	RXOVF0 00000			7:16>		7:16>		7:16>		7:16>								for more
	17/1	I		SEG2PH<2:0>		RBIE	RBIF			RXWARN		FIFOIP17 FIFOIP16 0000	FIFOIP1	RXOVF17 RXOVF16 0000	RXOVF1			EID<17:16>		EID<17:16>		EID<17:16>		<91:71>013								Registers"
	18/2	I	DNCNT<4:0>	S	2:0>	CTMRIE	CTMRIF	_		TXWARN		FIFOIP18	FIFOIP2	RXOVF18	RXOVF2			ı		ı		ı		_		FSEL2<4:0>	FSEL0<4:0>	FSEL6<4:0>	FSEL4<4:0>	FSEL10<4:0>	FSEL8<4:0>	ET, and INV
	19/3	1		1	BRP<5:0>	MODIE	MODIF	Ι	CODE<6:0>	RXBP	VT<7:0>	FIFOIP19	FIFOIP3	RXOVF19	RXOVF3			MIDE		MIDE		MIDE		MIDE				_	_	ш		2.2 "CLR, S
	20/4	CANCAP		1		ı	1	I	_	TXBP	RERRCNT<7:0>	FIFOIP20	FIFOIP4	RXOVF24 RXOVF23 RXOVF22 RXOVF21 RXOVF20 RXOVF19 RXOVF18	RXOVF4			!		!		!		!								ee Section 1
	21/5	Δ	I	1		1	1	Ι		TXBO		FIFOIP21	FIFOIP5	RXOVF21	RXOVF5											MSEL2<1:0>	MSEL0<1:0>	MSEL6<1:0>	MSEL4<1:0>	MSEL10<1:0>	MSEL8<1:0>	pectively. Se
	22/6	OPMOD<2:0>	I	WAKFIL	SJW<1:0>	Ι	-	_		1		FIFOIP22	FIFOIP6	RXOVF22	RXOVF6											MSEL	MSEL	MSEL	MSEL	MSEL1	MSEL	and 0xC, res
ø	23/7		Ι	1	MLS	1	1	-	I	I		FIFOIP23	FIFOIP7	RXOVF23	RXOVF7	:15:0>	<0:		2:0>		2:0>		2:0>		2:0>	FLTEN2	FLTEN0	FLTEN6	FLTEN4	FLTEN10	FLTEN8	of 0x4, 0x8 a
Bits	24/8		I	1		1	-	I		1		FIFOIP24	FIFOIP8		RXOVF8	CANTS<15:0>	CANTSPRE<15:0>		EID<15:0>		EID<15:0>		EID<15:0>		EID<15:0>							imal. plus offsets
	25/9	REQOP<2:0>	I	1	PRSEG<2:0>	1	-	_		I		FIFOIP25	FIFOIP9	RXOVF25	RXOVF9		CAI									•				^		in hexadec I addresses,
	26/10		1	1		1	-	I	FILHIT<4:0>	1		FIFOIP26	FIFOIP10	RXOVF26	RXOVF10			SID<10:0>		SID<10:0>		SID<10:0>		SID<10:0>		FSEL3<4:0>	FSEL1<4:0>	FSEL7<4:0>	FSEL5<4:0>	FSEL11<4:0>	FSEL9<4:0>	es are showr at their virtua
	27/11	ABAT	CANBUSY	I	Δ	RBOVIE	RBOVIF	ı		I	TERRCNT<7:0>	FIFOIP27	FIFOIP11	RXOVF27	RXOVF13 RXOVF12 RXOVF11 RXOVF10																	. Reset value V registers a
	28/12	1	I	1	SEG1PH<2:0>	SERRIE	SERRIF	I		I	TERRO	FIFOIP28 FIFOIP27	FIFOIP13 FIFOIP12 FIFOIP11	RXOVF28	RXOVF12																	, read as '0' SET and IN
	29/13	1	SIDLE	I	0)	CERRIE	CERRIF	_	I	I		FIFOIP29		RXOVF29	RXOVF13											MSEL3<1:0>	MSEL1<1:0>	MSEL7<1:0>	MSEL5<1:0>	MSEL11<1:0>	MSEL9<1:0>	mplemented onding CLR,
	30/14	1	I	I	SAM	WAKIE	WAKIF	Ι	I	I		FIFOIP30	FIFOIP14	RXOVF30	RXOVF15 RXOVF14											MSEL	MSEL	MSEL	MSEL	MSEL	MSEL	set; — = uni ave corresp
	31/15	1	NO	I	SEG2PHTS	IVRIE	IVRIF	I	I	1		FIFOIP31	FIFOIP15	31:16 RXOVF31 RXOVF30 RXOVF29 RXOVF28 RXOVF27 RXOVF26 RXOVF25												FLTEN3	FLTEN1	FLTEN7	FLTEN5	FLTEN11	FLTEN9	x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.
€	Bit Range	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	sters ir
	Register Name ⁽¹⁾		N 00 00 00 00 00 00 00 00 00 00 00 00 00			FIAIR	CIIN) H) H H H		C Fo A		CIRXOVE		2 Z		CIRXMO	7127070	- INAM	CANADA		CADVM3	CINAMIS	CAELTCONO		0.4F1TCON14			CIFLICONZ	
	Virtual Addr (#_8878)	000	0000	9	01.00	000	0000	000	0600	9	0040	i c	0000	000	0900	1	0,00	000	0800	000	0600	9		0000	0000	0000			0000		OOEO	Legend: Note

DS60001361E-page 484

© 2015-2017 Microchip Technology Inc.

0000

RXN EMPTYIF RXN EMPTYIF RXHALFIE EMPTYIE RXHALFIE EMPTYIE 9 EID<17:16> TXPRI<1:0> TXPRI<1:0> RXHALFIF RXHALFIF 171 C1FIFOCI<4:0> FSEL18<4:0> FSEL22<4:0> FSEL20<4:0> FSEL26<4:0> FSEL30<4:0> C1FIFOCI<4:0> FSEL12<4:0> -SEL16<4:0> FSEL24<4:0> FSEL14<4:0> FSEL28<4:0> RXFULLIE RXFULLIE RXFULLIF FSIZE<4:0> RXFULLIF FSIZE<4:0> RTREN TXREQ RTREN 18/2 CAN1 REGISTER SUMMARY FOR PIC32MZXXXXECF AND PIC32MZXXXXECH DEVICES (CONTINUED) RXOVFLIE RXOVFLIE RXOVFLIF RXOVFLIF TXREQ EXID 19/3 TXERR **TXERR** 20/4 **TXLARB TXLARB** 21/5 MSEL18<1:0> MSEL20<1:0> MSEL26<1:0> MSEL30<1:0> MSEL28<1:0> MSEL12<1:0> MSEL16<1:0> MSEL22<1:0> MSEL24<1:0> TXABAT **TXABAT** 22/6 FLTEN 18 FLTEN16 FLTEN20 FLTEN28 FLTEN22 FLTEN26 FLTEN24 FLTEN30 TXEN TXEN 23/7 C1FIFOBA<31:0> C1FIFOUA<31:0> C1FIFOUA<31:0> EID<15:0> TXEMPTYIF **TXEMPTYIF** TXEMPTYIE TXEMPTYIE 24/8 TXHALFIE **TXHALFIF** TXHALFIF 25/9 FSEL13<4:0> FSEL19<4:0> FSEL23<4:0> FSEL21<4:0> FSEL27<4:0> FSEL25<4:0> FSEL29<4:0> FSEL31<4:0> -SEL17<4:0> TXNFULLIF TXNFULLIF **TXNFULLIE** IXNFULLE 26/10 27/11 28/12 DONLY DONLY 29/13 OINC SIN MSEL31<1:0> MSEL15<1:0> MSEL13<1:0> MSEL19<1:0> MSEL17<1:0> MSEL23<1:0> MSEL21<1:0> MSEL27<1:0> MSEL25<1:0> MSEL29<1:0> FRESET 30/14 FRESET FLTEN 15 FLTEN19 FLTEN29 FLTEN13 FLTEN23 FLTEN21 FLTEN25 FLTEN31 FLTEN17 FLTEN27 31/15 31:16 31:16 31:16 31:16 31:16 15:0 15:0 15:0 15.0 15:0 15:0 15:0 15:0 15:0 Bit Range 1FIFOCONn (n = 0) C1FIFOINTN C1FIFOUAN C1FIFOCIN (n = 1-31) C1FIFOUAn (n = 0) C1FIFOCIN (n = 0) 30-1: C1FLTCON3 C1FLTCON4 C1FLTCON5 C1FLTCON6 C1FLTCON7 C1FIFOINTn (n = 0) IFIFOCON **C1FIFOBA** (n = 0-31)**C1RXFn** Register Name⁽¹⁾ TABLE 00F0 0140-(BF88_#) 0100 0110 0120 0130 0380

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

© 2015-2017 Microchip Technology Inc.

All Resets

TAE	TABLE 30-2:		CAN2 REGISTER SUMMARY FO	GISTER	SUMIN	IARY F(OR PIC3	OR PIC32MZXXXXECF AND PIC32MZXXXXECH DEVICES	(XECF,	AND PIC	32MZX	XXXEC	1 DEVIC	ES					
		€								Bits	ş								S
virtual Addr (#_8878)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	Pesets
900		31:16	I	Ι	I	Ι	ABAT	<u> </u>	REQOP<2:0>		0	OPMOD<2:0>		CANCAP	I	I	1	-	0480
0001	CZCON	15:0	NO	I	SIDLE	1	CANBUSY	I	I	I	ı	1	1	1		DNCNT<4:0>			0000
7070		31:16	I	I	I	1	1	I	I	I	Ι	WAKFIL	Ι	I	I	SE	SEG2PH<2:0>		0000
20.	CZCFG	15:0	SEG2PHTS	SAM	S	SEG1PH<2:0>	^		PRSEG<2:0>		SJW<1:0>	<1:0>			BRP<5:0>	:5:0>			0000
1020	COINT	31:16	IVRIE	WAKIE	CERRIE	SERRIE	RBOVIE	I	Ι	I	Ι	Ι	Ι	1	MODIE	CTMRIE	RBIE		0000
2		15:0	IVRIF	WAKIF	CERRIF	SERRIF	RBOVIF	1	I	I	1	1	1	Ι	MODIF	CTMRIF	RBIF	TBIF	0000
1030	COVEC	31:16	1	I	I	1	I	I	1	I	I	1	1	Ī	Ī	I	1	1	0000
2		15:0	I	I	I			FILHIT<4:0>			I			_	CODE<6:0>				0040
1040	COTRFC	31:16	I	1	1	1		-	I	Ι	I	I	TXBO	TXBP	RXBP	TXWARN	RXWARN	EWARN	0000
2		15:0				TERRC	SNT<7:0>							RERRCNT<7:0>	VT<7:0>				0000
1050	CSESTAT	31:16	FIFOIP31	FIFOIP30	FIFOIP29	FIFOIP28	FIFOIP27	-	FIFOIP25	FIFOIP24	FIFOIP23	FIFOIP22	FIFOIP21	FIFOIP20	FIFOIP19	FIFOIP18	FIFOIP17		0000
2		15:0	FIFOIP15	FIFOIP14	FIFOIP13	FIFOIP12	FIFOIP11	_	FIFOIP9	FIFOIP8	FIFOIP7					_	FIFOIP1		0000
1080	CSDXOVE	31:16	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27		RXOVF25	RXOVF24	RXOVF23	_		-	_	_	RXOVF17		0000
7001		15:0	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
1070	GMTCO	31:16								CANTS<15:0>	<15:0>								0000
2		15:0							CAL	CANTSPRE<15:0>	<0:								0000
1080	CSEXMO	31:16						SID<10:0>							MIDE	1	EID<17:16>		××××
2		15:0								EID<15:0>	2:0>				•	•			××××
1040	C2RXM1	31:16						SID<10:0>							MIDE	1	EID<17:16>		××××
		15:0								EID<15:0>	2:0>								XXXX
10B0	C2RXM2	31:16						SID<10:0>							MIDE	1	EID<17:16>		XXXX
		15:0								EID<15:0>	2:0>								XXXX
10B0	C2RXM3	31:16						SID<10:0>							MIDE	1	EID<17:16>		XXXX
í		15:0								EID<15:0>	2:0>								××××
1010	COELTCONO	31:16	FLTEN3	MSEL3<1:0>	3<1:0>			FSEL3<4:0>			FLTEN2	MSEL2<1:0>	<1:0>			FSEL2<4:0>			0000
2		15:0	FLTEN1	MSEL1<1:0>	1<1:0>			FSEL1<4:0>			FLTEN0	MSEL0<1:0>	<1:0>		4	FSEL0<4:0>			0000
1000	C3EI TCON1	31:16	FLTEN7	MSEL7<1:0>	7<1:0>			FSEL7<4:0>			FLTEN6	MSEL6<1:0>	<1:0>		4	FSEL6<4:0>			0000
		15:0	FLTEN5	MSEL5<1:0>	5<1:0>			FSEL5<4:0>			FLTEN4	MSEL4<1:0>	<1:0>		_	FSEL4<4:0>			0000
10H	COEL TOONS	31:16	FLTEN11	MSEL11<1:0>	1<1:0>		1	FSEL11<4:0>			FLTEN10	MSEL10<1:0>	>(1:0>		ш	FSEL10<4:0>			0000
		15:0	FLTEN9	MSEL9<1:0>	9<1:0>			FSEL9<4:0>			FLTEN8	MSEL8<1:0>	<1:0>			FSEL8<4:0>			0000
10E0	C2ELTCON3	31:16	FLTEN15	MSEL15<1:0>	5<1:0>		1	FSEL15<4:0>			FLTEN14	MSEL14<1:0>	1<1:0>		ш	FSEL14<4:0>			0000
		15:0	FLTEN13	MSEL13<1:0>	3<1:0>			FSEL13<4:0>			FLTEN12	MSEL12<1:0>	?<1:0>		ш	FSEL12<4:0>			0000
prepa		a, and a d	toad no onley	100	potnomolumi	, ac pear p		caisoboxed ai amode are soules tosolo.	ooboxod a: v	Cwi			1						

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

0000

RXN EMPTYIE RXN EMPTYIE RXN EMPTYIF RXN EMPTYIF 16/0 TXPRI<1:0> TXPRI<1:0> EID<17:16> RXHALFIE RXHALFIF 171 FSEL26<4:0> C2FIFOCI<4:0> C2FIFOCI<4:0> FSEL16<4:0: FSEL22<4:0> -SEL20<4:0> FSEL24<4:0> -SEL30<4:0> -SEL28<4:0> FSIZE<4:0> FSIZE<4:0> RXOVFLIE RXFULLIE RXFULLIE RXFULLIF RXFULLIF RTREN RTREN 18/2 CAN2 REGISTER SUMMARY FOR PIC32MZXXXXECF AND PIC32MZXXXXECH DEVICES (CONTINUED) RXOVFLIF RXOVFLIF RXOVFLIE TXREQ EXID 19/3 **TXERR TXERR** 20/4 TXLARB **TXLARB** 21/5 MSEL16<1:0> MSEL22<1:0> MSEL20<1:0> MSEL26<1:0> MSEL24<1:0> MSEL30<1:0> MSEL28<1:0> TXABAT **TXABAT** 22/6 FLTEN16 FLTEN20 FLTEN26 FLTEN22 FLTEN24 FLTEN30 TXEN TXEN 23/7 22FIFOUA<31:0> C2FIFOBA<31:0> 22FIFOUA<31:0> EID<15:0> **IXEMPTYIE** TXEMPTYIF **TXEMPTYIF** 24/8 TXHALFIE **TXHALFIF TXHALFIF** 25/9 FSEL17<4:0> FSEL23<4:0> FSEL21<4:0> FSEL27<4:0> FSEL25<4:0> FSEL31<4:0> XNFULLIE "XNFULLIE **TXNFULLIF TXNFULLIF** 26/10 27/11 DONLY DONLY 28/12 29/13 OINC OINC MSEL27<1:0> MSEL17<1:0> MSEL23<1:0> MSEL21<1:0> MSEL25<1:0> MSEL31<1:0> MSEL29<1:0> MSEL19<1:0> FRESET 30/14 FRESET FLTEN17 FLTEN21 FLTEN25 FLTEN29 FLTEN23 FLTEN27 FLTEN31 31/15 31:16 31:16 15:0 15:0 31:16 31:16 15:0 31:16 31:16 31:16 31:16 15:0 15:0 15:0 15:0 15:0 15:0 15:0 15:0 15:0 15:0 Bit Range C2FIFOINTn C2FIFOUAn C2FIFOCIn C2FIFOUAn (n = 0) C2FIFOCIN (n = 0)22FIFOCON 30-2: C2FLTCON4 C2FLTCON7 C2FLTCON5 C2FLTCON6 C2RXFn(n = 0-31)2FIFOCON **C2FIFOINTn** C2FIFOBA (n = 1-31)(n = 0)(u = 0)Register Name⁽¹⁾ TABLE 1110 1140-1340 (BF88_#) 1100 1130 1380 120

XXXX

All Resets

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information. Legend: Note 1

REGISTER 30-1: CICON: CAN MODULE CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	S/HC-0	R/W-1	R/W-0	R/W-0
31.24	_	_	_	_	ABAT	F	REQOP<2:0>	•
23:16	R-1	R-0	R-0	R/W-0	U-0	U-0	U-0	U-0
23.10	C	DPMOD<2:0>	ı	CANCAP	_	_	_	_
15:8	R/W-0	U-0	R/W-0	U-0	R-0	U-0	U-0	U-0
13.6	ON ⁽¹⁾	_	SIDLE	_	CANBUSY	_	_	_
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	_	_	_			DNCNT<4:0>		

Legend: HC = Hardware Clear S = Settable bit

R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit

U = Unimplemented bit -n = Bit Value at POR: ('0', '1', x = Unknown)

bit 31-28 Unimplemented: Read as '0'

bit 27 ABAT: Abort All Pending Transmissions bit

1 = Signal all transmit buffers to abort transmission

0 = Module will clear this bit when all transmissions aborted

bit 26-24 **REQOP<2:0>:** Request Operation Mode bits

111 = Set Listen All Messages mode

110 = Reserved - Do not use

101 = Reserved - Do not use

100 = Set Configuration mode

011 = Set Listen Only mode

010 = Set Loopback mode

001 = Set Disable mode

000 = Set Normal Operation mode

bit 23-21 **OPMOD<2:0>:** Operation Mode Status bits

111 = Module is in Listen All Messages mode

110 = Reserved

101 = Reserved

100 = Module is in Configuration mode

011 = Module is in Listen Only mode

010 = Module is in Loopback mode

001 = Module is in Disable mode

000 = Module is in Normal Operation mode

bit 20 CANCAP: CAN Message Receive Time Stamp Timer Capture Enable bit

1 = CANTMR value is stored on valid message reception and is stored with the message

 $_{
m 0}$ = Disable CAN message receive time stamp timer capture and stop CANTMR to conserve power

bit 19-16 Unimplemented: Read as '0'

bit 15 **ON:** CAN On bit⁽¹⁾

1 = CAN module is enabled

0 = CAN module is disabled

bit 14 Unimplemented: Read as '0'

Note 1: If the user application clears this bit, it may take a number of cycles before the CAN module completes the current transaction and responds to this request. The user application should poll the CANBUSY bit to verify that the request has been honored.

REGISTER 30-1: CICON: CAN MODULE CONTROL REGISTER (CONTINUED)

- bit 13 SIDLE: CAN Stop in Idle bit
 - 1 = CAN Stops operation when system enters Idle mode
 - 0 = CAN continues operation when system enters Idle mode
- bit 12 Unimplemented: Read as '0'
- bit 11 CANBUSY: CAN Module is Busy bit
 - 1 = The CAN module is active
 - 0 = The CAN module is completely disabled
- bit 10-5 Unimplemented: Read as '0'
- bit 4-0 **DNCNT<4:0>:** Device Net Filter Bit Number bits
 - 10011-11111 = Invalid Selection (compare up to 18-bits of data with EID)
 - 10010 = Compare up to data byte 2 bit 6 with EID17 (CiRXFn<17>)
 - •
 - •
 - •
 - 00001 = Compare up to data byte 0 bit 7 with EID0 (CiRXFn<0>)
 - 00000 = Do not compare data bytes
- **Note 1:** If the user application clears this bit, it may take a number of cycles before the CAN module completes the current transaction and responds to this request. The user application should poll the CANBUSY bit to verify that the request has been honored.

REGISTER 30-2: CICFG: CAN BAUD RATE CONFIGURATION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	_	_	_	-	_
22:46	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
23:16	_	WAKFIL	_	_	_	SEG	32PH<2:0> ⁽¹	,4)
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	SEG2PHTS ⁽¹⁾	SAM ⁽²⁾		SEG1PH<2:0	>	Р	RSEG<2:0>	
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	SJW<1:	0>(3)			BRP<	5:0>		·

Legend:HC = Hardware ClearS = Settable bitR = Readable bitW = Writable bitP = Programmable bitr = Reserved bitU = Unimplemented bit-n = Bit Value at POR: ('0', '1', x = Unknown)

bit 31-23 Unimplemented: Read as '0'

bit 22 WAKFIL: CAN Bus Line Filter Enable bit

1 = Use CAN bus line filter for wake-up

0 = CAN bus line filter is not used for wake-up

bit 21-19 Unimplemented: Read as '0'

bit 18-16 SEG2PH<2:0>: Phase Buffer Segment 2 bits(1,4)

111 = Length is 8 x TQ

•

٠

000 = Length is $1 \times TQ$

bit 15 SEG2PHTS: Phase Segment 2 Time Select bit (1)

1 = Freely programmable

0 = Maximum of SEG1PH or Information Processing Time, whichever is greater

bit 14 **SAM:** Sample of the CAN Bus Line bit⁽²⁾

1 = Bus line is sampled three times at the sample point

0 = Bus line is sampled once at the sample point

bit 13-11 SEG1PH<2:0>: Phase Buffer Segment 1 bits(4)

111 = Length is 8 x TQ

•

•

•

 $000 = \text{Length is } 1 \times \text{TQ}$

Note 1: SEG2PH ≤ SEG1PH. If SEG2PHTS is clear, SEG2PH will be set automatically.

2: 3 Time bit sampling is not allowed for BRP < 2.

3: $SJW \leq SEG2PH$.

4: The Time Quanta per bit must be greater than 7 (that is, TQBIT > 7).

Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (CiCON<23:21>) = 100).

REGISTER 30-2: CICFG: CAN BAUD RATE CONFIGURATION REGISTER (CONTINUED)

```
bit 10-8 PRSEG<2:0>: Propagation Time Segment bits<sup>(4)</sup>
          111 = Length is 8 x TQ
          000 = Length is 1 \times TQ
          SJW<1:0>: Synchronization Jump Width bits(3)
bit 7-6
          11 = Length is 4 x TQ
          10 = Length is 3 x TQ
          01 = Length is 2 x TQ
          00 = Length is 1 x TQ
bit 5-0
          BRP<5:0>: Baud Rate Prescaler bits
          1111111 = TQ = (2 \times 64)/TPBCLK5
          111110 = TQ = (2 x 63)/TPBCLK5
          000001 = TQ = (2 x 2)/TPBCLK5
          000000 = TQ = (2 \times 1)/TPBCLK5
Note 1: SEG2PH \leq SEG1PH. If SEG2PHTS is clear, SEG2PH will be set automatically.
      2: 3 Time bit sampling is not allowed for BRP < 2.
      3: SJW \leq SEG2PH.
      4: The Time Quanta per bit must be greater than 7 (that is, TQBIT > 7).
```

Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (CiCON<23:21>) = 100).

REGISTER 30-3: CIINT: CAN INTERRUPT REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
31:24	IVRIE	WAKIE	CERRIE	SERRIE	RBOVIE	1	-	_
23:16	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	_	ı		ı	MODIE	CTMRIE	RBIE	TBIE
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
15:8	IVRIF	WAKIF	CERRIF	SERRIF ⁽¹⁾	RBOVIF	-	_	_
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_		_		MODIF	CTMRIF	RBIF	TBIF

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31 IVRIE: Invalid Message Received Interrupt Enable bit

1 = Interrupt request enabled

0 = Interrupt request not enabled

bit 30 WAKIE: CAN Bus Activity Wake-up Interrupt Enable bit

1 = Interrupt request enabled

0 = Interrupt request not enabled

bit 29 CERRIE: CAN Bus Error Interrupt Enable bit

1 = Interrupt request enabled

0 = Interrupt request not enabled

bit 28 SERRIE: System Error Interrupt Enable bit

1 = Interrupt request enabled

0 = Interrupt request not enabled

bit 27 RBOVIE: Receive Buffer Overflow Interrupt Enable bit

1 = Interrupt request enabled

0 = Interrupt request not enabled

bit 26-20 Unimplemented: Read as '0'

bit 19 MODIE: Mode Change Interrupt Enable bit

1 = Interrupt request enabled

0 = Interrupt request not enabled

bit 18 CTMRIE: CAN Timestamp Timer Interrupt Enable bit

1 = Interrupt request enabled

0 = Interrupt request not enabled

bit 17 RBIE: Receive Buffer Interrupt Enable bit

1 = Interrupt request enabled

0 = Interrupt request not enabled

bit 16 TBIE: Transmit Buffer Interrupt Enable bit

1 = Interrupt request enabled

0 = Interrupt request not enabled

bit 15 IVRIF: Invalid Message Received Interrupt Flag bit

1 = An invalid messages interrupt has occurred

0 = An invalid message interrupt has not occurred

Note 1: This bit can only be cleared by turning the CAN module Off and On by clearing or setting the ON bit (CiCON<15>).

REGISTER 30-3: CIINT: CAN INTERRUPT REGISTER (CONTINUED)

- bit 14 WAKIF: CAN Bus Activity Wake-up Interrupt Flag bit
 - 1 = A bus wake-up activity interrupt has occurred
 - 0 = A bus wake-up activity interrupt has not occurred
- bit 13 CERRIF: CAN Bus Error Interrupt Flag bit
 - 1 = A CAN bus error has occurred
 - 0 = A CAN bus error has not occurred
- bit 12 SERRIF: System Error Interrupt Flag bit
 - 1 = A system error occurred (typically an illegal address was presented to the System Bus)
 - 0 = A system error has not occurred
- bit 11 RBOVIF: Receive Buffer Overflow Interrupt Flag bit
 - 1 = A receive buffer overflow has occurred
 - 0 = A receive buffer overflow has not occurred
- bit 10-4 Unimplemented: Read as '0'
- bit 3 MODIF: CAN Mode Change Interrupt Flag bit
 - 1 = A CAN module mode change has occurred (OPMOD<2:0> has changed to reflect REQOP)
 - 0 = A CAN module mode change has not occurred
- bit 2 CTMRIF: CAN Timer Overflow Interrupt Flag bit
 - 1 = A CAN timer (CANTMR) overflow has occurred
 - 0 = A CAN timer (CANTMR) overflow has not occurred
- bit 1 RBIF: Receive Buffer Interrupt Flag bit
 - 1 = A receive buffer interrupt is pending
 - 0 = A receive buffer interrupt is not pending
- bit 0 TBIF: Transmit Buffer Interrupt Flag bit
 - 1 = A transmit buffer interrupt is pending
 - 0 = A transmit buffer interrupt is not pending
- **Note 1:** This bit can only be cleared by turning the CAN module Off and On by clearing or setting the ON bit (CiCON<15>).

REGISTER 30-4: CIVEC: CAN INTERRUPT CODE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	_	_	_	_	-	-	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	_	_	_	_	-	-	_
15:8	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
15.6	_	_	_			FILHIT<4:0>		
7:0	U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0
7:0	_				CODE<6:0> ⁽¹)		

U = Unimplemented bit, read as '0'

x = Bit is unknown

```
-n = Value at POR
                      '1' = Bit is set
                                               '0' = Bit is cleared
bit 31-13 Unimplemented: Read as '0'
bit 12-8 FILHIT<4:0>: Filter Hit Number bit
         11111 = Filter 31
         11110 = Filter 30
         00001 = Filter 1
         00000 = Filter 0
bit 7
         Unimplemented: Read as '0'
bit 6-0
         ICODE<6:0>: Interrupt Flag Code bits(1)
         1001000-1111111 = Reserved
         1001000 = Invalid message received (IVRIF)
         1000111 = CAN module mode change (MODIF)
         1000110 = CAN timestamp timer (CTMRIF)
         1000101 = Bus bandwidth error (SERRIF)
         1000100 = Address error interrupt (SERRIF)
         1000011 = Receive FIFO overflow interrupt (RBOVIF)
         1000010 = Wake-up interrupt (WAKIF)
          1000001 = Error Interrupt (CERRIF)
         1000000 = No interrupt
         0100000-0111111 = Reserved
         0011111 = FIFO31 Interrupt (CiFSTAT<31> set)
         0011110 = FIFO30 Interrupt (CiFSTAT<30> set)
          0000001 = FIFO1 Interrupt (CiFSTAT<1> set)
         0000000 = FIFO0 Interrupt (CiFSTAT<0> set)
```

W = Writable bit

Note 1: These bits are only updated for enabled interrupts.

Legend:

R = Readable bit

REGISTER 30-5: CITREC: CAN TRANSMIT/RECEIVE ERROR COUNT REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	-	_	-	_	-	1	1	-
22.40	U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
23:16	_	_	TXBO	TXBP	RXBP	TXWARN	RXWARN	EWARN
45.0	R-0 R-0							
15:8				TERRC	NT<7:0>			
7:0	R-0 R-0							
7:0				RERRC	NT<7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-22 Unimplemented: Read as '0'

bit 21 **TXBO:** Transmitter in Error State Bus OFF (TERRCNT ≥ 256)

bit 20 **TXBP:** Transmitter in Error State Bus Passive (TERRCNT ≥ 128)

bit 19 **RXBP:** Receiver in Error State Bus Passive (RERRCNT ≥ 128)

bit 18 **TXWARN:** Transmitter in Error State Warning (128 > TERRCNT ≥ 96)

bit 17 **RXWARN:** Receiver in Error State Warning (128 > RERRCNT ≥ 96)

bit 16 **EWARN:** Transmitter or Receiver is in Error State Warning

bit 15-8 **TERRCNT<7:0>:** Transmit Error Counter

bit 7-0 RERRCNT<7:0>: Receive Error Counter

REGISTER 30-6: CIFSTAT: CAN FIFO STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R-0 R-0							
31.24	FIFOIP31	FIFOIP30	FIFOIP29	FIFOIP28	FIFOIP27	FIFOIP26	FIFOIP25	FIFOIP24
23:16	R-0 R-0							
23.10	FIFOIP23	FIFOIP22	FIFOIP21	FIFOIP20	FIFOIP19	FIFOIP18	FIFOIP17	FIFOIP16
15:8	R-0 R-0							
15.6	FIFOIP15	FIFOIP14	FIFOIP13	FIFOIP12	FIFOIP11	FIFOIP10	FIFOIP9	FIFOIP8
7:0	R-0 R-0							
7.0	FIFOIP7	FIFOIP6	FIFOIP5	FIFOIP4	FIFOIP3	FIFOIP2	FIFOIP1	FIFOIP0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 FIFOIP<31:0>: FIFOn Interrupt Pending bits

1 = One or more enabled FIFO interrupts are pending

0 = No FIFO interrupts are pending

REGISTER 30-7: CIRXOVF: CAN RECEIVE FIFO OVERFLOW STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R-0 R-0							
31.24	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24
23:16	R-0 R-0							
23.10	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16
45.0	R-0 R-0							
15:8	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8
7:0	R-0 R-0							
	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 RXOVF<31:0>: FIFOn Receive Overflow Interrupt Pending bit

1 = FIFO has overflowed 0 = FIFO has not overflowed

REGISTER 30-8: CITMR: CAN TIMER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	R/W-0 R/W-0									
31.24	CANTS<15:8>									
22:46	R/W-0 R/W-0									
23:16	CANTS<7:0>									
45.0	R/W-0 R/W-0									
15:8	CANTSPRE<15:8>									
7:0	R/W-0 R/W-0									
				CANTSPF	RE<7:0>					

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 CANTS<15:0>: CAN Time Stamp Timer bits

This is a free-running timer that increments every CANTSPRE system clocks when the CANCAP bit (CiCON<20>) is set.

bit 15-0 CANTSPRE<15:0>: CAN Time Stamp Timer Prescaler bits

1111 1111 1111 = CAN time stamp timer (CANTS) increments every 65,535 system clocks

•

•

•

0000 0000 0000 0000 = CAN time stamp timer (CANTS) increments every system clock

Note 1: CiTMR will be frozen when CANCAP = 0.

2: The CiTMR prescaler count will be reset on any write to CiTMR (CANTSPRE will be unaffected).

REGISTER 30-9: CIRXMN: CAN ACCEPTANCE FILTER MASK N REGISTER (N = 0, 1, 2 OR 3)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R/W-0 R/W-0									
31:24	SID<10:3>									
00.40	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0		
23:16	SID<2:0>			_	MIDE	_	EID<17:16>			
45.0	R/W-0 R/W-0									
15:8	EID<15:8>									
7:0	R/W-0 R/W-0									
				EID<	7:0>					

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-21 SID<10:0>: Standard Identifier bits

1 = Include bit, SIDx, in filter comparison

0 = Bit SIDx is 'don't care' in filter operation

bit 20 Unimplemented: Read as '0'

bit 19 MIDE: Identifier Receive Mode bit

1 = Match only message types (standard/extended address) that correspond to the EXID bit in filter

0 = Match either standard or extended address message if filters match (that is, if (Filter SID) = (Message

SID) or if (FILTER SID/EID) = (Message SID/EID))

bit 18 Unimplemented: Read as '0'

bit 17-0 EID<17:0>: Extended Identifier bits

1 = Include bit, EIDx, in filter comparison

0 = Bit EIDx is 'don't care' in filter operation

Note: This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> (CiCON<23:21>) = 100).

REGISTER 30-10: CIFLTCON0: CAN FILTER CONTROL REGISTER 0

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	R/W-0 R/W-0								
31:24	FLTEN3	MSEL3<1:0>		FSEL3<4:0>					
00.40	R/W-0 R/W-0								
23:16	FLTEN2	MSEL2<1:0>		FSEL2<4:0>					
45.0	R/W-0 R/W-0								
15:8	FLTEN1	MSEL1<1:0>		FSEL1<4:0>					
7:0	R/W-0 R/W-0								
	FLTEN0	MSEL0<1:0>		FSEL0<4:0>					

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31 FLTEN3: Filter 3 Enable bit

1 = Filter is enabled

0 = Filter is disabled

bit 30-29 MSEL3<1:0>: Filter 3 Mask Select bits

11 = Acceptance Mask 3 selected

10 = Acceptance Mask 2 selected

01 = Acceptance Mask 1 selected

00 = Acceptance Mask 0 selected

bit 28-24 FSEL3<4:0>: FIFO Selection bits

11111 = Message matching filter is stored in FIFO buffer 31

11110 = Message matching filter is stored in FIFO buffer 30

.

.

00001 = Message matching filter is stored in FIFO buffer 1

00000 = Message matching filter is stored in FIFO buffer 0

bit 23 FLTEN2: Filter 2 Enable bit

1 = Filter is enabled

0 = Filter is disabled

bit 22-21 MSEL2<1:0>: Filter 2 Mask Select bits

11 = Acceptance Mask 3 selected

10 = Acceptance Mask 2 selected

01 = Acceptance Mask 1 selected

00 = Acceptance Mask 0 selected

bit 20-16 FSEL2<4:0>: FIFO Selection bits

11111 = Message matching filter is stored in FIFO buffer 31

11110 = Message matching filter is stored in FIFO buffer 30

.

_

•

00001 = Message matching filter is stored in FIFO buffer 1

00000 = Message matching filter is stored in FIFO buffer 0

REGISTER 30-10: CIFLTCON0: CAN FILTER CONTROL REGISTER 0 (CONTINUED)

```
bit 15
            FLTEN1: Filter 1 Enable bit
            1 = Filter is enabled
            0 = Filter is disabled
bit 14-13
            MSEL1<1:0>: Filter 1 Mask Select bits
            11 = Acceptance Mask 3 selected
            10 = Acceptance Mask 2 selected
            01 = Acceptance Mask 1 selected
            00 = Acceptance Mask 0 selected
            FSEL1<4:0>: FIFO Selection bits
bit 12-8
            11111 = Message matching filter is stored in FIFO buffer 31
            11110 = Message matching filter is stored in FIFO buffer 30
            00001 = Message matching filter is stored in FIFO buffer 1
            00000 = Message matching filter is stored in FIFO buffer 0
bit 7
            FLTEN0: Filter 0 Enable bit
            1 = Filter is enabled
            0 = Filter is disabled
bit 6-5
            MSEL0<1:0>: Filter 0 Mask Select bits
            11 = Acceptance Mask 3 selected
            10 = Acceptance Mask 2 selected
            01 = Acceptance Mask 1 selected
            00 = Acceptance Mask 0 selected
bit 4-0
            FSEL0<4:0>: FIFO Selection bits
            11111 = Message matching filter is stored in FIFO buffer 31
            11110 = Message matching filter is stored in FIFO buffer 30
            00001 = Message matching filter is stored in FIFO buffer 1
            00000 = Message matching filter is stored in FIFO buffer 0
```

REGISTER 30-11: CIFLTCON1: CAN FILTER CONTROL REGISTER 1

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	R/W-0 R/W-0								
31:24	FLTEN7	MSEL7<1:0>		FSEL7<4:0>					
22.40	R/W-0 R/W-0								
23:16	FLTEN6	MSEL6<1:0>		FSEL6<4:0>					
45.0	R/W-0 R/W-0								
15:8	FLTEN5	MSEL5<1:0>		FSEL5<4:0>					
7:0	R/W-0 R/W-0								
	FLTEN4	MSEL4<1:0>		FSEL4<4:0>					

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

```
bit 31 FLTEN7: Filter 7 Enable bit
```

1 = Filter is enabled

0 = Filter is disabled

bit 30-29 MSEL7<1:0>: Filter 7 Mask Select bits

11 = Acceptance Mask 3 selected

10 = Acceptance Mask 2 selected

01 = Acceptance Mask 1 selected

00 = Acceptance Mask 0 selected

bit 28-24 FSEL7<4:0>: FIFO Selection bits

11111 = Message matching filter is stored in FIFO buffer 31

11110 = Message matching filter is stored in FIFO buffer 30

٠

.

00001 = Message matching filter is stored in FIFO buffer 1

00000 = Message matching filter is stored in FIFO buffer 0

bit 23 FLTEN6: Filter 6 Enable bit

1 = Filter is enabled

0 = Filter is disabled

bit 22-21 MSEL6<1:0>: Filter 6 Mask Select bits

11 = Acceptance Mask 3 selected

10 = Acceptance Mask 2 selected

01 = Acceptance Mask 1 selected

00 = Acceptance Mask 0 selected

bit 20-16 FSEL6<4:0>: FIFO Selection bits

11111 = Message matching filter is stored in FIFO buffer 31

11110 = Message matching filter is stored in FIFO buffer 30

.

-

00001 = Message matching filter is stored in FIFO buffer 1

00000 = Message matching filter is stored in FIFO buffer 0

REGISTER 30-11: CIFLTCON1: CAN FILTER CONTROL REGISTER 1 (CONTINUED)

```
FLTEN5: Filter 17 Enable bit
         1 = Filter is enabled
         0 = Filter is disabled
bit 14-13 MSEL5<1:0>: Filter 5 Mask Select bits
         11 = Acceptance Mask 3 selected
         10 = Acceptance Mask 2 selected
         01 = Acceptance Mask 1 selected
         00 = Acceptance Mask 0 selected
bit 12-8 FSEL5<4:0>: FIFO Selection bits
         11111 = Message matching filter is stored in FIFO buffer 31
         11110 = Message matching filter is stored in FIFO buffer 30
         00001 = Message matching filter is stored in FIFO buffer 1
         00000 = Message matching filter is stored in FIFO buffer 0
bit 7
         FLTEN4: Filter 4 Enable bit
         1 = Filter is enabled
         0 = Filter is disabled
bit 6-5
         MSEL4<1:0>: Filter 4 Mask Select bits
         11 = Acceptance Mask 3 selected
         10 = Acceptance Mask 2 selected
         01 = Acceptance Mask 1 selected
         00 = Acceptance Mask 0 selected
         FSEL4<4:0>: FIFO Selection bits
bit 4-0
         11111 = Message matching filter is stored in FIFO buffer 31
         11110 = Message matching filter is stored in FIFO buffer 30
         00001 = Message matching filter is stored in FIFO buffer 1
         00000 = Message matching filter is stored in FIFO buffer 0
```

REGISTER 30-12: CIFLTCON2: CAN FILTER CONTROL REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.04	R/W-0 R/W-0								
31:24	FLTEN11	MSEL11<1:0>		FSEL11<4:0>					
22.40	R/W-0 R/W-0								
23:16	FLTEN10	MSEL10<1:0>		FSEL10<4:0>					
45.0	R/W-0 R/W-0								
15:8	FLTEN9	MSEL9<1:0>		FSEL9<4:0>					
7:0	R/W-0 R/W-0								
	FLTEN8	MSEL8<1:0>		FSEL8<4:0>					

U = Unimplemented bit, read as '0'

x = Bit is unknown

'0' = Bit is cleared

-n = Value at POR '1' = Bit is set

> FLTEN11: Filter 11 Enable bit 1 = Filter is enabled

> > 0 = Filter is disabled

bit 30-29 MSEL11<1:0>: Filter 11 Mask Select bits

11 = Acceptance Mask 3 selected

W = Writable bit

10 = Acceptance Mask 2 selected

01 = Acceptance Mask 1 selected

00 = Acceptance Mask 0 selected

bit 28-24 FSEL11<4:0>: FIFO Selection bits

11111 = Message matching filter is stored in FIFO buffer 31

11110 = Message matching filter is stored in FIFO buffer 30

Legend:

bit 31

R = Readable bit

00001 = Message matching filter is stored in FIFO buffer 1

00000 = Message matching filter is stored in FIFO buffer 0

bit 23 FLTEN10: Filter 10 Enable bit

1 = Filter is enabled

0 = Filter is disabled

bit 22-21 MSEL10<1:0>: Filter 10 Mask Select bits

11 = Acceptance Mask 3 selected

10 = Acceptance Mask 2 selected

01 = Acceptance Mask 1 selected

00 = Acceptance Mask 0 selected

bit 20-16 FSEL10<4:0>: FIFO Selection bits

11111 = Message matching filter is stored in FIFO buffer 31

11110 = Message matching filter is stored in FIFO buffer 30

00001 = Message matching filter is stored in FIFO buffer 1

00000 = Message matching filter is stored in FIFO buffer 0

REGISTER 30-12: CIFLTCON2: CAN FILTER CONTROL REGISTER 2 (CONTINUED) bit 15 FLTEN9: Filter 9 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 14-13 MSEL9<1:0>: Filter 9 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 12-8 FSEL9<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 00001 = Message matching filter is stored in FIFO buffer 1 00000 = Message matching filter is stored in FIFO buffer 0 bit 7 FLTEN8: Filter 8 Enable bit 1 = Filter is enabled 0 = Filter is disabled bit 6-5 MSEL8<1:0>: Filter 8 Mask Select bits 11 = Acceptance Mask 3 selected 10 = Acceptance Mask 2 selected 01 = Acceptance Mask 1 selected 00 = Acceptance Mask 0 selected bit 4-0 FSEL8<4:0>: FIFO Selection bits 11111 = Message matching filter is stored in FIFO buffer 31 11110 = Message matching filter is stored in FIFO buffer 30 00001 = Message matching filter is stored in FIFO buffer 1

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'.

00000 = Message matching filter is stored in FIFO buffer 0

REGISTER 30-13: CIFLTCON3: CAN FILTER CONTROL REGISTER 3

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	R/W-0 R/W-0								
31:24	FLTEN15	MSEL15<1:0>		FSEL15<4:0>					
22.40	R/W-0 R/W-0								
23:16	FLTEN14	MSEL14<1:0>		FSEL14<4:0>					
45.0	R/W-0 R/W-0								
15:8	FLTEN13	MSEL13<1:0>		FSEL13<4:0>					
7:0	R/W-0 R/W-0								
	FLTEN12	MSEL12<1:0>		FSEL12<4:0>					

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared

bit 31 FLTEN15: Filter 15 Enable bit

1 = Filter is enabled

0 = Filter is disabled

bit 30-29 MSEL15<1:0>: Filter 15 Mask Select bits

11 = Acceptance Mask 3 selected

10 = Acceptance Mask 2 selected

01 = Acceptance Mask 1 selected

00 = Acceptance Mask 0 selected

bit 28-24 FSEL15<4:0>: FIFO Selection bits

11111 = Message matching filter is stored in FIFO buffer 31

11110 = Message matching filter is stored in FIFO buffer 30

Legend:

00001 = Message matching filter is stored in FIFO buffer 1

00000 = Message matching filter is stored in FIFO buffer 0

bit 23 FLTEN14: Filter 14 Enable bit

1 = Filter is enabled

0 = Filter is disabled

bit 22-21 MSEL14<1:0>: Filter 14 Mask Select bits

11 = Acceptance Mask 3 selected

10 = Acceptance Mask 2 selected

01 = Acceptance Mask 1 selected

00 = Acceptance Mask 0 selected

bit 20-16 FSEL14<4:0>: FIFO Selection bits

11111 = Message matching filter is stored in FIFO buffer 31

11110 = Message matching filter is stored in FIFO buffer 30

00001 = Message matching filter is stored in FIFO buffer 1

00000 = Message matching filter is stored in FIFO buffer 0

Note: The bits in this register can only be modified if the corresponding filter enable (FLTENn) bit is '0'

x = Bit is unknown

REGISTER 30-13: CIFLTCON3: CAN FILTER CONTROL REGISTER 3 (CONTINUED)

```
bit 15
           FLTEN13: Filter 13 Enable bit
           1 = Filter is enabled
           0 = Filter is disabled
bit 14-13 MSEL13<1:0>: Filter 13 Mask Select bits
           11 = Acceptance Mask 3 selected
           10 = Acceptance Mask 2 selected
           01 = Acceptance Mask 1 selected
           00 = Acceptance Mask 0 selected
           FSEL13<4:0>: FIFO Selection bits
bit 12-8
           11111 = Message matching filter is stored in FIFO buffer 31
           11110 = Message matching filter is stored in FIFO buffer 30
           00001 = Message matching filter is stored in FIFO buffer 1
           00000 = Message matching filter is stored in FIFO buffer 0
bit 7
           FLTEN12: Filter 12 Enable bit
           1 = Filter is enabled
           0 = Filter is disabled
bit 6-5
           MSEL12<1:0>: Filter 12 Mask Select bits
           11 = Acceptance Mask 3 selected
           10 = Acceptance Mask 2 selected
           01 = Acceptance Mask 1 selected
           00 = Acceptance Mask 0 selected
bit 4-0
           FSEL12<4:0>: FIFO Selection bits
           11111 = Message matching filter is stored in FIFO buffer 31
           11110 = Message matching filter is stored in FIFO buffer 30
           00001 = Message matching filter is stored in FIFO buffer 1
           00000 = Message matching filter is stored in FIFO buffer 0
```

REGISTER 30-14: CIFLTCON4: CAN FILTER CONTROL REGISTER 4

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.04	R/W-0 R/W-0									
31:24	FLTEN19	MSEL19<1:0>			FSEL19<4:0>					
23:16	R/W-0 R/W-0									
23:10	FLTEN18	MSEL18<1:0>		FSEL18<4:0>						
45.0	R/W-0 R/W-0									
15:8	FLTEN17	MSEL1	7<1:0>		ı	SEL17<4:0>	•			
7.0	R/W-0 R/W-0									
7:0	FLTEN16	MSEL1	6<1:0>		ı	SEL16<4:0>	•			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31 FLTEN19: Filter 19 Enable bit

1 = Filter is enabled

0 = Filter is disabled

bit 30-29 MSEL19<1:0>: Filter 19 Mask Select bits

11 = Acceptance Mask 3 selected

10 = Acceptance Mask 2 selected

01 = Acceptance Mask 1 selected

00 = Acceptance Mask 0 selected

bit 28-24 FSEL19<4:0>: FIFO Selection bits

11111 = Message matching filter is stored in FIFO buffer 31

11110 = Message matching filter is stored in FIFO buffer 30

•

•

•

00001 = Message matching filter is stored in FIFO buffer 1

00000 = Message matching filter is stored in FIFO buffer 0

bit 23 FLTEN18: Filter 18 Enable bit

1 = Filter is enabled

0 = Filter is disabled

bit 22-21 MSEL18<1:0>: Filter 18 Mask Select bits

11 = Acceptance Mask 3 selected

10 = Acceptance Mask 2 selected

01 = Acceptance Mask 1 selected

00 = Acceptance Mask 0 selected

bit 20-16 FSEL18<4:0>: FIFO Selection bits

11111 = Message matching filter is stored in FIFO buffer 31

11110 = Message matching filter is stored in FIFO buffer 30

•

•

00001 = Message matching filter is stored in FIFO buffer 1

00000 = Message matching filter is stored in FIFO buffer 0

REGISTER 30-14: CIFLTCON4: CAN FILTER CONTROL REGISTER 4 (CONTINUED)

```
bit 15
           FLTEN17: Filter 13 Enable bit
           1 = Filter is enabled
           0 = Filter is disabled
bit 14-13 MSEL17<1:0>: Filter 17 Mask Select bits
           11 = Acceptance Mask 3 selected
           10 = Acceptance Mask 2 selected
           01 = Acceptance Mask 1 selected
           00 = Acceptance Mask 0 selected
           FSEL17<4:0>: FIFO Selection bits
bit 12-8
           11111 = Message matching filter is stored in FIFO buffer 31
           11110 = Message matching filter is stored in FIFO buffer 30
           00001 = Message matching filter is stored in FIFO buffer 1
           00000 = Message matching filter is stored in FIFO buffer 0
bit 7
           FLTEN16: Filter 16 Enable bit
           1 = Filter is enabled
           0 = Filter is disabled
bit 6-5
           MSEL16<1:0>: Filter 16 Mask Select bits
           11 = Acceptance Mask 3 selected
           10 = Acceptance Mask 2 selected
           01 = Acceptance Mask 1 selected
           00 = Acceptance Mask 0 selected
bit 4-0
           FSEL16<4:0>: FIFO Selection bits
           11111 = Message matching filter is stored in FIFO buffer 31
           11110 = Message matching filter is stored in FIFO buffer 30
           00001 = Message matching filter is stored in FIFO buffer 1
           00000 = Message matching filter is stored in FIFO buffer 0
```

REGISTER 30-15: CIFLTCON5: CAN FILTER CONTROL REGISTER 5

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	R/W-0 R/W-0									
31:24	FLTEN23	MSEL2	3<1:0>		FSEL23<4:0>					
22:16	R/W-0 R/W-0									
23:16	FLTEN22	MSEL22<1:0>			F	SEL22<4:0>	•			
45.0	R/W-0 R/W-0									
15:8	FLTEN21	MSEL2	1<1:0>	FSEL21<4:0>						
7:0	R/W-0 R/W-0									
7:0	FLTEN20	MSEL2	MSEL20<1:0>		FSEL20<4:0>					

'0' = Bit is cleared

U = Unimplemented bit, read as '0'

x = Bit is unknown

-n = Value at POR '1' = Bit is set

> FLTEN23: Filter 23 Enable bit 1 = Filter is enabled

0 = Filter is disabled

bit 30-29 MSEL23<1:0>: Filter 23 Mask Select bits

11 = Acceptance Mask 3 selected

W = Writable bit

10 = Acceptance Mask 2 selected

01 = Acceptance Mask 1 selected

00 = Acceptance Mask 0 selected

bit 28-24 FSEL23<4:0>: FIFO Selection bits

11111 = Message matching filter is stored in FIFO buffer 31

11110 = Message matching filter is stored in FIFO buffer 30

Legend:

bit 31

R = Readable bit

00001 = Message matching filter is stored in FIFO buffer 1

00000 = Message matching filter is stored in FIFO buffer 0

bit 23 FLTEN22: Filter 22 Enable bit

1 = Filter is enabled

0 = Filter is disabled

MSEL22<1:0>: Filter 22 Mask Select bits bit 22-21

11 = Acceptance Mask 3 selected

10 = Acceptance Mask 2 selected

01 = Acceptance Mask 1 selected

00 = Acceptance Mask 0 selected

bit 20-16 FSEL22<4:0>: FIFO Selection bits

11111 = Message matching filter is stored in FIFO buffer 31

11110 = Message matching filter is stored in FIFO buffer 30

00001 = Message matching filter is stored in FIFO buffer 1

00000 = Message matching filter is stored in FIFO buffer 0

REGISTER 30-15: CIFLTCON5: CAN FILTER CONTROL REGISTER 5 (CONTINUED)

```
bit 15
           FLTEN21: Filter 21 Enable bit
           1 = Filter is enabled
           0 = Filter is disabled
bit 14-13 MSEL21<1:0>: Filter 21 Mask Select bits
           11 = Acceptance Mask 3 selected
           10 = Acceptance Mask 2 selected
           01 = Acceptance Mask 1 selected
           00 = Acceptance Mask 0 selected
           FSEL21<4:0>: FIFO Selection bits
bit 12-8
           11111 = Message matching filter is stored in FIFO buffer 31
           11110 = Message matching filter is stored in FIFO buffer 30
           00001 = Message matching filter is stored in FIFO buffer 1
           00000 = Message matching filter is stored in FIFO buffer 0
bit 7
           FLTEN20: Filter 20 Enable bit
           1 = Filter is enabled
           0 = Filter is disabled
bit 6-5
           MSEL20<1:0>: Filter 20 Mask Select bits
           11 = Acceptance Mask 3 selected
           10 = Acceptance Mask 2 selected
           01 = Acceptance Mask 1 selected
           00 = Acceptance Mask 0 selected
bit 4-0
           FSEL20<4:0>: FIFO Selection bits
           11111 = Message matching filter is stored in FIFO buffer 31
           11110 = Message matching filter is stored in FIFO buffer 30
           00001 = Message matching filter is stored in FIFO buffer 1
           00000 = Message matching filter is stored in FIFO buffer 0
```

REGISTER 30-16: CIFLTCON6: CAN FILTER CONTROL REGISTER 6

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R/W-0 R/W-0									
31:24	FLTEN27	MSEL27<1:0>			FSEL27<4:0>					
00.40	R/W-0 R/W-0									
23:16	FLTEN26	MSEL26<1:0>				FSEL26<4:0>				
45.0	R/W-0 R/W-0									
15:8	FLTEN25	MSEL2	25<1:0>			FSEL25<4:0>				
7.0	R/W-0 R/W-0									
7:0	FLTEN24	MSEL2	4<1:0>	FSEL24<4:0>						

'0' = Bit is cleared

U = Unimplemented bit, read as '0'

x = Bit is unknown

-n = Value at POR '1' = Bit is set

1 = Filter is enabled

0 = Filter is disabled

bit 30-29 MSEL27<1:0>: Filter 27 Mask Select bits

FLTEN27: Filter 27 Enable bit

11 = Acceptance Mask 3 selected

W = Writable bit

10 = Acceptance Mask 2 selected

01 = Acceptance Mask 1 selected

00 = Acceptance Mask 0 selected

bit 28-24 FSEL27<4:0>: FIFO Selection bits

11111 = Message matching filter is stored in FIFO buffer 31

11110 = Message matching filter is stored in FIFO buffer 30

•

Legend:

bit 31

R = Readable bit

.

00001 = Message matching filter is stored in FIFO buffer 1

00000 = Message matching filter is stored in FIFO buffer 0

bit 23 FLTEN26: Filter 26 Enable bit

1 = Filter is enabled

0 = Filter is disabled

bit 22-21 MSEL26<1:0>: Filter 26 Mask Select bits

11 = Acceptance Mask 3 selected

10 = Acceptance Mask 2 selected

01 = Acceptance Mask 1 selected

00 = Acceptance Mask 0 selected

bit 20-16 FSEL26<4:0>: FIFO Selection bits

11111 = Message matching filter is stored in FIFO buffer 31

11110 = Message matching filter is stored in FIFO buffer 30

.

_

00001 = Message matching filter is stored in FIFO buffer 1

00000 = Message matching filter is stored in FIFO buffer 0

REGISTER 30-16: CIFLTCON6: CAN FILTER CONTROL REGISTER 6 (CONTINUED)

```
bit 15
          FLTEN25: Filter 25 Enable bit
          1 = Filter is enabled
          0 = Filter is disabled
bit 14-13 MSEL25<1:0>: Filter 25 Mask Select bits
          11 = Acceptance Mask 3 selected
          10 = Acceptance Mask 2 selected
          01 = Acceptance Mask 1 selected
          00 = Acceptance Mask 0 selected
          FSEL25<4:0>: FIFO Selection bits
bit 12-8
          11111 = Message matching filter is stored in FIFO buffer 31
          11110 = Message matching filter is stored in FIFO buffer 30
          00001 = Message matching filter is stored in FIFO buffer 1
          00000 = Message matching filter is stored in FIFO buffer 0
bit 7
          FLTEN24: Filter 24 Enable bit
          1 = Filter is enabled
          0 = Filter is disabled
bit 6-5
          MSEL24<1:0>: Filter 24 Mask Select bits
          11 = Acceptance Mask 3 selected
          10 = Acceptance Mask 2 selected
          01 = Acceptance Mask 1 selected
          00 = Acceptance Mask 0 selected
bit 4-0
          FSEL24<4:0>: FIFO Selection bits
          11111 = Message matching filter is stored in FIFO buffer 31
          11110 = Message matching filter is stored in FIFO buffer 30
          00001 = Message matching filter is stored in FIFO buffer 1
          00000 = Message matching filter is stored in FIFO buffer 0
```

REGISTER 30-17: CIFLTCON7: CAN FILTER CONTROL REGISTER 7

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R/W-0 R/W-0									
31:24	FLTEN31	MSEL31<1:0>			FSEL31<4:0>					
00.40	R/W-0 R/W-0									
23:16	FLTEN30	MSEL30<1:0>				FSEL30<4:0>				
45.0	R/W-0 R/W-0									
15:8	FLTEN29	MSEL2	9<1:0>			FSEL29<4:0>				
7:0	R/W-0 R/W-0									
7:0	FLTEN28	MSEL2	8<1:0>	FSEL28<4:0>						

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31 FLTEN31: Filter 31 Enable bit

1 = Filter is enabled

0 = Filter is disabled

bit 30-29 MSEL31<1:0>: Filter 31 Mask Select bits

11 = Acceptance Mask 3 selected

10 = Acceptance Mask 2 selected

01 = Acceptance Mask 1 selected

00 = Acceptance Mask 0 selected

bit 28-24 FSEL31<4:0>: FIFO Selection bits

11111 = Message matching filter is stored in FIFO buffer 31

11110 = Message matching filter is stored in FIFO buffer 30

٠

.

00001 = Message matching filter is stored in FIFO buffer 1

00000 = Message matching filter is stored in FIFO buffer 0

bit 23 FLTEN30: Filter 30Enable bit

1 = Filter is enabled

0 = Filter is disabled

bit 22-21 MSEL30<1:0>: Filter 30Mask Select bits

11 = Acceptance Mask 3 selected

10 = Acceptance Mask 2 selected

01 = Acceptance Mask 1 selected

00 = Acceptance Mask 0 selected

bit 20-16 FSEL30<4:0>: FIFO Selection bits

11111 = Message matching filter is stored in FIFO buffer 31

11110 = Message matching filter is stored in FIFO buffer 30

_

_

00001 = Message matching filter is stored in FIFO buffer 1

00000 = Message matching filter is stored in FIFO buffer 0

REGISTER 30-17: CIFLTCON7: CAN FILTER CONTROL REGISTER 7 (CONTINUED)

```
bit 15
          FLTEN29: Filter 29 Enable bit
          1 = Filter is enabled
          0 = Filter is disabled
bit 14-13 MSEL29<1:0>: Filter 29 Mask Select bits
          11 = Acceptance Mask 3 selected
          10 = Acceptance Mask 2 selected
          01 = Acceptance Mask 1 selected
          00 = Acceptance Mask 0 selected
          FSEL29<4:0>: FIFO Selection bits
bit 12-8
          11111 = Message matching filter is stored in FIFO buffer 31
          11110 = Message matching filter is stored in FIFO buffer 30
          00001 = Message matching filter is stored in FIFO buffer 1
          00000 = Message matching filter is stored in FIFO buffer 0
bit 7
          FLTEN28: Filter 28 Enable bit
          1 = Filter is enabled
          0 = Filter is disabled
bit 6-5
          MSEL28<1:0>: Filter 28 Mask Select bits
          11 = Acceptance Mask 3 selected
          10 = Acceptance Mask 2 selected
          01 = Acceptance Mask 1 selected
          00 = Acceptance Mask 0 selected
bit 4-0
          FSEL28<4:0>: FIFO Selection bits
          11111 = Message matching filter is stored in FIFO buffer 31
          11110 = Message matching filter is stored in FIFO buffer 30
          00001 = Message matching filter is stored in FIFO buffer 1
          00000 = Message matching filter is stored in FIFO buffer 0
```

REGISTER 30-18: CIRXFn: CAN ACCEPTANCE FILTER N REGISTER 7 (n = 0 THROUGH 31)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
31:24	R/W-x R/W-x											
31.24		SID<10:3>										
22.40	R/W-x	R/W-x	R/W-x	U-0	R/W-0	U-0	R/W-x	R/W-x				
23:16		SID<2:0>		_	EXID	_	EID<1	7:16>				
45.0	R/W-x R/W-x											
15:8	EID<15:8>											
7:0	R/W-x R/W-x											
7:0		EID<7:0>										

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-21 SID<10:0>: Standard Identifier bits

1 = Message address bit SIDx must be '1' to match filter 0 = Message address bit SIDx must be '0' to match filter

bit 20 Unimplemented: Read as '0'

bit 19 **EXID:** Extended Identifier Enable bits

1 = Match only messages with extended identifier addresses0 = Match only messages with standard identifier addresses

bit 18 **Unimplemented:** Read as '0' bit 17-0 **EID<17:0>:** Extended Identifier bits

1 = Message address bit EIDx must be '1' to match filter 0 = Message address bit EIDx must be '0' to match filter

Note: This register can only be modified when the filter is disabled (FLTENn = 0).

REGISTER 30-19: CIFIFOBA: CAN MESSAGE BUFFER BASE ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	R/W-0	R/W-0									
31.24	CiFIFOBA<31:24>										
22:46	R/W-0	R/W-0									
23:16	CiFIFOBA<23:16>										
15.0	R/W-0	R/W-0									
15:8	CiFIFOBA<15:8>										
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0 ⁽¹⁾	R-0 ⁽¹⁾			
7:0				CiFIFO	3A<7:0>						

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared $x = Bit$ is unknown

bit 31-0 CiFIFOBA<31:0>: CAN FIFO Base Address bits

These bits define the base address of all message buffers. Individual message buffers are located based on the size of the previous message buffers. This address is a physical address. Note that bits <1:0> are read-only and read '0', forcing the messages to be 32-bit word-aligned in device RAM.

Note 1: This bit is unimplemented and will always read '0', which forces word-alignment of messages.

	Note:	This register can only be modified when the CAN module is in Configuration mode (OPMOD<2:0>
L		(CiCON<23:21>) = 100).

REGISTER 30-20: CiFIFOCONn: CAN FIFO CONTROL REGISTER (n = 0 THROUGH 31)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	_	_	_	_	_	_	_	_	
23:16	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23.10	_	_		FSIZE<4:0> ⁽¹⁾					
45.0	U-0	S/HC-0	S/HC-0	R/W-0	U-0	U-0	U-0	U-0	
15:8	_	FRESET	UINC	DONLY ⁽¹⁾	_	_	-	_	
7:0	R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0	TXEN	TXABAT ⁽²⁾	TXLARB ⁽³⁾	TXERR ⁽³⁾	TXREQ	RTREN	TXPR	<1:0>	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-21 Unimplemented: Read as '0'

bit 20-16 FSIZE<4:0>: FIFO Size bits⁽¹⁾

11111 = FIFO is 32 messages deep

•

•

.

00010 = FIFO is 3 messages deep

00001 = FIFO is 2 messages deep

00000 = FIFO is 1 message deep

bit 15 **Unimplemented:** Read as '0'

bit 14 FRESET: FIFO Reset bits

1 = FIFO will be reset when bit is set, cleared by hardware when FIFO is reset. After setting, the user should poll if this bit is clear before taking any action

0 = No effect

bit 13 UINC: Increment Head/Tail bit

TXEN = 1: (FIFO configured as a Transmit FIFO)

When this bit is set the FIFO head will increment by a single message

TXEN = 0: (FIFO configured as a Receive FIFO)

When this bit is set the FIFO tail will increment by a single message

bit 12 **DONLY:** Store Message Data Only bit⁽¹⁾

TXEN = 1: (FIFO configured as a Transmit FIFO)

This bit is not used and has no effect.

TXEN = 0: (FIFO configured as a Receive FIFO)

1 = Only data bytes will be stored in the FIFO

0 = Full message is stored, including identifier

bit 11-8 Unimplemented: Read as '0'

bit 7 TXEN: TX/RX Buffer Selection bit

1 = FIFO is a Transmit FIFO

0 = FIFO is a Receive FIFO

- **Note 1:** These bits can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> bits (CiCON<23:21>) = 100).
 - 2: This bit is updated when a message completes (or aborts) or when the FIFO is reset.
 - 3: This bit is reset on any read of this register or when the FIFO is reset.

REGISTER 30-20: CiFIFOCONn: CAN FIFO CONTROL REGISTER (n = 0 THROUGH 31)

- bit 6 **TXABAT:** Message Aborted bit⁽²⁾
 - 1 = Message was aborted
 - 0 = Message completed successfully
- bit 5 **TXLARB:** Message Lost Arbitration bit⁽³⁾
 - 1 = Message lost arbitration while being sent
 - 0 = Message did not loose arbitration while being sent
- bit 4 TXERR: Error Detected During Transmission bit (3)
 - 1 = A bus error occured while the message was being sent
 - 0 = A bus error did not occur while the message was being sent
- bit 3 TXREQ: Message Send Request

TXEN = 1: (FIFO configured as a Transmit FIFO)

Setting this bit to '1' requests sending a message.

The bit will automatically clear when all the messages queued in the FIFO are successfully sent

Clearing the bit to '0' while set ('1') will request a message abort.

TXEN = 0: (FIFO configured as a Receive FIFO)

This bit has no effect.

- bit 2 RTREN: Auto RTR Enable bit
 - 1 = When a remote transmit is received, TXREQ will be set
 - 0 = When a remote transmit is received, TXREQ will be unaffected
- bit 1-0 TXPR<1:0>: Message Transmit Priority bits
 - 11 = Highest Message Priority
 - 10 = High Intermediate Message Priority
 - 01 = Low Intermediate Message Priority
 - 00 = Lowest Message Priority
- **Note 1:** These bits can only be modified when the CAN module is in Configuration mode (OPMOD<2:0> bits (CiCON<23:21>) = 100).
 - 2: This bit is updated when a message completes (or aborts) or when the FIFO is reset.
 - 3: This bit is reset on any read of this register or when the FIFO is reset.

REGISTER 30-21: CIFIFOINTn: CAN FIFO INTERRUPT REGISTER (n = 0 THROUGH 31)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
31:24	_	_	_			TXNFULLIE	TXHALFIE	TXEMPTYIE
22.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	_	_	_	_	RXOVFLIE	RXFULLIE	RXHALFIE	RXNEMPTYIE
45.0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
15:8	_	_	_	_		TXNFULLIF ⁽¹⁾	TXHALFIF	TXEMPTYIF ⁽¹⁾
7.0	U-0	U-0	U-0	U-0	R/W-0	R-0	R-0	R-0
7:0	_	_	_	_	RXOVFLIF	RXFULLIF ⁽¹⁾	RXHALFIF ⁽¹⁾	RXNEMPTYIF ⁽¹⁾

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

bit 26 TXNFULLIE: Transmit FIFO Not Full Interrupt Enable bit

1 = Interrupt enabled for FIFO not full0 = Interrupt disabled for FIFO not full

bit 25 TXHALFIE: Transmit FIFO Half Full Interrupt Enable bit

1 = Interrupt enabled for FIFO half full 0 = Interrupt disabled for FIFO half full

bit 24 **TXEMPTYIE:** Transmit FIFO Empty Interrupt Enable bit

1 = Interrupt enabled for FIFO empty

0 = Interrupt disabled for FIFO empty

bit 23-20 Unimplemented: Read as '0'

bit 19 **RXOVFLIE:** Overflow Interrupt Enable bit

1 = Interrupt enabled for overflow event

0 = Interrupt disabled for overflow event

bit 18 RXFULLIE: Full Interrupt Enable bit

1 = Interrupt enabled for FIFO full

0 = Interrupt disabled for FIFO full

bit 17 RXHALFIE: FIFO Half Full Interrupt Enable bit

1 = Interrupt enabled for FIFO half full

0 = Interrupt disabled for FIFO half full

bit 16 **RXNEMPTYIE:** Empty Interrupt Enable bit

1 = Interrupt enabled for FIFO not empty

0 = Interrupt disabled for FIFO not empty

bit 15-11 Unimplemented: Read as '0'

bit 10 **TXNFULLIF:** Transmit FIFO Not Full Interrupt Flag bit⁽¹⁾

TXEN = 1: (FIFO configured as a Transmit Buffer)

1 = FIFO is not full

0 = FIFO is full

TXEN = 0: (FIFO configured as a Receive Buffer)

Unused, reads '0'

Note 1: This bit is read-only and reflects the status of the FIFO.

REGISTER 30-21: CIFIFOINTn: CAN FIFO INTERRUPT REGISTER (n = 0 THROUGH 31)

bit 9 **TXHALFIF:** FIFO Transmit FIFO Half Empty Interrupt Flag bit⁽¹⁾

TXEN = 1: (FIFO configured as a Transmit Buffer)

 $1 = FIFO is \le half full$

0 = FIFO is > half full

TXEN = 0: (FIFO configured as a Receive Buffer)

Unused, reads '0'

bit 8 **TXEMPTYIF:** Transmit FIFO Empty Interrupt Flag bit⁽¹⁾

TXEN = 1: (FIFO configured as a Transmit Buffer)

1 = FIFO is empty

0 = FIFO is not empty, at least 1 message queued to be transmitted

TXEN = 0: (FIFO configured as a Receive Buffer)

Unused, reads '0'

bit 7-4 Unimplemented: Read as '0'

bit 3 RXOVFLIF: Receive FIFO Overflow Interrupt Flag bit

TXEN = 1: (FIFO configured as a Transmit Buffer)

Unused, reads '0'

TXEN = 0: (FIFO configured as a Receive Buffer)

1 = Overflow event has occurred

0 = No overflow event occured

bit 2 **RXFULLIF:** Receive FIFO Full Interrupt Flag bit⁽¹⁾

TXEN = 1: (FIFO configured as a Transmit Buffer)

Unused, reads '0'

TXEN = 0: (FIFO configured as a Receive Buffer)

1 = FIFO is full

0 = FIFO is not full

bit 1 **RXHALFIF:** Receive FIFO Half Full Interrupt Flag bit⁽¹⁾

TXEN = 1: (FIFO configured as a Transmit Buffer)

Unused, reads '0'

TXEN = 0: (FIFO configured as a Receive Buffer)

1 = FIFO is ≥ half full

0 = FIFO is < half full

bit 0 **RXNEMPTYIF:** Receive Buffer Not Empty Interrupt Flag bit⁽¹⁾

TXEN = 1: (FIFO configured as a Transmit Buffer)

Unused, reads '0'

TXEN = 0: (FIFO configured as a Receive Buffer)

1 = FIFO is not empty, has at least 1 message

0 = FIFO is empty

Note 1: This bit is read-only and reflects the status of the FIFO.

REGISTER 30-22: CiFIFOUAn: CAN FIFO USER ADDRESS REGISTER (n = 0 THROUGH 31)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	R-x	R-x									
31.24	CiFIFOUAn<31:24>										
23:16	R-x	R-x									
23.10	CiFIFOUAn<23:16>										
15:8	R-x	R-x									
13.6				CiFIFOU	An<15:8>						
7:0	R-x	R-x	R-x	R-x	R-x	R-x	R-0 ⁽¹⁾	R-0 ⁽¹⁾			
7.0		CiFIFOUAn<7:0>									

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 CiFIFOUAn<31:0>: CAN FIFO User Address bits

TXEN = 1: (FIFO configured as a Transmit Buffer)

A read of this register will return the address where the next message is to be written (FIFO head).

TXEN = 0: (FIFO configured as a Receive Buffer)

A read of this register will return the address where the next message is to be read (FIFO tail).

Note 1: This bit will always read '0', which forces byte-alignment of messages.

Note: This register is not guaranteed to read correctly in Configuration mode, and should only be accessed when the module is not in Configuration mode.

REGISTER 30-23: CIFIFOCIN: CAN MODULE MESSAGE INDEX REGISTER (n = 0 THROUGH 31)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0 U-0							
31.24	_	_	_	_	_	_	_	_
23:16	U-0 U-0							
23.10	_	_	_	_	_	_	_	_
15:8	U-0 U-0							
15.6	_	_	_	_	_	_	_	_
7:0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
7.0	_	_	_		(CiFIFOCI<4:0	>	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-5 Unimplemented: Read as '0'

bit 4-0 CiFIFOCIn<4:0>: CAN Side FIFO Message Index bits

TXEN = 1: (FIFO configured as a Transmit Buffer)

A read of this register will return an index to the message that the FIFO will next attempt to transmit.

<u>TXEN = 0:</u> (FIFO configured as a Receive Buffer)

A read of this register will return an index to the message that the FIFO will use to save the next message.

31.0 ETHERNET CONTROLLER

Note: This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 35. "Ethernet Controller" (DS60001155), which available from the Documentation Reference Manual section the PIC32 Microchip web site (www.microchip.com/pic32)

The Ethernet controller is a bus master module that interfaces with an off-chip Physical Layer (PHY) to implement a complete Ethernet node in a system.

Key features of the Ethernet Controller include:

- · Supports 10/100 Mbps data transfer rates
- · Supports full-duplex and half-duplex operation

- · Supports RMII and MII PHY interface
- · Supports MIIM PHY management interface
- · Supports both manual and automatic Flow Control
- RAM descriptor-based DMA operation for both receive and transmit path
- · Fully configurable interrupts
- · Configurable receive packet filtering
 - CRC check
 - 64-byte pattern match
 - Broadcast, multicast and unicast packets
 - Magic Packet™
 - 64-bit hash table
 - Runt packet
- · Supports packet payload checksum calculation
- · Supports various hardware statistics counters

Figure 31-1 illustrates a block diagram of the Ethernet controller.

FIGURE 31-1: ETHERNET CONTROLLER BLOCK DIAGRAM

Table 31-1 and Table 31-2 show two interfaces and the associated pins that can be used with the Ethernet Controller.

TABLE 31-1: MII MODE DEFAULT INTERFACE SIGNALS (FMIIEN = 1, FETHIO = 1)

Pin Name	Description
EMDC	Management Clock
EMDIO	Management I/O
ETXCLK	Transmit Clock
ETXEN	Transmit Enable
ETXD0	Transmit Data
ETXD1	Transmit Data
ETXD2	Transmit Data
ETXD3	Transmit Data
ETXERR	Transmit Error
ERXCLK	Receive Clock
ERXDV	Receive Data Valid
ERXD0	Receive Data
ERXD1	Receive Data
ERXD2	Receive Data
ERXD3	Receive Data
ERXERR	Receive Error
ECRS	Carrier Sense
ECOL	Collision Indication

TABLE 31-2: RMII MODE DEFAULT INTERFACE SIGNALS (FMIIEN = 0, FETHIO = 1)

Pin Name	Description
EMDC	Management Clock
EMDIO	Management I/O
ETXEN	Transmit Enable
ETXD0	Transmit Data
ETXD1	Transmit Data
EREFCLK	Reference Clock
ECRSDV	Carrier Sense – Receive Data Valid
ERXD0	Receive Data
ERXD1	Receive Data
ERXERR	Receive Error

Note: Ethernet controller pins that are not used by selected interface can be used by other peripherals.

31.1 Ethernet Control Registers
TABLE 31-3: ETHERNET CONTROLLER REGISTER SUMMARY

s	PII Resets	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	and
	16/0		BUFCDEC	1	ı		_		—						I		I		I	BCEN			—	RX OVFLWIE	I	RXOVFLW		I	_		. "CLR, SET,
	17/1		I	1	1		-		—						I		1		I	MCEN			-	RX BUFNAIE	I	RXBUFNA		I	I		Section 12.2
	18/2		ı	ı	ı										I		I		I	NOT			I	TX ABORTIE	I	TXABORT		I	I		ectively. See
	19/3		I	Ι	1										ı		1		1	NCEN	RXFWM<7:0>	RXEWM<7:0>	Ι	TX DONEIE	I	TXDONE	BUFCNT<7:0>	ı	ı		nd 0xC, resp
	20/4		MANFC	Ι											ı		1		I	RUNTEN	RXFW	RXEW	-	-	1	1	BUFC	I	-		f 0x4, 0x8 ar
	21/5		I	1											ı		I		I	RUNT			Ι	RX ACTIE	I	RXACT		RXBUSY	I		olus offsets o
	22/6		ı	1	<(ı		1		I	CRC			Ι	PK TPENDIE	I	PKTPEND		TXBUSY	I		addresses, p
Bits	23/7	PTV<15:0>	AUTOFC	1	RXBUFSZ<6:0>	TXSTADDR<31:16>		RXSTADDR<31:16>		HT<31:0>	HT<63:32>	PMM<31:0>		PMM<63:32>	ı	PMCS<15:0>	1	PMO<15:0>	I	CRC ERREN			-	RX DONEIE	I	RXDONE		BUSY	-	RXOVFLWCNT<15:0>	their virtual
В	24/8	PTV	RXEN	1	F	TXSTADI	TXSTADDR<15:2>	RXSTADI	RXSTADDR<15:2>	HT<	HT<	PMM		PMM•	ı	PMC8	1	PMO	I		I	I	Ι	FW MARKIE	I	FWMARK	Ι	I	I	RXOVFLM	registers at
	25/9		TXRTS	1			TXSTAD		RXSTAD						I		1		I	PMMODE<3:0>	I	I	I	EW MARKIE	I	EWMARK	Ι	I	I		exadecimal. SET and INV
	26/10		I	I											ı		1		1	PMMOI	I	1	I	Ι	I	1	ı	1	I		re shown in h nding CLR, {
	27/11		I	1	1										ı		1		1		I	I	I	Ι	I	1	Ι	I	I		eset values a
	28/12		I	Ι	1										ı		1		1	NOTPM	1	Ι	Ι	Ι	I	1	1	1	I		read as 'o'. R :THSTAT) ha value.
	29/13		SIDL	1	1										ı		1		I	1	I	I	Ι	RX BUSEIE	I	RXBUSE	Ι	I	I		mplemented, xception of E r. orogrammed
	30/14		I	1	1										I		1		I	MPEN	I	I	I	TX BUSEIE	I	TXBUSE	Ι	I	I		x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. All registers in this table (with the exception of ETHSTAT) have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information. Reset values default to the factory programmed value.
	31/15		NO	1	1										I		1		1	HTEN	1	Ι	Ι	-	I	1	1	Ī	I		n value on Res in this table sers" for mores default to
€	Bit Range	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16 15:0	31:16 15:0	31:16	15:0	31:16	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	Inknow gister Regist
	Register ^(†)		E HCON!	CINOCITE	EITCOINZ	TOXET	- CY L L	TOVOLTE	FINKASI	ЕТННТО	ЕТННТ1	ETHPMM0		ETHPMM1		ETHPMCS		E I HPMC		ETHRXFC		EIHKXWM		ETHEN		Д Х		E HO IA	НТЭ	RXOVFLOW	7: 3:
ssə	Virtual Addr (#_8878)	0	2000	2010	2010	0000	7070	0000	2030	2040	2050	2060		2070		2080	0	2090		20A0	0	ZUBU		20C0	0	ZODO	L	ZUEU	0.70	7100	Legend: Note

© 2015-2017 Microchip Technology Inc.

								ā	Bits							
31/15		30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0
1	11	1	1	1	1	I	1	1	1	ı	I	1	1	1	1	1
	1							FRMTXOK	FRMTXOKCNT<15:0>							
1		1	I	1	1	I	1	1	1	I	I	1	I	ı	1	1
	1							SCOLFRM	SCOLFRMCNT<15:0>							
I		I	I	I	I	I	I	I	I	ı	I	I	I	ı	I	I
								MCOLFRM	MCOLFRMCNT<15:0>							
1		I	I	I	Ι	I	I	Ι	Ι	I	I	I	Ι	I	I	I
								FRMRXOK	FRMRXOKCNT<15:0>							
		I	I	I	I	I	ı	I	I	ı	I	I	ı	ı	I	I
								FCSERRC	FCSERRCNT<15:0>							
	1	1	I	I	Ι	I	I	Ι	Ι	I	I	I	I	I	I	I
								ALGNERR	ALGNERRCNT<15:0>							
	1	1	Ι	I	Ι	I	I	Ι	Ι	I	I	Ι	Ι	1	ı	I
0, 22	SOFT RESET	SIM RESET	I	1	RESET RMCS	RESET RFUN	RESET TMCS	RESET TFUN	I	ı	I	LOOPBACK	TXPAUSE	RXPAUSE	PASSALL	RXENABLE
	I	1	Ι	I	I	I	I	I	I	I	I	I	I	I	I	I
	I	EXCESS DFR	BP NOBKOFF	NOBKOFF	I	I	LONGPRE	PUREPRE	AUTOPAD	VLANPAD	PAD ENABLE	CRC ENABLE	DELAYCRC	HUGEFRM	LENGTHCK	FULLDPLX
	I	_	Ι	_	_	-	I	_	-	I	-	Ι	_	I	I	I
	I	1	Ι	I	Ι	I	1	1	Ι			B2.	B2BIPKTGP<6:0>	^		
	I	1	Ι	I	I	I	I	I	I	I	I	I	Ī	I	I	I
	1			NB2	NB2BIPKTGP1<6:0>	\$:0>			1			NB2	NB2BIPKTGP2<6:0>	<0:		
	1	_	1	I	1	1	l	I	1	I	I	I	I	I	I	I
	I	I			CWINDOW<5:0>	W<5:0>			I	I	I	I		RETX<3:0>	<3:0>	
	I	1	I	I	I	I	I			I	I	I	I	I	I	I
								MACMA	MACMAXF<15:0>							
	1 1	1 1	1 1	1 1	RESET	1 1	1 1	SPEED	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1
	ı	1	I	I	1	ı	I	1	I	ı	I	I	I	1	I	1
	I	I	I	I	I	1	I	I	I	1	I	I	1	TESTBP .	TESTPAUSE	SHRTQNTA
	I	1	Ι	I	Ι	I	I	ı	Ι	I	I	I	Ι	1	I	1
	RESET MGMT	_	-		-	1	1	-	_	-		CLKSEL<3:0>	-<3:0>		NOPRE	SCANINC
	1	_	1	ı	_		I	_	Ι	1	I		1	1	-	I
	1	_	1	ı		-	I	_	1	1	I	-	1	1	SCAN	READ
	I	I	I	I	Ι	I	I	Ι	I	1	I	_	Ι	1	I	I
	ı	I	I		Ы	PHYADDR<4:0>	^		1	I	I		RF	REGADDR<4:0>	^	

DS60001361E-page 524

© 2015-2017 Microchip Technology Inc.

TAB		Virtual Addr (#_8878)	000	7250		2200	C	77 P	0000	7300	200	7310	CCC	2320
TABLE 31-3:		Register Name ⁽¹⁾	EMAC1	MWTD	EMAC1	MRDD	EMAC1	MIND	EMAC1	SA0(2)	EMAC1	SA1 ⁽²⁾	EMAC1	
	ŧ	Bit Range	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	4.6.0
ETHERNE		31/15	I		_		-	_	_		_		-	
		30/14	1		Ι		I	Ι	Ι		Ι		I	
NTROLL		29/13	1		Ι		I	Ι	Ι		Ι		I	
 CONTROLLER REGISTER SUMMARY (CONTINUED)		28/12	1		-		Ι	-	1	STNADD	-	STNADD	Ι	20.7. COOO A 14TO
3ISTER		27/11	I		_		I	_	-	STNADDR6<7:0>	_	STNADDR4<7:0>	I	20.27
SUMM/		26/10	I		_		_	_	_		_		_	
ARY (CC		25/9	I		_		Ι	-	1		-		Ι	
ONTINU	В	24/8	I	MWTE	_	MRDD	Ι	_	-		_		Ι	
ED)	Bits	23/7	I	MWTD<15:0>	Ι	MRDD<15:0>	I	Ι	Ι		Ι		I	
		22/6	I		I		I	I	ı		I		I	
		21/5	I		-		I	-	1		-		I	
		20/4	1		1		I	1	_	STNADE	I	STNADE	I	-0.57 AGG 614TO
		19/3	1		_		Ι	LINKFAIL	_	STNADDR5<7:0>	_	STNADDR3<7:0>	Ι	20.77
		18/2	I		_		_	NOTVALID	—		_		_	

ateseR IIA

16/0

17/1

MIIMBUSY

SCAN

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table (with the exception of ETHSTAT) have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

Reset values default to the factory programmed value.

REGISTER 31-1: ETHCON1: ETHERNET CONTROLLER CONTROL REGISTER 1

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0 R/W-0							
31:24				PTV<	15:8>			
00.40	R/W-0 R/W-0							
23:16				PTV<	7:0>			
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
15:8	ON	_	SIDL	_	_	_	TXRTS	RXEN ⁽¹⁾
7:0	R/W-0	U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0
7:0	AUTOFC	_	_	MANFC				BUFCDEC

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 PTV<15:0>: PAUSE Timer Value bits

PAUSE Timer Value used for Flow Control.

This register should only be written when RXEN (ETHCON1<8>) is not set.

These bits are only used for Flow Control operations.

bit 15 ON: Ethernet ON bit

1 = Ethernet module is enabled0 = Ethernet module is disabled

bit 14 Unimplemented: Read as '0'

bit 13 SIDL: Ethernet Stop in Idle Mode bit

1 = Ethernet module transfers are paused during Idle mode

0 = Ethernet module transfers continue during Idle mode

bit 12-10 Unimplemented: Read as '0'

bit 9 TXRTS: Transmit Request to Send bit

1 = Activate the TX logic and send the packet(s) defined in the TX EDT

0 = Stop transmit (when cleared by software) or transmit done (when cleared by hardware)

After the bit is written with a '1', it will clear to a '0' whenever the transmit logic has finished transmitting the requested packets in the Ethernet Descriptor Table (EDT). If a '0' is written by the CPU, the transmit logic finishes the current packet's transmission and then stops any further.

This bit only affects TX operations.

bit 8 **RXEN:** Receive Enable bit⁽¹⁾

- 1 = Enable RX logic, packets are received and stored in the RX buffer as controlled by the filter configuration
- 0 = Disable RX logic, no packets are received in the RX buffer

This bit only affects RX operations.

Note 1: It is not recommended to clear the RXEN bit and then make changes to any RX related field/register. The Ethernet Controller must be reinitialized (ON cleared to '0'), and then the RX changes applied.

REGISTER 31-1: ETHCON1: ETHERNET CONTROLLER CONTROL REGISTER 1 (CONTINUED)

bit 7 AUTOFC: Automatic Flow Control bit

1 = Automatic Flow Control is enabled

0 = Automatic Flow Control is disabled

Setting this bit will enable automatic Flow Control. If set, the full and empty watermarks are used to automatically enable and disable the Flow Control, respectively. When the number of received buffers BUFCNT (ETHSTAT<16:23>) rises to the full watermark, Flow Control is automatically enabled. When the BUFCNT falls to the empty watermark, Flow Control is automatically disabled.

This bit is only used for Flow Control operations and affects both TX and RX operations.

bit 6-5 **Unimplemented:** Read as '0'

bit 4 MANFC: Manual Flow Control bit

1 = Manual Flow Control is enabled

0 = Manual Flow Control is disabled

Setting this bit will enable manual Flow Control. If set, the Flow Control logic will send a PAUSE frame using the PAUSE timer value in the PTV register. It will then resend a PAUSE frame every 128 * PTV<15:0>/2 TX clock cycles until the bit is cleared.

Note: For 10 Mbps operation, TX clock runs at 2.5 MHz. For 100 Mbps operation, TX clock runs at 25 MHz.

When this bit is cleared, the Flow Control logic will automatically send a PAUSE frame with a 0x0000 PAUSE timer value to disable Flow Control.

This bit is only used for Flow Control operations and affects both TX and RX operations.

bit 3-1 **Unimplemented:** Read as '0'

bit 0 BUFCDEC: Descriptor Buffer Count Decrement bit

The BUFCDEC bit is a write-1 bit that reads as '0'. When written with a '1', the Descriptor Buffer Counter, BUFCNT, will decrement by one. If BUFCNT is incremented by the RX logic at the same time that this bit is written, the BUFCNT value will remain unchanged. Writing a '0' will have no effect.

This bit is only used for RX operations.

Note 1: It is not recommended to clear the RXEN bit and then make changes to any RX related field/register. The Ethernet Controller must be reinitialized (ON cleared to '0'), and then the RX changes applied.

REGISTER 31-2: ETHCON2: ETHERNET CONTROLLER CONTROL REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	_	-	_	-	-	-	-	_
23:16	U-0 U-0							
23.10	_	-	_	-	-	-	-	_
45.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
15:8	_	_	_	_	_	F	XBUFSZ<6:	4>
7:0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
7:0		RXBUFS	SZ<3:0>		_	_	_	_

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-11 Unimplemented: Read as '0'

bit 10-4 RXBUFSZ<6:0>: RX Data Buffer Size for All RX Descriptors (in 16-byte increments) bits

1111111 = RX data Buffer size for descriptors is 2032 bytes

•

•

1100000 = RX data Buffer size for descriptors is 1536 bytes

•

٠

0000011 = RX data Buffer size for descriptors is 48 bytes

0000010 = RX data Buffer size for descriptors is 32 bytes

0000001 = RX data Buffer size for descriptors is 16 bytes

0000000 = Reserved

bit 3-0 Unimplemented: Read as '0'

Note 1: This register is only used for RX operations.

2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0.

REGISTER 31-3: ETHTXST: ETHERNET CONTROLLER TX PACKET DESCRIPTOR START ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0 R/W-0							
31.24				TXSTADD	R<31:24>			
23:16	R/W-0 R/W-0							
23.10				TXSTADD	R<23:16>			
15:8	R/W-0 R/W-0							
15.6		•	•	TXSTADE	R<15:8>	•	•	
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
7.0		•	TXSTADE	DR<7:2>	•			_

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-2 TXSTADDR<31:2>: Starting Address of First Transmit Descriptor bits

This register should not be written while any transmit, receive or DMA operations are in progress.

This address must be 4-byte aligned (bits 1-0 must be '00').

bit 1-0 Unimplemented: Read as '0'

Note 1: This register is only used for TX operations.

2: This register will be updated by hardware with the last descriptor used by the last successfully transmitted packet.

REGISTER 31-4: ETHRXST: ETHERNET CONTROLLER RX PACKET DESCRIPTOR START ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0 R/W-0							
31.24				RXSTADE	R<31:24>			
23:16	R/W-0 R/W-0							
23.10		•	•	RXSTADE	R<23:16>	•	•	•
15:8	R/W-0 R/W-0							
15.6		•	•	RXSTADI	DR<15:8>	•	•	•
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
7.0		•	RXSTAD	DR<7:2>	•	•	_	_

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-2 RXSTADDR<31:2>: Starting Address of First Receive Descriptor bits

This register should not be written while any transmit, receive or DMA operations are in progress.

This address must be 4-byte aligned (bits 1-0 must be '00').

bit 1-0 Unimplemented: Read as '0'

Note 1: This register is only used for RX operations.

2: This register will be updated by hardware with the last descriptor used by the last successfully transmitted packet.

REGISTER 31-5: ETHHT0: ETHERNET CONTROLLER HASH TABLE 0 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0 R/W-0							
31:24				HT<3	1:24>			
22.46	R/W-0 R/W-0							
23:16				HT<2	3:16>			
45.0	R/W-0 R/W-0							
15:8				HT<1	5:8>			
7.0	R/W-0 R/W-0							
7:0				HT<	7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 HT<31:0>: Hash Table Bytes 0-3 bits

Note 1: This register is only used for RX operations.

2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the HTEN bit (ETHRXFC<15>) = 0.

REGISTER 31-6: ETHHT1: ETHERNET CONTROLLER HASH TABLE 1 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0 R/W-0							
31:24				HT<6	3:56>			
22.46	R/W-0 R/W-0							
23:16				HT<5	5:48>			
45.0	R/W-0 R/W-0							
15:8				HT<4	7:40>			
7:0	R/W-0 R/W-0							
7:0				HT<3	9:32>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR $ext{'1'}$ = Bit is set $ext{'0'}$ = Bit is cleared $ext{x}$ = Bit is unknown

bit 31-0 HT<63:32>: Hash Table Bytes 4-7 bits

Note 1: This register is only used for RX operations.

2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the HTEN bit (ETHRXFC<15>) = 0.

REGISTER 31-7: ETHPMM0: ETHERNET CONTROLLER PATTERN MATCH MASK 0 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0 R/W-0							
31:24				PMM<	31:24>			
23:16	R/W-0 R/W-0							
23.10				PMM<	23:16>			
15:8	R/W-0 R/W-0							
13.6				PMM<	:15:8>			
7:0	R/W-0 R/W-0							
7.0		•	•	PMM	<7:0>	•	•	•

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-24 PMM<31:24>: Pattern Match Mask 3 bits
bit 23-16 PMM<23:16>: Pattern Match Mask 2 bits
bit 15-8 PMM<15:8>: Pattern Match Mask 1 bits
bit 7-0 PMM<7:0>: Pattern Match Mask 0 bits

Note 1: This register is only used for RX operations.

2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

REGISTER 31-8: ETHPMM1: ETHERNET CONTROLLER PATTERN MATCH MASK 1 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R/W-0 R/W-0										
31:24	PMM<63:56>										
23:16	R/W-0 R/W-0										
23.10				PMM<	55:48>						
15:8	R/W-0 R/W-0										
15.6				PMM<	47:40>		R/W-0 R/W				
7:0	R/W-0 R/W-0										
7.0				PMM<	39:32>						

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-24 PMM<63:56>: Pattern Match Mask 7 bits bit 23-16 PMM<55:48>: Pattern Match Mask 6 bits bit 15-8 PMM<47:40>: Pattern Match Mask 5 bits bit 7-0 PMM<39:32>: Pattern Match Mask 4 bits

Note 1: This register is only used for RX operations.

2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

REGISTER 31-9: ETHPMCS: ETHERNET CONTROLLER PATTERN MATCH CHECKSUM REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0 U-0							
31.24	_	_	_	_	_	_		-
23:16	U-0 U-0							
23.10		_		1	1	_		I
15:8	R/W-0 R/W-0							
15.6				PMCS<15:8>				
7:0	R/W-0 R/W-0							
7.0				PMCS	S<7:0>	·		·

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-8 **PMCS<15:8>:** Pattern Match Checksum 1 bits bit 7-0 **PMCS<7:0>:** Pattern Match Checksum 0 bits

Note 1: This register is only used for RX operations.

2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

REGISTER 31-10: ETHPMO: ETHERNET CONTROLLER PATTERN MATCH OFFSET REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0						
31.24	_	_	_	_	_	_	_	_
23:16	U-0	U-0						
23.10	_	_	_	_	_	_	_	_
15:8	R/W-0	R/W-0						
13.0				PMO<	<15:8>		U-0 — U-0 —	
7:0	R/W-0	R/W-0						
7.0				PMO	<7:0>		— R/W-0	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 PMO<15:0>: Pattern Match Offset 1 bits

Note 1: This register is only used for RX operations.

2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0 or the PMMODE bit (ETHRXFC<11:8>) = 0.

REGISTER 31-11: ETHRXFC: ETHERNET CONTROLLER RECEIVE FILTER CONFIGURATION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0 U-0							
31.24	_	_	-	_	_	_	_	_
23:16	U-0 U-0							
23.10	_	_	-	_	_	_	_	_
15:8	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
13.6	HTEN	MPEN	-	NOTPM	PMMODE<3:0>			
7:0	R/W-0 R/W-0							
7.0	CRCERREN	CRCOKEN	RUNTERREN	RUNTEN	UCEN	NOTMEEN	MCEN	BCEN

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 HTEN: Enable Hash Table Filtering bit

1 = Enable Hash Table Filtering

0 = Disable Hash Table Filtering

bit 14 MPEN: Magic Packet™ Enable bit

1 = Enable Magic Packet Filtering

0 = Disable Magic Packet Filtering

bit 13 Unimplemented: Read as '0'

bit 12 **NOTPM:** Pattern Match Inversion bit

- 1 = The Pattern Match Checksum must not match for a successful Pattern Match to occur
- 0 = The Pattern Match Checksum must match for a successful Pattern Match to occur

This bit determines whether Pattern Match Checksum must match in order for a successful Pattern Match to occur.

- bit 11-8 PMMODE<3:0>: Pattern Match Mode bits
 - 1001 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Packet = Magic Packet)^(1,3)
 - 1000 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Hash Table Filter match)^(1,1)
 - 0111 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Destination Address = Broadcast Address)⁽¹⁾
 - 0110 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Destination Address = Broadcast Address)⁽¹⁾
 - 0101 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Destination Address = Unicast Address)⁽¹⁾
 - 0100 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Destination Address = Unicast Address)⁽¹⁾
 - 0011 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Destination Address = Station Address)⁽¹⁾
 - 0010 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches) AND (Destination Address = Station Address)⁽¹⁾
 - 0001 = Pattern match is successful if (NOTPM = 1 XOR Pattern Match Checksum matches)(1)
 - 0000 = Pattern Match is disabled; pattern match is always unsuccessful
- Note 1: XOR = True when either one or the other conditions are true, but not both.
 - 2: This Hash Table Filter match is active regardless of the value of the HTEN bit.
 - 3: This Magic Packet Filter match is active regardless of the value of the MPEN bit.
- **Note 1:** This register is only used for RX operations.
 - 2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0.

REGISTER 31-11: ETHRXFC: ETHERNET CONTROLLER RECEIVE FILTER CONFIGURATION REGISTER (CONTINUED)

- bit 7 CRCERREN: CRC Error Collection Enable bit
 - 1 = The received packet CRC must be invalid for the packet to be accepted
 - 0 = Disable CRC Error Collection filtering

This bit allows the user to collect all packets that have an invalid CRC.

- bit 6 CRCOKEN: CRC OK Enable bit
 - 1 = The received packet CRC must be valid for the packet to be accepted
 - 0 = Disable CRC filtering

This bit allows the user to reject all packets that have an invalid CRC.

- bit 5 RUNTERREN: Runt Error Collection Enable bit
 - 1 = The received packet must be a runt packet for the packet to be accepted
 - 0 = Disable Runt Error Collection filtering

This bit allows the user to collect all packets that are runt packets. For this filter, a runt packet is defined as any packet with a size of less than 64 bytes (when CRCOKEN = 0) or any packet with a size of less than 64 bytes that has a valid CRC (when CRCOKEN = 1).

- bit 4 **RUNTEN:** Runt Enable bit
 - 1 = The received packet must not be a runt packet for the packet to be accepted
 - 0 = Disable Runt filtering

This bit allows the user to reject all runt packets. For this filter, a runt packet is defined as any packet with a size of less than 64 bytes.

- bit 3 UCEN: Unicast Enable bit
 - 1 = Enable Unicast Filtering
 - 0 = Disable Unicast Filtering

This bit allows the user to accept all unicast packets whose Destination Address matches the Station Address.

- bit 2 NOTMEEN: Not Me Unicast Enable bit
 - 1 = Enable Not Me Unicast Filtering
 - 0 = Disable Not Me Unicast Filtering

This bit allows the user to accept all unicast packets whose Destination Address does not match the Station Address.

- bit 1 MCEN: Multicast Enable bit
 - 1 = Enable Multicast Filtering
 - 0 = Disable Multicast Filtering

This bit allows the user to accept all Multicast Address packets.

- bit 0 BCEN: Broadcast Enable bit
 - 1 = Enable Broadcast Filtering
 - 0 = Disable Broadcast Filtering

This bit allows the user to accept all Broadcast Address packets.

- **Note 1:** XOR = True when either one or the other conditions are true, but not both.
 - 2: This Hash Table Filter match is active regardless of the value of the HTEN bit.
 - 3: This Magic Packet Filter match is active regardless of the value of the MPEN bit.
- **Note 1:** This register is only used for RX operations.
 - 2: The bits in this register may only be changed while the RXEN bit (ETHCON1<8>) = 0.

REGISTER 31-12: ETHRXWM: ETHERNET CONTROLLER RECEIVE WATERMARKS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24:24	U-0 U-0										
31:24	_	_	-	-	-	_	-	-			
22:46	R/W-0 R/W-0										
23:16	RXFWM<7:0>										
15:8	U-0 U-0										
15.6	_	_	-	-	-	_	-	-			
7:0	R/W-0 R/W-0										
7:0				RXEW	M<7:0>		U-0 —				

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23-16 RXFWM<7:0>: Receive Full Watermark bits

The software controlled RX Buffer Full Watermark Pointer is compared against the RX BUFCNT to determine the full watermark condition for the FWMARK interrupt and for enabling Flow Control when automatic Flow Control is enabled. The Full Watermark Pointer should always be greater than the Empty Watermark Pointer.

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **RXEWM<7:0>:** Receive Empty Watermark bits

The software controlled RX Buffer Empty Watermark Pointer is compared against the RX BUFCNT to determine the empty watermark condition for the EWMARK interrupt and for disabling Flow Control when automatic Flow Control is enabled. The Empty Watermark Pointer should always be less than the Full Watermark Pointer.

Note: This register is only used for RX operations.

REGISTER 31-13: ETHIEN: ETHERNET CONTROLLER INTERRUPT ENABLE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	_	_	_	_	_	_	
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	_	_	_	_	_	_	
15:0	U-0	R/W-0	RW-0	U-0	U-0	U-0	R/W-0	R/W-0
15:8	_	TXBUSEIE ⁽¹⁾	RXBUSEIE(2)	_	_	_	EWMARKIE ⁽²⁾	FWMARKIE ⁽²⁾
7:0	R/W-0	R/W-0	RW-0	U-0	R/W-0	R/W-0	R/W-0	RW-0
7.0	RXDONEIE(2)	PKTPENDIE ⁽²⁾	RXACTIE ⁽²⁾	_	TXDONEIE(1)	TXABORTIE ⁽¹⁾	RXBUFNAIE ⁽²⁾	RXOVFLWIE ⁽²⁾

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-15 Unimplemented: Read as '0'

bit 14 **TXBUSEIE:** Transmit BVCI Bus Error Interrupt Enable bit⁽¹⁾

1 = Enable TXBUS Error Interrupt

0 = Disable TXBUS Error Interrupt

bit 13 **RXBUSEIE**: Receive BVCI Bus Error Interrupt Enable bit⁽²⁾

1 = Enable RXBUS Error Interrupt

0 = Disable RXBUS Error Interrupt

bit 12-10 Unimplemented: Read as '0'

bit 9 **EWMARKIE:** Empty Watermark Interrupt Enable bit⁽²⁾

1 = Enable EWMARK Interrupt

0 = Disable EWMARK Interrupt

bit 8 **FWMARKIE**: Full Watermark Interrupt Enable bit⁽²⁾

1 = Enable FWMARK Interrupt

0 = Disable FWMARK Interrupt

bit 7 **RXDONEIE:** Receiver Done Interrupt Enable bit⁽²⁾

1 = Enable RXDONE Interrupt

0 = Disable RXDONE Interrupt

bit 6 **PKTPENDIE**: Packet Pending Interrupt Enable bit⁽²⁾

1 = Enable PKTPEND Interrupt

0 = Disable PKTPEND Interrupt

bit 5 **RXACTIE:** RX Activity Interrupt Enable bit⁽²⁾

1 = Enable RXACT Interrupt

0 = Disable RXACT Interrupt

bit 4 **Unimplemented:** Read as '0'

bit 3 **TXDONEIE:** Transmitter Done Interrupt Enable bit⁽¹⁾

1 = Enable TXDONE Interrupt

0 = Disable TXDONE Interrupt

bit 2 **TXABORTIE:** Transmitter Abort Interrupt Enable bit⁽¹⁾

1 = Enable TXABORT Interrupt

0 = Disable TXABORT Interrupt

bit 1 **RXBUFNAIE:** Receive Buffer Not Available Interrupt Enable bit⁽²⁾

1 = Enable RXBUFNA Interrupt

0 = Disable RXBUFNA Interrupt

bit 0 **RXOVFLWIE**: Receive FIFO Overflow Interrupt Enable bit⁽²⁾

1 = Enable RXOVFLW Interrupt

0 = Disable RXOVFLW Interrupt

Note 1: This bit is only used for TX operations.

2: This bit is only used for RX operations.

REGISTER 31-14: ETHIRQ: ETHERNET CONTROLLER INTERRUPT REQUEST REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	_	_	-	_	-	_	-	_
22:46	U-0 U-0							
23:16	_	_	-	_	-	_	-	_
15:8	U-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
15.6	_	TXBUSE	RXBUSE	_	-	_	EWMARK	FWMARK
7:0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	RXDONE	PKTPEND	RXACT	_	TXDONE	TXABORT	RXBUFNA	RXOVFLW

Legend:

bit 8

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-15 Unimplemented: Read as '0'

bit 14 **TXBUSE:** Transmit BVCI Bus Error Interrupt bit⁽²⁾

1 = BVCI Bus Error has occurred

0 = BVCI Bus Error has not occurred

This bit is set when the TX DMA encounters a BVCI Bus error during a memory access. It is cleared by either a Reset or CPU write of a '1' to the CLR register.

bit 13 **RXBUSE:** Receive BVCI Bus Error Interrupt bit⁽²⁾

1 = BVCI Bus Error has occurred

0 = BVCI Bus Error has not occurred

This bit is set when the RX DMA encounters a BVCI Bus error during a memory access. It is cleared by either a Reset or CPU write of a '1' to the CLR register.

bit 12-10 Unimplemented: Read as '0'

bit 9 **EWMARK:** Empty Watermark Interrupt bit⁽²⁾

- 1 = Empty Watermark pointer reached
- 0 = No interrupt pending

This bit is set when the RX Descriptor Buffer Count is less than or equal to the value in the RXEWM bit (ETHRXWM<0:7>) value. It is cleared by BUFCNT bit (ETHSTAT<16:23>) being incremented by hardware. Writing a '0' or a '1' has no effect.

FWMARK: Full Watermark Interrupt bit⁽²⁾

- 1 = Full Watermark pointer reached
- 0 = No interrupt pending

This bit is set when the RX Descriptor Buffer Count is greater than or equal to the value in the RXFWM bit (ETHRXWM<16:23>) field. It is cleared by writing the BUFCDEC (ETHCON1<0>) bit to decrement the BUFCNT counter. Writing a '0' or a '1' has no effect.

Note 1: This bit is only used for TX operations.

2: This bit is are only used for RX operations.

Note: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

REGISTER 31-14: ETHIRQ: ETHERNET CONTROLLER INTERRUPT REQUEST REGISTER

- bit 7 **RXDONE**: Receive Done Interrupt bit⁽²⁾
 - 1 = RX packet was successfully received
 - 0 = No interrupt pending

This bit is set whenever an RX packet is successfully received. It is cleared by either a Reset or CPU write of a '1' to the CLR register.

- bit 6 **PKTPEND:** Packet Pending Interrupt bit⁽²⁾
 - 1 = RX packet pending in memory
 - 0 = RX packet is not pending in memory

This bit is set when the BUFCNT counter has a value other than '0'. It is cleared by either a Reset or by writing the BUFCDEC bit to decrement the BUFCNT counter. Writing a '0' or a '1' has no effect.

- bit 5 **RXACT:** Receive Activity Interrupt bit⁽²⁾
 - 1 = RX packet data was successfully received
 - 0 = No interrupt pending

This bit is set whenever RX packet data is stored in the RXBM FIFO. It is cleared by either a Reset or CPU write of a '1' to the CLR register.

- bit 4 **Unimplemented:** Read as '0'
- bit 3 **TXDONE**: Transmit Done Interrupt bit⁽²⁾
 - 1 = TX packet was successfully sent
 - 0 = No interrupt pending

This bit is set when the currently transmitted TX packet completes transmission, and the Transmit Status Vector is loaded into the first descriptor used for the packet. It is cleared by either a Reset or CPU write of a '1' to the CLR register.

- bit 2 **TXABORT:** Transmit Abort Condition Interrupt bit⁽²⁾
 - 1 = TX abort condition occurred on the last TX packet
 - 0 = No interrupt pending

This bit is set when the MAC aborts the transmission of a TX packet for one of the following reasons:

- · Jumbo TX packet abort
- Underrun abort
- · Excessive defer abort
- · Late collision abort
- · Excessive collisions abort

This bit is cleared by either a Reset or CPU write of a '1' to the CLR register.

- bit 1 **RXBUFNA**: Receive Buffer Not Available Interrupt bit⁽²⁾
 - 1 = RX Buffer Descriptor Not Available condition has occurred
 - 0 = No interrupt pending

This bit is set by a RX Buffer Descriptor Overrun condition. It is cleared by either a Reset or a CPU write of a '1' to the CLR register.

- bit 0 RXOVFLW: Receive FIFO Over Flow Error bit(2)
 - 1 = RX FIFO Overflow Error condition has occurred
 - 0 = No interrupt pending

RXOVFLW is set by the RXBM Logic for an RX FIFO Overflow condition. It is cleared by either a Reset or CPU write of a '1' to the CLR register.

- Note 1: This bit is only used for TX operations.
 - 2: This bit is are only used for RX operations.

Note: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

REGISTER 31-15: ETHSTAT: ETHERNET CONTROLLER STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24	_	_	-	_	_	_	-	-				
22:46	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	BUFCNT<7:0> ⁽¹⁾											
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
15:8	_	_	_	_	_	_	_	_				
7.0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
7:0	ETHBUSY ⁽⁵⁾	TXBUSY ^(2,6)	RXBUSY ^(3,6)	_	_	_	_	_				

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23-16 BUFCNT<7:0>: Packet Buffer Count bits(1)

Number of packet buffers received in memory. Once a packet has been successfully received, this register is incremented by hardware based on the number of descriptors used by the packet. Software decrements the counter (by writing to the BUFCDEC bit (ETHCON1<0>) for each descriptor used) after a packet has been read out of the buffer. The register does not roll over (0xFF to 0x00) when hardware tries to increment the register and the register is already at 0xFF. Conversely, the register does not roll under (0x00 to 0xFF) when software tries to decrement the register and the register is already at 0x0000. When software attempts to decrement the counter at the same time that the hardware attempts to increment the counter, the counter value will remain unchanged.

When this register value reaches 0xFF, the RX logic will halt (only if automatic Flow Control is enabled) awaiting software to write the BUFCDEC bit in order to decrement the register below 0xFF.

If automatic Flow Control is disabled, the RXDMA will continue processing and the BUFCNT will saturate at a value of 0xFF.

When this register is non-zero, the PKTPEND status bit will be set and an interrupt may be generated, depending on the value of the ETHIEN bit <PKTPENDIE> register.

When the ETHRXST register is written, the BUFCNT counter is automatically cleared to 0x00.

Note: BUFCNT will not be cleared when ON is set to '0'. This enables software to continue to utilize and decrement this count.

bit 15-8 Unimplemented: Read as '0'

bit 7 ETHBUSY: Ethernet Module busy bit (4,5)

- 1 = Ethernet logic has been turned on (ON (ETHCON1<15>) = 1) or is completing a transaction
- 0 = Ethernet logic is idle

This bit indicates that the module has been turned on or is completing a transaction after being turned off.

- Note 1: This bit is only used for RX operations.
 - 2: This bit is only affected by TX operations.
 - 3: This bit is only affected by RX operations.
 - 4: This bit is affected by TX and RX operations.
 - 5: This bit will be set when the ON bit (ETHCON1<15>) = 1.
 - **6:** This bit will be *cleared* when the ON bit (ETHCON1<15>) = 0.

REGISTER 31-15: ETHSTAT: ETHERNET CONTROLLER STATUS REGISTER (CONTINUED)

- bit 6 **TXBUSY:** Transmit Busy bit^(2,6)
 - 1 = TX logic is receiving data
 - 0 = TX logic is idle

This bit indicates that a packet is currently being transmitted. A change in this status bit is not necessarily reflected by the TXDONE interrupt, as TX packets may be aborted or rejected by the MAC.

- bit 5 **RXBUSY:** Receive Busy bit^(3,6)
 - 1 = RX logic is receiving data
 - 0 = RX logic is idle

This bit indicates that a packet is currently being received. A change in this status bit is not necessarily reflected by the RXDONE interrupt, as RX packets may be aborted or rejected by the RX filter.

- bit 4-0 Unimplemented: Read as '0'
- Note 1: This bit is only used for RX operations.
 - 2: This bit is only affected by TX operations.
 - 3: This bit is only affected by RX operations.
 - 4: This bit is affected by TX and RX operations.
 - 5: This bit will be *set* when the ON bit (ETHCON1<15>) = 1.
 - **6:** This bit will be *cleared* when the ON bit (ETHCON1<15>) = 0.

REGISTER 31-16: ETHRXOVFLOW: ETHERNET CONTROLLER RECEIVE OVERFLOW STATISTICS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0 U-0									
31:24	_	-	1	-	-	-	-	_		
00.46	U-0 U-0									
23:16	_	_	-	_	_	-	_	_		
45.0	R/W-0 R/W-0									
15:8		RXOVFLWCNT<15:8>								
7:0	R/W-0 R/W-0									
7.0	RXOVFLWCNT<7:0>									

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 RXOVFLWCNT<15:0>: Dropped Receive Frames Count bits

Increment counter for frames accepted by the RX filter and subsequently dropped due to internal receive error (RXFIFO overrun). This event also sets the RXOVFLW bit (ETHIRQ<0>) interrupt flag.

Note 1: This register is only used for RX operations.

- 2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.
- 3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

REGISTER 31-17: ETHFRMTXOK: ETHERNET CONTROLLER FRAMES TRANSMITTED OK STATISTICS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	_	_	1	-	_	_	-	-
22.40	U-0 U-0							
23:16	_	_	-	_	_	_	_	_
45.0	R/W-0 R/W-0							
15:8				FRMTXOK	CNT<15:8>			
7:0	R/W-0 R/W-0							
7:0				FRMTXOK	CNT<7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 **FRMTXOKCNT<15:0>:** Frame Transmitted OK Count bits Increment counter for frames successfully transmitted.

Note 1: This register is only used for TX operations.

- 2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.
- **3:** It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

REGISTER 31-18: ETHSCOLFRM: ETHERNET CONTROLLER SINGLE COLLISION FRAMES STATISTICS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0 U-0									
	_	-	1	-	-	1	_	_		
00.40	U-0 U-0									
23:16	_	_	-	_	_	-	_	_		
45.0	R/W-0 R/W-0									
15:8		SCOLFRMCNT<15:8>								
7:0	R/W-0 R/W-0									
7:0				SCOLFRM	CNT<7:0>					

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 SCOLFRMCNT<15:0>: Single Collision Frame Count bits

Increment count for frames that were successfully transmitted on the second try.

Note 1: This register is only used for TX operations.

- 2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.
- **3:** It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

REGISTER 31-19: ETHMCOLFRM: ETHERNET CONTROLLER MULTIPLE COLLISION FRAMES STATISTICS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	U-0 U-0										
31:24	_	_	_	_	_	_	_	_			
23:16	U-0 U-0										
23.10	_	_	-	-	-	-	_	_			
15:8	R/W-0 R/W-0										
13.6		MCOLFRMCNT<15:8>									
7:0	R/W-0 R/W-0										
7.0		MCOLFRMCNT<7:0>									

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 MCOLFRMCNT<15:0>: Multiple Collision Frame Count bits

Increment count for frames that were successfully transmitted after there was more than one collision.

Note 1: This register is only used for TX operations.

- 2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.
- **3:** It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

REGISTER 31-20: ETHFRMRXOK: ETHERNET CONTROLLER FRAMES RECEIVED OK STATISTICS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0 U-0								
31.24	_	_	1	_	_	_	_	_	
23:16	U-0 U-0								
23.10	_	_	-	_	_	_	_	_	
15:8	R/W-0 R/W-0								
15.6	FRMRXOKCNT<15:8>								
7:0	R/W-0 R/W-0								
7.0				FRMRXOK	(CNT<7:0>				

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 FRMRXOKCNT<15:0>: Frames Received OK Count bits

Increment count for frames received successfully by the RX Filter. This count will not be incremented if there is a Frame Check Sequence (FCS) or Alignment error.

- Note 1: This register is only used for RX operations.
 - 2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.
 - 3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should only be done for debug/test purposes.

REGISTER 31-21: ETHFCSERR: ETHERNET CONTROLLER FRAME CHECK SEQUENCE ERROR STATISTICS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	-	_	_	-	-	-	-	_
00.40	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	R/W-0 R/W-0							
15:8	FCSERRCNT<15:8>							
7:0	R/W-0 R/W-0							
7:0				FCSERRCI	VT<7:0>			•

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 FCSERRCNT<15:0>: FCS Error Count bits

Increment count for frames received with FCS error and the frame length in bits is an integral multiple of 8 bits.

Note 1: This register is only used for RX operations.

- 2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.
- **3:** It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should be only done for debug/test purposes.

REGISTER 31-22: ETHALGNERR: ETHERNET CONTROLLER ALIGNMENT ERRORS STATISTICS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0 U-0							
31.24	-			_			_	_
00.40	U-0 U-0							
23:16	_	_	-	_	_	_	_	_
15:8	R/W-0 R/W-0							
13.0				ALGNERRC	NT<15:8>			
7:0	R/W-0 R/W-0							
7.0				ALGNERRO	CNT<7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 ALGNERRCNT<15:0>: Alignment Error Count bits

Increment count for frames with alignment errors. Note that an alignment error is a frame that has an FCS error and the frame length in bits is not an integral multiple of 8 bits (a.k.a., dribble nibble)

- Note 1: This register is only used for RX operations.
 - 2: This register is automatically cleared by hardware after a read operation, unless the byte enables for bytes 0/1 are '0'.
 - 3: It is recommended to use the SET, CLR, or INV registers to set or clear any bit in this register. Setting or clearing any bits in this register should be only done for debug/test purposes.

REGISTER 31-23: EMAC1CFG1: ETHERNET CONTROLLER MAC CONFIGURATION 1 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0 U-0							
31.24	_	_	_	_	_	_	_	_
23:16	U-0 U-0							
23:10	_	_	_	_	_	_	_	_
	R/W-1	R/W-0	U-0	U-0	R/W-0	R/W-0	RW-0	R/W-0
15:8	SOFT RESET	SIM RESET	_	_	RESET RMCS	RESET RFUN	RESET TMCS	RESET TFUN
	U-0	U-0	U-0	R/W-0	RW-1	R/W-1	RW-0	R/W-1
7:0	_	_	_	LOOPBACK	TX PAUSE	RX PAUSE	PASSALL	RX ENABLE

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 **SOFTRESET:** Soft Reset bit

Setting this bit will put the MACMII in reset. Its default value is '1'.

bit 14 SIMRESET: Simulation Reset bit

Setting this bit will cause a reset to the random number generator within the Transmit Function.

bit 13-12 Unimplemented: Read as '0'

bit 11 RESETRMCS: Reset MCS/RX bit

Setting this bit will put the MAC Control Sub-layer/Receive domain logic in reset.

bit 10 RESETRFUN: Reset RX Function bit

Setting this bit will put the MAC Receive function logic in reset.

bit 9 **RESETTMCS**: Reset MCS/TX bit

Setting this bit will put the MAC Control Sub-layer/TX domain logic in reset.

bit 8 RESETTFUN: Reset TX Function bit

Setting this bit will put the MAC Transmit function logic in reset.

bit 7-5 Unimplemented: Read as '0'

bit 4 LOOPBACK: MAC Loopback mode bit

1 = MAC Transmit interface is loop backed to the MAC Receive interface

0 = MAC normal operation

bit 3 TXPAUSE: MAC TX Flow Control bit

1 = PAUSE Flow Control frames are allowed to be transmitted

0 = PAUSE Flow Control frames are blocked

bit 2 RXPAUSE: MAC RX Flow Control bit

1 = The MAC acts upon received PAUSE Flow Control frames

0 = Received PAUSE Flow Control frames are ignored

bit 1 PASSALL: MAC Pass all Receive Frames bit

1 = The MAC will accept all frames regardless of type (Normal vs. Control)

0 = The received Control frames are ignored

bit 0 RXENABLE: MAC Receive Enable bit

1 = Enable the MAC receiving of frames

0 = Disable the MAC receiving of frames

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

DS60001361E-page 548

© 2015-2017 Microchip Technology Inc.

REGISTER 31-24: EMAC1CFG2: ETHERNET CONTROLLER MAC CONFIGURATION 2 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 25/16/8/0
24:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	-		_	-	_	_
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	-		_	-	_	_
	U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
15:8	ı	EXCESS DFR	BPNOBK OFF	NOBK OFF		ı	LONGPRE	PUREPRE
	R/W-1	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-1	R/W-0
7:0	AUTO PAD ^(1,2)	VLAN PAD ^(1,2)	PAD ENABLE ^(1,3)	CRC ENABLE	DELAYCRC	HUGEFRM	LENGTHCK	FULLDPLX

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-15 Unimplemented: Read as '0'

bit 14 **EXCESSDER:** Excess Defer bit

- 1 = The MAC will defer to carrier indefinitely as per the Standard
- 0 = The MAC will abort when the excessive deferral limit is reached
- bit 13 BPNOBKOFF: Backpressure/No Backoff bit
 - 1 = The MAC after incidentally causing a collision during backpressure will immediately retransmit without backoff reducing the chance of further collisions and ensuring transmit packets get sent
 - 0 = The MAC will not remove the backoff
- bit 12 NOBKOFF: No Backoff bit
 - 1 = Following a collision, the MAC will immediately retransmit rather than using the Binary Exponential Backoff algorithm as specified in the Standard
 - 0 = Following a collision, the MAC will use the Binary Exponential Backoff algorithm
- bit 11-10 Unimplemented: Read as '0'
- bit 9 LONGPRE: Long Preamble Enforcement bit
 - 1 = The MAC only allows receive packets which contain preamble fields less than 12 bytes in length
 - 0 = The MAC allows any length preamble as per the Standard
- bit 8 **PUREPRE:** Pure Preamble Enforcement bit
 - 1 = The MAC will verify the content of the preamble to ensure it contains 0x55 and is error-free. A packet with errors in its preamble is discarded
 - 0 = The MAC does not perform any preamble checking
- bit 7 **AUTOPAD:** Automatic Detect Pad Enable bit^(1,2)
 - $_1$ = The MAC will automatically detect the type of frame, either tagged or untagged, by comparing the two octets following the source address with 0x8100 (VLAN Protocol ID) and pad accordingly
 - 0 = The MAC does not perform automatic detection
- Note 1: Table 31-4 provides a description of the pad function based on the configuration of this register.
 - 2: This bit is ignored if the PADENABLE bit is cleared.
 - 3: This bit is used in conjunction with the AUTOPAD and VLANPAD bits.

REGISTER 31-24: EMAC1CFG2: ETHERNET CONTROLLER MAC CONFIGURATION 2 REGISTER

- bit 6 VLANPAD: VLAN Pad Enable bit^(1,2)
 - 1 = The MAC will pad all short frames to 64 bytes and append a valid CRC
 - 0 = The MAC does not perform padding of short frames
- bit 5 PADENABLE: Pad/CRC Enable bit^(1,3)
 - 1 = The MAC will pad all short frames
 - 0 = The frames presented to the MAC have a valid length
- bit 4 CRCENABLE: CRC Enable1 bit
 - 1 = The MAC will append a CRC to every frame whether padding was required or not. Must be set if the PADENABLE bit is set.
 - 0 = The frames presented to the MAC have a valid CRC
- bit 3 **DELAYCRC:** Delayed CRC bit

This bit determines the number of bytes, if any, of proprietary header information that exist on the front of the IEEE 802.3 frames.

- 1 = Four bytes of header (ignored by the CRC function)
- 0 = No proprietary header
- bit 2 **HUGEFRM:** Huge Frame enable bit
 - 1 = Frames of any length are transmitted and received
 - 0 = Huge frames are not allowed for receive or transmit
- bit 1 LENGTHCK: Frame Length checking bit
 - 1 = Both transmit and receive frame lengths are compared to the Length/Type field. If the Length/Type field represents a length then the check is performed. Mismatches are reported on the transmit/receive statistics vector.
 - 0 = Length/Type field check is not performed
- bit 0 FULLDPLX: Full-Duplex Operation bit
 - 1 = The MAC operates in Full-Duplex mode
 - 0 = The MAC operates in Half-Duplex mode
- Note 1: Table 31-4 provides a description of the pad function based on the configuration of this register.
 - **2:** This bit is ignored if the PADENABLE bit is cleared.
 - 3: This bit is used in conjunction with the AUTOPAD and VLANPAD bits.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware

TABLE 31-4: PAD OPERATION

Туре	AUTOPAD	VLANPAD	PADENABLE	Action
Any	Х	Х	0	No pad, check CRC
Any	0	0	1	Pad to 60 Bytes, append CRC
Any	Х	1	1	Pad to 64 Bytes, append CRC
Any	1	0	1	If untagged: Pad to 60 Bytes, append CRC If VLAN tagged: Pad to 64 Bytes, append CRC

REGISTER 31-25: EMAC1IPGT: ETHERNET CONTROLLER MAC BACK-TO-BACK INTERPACKET GAP REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0 U-0							
31.24	_	_	-	_	_	-	_	_
22.40	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	U-0 U-0							
15:8	_	_	_	_	_	_	_	_
7:0	U-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-1	R/W-0
7:0	_			B2	BIPKTGP<6:0)>		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-7 **Unimplemented:** Read as '0'

bit 6-0 **B2BIPKTGP<6:0>:** Back-to-Back Interpacket Gap bits

This is a programmable field representing the nibble time offset of the minimum possible period between the end of any transmitted packet to the beginning of the next. In Full-Duplex mode, the register value should be the desired period in nibble times minus 3. In Half-Duplex mode, the register value should be the desired period in nibble times minus 6. In Full-Duplex the recommended setting is 0x15 (21d), which represents the minimum IPG of 0.96 μ s (in 100 Mbps) or 9.6 μ s (in 10 Mbps). In Half-Duplex mode, the recommended setting is 0x12 (18d), which also represents the minimum IPG of 0.96 μ s (in 100 Mbps) or 9.6 μ s (in 10 Mbps).

REGISTER 31-26: EMAC1IPGR: ETHERNET CONTROLLER MAC NON-BACK-TO-BACK INTERPACKET GAP REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0 U-0							
31:24			-	_	-	_	_	_
22.40	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0
15:8 — NB2BIPKTGP1<6:0>								
7:0	U-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-1	R/W-0
7:0	_			NB2E	3IPKTGP2<6:	0>	•	·

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-15 Unimplemented: Read as '0'

bit 14-8 NB2BIPKTGP1<6:0>: Non-Back-to-Back Interpacket Gap Part 1 bits

This is a programmable field representing the optional carrierSense window referenced in section 4.2.3.2.1 "Deference" of the IEEE 80.23 Specification. If carrier is detected during the timing of IPGR1, the MAC defers to carrier. If, however, carrier becomes after IPGR1, the MAC continues timing IPGR2 and transmits, knowingly causing a collision, thus ensuring fair access to medium. Its range of values is 0x0 to IPGR2. Its recommend value is 0xC (12d).

bit 7 Unimplemented: Read as '0'

bit 6-0 NB2BIPKTGP2<6:0>: Non-Back-to-Back Interpacket Gap Part 2 bits

This is a programmable field representing the non-back-to-back Inter-Packet-Gap. Its recommended value is 0x12 (18d), which represents the minimum IPG of 0.96 µs (in 100 Mbps) or 9.6 µs (in 10 Mbps).

REGISTER 31-27: EMAC1CLRT: ETHERNET CONTROLLER MAC COLLISION WINDOW/RETRY LIMIT REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	_	_	_	_	_	_	_	_
00.40	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	U-0	U-0	R/W-1	R/W-1	R/W-0	R/W-1	R/W-1	R/W-1
15:8	_	_		CWINDOW<5:0>				
7.0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1
7:0	_	_	_	_		RETX<	<3:0>	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-14 Unimplemented: Read as '0'

bit 13-8 CWINDOW<5:0>: Collision Window bits

This is a programmable field representing the slot time or collision window during which collisions occur in properly configured networks. Since the collision window starts at the beginning of transmission, the preamble and SFD is included. Its default of 0x37 (55d) corresponds to the count of frame bytes at the end of the window.

bit 7-4 Unimplemented: Read as '0'

bit 3-0 **RETX<3:0>:** Retransmission Maximum bits

This is a programmable field specifying the number of retransmission attempts following a collision before aborting the packet due to excessive collisions. The Standard specifies the maximum number of attempts (attemptLimit) to be 0xF (15d). Its default is '0xF'.

REGISTER 31-28: EMAC1MAXF: ETHERNET CONTROLLER MAC MAXIMUM FRAME LENGTH REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	-	_	-		_	_	-	_
22.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	_	_	_	_	_	_
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1
15:8				MACMAXF<	<15:8> ⁽¹⁾			
7:0	R/W-1	R/W-1	R/W-1	R/W-0	R/W-1	R/W-1	R/W-1	R/W-0
7:0				MACMAXF	<7:0> ⁽¹⁾			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 MACMAXF<15:0>: Maximum Frame Length bits⁽¹⁾

These bits reset to 0x05EE, which represents a maximum receive frame of 1518 octets. An untagged maximum size Ethernet frame is 1518 octets. A tagged frame adds four octets for a total of 1522 octets. If a shorter/longer maximum length restriction is desired, program this 16-bit field.

Note 1: If a proprietary header is allowed, this bit should be adjusted accordingly. For example, if 4-byte headers are prepended to frames, MACMAXF could be set to 1527 octets. This would allow the maximum VLAN tagged frame plus the 4-byte header.

REGISTER 31-29: EMAC1SUPP: ETHERNET CONTROLLER MAC PHY SUPPORT REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	_	_	_	_	_	_	_
22.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	_	_	_	_	_	_
45.0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	R/W-0
15:8	_	_	_	_	RESETRMII ⁽¹⁾	_	_	SPEEDRMII ⁽¹⁾
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0	_	_	_	_	_	_	_	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-12 Unimplemented: Read as '0'

RESETRMII: Reset RMII Logic bit(1) bit 11

1 = Reset the MAC RMII module

0 = Normal operation.

Unimplemented: Read as '0' bit 10-9 bit 8 SPEEDRMII: RMII Speed bit(1)

This bit configures the Reduced MII logic for the current operating speed.

1 = RMII is running at 100 Mbps 0 = RMII is running at 10 Mbps

bit 7-0 Unimplemented: Read as '0'

Note 1: This bit is only used for the RMII module.

Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). Note:

8-bit accesses are not allowed and are ignored by the hardware.

REGISTER 31-30: EMAC1TEST: ETHERNET CONTROLLER MAC TEST REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0						
31.24	_	_	_	_		_		_
23:16	U-0	U-0						
23.10	_	_	_	_		_		_
15:8	U-0	U-0						
15.6	_	_	_	_		_		_
7:0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
7:0	_	_	_	_	_	TESTBP	TESTPAUSE ⁽¹⁾	SHRTQNTA ⁽¹⁾

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-3 Unimplemented: Read as '0'

bit 2 TESTBP: Test Backpressure bit

1 = The MAC will assert backpressure on the link. Backpressure causes preamble to be transmitted, raising carrier sense. A transmit packet from the system will be sent during backpressure.

0 = Normal operation

bit 1 **TESTPAUSE**: Test PAUSE bit⁽¹⁾

1 = The MAC Control sub-layer will inhibit transmissions, just as if a PAUSE Receive Control frame with a non-zero pause time parameter was received

0 = Normal operation

bit 0 SHRTQNTA: Shortcut PAUSE Quanta bit⁽¹⁾

1 = The MAC reduces the effective PAUSE Quanta from 64 byte-times to 1 byte-time

0 = Normal operation

Note 1: This bit is only used for testing purposes.

REGISTER 31-31: EMAC1MCFG: ETHERNET CONTROLLER MAC MII MANAGEMENT CONFIGURATION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	_	_	_	_	_	_	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	_	_	_	_	_	_	_
15:8	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6	RESETMGMT	_	_	_	_	_	_	_
7:0	U-0	U-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	_	_		CLKSEI	_<3:0> ⁽¹⁾		NOPRE	SCANINC

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 RESETMGMT: Test Reset MII Management bit

1 = Reset the MII Management module

0 = Normal Operation

bit 14-6 Unimplemented: Read as '0'

bit 5-2 CLKSEL<3:0>: MII Management Clock Select 1 bits⁽¹⁾

These bits are used by the clock divide logic in creating the MII Management Clock (MDC), which the IEEE 802.3 Specification defines to be no faster than 2.5 MHz. Some PHYs support clock rates up to 12.5 MHz.

bit 1 NOPRE: Suppress Preamble bit

1 = The MII Management will perform read/write cycles without the 32-bit preamble field. Some PHYs support suppressed preamble

0 = Normal read/write cycles are performed

bit 0 **SCANINC:** Scan Increment bit

1 = The MII Management module will perform read cycles across a range of PHYs. The read cycles will start from address 1 through the value set in EMAC1MADR<PHYADDR>

0 = Continuous reads of the same PHY

Note 1: Table 31-5 provides a description of the clock divider encoding.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

TABLE 31-5: MIIM CLOCK SELECTION

MIIM Clock Select	EMAC1MCFG<5:2>
TPBCLK5 divided by 4	000x
TPBCLK5 divided by 6	0010
TPBCLK5 divided by 8	0011
TPBCLK5 divided by 10	0100
TPBCLK5 divided by 14	0101
TPBCLK5 divided by 20	0110
TPBCLK5 divided by 28	0111
TPBCLK5 divided by 40	1000
TPBCLK5 divided by 48	1001
TPBCLK5 divided by 50	1010
Undefined	Any other combination

REGISTER 31-32: EMAC1MCMD: ETHERNET CONTROLLER MAC MII MANAGEMENT COMMAND REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24:24	U-0 U-0							
31:24	_	_		_	_	_	_	_
22:46	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
15:8	U-0 U-0							
15.6	_	_		_	_	_	_	_
7:0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
7.0	_	_		_	_	_	SCAN	READ

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-2 Unimplemented: Read as '0'

bit 1 SCAN: MII Management Scan Mode bit

1 = The MII Management module will perform read cycles continuously (for example, useful for monitoring the Link Fail)

0 = Normal Operation

bit 0 READ: MII Management Read Command bit

- 1 = The MII Management module will perform a single read cycle. The read data is returned in the EMAC1MRDD register
- 0 = The MII Management module will perform a write cycle. The write data is taken from the EMAC1MWTD register

REGISTER 31-33: EMAC1MADR: ETHERNET CONTROLLER MAC MII MANAGEMENT ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21:24	U-0 U-0							
31:24		_	_	_	_	_	_	_
00.40	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
15:8	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
15.6		_	_		PH	HYADDR<4:0	>	
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_	_		RE	GADDR<4:0)>	•

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

bit 12-8 PHYADDR<4:0>: MII Management PHY Address bits

This field represents the 5-bit PHY Address field of Management cycles. Up to 31 PHYs can be addressed

(0 is reserved).

bit 7-5 **Unimplemented:** Read as '0'

bit 4-0 **REGADDR<4:0>:** MII Management Register Address bits

This field represents the 5-bit Register Address field of Management cycles. Up to 32 registers can be accessed.

REGISTER 31-34: EMAC1MWTD: ETHERNET CONTROLLER MAC MII MANAGEMENT WRITE DATA REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0 U-0							
31:24		_	-	_	_	-	_	
22.40	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	R/W-0 R/W-0							
15:8				MWTD<15	5:8>			
7:0	R/W-0 R/W-0							
7:0				MWTD<7	:0>			·

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 MWTD<15:0>: MII Management Write Data bits

When written, a MII Management write cycle is performed using the 16-bit data and the preconfigured PHY and Register addresses from the EMAC1MADR register.

Note: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

REGISTER 31-35: EMAC1MRDD: ETHERNET CONTROLLER MAC MII MANAGEMENT READ DATA REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0 U-0									
31.24		_	-	_	_	_	-	_		
23:16	U-0 U-0									
23.10		_	-	_	_	_	-	-		
15:8	R/W-0 R/W-0									
15.6		MRDD<15:8>								
7:0	R/W-0 R/W-0									
7:0				MRDD	<7:0>					

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 MRDD<15:0>: MII Management Read Data bits

Following a MII Management Read Cycle, the 16-bit data can be read from this location.

REGISTER 31-36: EMAC1MIND: ETHERNET CONTROLLER MAC MII MANAGEMENT INDICATORS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	_	_	_	_	_		-	_
22:46	U-0 U-0							
23:16	_	_	_	_	_		-	_
15.0	U-0 U-0							
15:8	_	_	_	_	_		-	_
7:0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_	_	_	LINKFAIL	NOTVALID	SCAN	MIIMBUSY

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

bit 3 LINKFAIL: Link Fail bit

When '1' is returned - indicates link fail has occurred. This bit reflects the value last read from the PHY status register.

bit 2 NOTVALID: MII Management Read Data Not Valid bit

When '1' is returned - indicates an MII management read cycle has not completed and the Read Data is not yet valid.

bit 1 SCAN: MII Management Scanning bit

When '1' is returned - indicates a scan operation (continuous MII Management Read cycles) is in progress.

bit 0 MIIMBUSY: MII Management Busy bit

When '1' is returned - indicates MII Management module is currently performing an MII Management Read or Write cycle.

REGISTER 31-37: EMAC1SA0: ETHERNET CONTROLLER MAC STATION ADDRESS 0 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24		-		_	_	1		_
00.40	U-0 U-0							
23:16	_	_	_	_	_	-	_	_
45.0	R/W-P R/W-P							
15:8	STNADDR6<7:0>							
7.0	R/W-P R/W-P							
7:0				STNADDR5<	:7:0>			

Legend:P = Programmable bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-8 STNADDR6<7:0>: Station Address Octet 6 bits

These bits hold the sixth transmitted octet of the station address.

bit 7-0 STNADDR5<7:0>: Station Address Octet 5 bits

These bits hold the fifth transmitted octet of the station address.

Note 1: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

2: This register is loaded at reset from the factory preprogrammed station address.

REGISTER 31-38: EMAC1SA1: ETHERNET CONTROLLER MAC STATION ADDRESS 1 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	U-0 U-0										
31:24	_	_	_	_	_	_	_	_			
22.40	U-0 U-0										
23:16	_	_	_	_	_	_	_	_			
45.0	R/W-P R/W-P										
15:8		STNADDR4<7:0>									
7.0	R/W-P R/W-P										
7:0				STNADD	R3<7:0>						

Legend:P = Programmable bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-8 STNADDR4<7:0>: Station Address Octet 4 bits

These bits hold the fourth transmitted octet of the station address.

bit 7-0 STNADDR3<7:0>: Station Address Octet 3 bits

These bits hold the third transmitted octet of the station address.

Note 1: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

2: This register is loaded at reset from the factory preprogrammed station address.

REGISTER 31-39: EMAC1SA2: ETHERNET CONTROLLER MAC STATION ADDRESS 2 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0 U-0									
31:24		_	1		_	1		_		
00.40	U-0 U-0									
23:16	_	_	-	_	_	-	_	_		
45.0	R/W-P R/W-P									
15:8		STNADDR2<7:0>								
7.0	R/W-P R/W-P									
7:0				STNADDR	1<7:0>					

Legend:P = Programmable bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 Reserved: Maintain as '0'; ignore read

bit 15-8 STNADDR2<7:0>: Station Address Octet 2 bits

These bits hold the second transmitted octet of the station address.

bit 7-0 STNADDR1<7:0>: Station Address Octet 1 bits

These bits hold the most significant (first transmitted) octet of the station address.

Note 1: Both 16-bit and 32-bit accesses are allowed to these registers (including the SET, CLR and INV registers). 8-bit accesses are not allowed and are ignored by the hardware.

2: This register is loaded at reset from the factory preprogrammed station address.

32.0 COMPARATOR

This data sheet summarizes the features Note: of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data refer Section to "Comparator" (DS60001110), which is available from the Documentation > Reference Manual section the Microchip PIC32 web site (www.microchip.com/pic32).

The Analog Comparator module consists of two comparators that can be configured in a variety of ways.

Key features of the Analog Comparator module are:

- · Differential inputs
- · Rail-to-rail operation
- · Selectable output polarity
- · Selectable inputs:
 - Analog inputs multiplexed with I/O pins
 - On-chip internal absolute voltage reference
 - Comparator voltage reference (CVREF)
- · Selectable interrupt generation

A block diagram of the comparator module is illustrated in Figure 32-1.

FIGURE 32-1: COMPARATOR BLOCK DIAGRAM

32.1 Comparator Control Registers
TABLE 32-1: COMPARATOR REGISTER MAP

s	teseЯ IIA	0000	0003	0000	0003	0000	0000
	16/0	1	:1:0>	1	(1:0>	I	C20UT C10UT 0000
	17/1	1	CCH<1:0>	1	CCH<1:0>	I	C2OUT
	18/2	I	I	I	I	I	-
	19/3	1	-	1	_	1	_
	20/4	1	CREF	_	CREF	I	1
	21/5	1	Ι	I	Ι	Ι	1
	22/6	1	EVPOL<1:0>	Ι	EVPOL<1:0>	I	1
Bits	23/7	1	EVPO	I	EVPO	I	1
В	24/8	1	COUT	1	COUT	1	1
	25/9	1	1	1	Ι	1	1
	26/10	1	Ι	-	1	1	1
	27/11	1	Ι	Ι	Ι	I	Ι
	28/12	1	Ι	-	-	1	1
	29/13	1	CPOL	-	CPOL	1	SIDL
	30/14	1	COE	Ι	COE	1	1
31/15		1	NO	I	NO	I	1
Bit Range		31:16	15:0	31:16	15:0	31:16	15:0
Register Name ⁽¹⁾		14000		IACOCKAO		TATOMO	
	Virtual Addr (#_4878)		0000	2	2	0	0000

All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information. x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

REGISTER 32-1: CMxCON: COMPARATOR CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
31:24	_	_	_	_	_		_	_
22.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	_	_	_	_	_	_
45.0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	R-0
15:8	ON	COE	CPOL ⁽¹⁾	_	_	_	_	COUT
7:0	R/W-1	R/W-1	U-0	R/W-0	U-0	U-0	R/W-1	R/W-1
7:0	EVPOL	_<1:0>	_	CREF	_	_	CCH-	<1:0>

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-26 **Unimplemented:** Read as '0' bit 25-24 **Unimplemented:** Read as '0' bit 23-16 **Unimplemented:** Read as '0'

bit 15 ON: Comparator ON bit

1 = Module is enabled. Setting this bit does not affect the other bits in this register

0 = Module is disabled and does not consume current. Clearing this bit does not affect the other bits in this register

bit 14 COE: Comparator Output Enable bit

1 = Comparator output is driven on the output CxOUT pin

0 = Comparator output is not driven on the output CxOUT pin

bit 13 **CPOL:** Comparator Output Inversion bit⁽¹⁾

1 = Output is inverted0 = Output is not inverted

0 = Output is not inverted

bit 12-9 **Unimplemented:** Read as '0'

bit 8 **COUT:** Comparator Output bit

1 = Output of the Comparator is a '1'

0 = Output of the Comparator is a '0'

bit 7-6 **EVPOL<1:0>:** Interrupt Event Polarity Select bits

11 = Comparator interrupt is generated on a low-to-high or high-to-low transition of the comparator output

10 = Comparator interrupt is generated on a high-to-low transition of the comparator output

01 = Comparator interrupt is generated on a low-to-high transition of the comparator output

00 = Comparator interrupt generation is disabled

bit 5 Unimplemented: Read as '0'

bit 4 CREF: Comparator Positive Input Configure bit

1 = Comparator non-inverting input is connected to the internal CVREF

0 = Comparator non-inverting input is connected to the CxINA pin

bit 3-2 Unimplemented: Read as '0'

bit 1-0 CCH<1:0>: Comparator Negative Input Select bits for Comparator

11 = Comparator inverting input is connected to the IVREF

10 = Comparator inverting input is connected to the CxIND pin

01 = Comparator inverting input is connected to the CxINC pin

00 = Comparator inverting input is connected to the CxINB pin

Note 1: Setting this bit will invert the signal to the comparator interrupt generator as well. This will result in an interrupt being generated on the opposite edge from the one selected by EVPOL<1:0>.

REGISTER 32-2: CMSTAT: COMPARATOR STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0 U-0							
31.24	-	_	-	_			-	_
00.40	U-0 U-0							
23:16	_	_	_	_		_	_	
45.0	U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_	SIDL	_	-	_	_	_
7:0	U-0	U-0	U-0	U-0	U-0	U-0	R-0	R-0
	_	_	_	_	_	_	C2OUT	C1OUT

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-14 **Unimplemented:** Read as '0'

bit 13 SIDL: Stop in IDLE Control bit

1 = All Comparator modules are disabled in IDLE mode

0 = All Comparator modules continue to operate in the IDLE mode

bit 12-2 Unimplemented: Read as '0'

bit 1 C2OUT: Comparator Output bit

1 = Output of Comparator 2 is a '1' 0 = Output of Comparator 2 is a '0'

bit 0 **C10UT:** Comparator Output bit

1 = Output of Comparator 1 is a '1'

0 = Output of Comparator 1 is a '0'

33.0 COMPARATOR VOLTAGE REFERENCE (CVREF)

Note: This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 20. "Comparator Voltage Reference (CVREF)" (DS60001109), which is available from

the Documentation > Reference Manual

section of the Microchip PIC32 web site

The CVREF module is a 16-tap, resistor ladder network that provides a selectable reference voltage. Although its primary purpose is to provide a reference for the analog comparators, it also may be used independently of them.

(www.microchip.com/pic32).

The resistor ladder is segmented to provide two ranges of voltage reference values and has a power-down function to conserve power when the reference is not being used. The module's supply reference can be provided from either device VDDIO/Vss or an external voltage reference. The CVREF output is available for the comparators and typically available for pin output.

The comparator voltage reference has the following features:

- · High and low range selection
- · Sixteen output levels available for each range
- Internally connected to comparators to conserve device pins
- · Output can be connected to a pin

A block diagram of the CVREF module is illustrated in Figure 33-1.

FIGURE 33-1: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

33.1 Comparator Voltage Reference Control Registers
TABLE 33-1: COMPARATOR VOLTAGE REFERENCE REGISTER MAP

Bits Bits		1000G IIV	00	00
Bits Bits		16/0	I	
Bits Bits		17/1	I	3:0>
Bits Bits		18/2	1	CVR<
Bits Bits		19/3	I	
Bits Bits		20/4	1	CVRSS
Bits Bits		21/5	I	CVRR
## Bits # # # # # # # # #		22/6	1	CVROE
## 31/15 30/14 29/13 28/12 27/11 26/10 25/9 24		23/7	I	I
# 31/15 30/14 29/13 28/12 27/11 26/10	Bits	24/8	I	1
# 31/15 30/14 29/13 28/12 27/11 Bit 31/16 — — — — — — — — — — — — — — — — — — —		25/9	I	I
(BF80-#) (BF		26/10	I	I
(BF80_#) (BF80_#) (BF80_#) Name Name Name Name Name Name Name Name			I	I
(BF80_#) (BF80_#) Name Name Name Name Name Name Name Name		28/12	1	I
(BF80_#) (BF80_#) (BF80_#) (Mame/ Mame/ Mange 31/15 Bit Range 15:0 ON		29/13	I	I
(8F80_#) (9CV Register Name(1) (15.0 31.16		30/14	1	Ι
(BF80_#)		31/15	1	NO
(BF80_#)	•	Bit Range	31:16	15:0
Wirtual Address (#_0878)		Register Name ⁽¹⁾	14000	
	ssə	virtual Addr (#_0878)	00	0000

eteseR IIA

The register in this table has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

DS60001361E-page 570

REGISTER 33-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	_	_	_	_	_	_	-	_
00.40	U-0 U-0							
23:16		_	_	_	_	_	_	_
45.0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	ON	_	_	_	_	_	_	_
7.0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	CVROE	CVRR	CVRSS		CVR<	<3:0>	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 ON: Comparator Voltage Reference On bit

1 = Module is enabled

Setting this bit does not affect other bits in the register.

0 = Module is disabled and does not consume current.Clearing this bit does not affect the other bits in the register.

bit 14-7 Unimplemented: Read as '0'

bit 6 **CVROE:** CVREFOUT Enable bit

1 = Voltage level is output on CVREFOUT pin

0 = Voltage level is disconnected from CVREFOUT pin

bit 5 CVRR: CVREF Range Selection bit

1 = 0 to 0.67 CVRSRC, with CVRSRC/24 step size

0 = 0.25 CVRSRC to 0.75 CVRSRC, with CVRSRC/32 step size

bit 4 CVRSS: CVREF Source Selection bit

1 = Comparator voltage reference source, CVRSRC = (VREF+) - (VREF-)

0 = Comparator voltage reference source, CVRSRC = AVDD - AVSS

bit 3-0 **CVR<3:0>:** CVREF Value Selection $0 \le CVR<3:0> \le 15$ bits

When CVRR = 1:

CVREF = (CVR<3:0>/24) • (CVRSRC)

When CVRR = 0:

CVREF = 1/4 • (CVRSRC) + (CVR<3:0>/32) • (CVRSRC)

	 . ,		
NOTES:			

34.0 HIGH/LOW-VOLTAGE DETECT (HLVD)

Note: This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet refer to Section 38

To complement the information in this data sheet, refer to Section 38. "High/Low-Voltage Detect (HLVD)" (DS60001408), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The High/Low-Voltage Detect (HLVD) module is a programmable circuit that allows the user to specify both the device voltage trip point and the direction of change.

The HLVD module provides the following features:

- · Hysteresis detection
- Low-to-high or high-to-low voltage change detection
- Generation of Non-Maskable Interrupts (NMI)
- LVDIN pin to provide external voltage trip point

FIGURE 34-1: HIGH/LOW-VOLTAGE DETECT (HLVD) MODULE BLOCK DIAGRAM

34.1 Control Registers

TABLE 34-1: HIGH/LOW-VOLTAGE DETECT REGISTER MAP

		00	00
	16/0	1	
	17/1	1	<3:0>
	19/3 18/2 17/1	1	HLVDL<3:0>
	19/3	1	
	20/4	1	-
	21/5	I	Ι
	22/6	I	Ι
Bits	23/7	I	HLEVT HLEVTOUTDIS
	24/8	1	HLEVT
	25/9	1	Ι
	26/10	1	VDIR BGVST
	27/11	ı	VDIR
	28/12	1	-
	29/13	1	_
	30/14	ı	I
	31/15	1	NO
€	Bit Range	31:16	15:0
	Register Name ⁽¹⁾	NOOD	
	Virtual Addr (BF80_#)	700	000

ateseR IIA

The register in this table has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8, and 0xC, respectively. See Section 12.2 "CLR, SET, and INV Registers" for more information.

REGISTER 34-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0						
31.24	_	_	_	_	_	_	_	
22:46	U-0	U-0						
23:16	_	_	_	_	_	_	_	_
15:8	R/W-0	U-0	U-0	U-0	R/W-0	HS,HC,R-0	r-1	HS,HC,R-0
15.6	ON	_	_	_	VDIR	BGVST	_	HLEVT
7:0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	HLEVTOUTDIS(2)	_	_	_		HLVDL<	3:0> ⁽¹⁾	

Legend:HS = Hardware SetHC = Hardware Clearedr = Reserved bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 ON: HLVD Module Enable bit

1 = HLVD module is enabled 0 = HLVD module is disabled

bit 14-12 **Unimplemented:** Read as '0'

bit 11 VDIR: Voltage Change Direction Select bit

1 = Event occurs when voltage equals or exceeds the trip point (HLVDL<3:0>)

0 = Event occurs when voltage equals or falls below the trip point (HLVDL<3:0>)

bit 10 BGVST: Band Gap Reference Voltages Stable Status bit

1 = Indicates internal band gap voltage references is stable

0 = Indicates internal band gap voltage reference is not stable

This bit is readable when the HLVD module is disabled (ON = 0).

bit 9 Reserved: Read as '1'

bit 8 **HLEVT**: High/Low-Voltage Detection Event Status bit

1 = Indicates HLVD Event is active

0 = Indicates HLVD Event is not active

bit 7 **HLEVTOUTDIS**: High/Low-Voltage Detection Event Output Disable bit⁽²⁾

1 = Enables HLVD Event output

0 = Disable HLVD Event output

bit 6-4 Unimplemented: Read as '0'

- **Note 1:** To avoid false HLVD events, all HLVD module setting changes should occur only when the module is disabled (ON = 0). See Table 44-6 in **44.0** "Electrical Characteristics" for the actual trip points.
 - 2: Once this bit is set to '1', it can only be cleared by disabling or enabling the HLVD module (or through the HLVDMD bit).

REGISTER 34-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

```
HLVDL<3:0>: High/Low-Voltage Detection Limit Select bits<sup>(1)</sup>
bit 3-0
          1111 = Selects analog input on HLVDIN
          1110 = Selects trip point 14
          1101 = Selects trip point 13
          1100 = Selects trip point 12
          1011 = Selects trip point 11
          1010 = Selects trip point 10
          1001 = Selects trip point 9
          1000 = Selects trip point 8
          0111 = Selects trip point 7
          0110 = Selects trip point 6
          0101 = Selects trip point 5
          0100 = Selects trip point 4
          0011 = Reserved; do not use
          0010 = Reserved; do not use
          0001 = Reserved; do not use
          0000 = Reserved; do not use
```

- **Note 1:** To avoid false HLVD events, all HLVD module setting changes should occur only when the module is disabled (ON = 0). See Table 44-6 in **44.0** "Electrical Characteristics" for the actual trip points.
 - 2: Once this bit is set to '1', it can only be cleared by disabling or enabling the HLVD module (or through the HLVDMD bit).

35.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

Note:

This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 37. "Charge Time Measurement Unit (CTMU)" (DS60001167), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Charge Time Measurement Unit (CTMU) is a flexible analog module that has a configurable current source with a digital configuration circuit built around it. The CTMU can be used for differential time measurement between pulse sources and can be used for generating an asynchronous pulse. By working with other on-chip analog modules, the CTMU can be used for high resolution time measurement, measure capacitance, measure relative changes in capacitance or generate output pulses with a specific time delay. The CTMU is ideal for interfacing with capacitive-based sensors.

The CTMU module includes the following key features:

- Up to 35 channels available for capacitive or time measurement input
- · On-chip precision current source
- 16-edge input trigger sources
- · Selection of edge or level-sensitive inputs
- · Polarity control for each edge source
- · Control of edge sequence
- · Control of response to edges
- · High precision time measurement
- Time delay of external or internal signal asynchronous to system clock
- · Integrated temperature sensing diode
- · Control of current source during auto-sampling
- · Four current source ranges
- · Time measurement resolution of one nanosecond

A block diagram of the CTMU is shown in Figure 35-1.

35.1 CTMU Control Registers

TABLE 35-1: CTMU REGISTER MAP

s	steseЯ IIA	0000	0000
	16/0	I	IRNG<1:0> 0000
	17/1	I	IRNG
	18/2		
	19/3	EDG2SEL<3:0>	
	20/4	EDG2	<0:3>
	21/5		ITRIM<5:0>
	22/6	EDG2POL	
	23/7	EDG2MOD	
Bits	24/8	EDG2STAT EDG1STAT EDG2MOD EDG2POI	CTTRIG
	25/9	EDG2STAT	IDISSEN
	26/10		EDGSEQEN IDISSEN
	27/11	1SEL<3:0>	EDGEN
	28/12	EDG18	TGEN
	29/13		CTMUSIDL
	30/14	EDG1POL	1
	31/15	EDG1MOD	NO
6	egnsЯ ji8	31:16	15:0
	Register Name ⁽¹⁾	IAOOI WATC	
	Virtual Addr (#_4878)		000

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information.

REGISTER 35-1: CTMUCON: CTMU CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	EDG1MOD	EDG1POL		EDG1S	EL<3:0>		EDG2STAT	EDG1STAT
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
23.10	EDG2MOD	EDG2POL		EDG2S	EL<3:0>		_	
15:8	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
13.0	ON	_	CTMUSIDL	TGEN ⁽¹⁾	EDGEN	EDGSEQEN	IDISSEN ⁽²⁾	CTTRIG
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0			ITRIM	1<5:0>			IRNG	<1:0>

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31 EDG1MOD: Edge1 Edge Sampling Select bit

1 = Input is edge-sensitive

0 = Input is level-sensitive

bit 30 EDG1POL: Edge 1 Polarity Select bit

1 = Edge1 programmed for a positive edge response

0 = Edge1 programmed for a negative edge response

bit 29-26 EDG1SEL<3:0>: Edge 1 Source Select bits

1111 = Reserved

1110 = C2OUT pin is selected

1101 = C1OUT pin is selected

1100 = IC6 Capture Event is selected

1011 = IC5 Capture Event is selected

1010 = IC4 Capture Event is selected

1001 = IC3 Capture Event is selected

1000 = IC2 Capture Event is selected

0111 = IC1 Capture Event is selected

0110 = OC4 Capture Event is selected 0101 = OC3 Capture Event is selected

0100 = OC2 Capture Event is selected

0011 = CTED1 pin is selected

0010 = CTED2 pin is selected

0001 = OC1 Compare Event is selected

0000 = Timer1 Event is selected

bit 25 EDG2STAT: Edge2 Status bit

Indicates the status of Edge2 and can be written to control edge source

1 = Edge2 has occurred

0 = Edge2 has not occurred

- **Note 1:** When this bit is set for Pulse Delay Generation, the EDG2SEL<2:0> bits must be set to '1110' to select the C2OUT pin.
 - 2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.
 - 3: Refer to the CTMU Current Source Specifications (Table 44-20) in Section 44.0 "Electrical Characteristics" for current values.
 - 4: This bit setting is not available for the CTMU temperature diode.

REGISTER 35-1:

bit 24 EDG1STAT: Edge1 Status bit Indicates the status of Edge1 and can be written to control edge source 1 = Edge1 has occurred 0 = Edge1 has not occurred bit 23 EDG2MOD: Edge2 Edge Sampling Select bit 1 = Input is edge-sensitive 0 = Input is level-sensitive bit 22 EDG2POL: Edge 2 Polarity Select bit 1 = Edge2 programmed for a positive edge response 0 = Edge2 programmed for a negative edge response bit 21-18 EDG2SEL<3:0>: Edge 2 Source Select bits 1111 = Reserved 1110 = C2OUT pin is selected 1101 = C1OUT pin is selected 1100 = PBCLK3 1011 = IC5 Capture Event is selected 1010 = IC4 Capture Event is selected 1001 = IC3 Capture Event is selected 1000 = IC2 Capture Event is selected 0111 = IC1 Capture Event is selected 0110 = OC4 Capture Event is selected 0101 = OC3 Capture Event is selected 0100 = OC2 Capture Event is selected 0011 = CTED1 pin is selected 0010 = CTED2 pin is selected 0001 = OC1 Compare Event is selected 0000 = Timer1 Event is selected bit 17-16 Unimplemented: Read as '0' bit 15 ON: ON Enable bit 1 = Module is enabled 0 = Module is disabled hit 14 Unimplemented: Read as '0' bit 13 CTMUSIDL: Stop-in-Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode **TGEN:** Time Generation Enable bit⁽¹⁾ bit 12 1 = Enables edge delay generation 0 = Disables edge delay generation bit 11 **EDGEN:** Edge Enable bit 1 = Edges are not blocked 0 = Edges are blocked EDGSEQEN: Edge Sequence Enable bit bit 10 1 = Edge1 must occur before Edge2 can occur 0 = No edge sequence is needed Note 1: When this bit is set for Pulse Delay Generation, the EDG2SEL<2:0> bits must be set to '1110' to select the C2OUT pin. 2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array. Refer to the CTMU Current Source Specifications (Table 44-20) in Section 44.0 "Electrical

CTMUCON: CTMU CONTROL REGISTER (CONTINUED)

Characteristics" for current values.

4: This bit setting is not available for the CTMU temperature diode.

CTMUCON: CTMU CONTROL REGISTER (CONTINUED) REGISTER 35-1: IDISSEN: Analog Current Source Control bit(2) 1 = Analog current source output is grounded 0 = Analog current source output is not grounded bit 8 CTTRIG: Trigger Control bit 1 = Trigger output is enabled 0 = Trigger output is disabled bit 7-2 ITRIM<5:0>: Current Source Trim bits 011111 = Maximum positive change from nominal current 011110 000001 = Minimum positive change from nominal current 000000 = Nominal current output specified by IRNG<1:0> 111111 = Minimum negative change from nominal current 100010 100001 = Maximum negative change from nominal current bit 1-0 IRNG<1:0>: Current Range Select bits(3) 11 = 100 times base current 10 = 10 times base current 01 = Base current level 00 = 1000 times base current(4)

- **Note 1:** When this bit is set for Pulse Delay Generation, the EDG2SEL<2:0> bits must be set to '1110' to select the C2OUT pin.
 - 2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.
 - 3: Refer to the CTMU Current Source Specifications (Table 44-20) in **Section 44.0 "Electrical Characteristics"** for current values.
 - 4: This bit setting is not available for the CTMU temperature diode.

NOTES:	 	 	

36.0 GRAPHICS LCD (GLCD) CONTROLLER

Note 1: This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 54. "Graphics LCD Controller" (DS60001379), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Graphics LCD (GLCD) Controller is designed to directly interface with display glasses, using a built-in analog drive, to individually control pixels on the screen.

The GLCD Controller transfers display data from a memory device and formats it for a display device. The memory may be internal RAM or DDR2.

The parallel interface at the pins will operate at standard 3.3V output, requires 28 pins for 24-bit color, and is shared by general purpose I/O functions.

Key features of the GLCD Controller include:

- · Up to 50 MHz Pixel Clock
- Up to 800x480 (WVGA) with Overlay (application dependent). Still Image up to 1280x1024 (SXGA)
- Color depths: 8, 16⁽¹⁾, 18, and 24 bits
- · Up to three design timing layers, each including:
 - Configurable Alpha blending
 - Configurable Stride and Pitch
- Input formats: RGBA8888, ARGB8888, RGB888, RGB565, RGBA5551, YUYV, RGB332, LUT8, and Gray-scale
- · Output formats: RGB888, RGB666, BT.656
- · Dithering for 18-bit displays
- · High-quality YUV conversion
- Global color palette look-up table (CLUT) supporting 256 colors
- Global gamma correction, brightness and contrast support
- Programmable cursors supporting 16 colors
- Programmable polarity on HSYNC, VSYNC, DE, and PCLK
- · Integrated DMA to offload the CPU
- Programmable (level/edge) interrupt on HSYNC and VSYNC

Note 1: 16-bit color depth is supported through the GLCDMODE bit (CFGCON2<30>). When set, functions shared with GD0, GD1, GD2, GD8, GD9, GD16, GD17, GD18 are available for general purpose

A block diagram of the GLCD Controller interface is provided in Figure 36-1.

36.1 Graphics LCD Controller Control Registers
TABLE 36-1: GRAPHICS LCD CONTROLLER REGISTER MAP

steseЯ IIA	0000	0000	0401	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	
Bit 16/0	Ι	-	I																						I						
Bit 17/1	1	I	I															COLORMODE<3:0>							I					COLORMODE<3:0>	
Bit 118/2	I	1	I	CLKDIV<5:0>														COLOR							Ι					COLOR	
Bit 19/3	FORCE BLANK	ı	1	CLK	GREEN<7:0>	ALPHA<7:0>											ALPHA<7:0>								Ι				ALPHA<7:0>		e).
Bit 20/4	PGRAMP EN	_	I		GRE	ALPI			٨	,	^(^	_	_	_	_	ALPI	I							_				ALPI	I	ficant nibbl
Bit 21/5	1	<0	ı				RESX<10:0>	RESY<10:0>	FPORCHX<10:0>	FPORCHY<10:0>	BLANKINGX<10:0>	BLANKINGY<10:0>	BPORCHX<10:0>	BPORCHY<10:0>	CURSORX<10:0>	CURSORY<10:0>		I	STARTX<10:0>	STARTY<10:0>	SIZEX<10:0>	SIZEY<10:0>			1		RESX<10:0>	RESY<10:0>		ı	most signi
Bit 22/6	PCLK POL	RGBSEQ<2:0>	I	I			RES	RES	FPOR	FPOR	BLANK	BLANK	BPOR	BPOR	CURS	CURS		I	STAF	STAF	SIZE	SIZE	^		١		RES	RES		1	L00 in the
Bit 23/7	VSYNC		I	I														I					BASEADDR<31:16>	BASEADDR<15:0>	Ι	STRIDE<15:0>				1	7 with PIXE
Bit 24/8	DITHER	FORMAT CLK	I														Ι						BASEADI	BASEAD	1	STRID			_		xadecimal h PIXEL07
Bit 25/9	1	YUY OUTPUT	I														Ι	ND<3:0>							1				_	SRCBLEND<3:0>	hown in he L00 throug
Bit 26/10	DEPOL		I	.CH<5:0>													1	SRCBLEND<3:0>							_				_	SRCBLE	alues are s tains PIXE
28/12 Bit 27/11	HSYNC POL	ı	I	LPREFETCH<5:0>	^ 0:	<0:2											ı								-				_		i'. Reset va
Bit 28/12	VSYNC	ı	I		RED<7:0>	BLUE<7:0>	I	I	I	I	I	I	I	I	I	I	MUL ALPHA		I	I	I	I			I		I	I	MUL ALPHA		read as 'C LCDCURE
Bit 29/13	1	I	I				I	I	Ι	I	Ι	I	I	1	I	I	FORCE ALPHA	ID<3:0>	I	I	I	I			Ι		I	I	FORCE ALPHA	ID<3:0>	plemented, -31 (i.e., G
Bit 30/14	CURSOR EN	ı	I	I			I	I	Ι	I	1	I	I	1	I	I	DISA BIFIL	DESTBLEND<3:0>	I	I	I	I			Ι		I	I	DISA BIFIL	DESTBLEND<3:0>	;; — = unim 11 and y = 0
Bit 31/15	LCDEN	1	I	ı			ı	I	I	I	I	I	ı	I	I	ı	LAYEREN		I	I	I	I			I		ı	I	LAYEREN		x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. For the PIXELxy bits, x = 0-31 and y = 0-31 (i.e., GLCDCURDATA0 contains PIXEL00 through PIXEL07 with PIXEL00 in the most significant nibble).
Bit Range	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	own vali
Register Name	GLCD	MODE	GLCD	CLKCON	GLCD	BGCOLOR	טוני	GLUDRES	GLCD	FPORCH	GLCD	BLANKING	GLCD	вроксн	GLCD	CURSOR	GLCD	LUMODE	GLCD	LOSTART	GLCD	L0SIZE	СГСБ	LOBADDR	GLCD	LOSTRIDE	егср	L0RES	GLCD	LIMODE	<u></u>
Virtual Address (#_3878)	000			A004		Anno		Annc	770		070) POIC		AUZU	A030		700			A0.30	000	7604	0707		7		A050		Legend: Note

© 2015-2017 Microchip Technology Inc.

Bit 31/15	/14 Bit 29/13														Ī
GLCD L1START GLCD L1SIZE L1SIZE L1SIZE GLCD GLCD GLCD GLCD GLCD GLCD GLCD GLCD	1 1 1 1	Bit 28/12 Bit 27/11	Bit 27/11	Bit 26/10 Bit 25/9		Bit 24/8 E	Bit 23/7	Bit 22/6	Bit 21/5	Bit 20/4	Bit 19/3	Bit 118/2	Bit 17/1	Bit 16/0	ateseЯ IIA
L1START 15:0	1 1 1	ı						START	STARTX<10:0>						0000
GLCD L1SIZE L1SIZE L1SIZE GLCD GLCD GLCD GLCD GLCD GLCD GLCD GLCD		I						START	STARTY<10:0>						0000
L1SIZE 15:0		I						SIZEX	SIZEX<10:0>						0000
GLCD L1BADDR 15:0 GLCD L1STRIDE 15:0 GLCD GLCD GLCD GLCD GLCD GLCD GLCD GLCD		ı						SIZEY	SIZEY<10:0>						0000
CLEADDR 15:0 CLED 17:16 CLED 17:0 CLED 17:	1				ш	BASEADDR<31:16>	ح1:16>								0000
GLCD 131:16 — CLSTRIDE 15:0 — CLCD 131:16 — CLCD 15:0 — CLCD 15:0 — CLCD 131:16 — CLCD	1					BASEADDR<15:0>	R<15:0>								0000
CLCD 15:0		ı	I	I	I	1	1	-	ı	1	I	I	-	I	0000
GLCD 11:16 — CLRES 15:0 — CLCD 11:16 — CLCD 12:0 — CLCD 12:0 — CLCD 12:0 — CLCD 13:16 — CLCD 13:						STRIDE<15:0>	<15:0>								0000
GLCD 31:16 LAYEREN 15:0 — GLCD	I	I						RESX	RESX<10:0>						0000
GLCD 15:0 LAYEREN 15:0 LAYEREN 15:0 L2START 15:0 L2SIZE 15:0 L2SIZE 15:0 L2SIZE 15:0 L2BADDR 15:0 L2STRIDE 15:0 L2	1	I						RESY	RESY<10:0>						0000
GLCD 31:16 — CLCD	A FORCE L ALPHA	MUL ALPHA	I	ı	Ι	ı				ALP	ALPHA<7:0>				0000
GLCD L2START GLCD GLCD L2SIZE GLCD GLCD GLCD GLCD GLCD GLCD GLCD GLCD	DESTBLEND<3:0>			SRCBLEND<3:0>	D<3:0>		1	ı	ı	1		COLOR	COLORMODE<3:0>		0000
GLCD 31:16 — CLCD 2RES 31:16 — CLCD 31:16 — CLCDL2RES 31:16 IRQCON 31:	I	I						START	STARTX<10:0>						0000
GLCD 15:0 — CLCD CL	1	I						START	STARTY<10:0>						0000
L2SIZE 15.0	1	I						SIZEX	SIZEX<10:0>						0000
GLCD 11:16	_	I						SIZEY	SIZEY<10:0>						0000
L2BADDR 15.0					Е	BASEADDR<31:16>	<-31:16>								0000
GLCD L2STRIDE 15:0 GLCDL2RES 15:0 GLCDL2RES 15:0 GLCDINT 31:16 IRQCON						BASEADDR<15:0>	R<15:0>								0000
CLCDL2RES	1	I	1	I	1	1	1	1	1	1	I	I	I	I	0000
GLCDL2RES 31:16 — 15:0 — 31:16 IRQCON	•	•				STRIDE<15:0>	<15:0>								0000
GLCDINT 31:16 IRQCON	1	ı						RESX	RESX<10:0>						0000
GLCDINT 31:16 IRQCON	1	1						RESY	RESY<10:0>						0000
	1	1	1	ı	1	1	-	_	1	_	1	1	1	1	0000
15:0 — —	1	I	Ι	ı	1	1	1	_	1	_	I	I	HSYNCINT VSYNCINT	VSYNCINT	0001
A0FC GLCDSTAT 31:16 — —	I	I	I	Ι	1	ı	I	I	ı	1	1	1	_		0000
— 15:0 — — — — — — — — — — — — — — — — — — —	1	I	-	-	1	1	_	I	LROW	_	VSYNC	HSYNC	DE	ACTIVE	0000
A400, GLCDCLUTx 31:16 — —	I	I	1	ı	1	1				RE	RED<7:0>				0000
through ('x' = 0-255) 15:0		GREEN<7:0>	7:0>							BLU	BLUE<7:0>				0000
31:16	PIXELxy<3:0> ⁽¹⁾			PIXELxy<3:0> ⁽¹⁾	3:0>(1)			PIXELxy<3:0> ⁽¹⁾	:3:0>(1)			PIXEL	PIXELxy<3:0> ⁽¹⁾		0000
CURDATAX ('x' = 0-127) 15:0	PIXELxy<3:0> ⁽¹⁾			PIXELxy<3:0> ⁽¹⁾	3:0>(1)			PIXELxy<3:0> ⁽¹⁾	(3:0>(1)			PIXEL	PIXELxy<3:0> ⁽¹⁾		0000
AA00 GLCD 31:16 — —	-	Ι	-	1	1	-				RE	RED<7:0>				0000
through CURLUIX AA40 ('x' = 0-15) 15:0		GREEN<7:0>	<0:2							BLU	BLUE<7:0>				0000
enemy: v = linknown value on Reset = linimplemented read as 'n' Reset values are shown in hexadecimal	nimnlemented	'∩' se been	Recet val	les are ch	exed ni nwc	adecimal									

DS60001361E-page 586

REGISTER 36-1: GLCDMODE: GRAPHICS LCD CONTROLLER MODE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
31:24	LCDEN	CURSOR EN	-	VSYNC POL	HSYNC POL	DEPOL		DITHER
	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0
23:16	VSYNC CYC	PCLKPOL	-	PGRAMP EN	FORCE BLANK	_		_
	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
15:8	_	_	-	-	_	_	YUV OUTPUT	FORMAT CLK
7.0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
7:0	F	RGBSEQ<2:0	>	_	_	_	_	_

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31 LCDEN: LCD Controller Module Enable bit

1 = LCD Controller module is enabled

0 = LCD Controller module is not enabled

bit 30 **CURSOREN:** Programmable Cursor Enable bit

1 = Programmable cursor is enabled

0 = Programmable cursor is enabled

bit 29 Unimplemented: Read as '0'

bit 28 VSYNCPOL: Vertical Sync Polarity bit

1 = VSYNC polarity is negative

0 = VSYNC polarity is positive

bit 27 HSYNCPOL: Horizontal Sync Polarity bit

1 = HSYNC polarity is negative

0 = HSYNC polarity is positive

bit 26 **DEPOL:** DE Polarity bit

1 = DE polarity is negative

0 = DE polarity is positive

bit 25 **Unimplemented:** Read as '0'

bit 24 DITHER: Dithering Enable bit

1 = Dithering is enabled

0 = Dithering is not enabled

bit 23 VSYNCCYC: Vertical Sync for Single Cycle Per Line Enable bit

1 = VSYNC for a single cycle per line is enabled

0 = VSYNC for a single cycle per line is not enabled

bit 22 PCLKPOL: Pixel Clock Out Polarity bit

1 = Pixel clock out polarity is negative

0 = Pixel clock out polarity is positive

bit 21 Unimplemented: Read as '0'

bit 20 PGRAMPEN: Palette Gamma Ramp Enable bit

1 = Palette gamma ramp is enabled

0 = Palette gamma ramp is not enabled

REGISTER 36-1: GLCDMODE: GRAPHICS LCD CONTROLLER MODE REGISTER (CONTINUED)

bit 19 **FORCEBLANK:** Force Output to Blank bit

1 = Forces output to blank

0 = No effect

bit 18-10 Unimplemented: Read as '0'

bit 9 YUVOUTPUT: YUV Output Enable bit

1 = YUV is enabled

0 = RGB is enabled

bit 8 FORMATCLK: Formatting Clock Divide Enable bit

1 = Formatting clock is not divided

0 = Formatting clock is divided

bit 7-5 RGBSEQ<2:0>: RGB Sequential Modes bit

111 **= BT.656**

110 **= YUYV**

101 = Reserved

100 = Reserved

011 = Reserved

010 = Reserved 001 = Reserved

000 = Parallel RGB (RGB888, RGB666, RGB332)

bit 4-0 Unimplemented: Read as '0'

REGISTER 36-2: GLCDCLKCON: GRAPHICS LCD CONTROLLER CLOCK CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	_	_	_	_	_	_	_	_
00.46	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	_	_			LPREFE1	ΓCH<5:0>		
7.0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_			CLKDI	V<5:0>		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-14 Unimplemented: Read as '0'

bit 13-8 LPREFETCH<5:0>: Lines Prefetch bits

These bits represent the number of lines to be prefetched before starting the frame (through DMA). The maximum value is $2^{LPREFETCH} = 32$.

bit 7-6 Unimplemented: Read as '0'

bit 5-0 CLKDIV<5:0>: Clock Divider bits

111111 = Reserved

111110 **= Reserved**

011111 = Divided by 31

011110 **= Divided by 30**

011101 = Divided by 29

•

•

•

000011 = Divided by 3

000010 = Divided by 2

000001 **= Divided by 1**

000000 = Divided by 0

Note: If the value of CLKDIV<5:0> is even, GCLK = (REFCLKO5/CLKDIV) with a duty cycle of 50%. If the value of CLKDIV<5:0> is odd, PCLK = (REFCLKO5/CLKDIV) with a duty cycle of 60% to

40%.

REGISTER 36-3: GLCDBGCOLOR: GRAPHICS LCD CONTROLLER BACKGROUND COLOR REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21:24	R/W-0 R/W-0							
31:24				RED<	7:0>			
22.40	R/W-0 R/W-0							
23:16				GREEN	<7:0>			
45.0	R/W-0 R/W-0							
15:8				BLUE<	:7:0>			
7:0	R/W-0 R/W-0							
7:0				ALPHA	<7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-24 RED<7:0>: Color Red as Background bits

These bits specify that the color red is to be used as the background color.

bit 23-16 GREEN<7:0>: Color Green as Background bits

These bits specify that the color green is to be used as the background color.

bit 15-8 BLUE<7:0>: Color Blue as Background bits

These bits specify that the color blue is to be used as the background color.

bit 7-0 ALPHA<7:0>: Color Alpha as Background bits

These bits specify that the color alpha is to be used as the background color.

Note: If all of the bits in this register are set (RED, GREEN, BLUE and ALPHA), RGBA color is used as the background.

REGISTER 36-4: GLCDRES: GRAPHICS LCD CONTROLLER RESOLUTION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
31.24	_	_	_	_	_	I	RESX<10:8>	
23:16	R/W-0 R/W-0							
23.10				RESX<	:7:0>			
15:8	R/W-0 R/W-0							
15.6	_	_	_	_	_	I	RESY<10:8>	
7:0	R/W-0 R/W-0							
7.0				RESY<	:7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

bit 26-16 RESX<10:0>: X Dimension Pixel Resolution bits

These bits specify the pixel resolution for the X dimension.

bit 15-11 Unimplemented: Read as '0'

bit 10-0 RESY<10:0>: Y Dimension Pixel Resolution bits

These bits specify the pixel resolution for the Y dimension.

REGISTER 36-5: GLCDFPORCH: GRAPHICS LCD CONTROLLER FRONT PORCH REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24:24	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
31:24		_	-	_	_	FP	ORCHX<10:	8>
00.40	R/W-0 R/W-0							
23:16				FPORCH	X<7:0>			
45.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
15:8	_	_	_	_	_	FP	ORCHY<10:	8>
7.0	R/W-0 R/W-0							
7:0				FPORCH	Y<7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

bit 26-16 FPORCHX<10:0>: X Dimension Front Porch Lines bits

These bits specify the front porch X dimension lines.

bit 15-11 Unimplemented: Read as '0'

bit 10-0 FPORCHY<10:0>: Y Dimension Front Porch Pixel Clocks bits

These bits specify the front porch Y dimension pixel clocks.

REGISTER 36-6: GLCDBLANKING: GRAPHICS LCD CONTROLLER BLANKING REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
31:24	_	-	-	-	1	BLA	NKINGX<10	:8>
22.46	R/W-0 R/W-0							
23:16				BLANKING	GX<7:0>			
45.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
15:8	_	_	_	_	_	BLA	NKINGY<10	:8>
7.0	R/W-0 R/W-0							
7:0				BLANKING	GY<7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

bit 26-16 BLANKINGX<10:0>: X Dimension Blanking Period bits

These bits specify the HSYNC pulse length for the X dimension blanking period.

bit 15-11 Unimplemented: Read as '0'

bit 10-0 BLANKINGY<10:0>: Y Dimension Blanking Period bits

These bits specify the VSYNC lines for the Y dimension blanking period.

REGISTER 36-7: GLCDBPORCH: GRAPHICS LCD CONTROLLER BACK PORCH REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
31:24		_	_	-	_	BP	ORCHX<10:	8>
22.46	R/W-0 R/W-0							
23:16				BPORCH	X<7:0>			
45.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
15:8	1	_	_	-	_	BP	ORCHY<10:	8>
7.0	R/W-0 R/W-0							
7:0				BPORCH	Y<7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

bit 26-16 BPORCHX<10:0>: X Dimension Back Porch Lines bits

These bits specify the front porch X dimension lines.

bit 15-11 Unimplemented: Read as '0'

bit 10-0 BPORCHY<10:0>: Y Dimension Back Porch Pixel Clocks bits

These bits specify the front porch Y dimension pixel clocks.

REGISTER 36-8: GLCDCURSOR: GRAPHICS LCD CONTROLLER CURSOR REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
31:24		-	-	-	1	CU	IRSORX<10:	<8>	
00.40	R/W-0 R/W-0								
23:16	CURSORX<7:0>								
45.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
15:8	_	_	_	_	_	CU	IRSORY<10:	8>	
7.0	R/W-0 R/W-0								
7:0	CURSORY<7:0>								

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

bit 26-16 **CURSORX<10:0>:** Cursor X Dimension Position bits

These bits specify the X dimension position of the cursor

bit 15-11 **Unimplemented:** Read as '0'

bit 10-0 CURSORY<10:0>: Cursor Y Dimension Position bits

These bits specify the Y dimension position of the cursor

REGISTER 36-9: GLCDLxMODE: GRAPHICS LCD CONTROLLER LAYER 'x' MODE REGISTER ('x' = 0-2)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
31:24	LAYEREN	DISABIFIL	FORCE ALPHA	MUL ALPHA	_	_	_	_	
23:16	R/W-0 R/W-0								
23.10	ALPHA<7:0>								
15:8	R/W-0 R/W-0								
15.6	DESTBLEND<3:0>				SRCBLEND<3:0>				
7:0	R/W-0 R/W-0								
7:0	_	_	_	_		COLORM	ODE<3:0>		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31 LAYEREN: Layer Enable bit

1 = Layer is enabled

0 = Layer is not enabled

bit 30 DISABIFIL: Disable Bilinear Filtering bit

1 = Bilinear filtering is enabled

0 = Bilinear filtering is not enabled

bit 29 FORCEALPHA: Force Alpha with Global Alpha bit

1 = Force alpha with global alpha is enabled

0 = Force alpha with global alpha is not enabled

bit 28 MULALPHA: Premultiply Image Alpha bit

1 = Premultiply image alpha is enabled

0 = Premultiply image alpha is not enabled

bit 27-24 **Unimplemented:** Read as '0'

bit 23-16 ALPHA<7:0>: Layer Alpha bits

These bits contain the Layer Alpha value ranging from 0 to 0xFF.

bit 15-12 **DESTBLEND<3:0>:** Destinary Blending Function bits

1111 = Reserved

1110 = Reserved

1101 = Blend inverted destination

1100 = Reserved

1011 = Reserved

1010 = Blend alpha destination

1001 = Reserved

1000 = Reserved

0111 = Blend inverted source and inverted global

0110 = Blend inverted global

0101 = Blend inverted source

0100 = Blend alpha source and alpha global

0011 = Blend alpha global

0010 = Blend alpha source

0001 = Blend white

0000 = Blend black

REGISTER 36-9: GLCDLxMODE: GRAPHICS LCD CONTROLLER LAYER 'x' MODE REGISTER ('x' = 0-2) (CONTINUED)

bit 11-8 **SRCBLEND<3:0>:** Source Blending Function bits

- 1111 = Reserved
- 1110 = Reserved
- 1101 = Blend inverted destination
- 1100 = Reserved
- 1011 = Reserved
- 1010 = Blend alpha destination
- 1001 = Reserved
- 1000 = Reserved
- 0111 = Blend inverted source and inverted global
- 0110 = Blend inverted global
- 0101 = Blend inverted source
- 0100 = Blend alpha source and alpha global
- 0011 = Blend alpha global
- 0010 = Blend alpha source
- 0001 = Blend white
- 0000 = Blend black
- bit 7-4 **Unimplemented:** Read as '0'
- bit 3-0 COLORMODE<3:0>: Color Mode bits
 - 1111 = Reserved
 - 1110 = Reserved
 - 1101 = Reserved
 - 1100 = Reserved
 - 1011 = RGB888 color format
 - 1010 = YUYV color format
 - 1001 = L4 gray scale/palette format
 - 1000 = L1 gray scale/palette format
 - 0111 = L8 gray scale/palette format
 - 0110 = 32-bit ARGB8888 color format
 - 0101 = 16-bit RGB565 color format
 - 0100 = 8-bit RGB332 color format
 - 0011 = Reserved
 - 0010 = 32-bit RGBA8888 color format
 - 0001 = 16-bit RGBA5551 color format
 - 0000 = 8-bit color palette look-up table (LUT8)

REGISTER 36-10: GLCDLxSTART: GRAPHICS LCD CONTROLLER LAYER 'x' START REGISTER ('x' = 0-2)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
31:24	_	_	_	_	_	S	TARTX<10:8	>	
22.46	R/W-0 R/W-0								
23:16	STARTX<7:0>								
45.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
15:8	_	_	_	_	_	S	TARTY<10:8	>	
7.0	R/W-0 R/W-0								
7:0		STARTY<7:0>							

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

bit 26-16 STARTX<10:0>: Layer Start X Dimension bits

These bits specify the pixel offset of the starting X dimension of the layer.

bit 15-11 Unimplemented: Read as '0'

bit 10-0 STARTY<10:0>: Layer Start Y Dimension bits

These bits specify the pixel offset of the starting Y dimension of the layer.

REGISTER 36-11: GLCDLxSIZE: GRAPHICS LCD CONTROLLER LAYER 'x' SIZE REGISTER ('x' = 0-2)

	, -	· • -,							
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04:04	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
31:24	_	_	_	_	_	(SIZEX<10:8>	1	
22.40	R/W-0 R/W-0								
23:16	SIZEX<7:0>								
15.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
15:8	_	_	_	_	_	ç	SIZEY<10:8>		
7.0	R/W-0 R/W-0								
7:0				SIZEY	<7:0>				

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

bit 26-16 SIZEX<10:0>: Layer Size X Dimension bits

These bits specify the pixel size of the layer in the X dimension.

bit 15-11 Unimplemented: Read as '0'

bit 10-0 SIZEY<10:0>: Layer size Y Dimension bits

These bits specify the pixel size of the layer in the Y dimension.

REGISTER 36-12: GLCDLxBADDR: GRAPHICS LCD CONTROLLER LAYER 'x' BASE ADDRESS REGISTER ('x' = 0-2)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31.24	31:24 BASEADDR<31:24>								
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	BASEADDR<23:16>								
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	BASEADDR<15:8>								
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0				BASEADE)R<7:0>				

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 BASEADDR<31:0>: Base Address of the Framebuffer bits

These bits specify the base address of the framebuffer.

REGISTER 36-13: GLCDLxSTRIDE: GRAPHICS LCD CONTROLLER LAYER 'x' STRIDE REGISTER ('x' = 0-2)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24		_	_	_	_	_	_	_
22:46	U-0 U-0							
23:16	_	_	-	_	_	_	_	_
45.0	R/W-0 R/W-0							
15:8	STRIDE<15:8>							
7.0	R/W-0 R/W-0							
7:0				STRIDE	<7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 **Unimplemented:** Read as '0' bit 15-0 **STRIDE<15:0>:** Layer Stride bits

These bits specify the distance from line to line in bytes.

REGISTER 36-14: GLCDLxRES: GRAPHICS LCD CONTROLLER LAYER 'x' RESOLUTION REGISTER ('x' = 0-2)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R/W-0 R/W-0									
31:24		_	_	_	_		RESX<10:8>			
00:40	R/W-0 R/W-0									
23:16	RESX<7:0>									
45.0	R/W-0 R/W-0									
15:8		_	_	-	_		RESY<10:8>			
7.0	R/W-0 R/W-0									
7:0		_		RESY<	<7:0>	_				

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

bit 26-16 RESX<10:0>: X Dimension Layer Pixel Resolution bits

These bits specify the layer pixel resolution in the X dimension.

bit 15-11 Unimplemented: Read as '0'

bit 10-0 RESY<10:0>: Y Dimension Layer Pixel Resolution bits

These bits specify the layer pixel resolution in the Y dimension.

REGISTER 36-15: GLCDINT: GRAPHICS LCD CONTROLLER INTERRUPT REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	IRQCON	_	-	-	_		_	_
00.40	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	U-0 U-0							
15:8	_	_	_	_	_	_	_	_
7.0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
7:0	1	1	1	ı	1	ı	HSYNCINT	VSYNCINT

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31 IRQCON: IRQ Triggering Control bit

1 = Edge triggering is enabled0 = Level triggering is enabled

bit 30-2 Unimplemented: Read as '0'

bit 1 HYSNNCINT: HSYNC Interrupt Enable bit

1 = HSYNC interrupt is enabled 0 = HSYNC interrupt is not enabled

bit 0 VSYNCINT: VSYNC Interrupt Enable bit

1 = VSYNC interrupt is enabled0 = VSYNC interrupt is not enabled

REGISTER 36-16: GLCDSTAT: GRAPHICS LCD CONTROLLER STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0 U-0							
31:24		_	_	-	1	_	_	-
22.40	U-0 U-0							
23:16	-	_	_	-	1	-	-	_
45.0	U-0 U-0							
15:8	1	_	_	-	-	_	_	-
7.0	U-0	U-0	R-0	U-0	R-0	R-0	R-0	R-0
7:0		_	LROW		VSYNC	HSYNC	DE	ACTIVE

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-6 Unimplemented: Read as '0'

bit 5 LROW: Last Row bit

1 = Last row is currently being displayed0 = Last row is not currently being displayed

bit 4 Unimplemented: Read as '0'

bit 3 VSYNC: VSYNC Signal Level bit

This bit returns the VSYNC signal level.

bit 2 **HSYNC:** HSYNC Signal Level bit

This bit returns the HSYNC signal level.

bit 1 **DE:** DE Signal Level bit

This bit returns the DE signal level.

bit 0 ACTIVE: Active bit

1 = LCD Controller is not in active vertical blanking

0 = LCD Controller is in active vertical blanking

REGISTER 36-17: GLCDCLUTx: GRAPHICS LCD CONTROLLER GLOBAL COLOR LOOKUP TABLE REGISTER x ('x'=0-255)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0 U-0								
31.24		_	_	_	_	_	_	_	
22.46	U-0 U-0								
23:16	RED<7:0>								
45.0	R/W-0 R/W-0								
15:8	GREEN<7:0>								
7.0	R/W-0 R/W-0								
7:0				BLUE<	:7:0>				

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23-16 RED<7:0>: Global Color Lookup Table Red Component bits

bit 15-8 **GREEN<7:0>:** Global Color Lookup Table Green Component bits

bit 7-0 **BLUE<7:0>:** Global Color Lookup Table Blue Component bits

REGISTER 36-18: GLCDCURDATAX: GRAPHICS LCD CONTROLLER CURSOR DATA 'n' REGISTER ('n' = 0-127)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24		PIXELxy	<3:0>(1)		PIXELxy<3:0> ⁽¹⁾			
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	PIXELxy<3:0> ⁽¹⁾				PIXELxy<3:0> ⁽¹⁾			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	PIXELxy<3:0> ⁽¹⁾				PIXELxy<3:0> ⁽¹⁾			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0		PIXELxy	<3:0> ⁽¹⁾		PIXELxy<3:0> ⁽¹⁾			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-28 PIXELxy<3:0>: Pixel 'xy' Color Lookup bits⁽¹⁾
bit 27-24 PIXELxy<3:0>: Pixel 'xy' Color Lookup bits⁽¹⁾
bit 23-20 PIXELxy<3:0>: Pixel 'xy' Color Lookup bits⁽¹⁾
bit 19-16 PIXELxy<3:0>: Pixel 'xy' Color Lookup bits⁽¹⁾
bit 15-12 PIXELxy<3:0>: Pixel 'xy' Color Lookup bits⁽¹⁾
bit 11-8 PIXELxy<3:0>: Pixel 'xy' Color Lookup bits⁽¹⁾
bit 7-4 PIXELxy<3:0>: Pixel 'xy' Color Lookup bits⁽¹⁾
bit 3-0 PIXELxy<3:0>: Pixel 'xy' Color Lookup bits⁽¹⁾

Note 1: For the PIXELxy bits, x = 0-31 and y = 0-31 (i.e., GLCDCURDATA0 contains PIXEL00 through PIXEL07 with PIXEL00 in the most significant nibble).

REGISTER 36-19: GLCDCURLUTx: GRAPHICS LCD CONTROLLER CURSOR LUT REGISTER 'x' ('x' = 0-15)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24		_		_	_		-	_
00:40	R/W-0 R/W-0							
23:16				RED<	7:0>			
45.0	R/W-0 R/W-0							
15:8				GREEN	<7:0>			
7.0	R/W-0 R/W-0							
7:0				BLUE<	7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23-16 RED<7:0>: Cursor Lookup Table Red Component bit
bit 15-8 GREEN<7:0>: Cursor Lookup Table Green Component bit
bit 7-0 BLUE<7:0>: Cursor Lookup Table Blue Component bit

Note: The bits in this register contain the 8-bit RGB color value (0-255).

37.0 2-D GRAPHICS PROCESSING UNIT (GPU)

Note:

This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the documents listed in the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

The 2-D Graphics Processing Unit manipulates and alters the contents of the frame buffer in system RAM or DDR2 memory to accelerate the generation of images for eventual pixel display. Hardware acceleration is brought to numerous 2-D applications, such as graphics user interfaces (menus, objects etc.,), touch screen user interfaces, Flash animation and gaming among others.

The 2-D GPU also provides accelerated on-the-fly rendering of vertical and horizontal lines, rectangles, copying of a rectangular area between different locations on the screen, drawing text, and decompressing compressed data on the existing display data. Once initiated, the hardware will perform the rendering through DMA, which makes the CPU available for other tasks.

A block diagram showing the interface for the 2-D Graphics Processing Unit is provided in Figure 37-1.

Note:

For this peripheral, no hardware interface is documented. Use the accompanying software driver to manage this module.

Key features of the 2-D Graphics Processing Unit include:

- · 64-bit bus access to memory (higher throughput)
- Global clock gating (low power)
- · Command buffers
- Programmable raster operations (ROP2, ROP3 and ROP4) with full alpha blending and transparency
- · Fixed Functions:
 - Line draw
 - Rectangle fill
 - Rectangle clear
 - Bit blit (stretch/shrink/filter)
- · Source data formats:
 - RGB888, RGB555 RGB565, RBG323, and 1-bit monochrome
- · Destination data formats:
 - RGB888, RGB555, and RGB565
- · YUV to RGB conversion
- · Dithering
- Rotation
- · Clipping
- · Text rendering
 - **Note 1:** For RGB source formats, their related swizzle formats (ARGB, RGBA, ABGR, BGRA) are also supported.
 - 2: The GPU is enabled and ready out of POR. However, the GPU can be soft Reset at run-time using the GPURESET bit (CFGAPP2<0>). Make sure that the GPUMD bit is set to '0' and wait 10 µs before toggling the GPURESET bit to achieve proper soft Reset.

FIGURE 37-1: 2-D GRAPHICS PROCESSING UNIT BLOCK DIAGRAM

NOTES:			

38.0 DDR2 SDRAM CONTROLLER

Note: This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 55. "DDR SDRAM Controller" (DS60001321'), which is

sheet, refer to **Section 55. "DDR SDRAM Controller"** (DS60001321'), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

The DDR2 SDRAM Controller implements the controls for an external memory bus interface using the Dual Data Rate version 2 (DDR2) protocol and electrical interface that adheres to the JEDEC Standard JESD79-2F (Nov. 2009).

The component consists of a DDR2 SDRAM Controller Core with configurable options and a DDR2 Physical Interface.

A block diagram showing how these components interface is provided in Figure 38-1.

FIGURE 38-1: DDR2 SDRAM CONTROLLER BLOCK DIAGRAM

38.1 Control Registers

	s	FleseR IIA	0000	0000	_		0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
		16/0	I		ODTWEN	ODTREN	1	1		CLKEN CMD1		CLKEN CMD1		CLKEN CMD1		CLKEN CMD1		CLKEN CMD1		CLKEN CMD1		CLKEN CMD1		CLKEN CMD1		CLKEN CMD1		CLKEN CMD1
		1//1	I	MDS<3:0>	1	1	1	ı																				
		18/2	ı	NUMHOSTCMDS<3:0>	1	1	1	ı	CSCMD2<7:3>		CSCMD2<7:3>		CSCMD2<7:3>		CSCMD2<7:3>		CSCMD2<7:3>		CSCMD2<7:3>		CSCMD<27:3>		CSCMD2<7:3>		CSCMD2<7:3>		CSCMD2<7:3>	
		19/3	ı	JZ	I	1	ı	HALF	SS		SS		S		S		SS		SS		S		SS		S		S	
		20/4	ı	VALID	I	1	ı	ı		<0:2>		<0:2>		<0:2>		<0:2>		<0:2>		<0:2>		<0:2>		<0:2>		<0:2>		<0:2>
		21/5	ı	1	-	1	1	ı	ASCMD2	CSCMD1<7:0>	ASCMD2	CSCMD1<7:0>	RASCMD2	CSCMD1<7:0>	ASCMD2	CSCMD1<7:0>	ASCMD2	CSCMD1<7:0>	ASCMD2	CSCMD1<7:0>	ASCMD2	CSCMD1<7:0>	ASCMD2	CSCMD1<7:0>	ASCMD2	CSCMD1<7:0>	ASCMD2	CSCMD1<7:0>
		22/6	ı	1	ı	1	ı	1	CASCMD2 RASCMD2		CASCMD2 RASCMD2		CASCMD2 R		CASCMD2 RASCMD2	-	CASCMD2 RASCMD2		CASCMD2 RASCMD2		CASCMD2 RASCMD2		CASCMD2 RASCMD2		CASCMD2 RASCMD2	-	CASCMD2 RASCMD2	-
<u>(</u>		23/7	ı	1	-	1	1	1	WEN C,		WEN C,		WEN C,		WEN C,		WEN C,		WEN C,		WEN C,		WEN C		WEN C,		WEN C,	-
NTINUE	Bits	24/8	ı	1	-	1	1	1																				-
4Y (CO		25/9	ı	1	1	1	1	1		RASCMD1		ASCMD1		ASCMD1		ASCMD1		ASCMD1		ASCMD1		ASCMD1		ASCMD1		4SCMD1	 	ASCMD1
OMMA		26/10	ı	1	-	1	1	ı		CASCMD1 R		CASCMD1 RASCMD1		CASCMD1 RASCMD1		CASCMD1 RASCMD1		CASCMD1 RASCMD1		CASCMD1 RASCMD1		CASCMD1 RASCMD1		CASCMD1 RASCMD1		CASCMD1 RASCMD1		CASCMD1 RASCMD1
GISTER SUMMARY (CONTINUED)		27/11	ı	1	I	1	1	1	<7:0>	WEN C	<7:0>		_		WEN C	<0:2>		/ID<7:0>		WEN C			<7:0>	WEN CAD1	<7:0>	MD<7:0> WEN CMD1	<7:0>	WEN C
R REG		28/12	ı	1	1	1	ı	1	MDALCMD<7:0>	CLKEN CMD2	SMD		MDALCMD<7:0>	CLKEN CMD2	MDALCMD<7:0>	CLKEN V	SMI	CLKEN CMD2	MDALCMD<7:0> CLKEN WEN CMD2 CMD	GM —		봉	CLKEN CMD2	1 5	CLKEN CMD2	- JW	CLKEN CMD2	
IROLLE		29/13	I	1		1	1	ı									50 2	00 -				80	-		=			
M CON		30/14	I	1		1	1	1		CSCMD2<2:0>		CSCMD2<2:0>		CSCMD2<2:0>		CSCMD2<2:0>		CSCMD2<2:0>		CSCMD2<2:0>		CSCMD2<2:0>		CSCMD2<2:0>		CSCMD2<2:0>		CSCMD2<2:0>
DDR SDRAM CONTROLLER RE		31/15	ı	1	ı	1	1	1		OSO		OSO		OSO		OSO		OSO		csc		OSO		OSO		oso		csc
DDF	e	Bit Range	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0
IABLE 38-1:		Register 9msM	DDR	ISSUE		ODTENCFG	1	DDR MEMWIDTH		CMD10	DDR	CMD11		CMD12		CMD13		CMD14	DDR	CMD15	DDR	CMD16		CMD17		CMD18		CMD19
ADI	;) LGSS	Virtual Addı #_3878)		8048		804C		8050 L		0000	7		3 900	0000		2000		Osno		0034 C]	0600	7	ാണം		ONAN	7	80A4

© 2015-2017 Microchip Technology Inc.

)			1					1):::	<u>`</u>								
;) LG22		ə								Bits									s
ibbA IsutiiV #_3878)	Register Mame	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	1//1	16/0	steseR IIA
-		31:16				$\overline{\circ}$	MD<7:0>				WEN CMD2	CASCMD2 RASCMD2	RASCMD2		SS	CSCMD2<7:3>			0000
8048	CMD110	15:0	SS	CSCMD2<2:0>	_	CLKEN CMD2	WEN CMD1	CASCMD1 RASCMD1	3ASCMD1				CSCME	CSCMD1<7:0>				CLKEN CMD1	0000
	DDR	31:16				$\overline{\circ}$	MD<7:0>				WEN CMD2	CASCMD2 RASCMD2	RASCMD2		SS	CSCMD2<7:3>			0000
) (CMD111	15:0	ິ ເຊ	CSCMD2<2:0>	_	CLKEN CMD2	WEN CMD1	CASCMD1 RASCMD1	3ASCMD1		1		CSCME	CSCMD1<7:0>				CLKEN CMD1	0000
_	DDR	31:16				()	MD<7:0>				WEN CMD2	CASCMD2 RASCMD2	RASCMD2		CS	CSCMD2<7:3>			0000
000	CMD112	15:0	ິ ເຊ	CSCMD2<2:0>	_	CLKEN CMD2	WEN CMD1	CASCMD1 RASCMD1	3ASCMD1		1		CSCME	CSCMD1<7:0>				CLKEN CMD1	0000
	DDR	31:16				MDALCMD<7:0>	4D<7:0>				WEN CMD2	CASCMD2 RASCMD2	RASCMD2		CS	CSCMD2<7:3>			0000
† 000	CMD113	15:0	ซ	CSCMD2<2:0>	^	CLKEN CMD2	WEN CMD1	CASCMD1 RASCMD1	3ASCMD1				CSCME	CSCMD1<7:0>				CLKEN CMD1	0000
_ 8 8 8 8 8	DDR	31:16				MDALCMD<7:0>	4D<7:0>				WEN CMD2	CASCMD2 RASCMD2	RASCMD2		CS	CSCMD<27:3>			0000
	CMD114	15:0	ช	CSCMD2<2:0>	^	CLKEN CMD2	WEN CMD1	CASCMD1 RASCMD1	RASCMD1				CSCME	CSCMD1<7:0>				CLKEN CMD1	0000
-	DDR	31:16				$\overline{\circ}$	MD<7:0>				WEN CMD2	CASCMD2	CASCMD2 RASCMD2		SS	CSCMD2<7:3>			0000
	CMD115	15:0	ຮ	CSCMD2<2:0>	^	CLKEN CMD2	WEN CMD1	CASCMD1 RASCMD1	RASCMD1				CSCME	CSCMD1<7:0>				CLKEN CMD1	0000
80C0	DDR CMD20	31:16	I		— WAIT<4:0>	1		— — BNKA	BNKADDBCMD<2:0>		I	Ι	I	MDADDBHCMD<7:0>	MD<7:0>	WAIT<8:5>	3:5>		0000
7		31:16	1	1	1	1	1	1	1	1	1	1	1	1		WAIT<8:5>	3:5>		0000
0 2 4		15:0		1	WAIT<4:0>			BNKA	BNKADDRCMD<2:0>	<0				MDADDRHCMD<7:0>	:MD<7:0>				0000
80C8	DDR	31:16	I	-	——————————————————————————————————————	I	I	-	——————————————————————————————————————	1	1	I	I	——————————————————————————————————————	20.27	WAIT<8:5>	3:5>		0000
0		31:16	1	I	WAI >4.0	1	I	- I	-		1	I	1	- I	VO. / VOINT	WAIT<8:5>	3:5>		0000
2		15:0			WAIT<4:0>			BNKA	BNKADDRCMD<2:0>	<0				MDADDRHCMD<7:0>	:MD<7:0>				0000
80D0	DDR CMD24	31:16	1			1	ı	- BNKA	BNKADDRCMD<2:0>	1	1	1	1	MDADDRHCMD<7:0>	MD<7:0>	WAIT<8:5>	3:5>		0000
8004		31:16	-	-	I	1	_	-	1	1	1	_	1	-		WAIT<8:5>	3:5>		0000
		31.16	I		WAIT<4:0>	I	١	BNKA	BNKADDRCMD<2:0>	6	١	I	I	MDADDRHCMD<7:0>	CMD<7:0>	WAIT<8:5>	3.5>		0000
80D8	CMD26	15:0			WAIT<4:0>			BNKA	BNKADDRCMD<2:0>	6				MDADDRHCMD<7:0>	:MD<7:0>		}		0000
	AUD DDR	31:16	Ι	1	Ι	1	I	Ι	1	1	I	I	Ι	Ι		WAIT<8:5>	3:5>		0000
2		15:0			WAIT<4:0>			BNKA	BNKADDRCMD<2:0>	<0				MDADDRHCMD<7:0>	:MD<7:0>				0000
80E0	DDR CMD28	31:16	1			1	1	- BNKA	BNKADDRCMD<2:0>	1	1	1	1	MDADDRHCMD<7:0>	MD<7:0>	WAIT<8:5>	3:5>		0000
L		31:16	1	1		1	1	;			1	1	I		:: : : : : : : : : : : : : : : : : : :	WAIT<8:5>	3:5>		0000
80E4	CMD29	15:0			WAIT<4:0>			BNKA	BNKADDRCMD<2:0>	6				MDADDRHCMD<7:0>	:MD<7:0>				0000

All Resets SCL LBPASS SCLSEN **BURST8** ODTSEL 16/0 CLKDLYDELTA<2:0> SCL UBPASS ODTEN DDR2 CAPCLKDLY<3:0> DRVSTRNFET<3:0: 17/1 WAIT<8:5> WAIT<8:5> WAIT<8:5> WAIT<8:5> WAIT<8:5> DAT DRVSEL 18/2 ADDC DRVSEL MDADDRHCMD<7:0> MDADDRHCMD<7:0> 19/3 I SCL LBPASS RECALIBCNT<17:8> ODTPDCAL<1:0> 20/4 --SCL UBPASS **JRCLKDL** ODTPUCAL<1:0> 22/6 I 23/7 ODTCSW 24/8 BNKADDRCMD<2:0> BNKADDRCMD<2:0> BNKADDRCMD<2:0> BNKADDRCMD<2:0> BNKADDRCMD<2:0> 25/9 WCASLAT<3:0> DIS RECALIB SCLEN 26/10 RECALIBCNT<7:0> 27/11 DBL REFDLY RCVREN 28/12 SCL START — WAIT<4:0> WAIT<4:0> WAIT<4:0> WAIT<4:0: PREAMBDL HALF 30/14 I 31/15 31:16 15:0 15:0 15:0 15:0 15:0 15:0 Bit Range DDR PHYPADCON DDR PHYCLKDLY DDR SCLSTART DDR PHYDLLR DDR SCLCFG0 DDR SCLCFG1 Register Name DDR CMD215 DDR CMD210 DDR CMD212 DDR CMD213 DDR CMD214 DDR CMD211 DDR SCLLAT Virtual Address (BF8E_#) 30E8 10C 30F4 120 9124

© 2015-2017 Microchip Technology Inc.

DDR SDRAM CONTROLLER REGISTER SUMMARY (CONTINUED)

TABLE 38-1:

REGISTER 38-1: DDRTSEL: DDR TARGET SELECT REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0 U-0							
31.24	_	_	_	_			_	_
22:46	U-0 U-0							
23:16	_	_	_	_			_	_
15:0	U-0 U-0							
15:8	_	_	_	_	_	_	_	_
7:0	R/W-0 R/W-0							
7:0		•		TSEL	<7:0>	•	•	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-8 **Unimplemented:** Read as '0' bit 7-0 **TSEL<7:0>:** Target Select bits

These bits select the target to program arbitration parameters. This field must be set before an arbitration parameter is programmed for a target. The value in this field represents the target number (0-4) multiplied by the field size of the arbitration parameter.

REGISTER 38-2: DDRMINLIM: DDR MINIMUM BURST LIMIT REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	_	_	_	_	_	_	_	_
22.40	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	U-0 U-0							
15:8	_	_	_	_	_	_	_	_
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_	_		N	/INLIMIT<4:0	>	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-5 Unimplemented: Read as '0'

bit 4-0 MINLIMIT<4:0>: Minimum Burst Limit bits

These bits determine the minimum number of DDR bursts (two cycles per burst) that a target must have uninterrupted access to without interference from another target.

Note: The TSEL<7:0> bits (DDRTSEL<7:0>) must be programmed with the target number multiplied by the size of the MINLIMIT field (5) before this register is used to program the minimum burst limit for that target.

REGISTER 38-3: DDRRQPER: DDR REQUEST PERIOD REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	_	_	_	_	_	_	_	_
22:16	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
15:8	U-0 U-0							
15.6		_	_	_		_	_	_
7:0	R/W-1 R/W-1							
7:0				RQPE	R<7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-8 **Unimplemented:** Read as '0'

bit 7-0 **RQPER<7:0>:** Request Period bits

These bits in conjunction with the MINCMD<7:0> bits (DDRMINCMD<7:0>

These bits in conjunction with the MINCMD<7:0> bits (DDRMINCMD<7:0>), determine the percentage of total bandwidth that is allocated to the target. If the number of DDR bursts specified by MINCMD<7:0> are not serviced for the target when it has been requesting access for (RQPER<7:0> * 4) number of clocks, the target's requests are treated with high priority until this condition becomes satisfied.

Note: The TSEL<7:0> bits (DDRTSEL<7:0>) must be programmed with the target number multiplied by the size of the MINLIMIT field (5) before this register is used to program the minimum burst limit for that target.

REGISTER 38-4: DDRMINCMD: DDR MINIMUM COMMAND REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	_	_	_	_	_	_	_	_
22.46	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
15:8	U-0 U-0							
13.6	_	_	_	_	_	_	_	_
7:0	R/W-1 R/W-1							
7:0				MINCM	D<7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 MINCMD<7:0>: Minimum Command bits

These bits in conjunction with the RQPER<7:0> bits (DDRRQPER<7:0>) determine the percentage of total bandwidth that is allocated to the target. If the number of DDR bursts specified by MINCMD<7:0> are not serviced for the target when it has been requesting access for (RQPER<7:0> * 4) number of clocks, then the target's requests are treated with high priority until this condition becomes satisfied.

Note: The TSEL<7:0> bits (DDRTSEL<7:0>) must be programmed with the target number multiplied by the size of the MINLIMIT field (5) before this register is used to program the minimum burst limit for that target.

REGISTER 38-5: DDRMEMCON: DDR MEMORY CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	_	_		_	_	_	_	_
22.40	U-0 U-0							
23:16	_	_		_	_	_	_	_
15.0	U-0 U-0							
15:8	_	_		_				
7:0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
	_	_	_	_	_	_	INITDN	STINIT

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-2 Unimplemented: Read as '0'

bit 1 INITDN: Memory Initialize Done bit

Set by software after memory initialization is completed to enable controller for regular operation.

- 1 = All commands have been issued; the controller is enabled for regular operation
- 0 = Controller not enabled for regular operation
- bit 0 STINIT: Memory Initialize Start bit

Set by software after the memory initialization commands are loaded into the DDRCMD registers to start memory initialization.

- 1 = Start memory initialization
- 0 = Do not start memory initialization

REGISTER 38-6: DDRMEMCFG0: DDR MEMORY CONFIGURATION REGISTER 0

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	_	APCHRGEN	_	CLHADDR<4:0>				
22.40	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	_	_	_		C	SADDR<4:0	>	
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	_	_	_	BNKADDR<4:0>				
7:0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_	_		F	RWADDR<4:0	>	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31 Unimplemented: Read as '0'

bit 30 APCHRGEN: Automatic Precharge Enable bit

When set, this bit issues an auto-precharge command to close the bank at the end of every user command. If the command accesses more than one bank before completing, all banks accessed are auto-precharged.

- 1 = Issue an auto-precharged command
- 0 = Do not issue an auto-precharged command
- bit 29 Unimplemented: Read as '0'
- bit 28-24 CLHADDR<4:0>: Column Address Shift bits

These bits specify how many bits the controller address must be right-shifted to put the high part of the column address to the immediate left of the low part of the column address. Used in conjunction with CLAD-DRHMSK (DDRMEMCFG3<26:0>) and CLADDRLMASK (DDRMEMCFG3<26:0>).

- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 CSADDR<4:0>: Chip Select Shift bits

These bits specify which bits of user address space are used to derive the Chip Select address for the DDR memory. Used in conjunction with CSADDRMASK (DDRMEMCFG4<10:8>).

- bit 15-13 Unimplemented: Read as '0'
- bit 12-8 BNKADDR<4:0>: Bank Address Select Shift bits

These bits specify which bits of user address space are used to derive the bank address for the DDR memory. Used in conjunction with BNKADDRMASK (DDRMEMCFG4<2:0>).

- bit 7-5 **Unimplemented:** Read as '0'
- bit 4-0 RWADDR<4:0>: Row Address Select Shift bits

These bits specify which bits of user address space are used to derive the row address for the DDR memory. Used in conjunction with RWADDRMSK (DDRMEMCFG1<12:0>).

REGISTER 38-7: DDRMEMCFG1: DDR MEMORY CONFIGURATION REGISTER 1

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0 U-0								
31:24	_	_	_	_	_		_	_	
00:40	U-0 U-0								
23:16	_	_	_	_	_	_	_	_	
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	_	_	_	RWADDRMSK<12:8>					
7.0	R/W-0 R/W-0								
7:0				RWADDR	MSK<7:0>	•			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

bit 12-0 RWADDRMSK<12:0>: Row Address Mask bits

These bits, which are used in conjunction with the RWADDR<4:0> bits (DDRMEMCFG0<4:0>), specify which bits of user address space are used to derive the row address for the DDR memory.

REGISTER 38-8: DDRMEMCFG2: DDR MEMORY CONFIGURATION REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0 U-0								
31.24	_	_	_	_	_	_	_	_	
00.40	U-0 U-0								
23:16	_	_	_	_	_	_	_	_	
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	_	_	_	CLADDRHMSK<12:8>					
7:0	R/W-0 R/W-0								
7:0			•	CLADDRH	MSK<7:0>	•	•		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

bit 12-0 CLADDRHMSK<12:0>: Column Address High Mask bits

These bits, which are used in conjunction with the CLADDR<4:0> bits (DDRMEMCFG0<28:24>) and the CLADDRLMASK<12:0> bits (DDRMEMCFG3<12:0>), specify which bits of user address space are used to derive the column address for the DDR memory.

REGISTER 38-9: DDRMEMCFG3: DDR MEMORY CONFIGURATION REGISTER 3

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0 U-0								
31.24	_	_	_	_	_	_	_	_	
00.40	U-0 U-0								
23:16	_	_	_	_	_	_	_	_	
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	_	_	_	CLADDRLMSK<12:8>					
7:0	R/W-0 R/W-0								
7:0				CLADDRL	MSK<7:0>	•	•		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

bit 12-0 CLADDRLMSK<12:0>: Column Address Low Mask bits

These bits, which are used in conjunction with the CLADDR<4:0> bits (DDRMEMCFG0<28:24>) and the CLADDRHMASK<12:0> bits (DDRMEMCFG2<12:0>), specify which bits of user address space are used to derive the column address for the DDR memory.

REGISTER 38-10: DDRMEMCFG4: DDR MEMORY CONFIGURATION REGISTER 4

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	_	_	_	_	_	_	_	_
22.40	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	U-0 R/W-0							
15:8	_	_	_	_	_	_	_	CSADDRMSK<2>
7:0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
7:0	CSADDRI	MSK<1:0>	_	_	_	В	NKADDRM	SK<2:0>

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR $(1)^2$ = Bit is set $(0)^2$ = Bit is cleared $(0)^2$

bit 31-9 Unimplemented: Read as '0'

bit 8-6 CSADDRMSK<2:0>: Chip Select Address Mask bits

These bits, which are used in conjunction with the CSADDR<4:0> bits (DDRMEMCFG0<20:16>), determine which bits of user address space are used to derive the Chip Select address for the DDR memory.

bit 5-3 Unimplemented: Read as '0'

bit 2-0 BNKADDRMSK<2:0>: Bank Address Mask bits

These bits, which are used in conjunction with the BNKADDR<4:0> bits (DDRMEMCFG0<12:8>), determine which bits of user address space are used to derive the bank address for the DDR memory.

REGISTER 38-11: DDRREFCFG: DDR REFRESH CONFIGURATION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24:24	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
31:24	_	_	_	_	_	M	AXREFS<2:0	25/17/9/1 24/16/8/0 R/W-0 R/W-0		
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16				REFDL	U-0 R/W-0 R/W-0 R/W-0 MAXREFS<2:0> R/W-0 R/W-0 R/W-0 R/W-0 /<7:0> R/W-0 R/W-0 R/W-0 R/W-0 =<15:8> R/W-0 R/W-0 R/W-0 R/W-0					
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8		REFCNT<15:8>								
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0				REFCN	IT<7:0>					

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

bit 26-24 MAXREFS<2:0>: Maximum Pending Refreshes bits

These bits specify the maximum number of refreshes that may be pending at any time. If there is any idle time when one or more refreshes are pending, the pending refreshes are issued continuously until a new request is received. If there is no idle time while MAXREFS <2:0> refreshes are pending, subsequent requests are stopped until at least one burst of pending refreshes can be issued.

bit 23-16 REFDLY<7:0>: Minimum Refresh-to-Refresh Delay bits

These bits specify the minimum number of clocks required between refreshes.

bit 15-0 REFCNT<15:0>: Refresh Count bits

These bits specify the number of clock cycles corresponding to the average periodic refresh interval.

REGISTER 38-12: DDRPWRCFG: DDR POWER CONFIGURATION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0 U-0									
31:24	_		1	-			_	_		
00.46	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	_	PCHRGPWRDN			SLFREFDLY<9:4>					
45.0	R/W-0 R/W-0									
15:8		SLFREFDLY	/<3:0>			PWDNDLY<	7:4>			
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0		
7:0		PWDNDLY	<3:0>		ASLFREFEN	APWRDNEN	_	_		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-23 Unimplemented: Read as '0'

bit 22 PCHRGPWDN: Precharge Power Down Only bit

Allow automatic entry into Precharge Power Down mode but not into active Power Down mode. If any rows are open they will be Precharged before DDR SDRAM is put into Precharge Power Down mode.

1 = Allow automatic entry into Precharge Power Down mode.

0 = Do not allow automatic entry into Precharge Power Down mode.

bit 21-12 SLFREFDLY<9:0>: Self Refresh Delay bits

Specifies the minimum number of clock cycles of idle time the controller needs to wait before automatic entry into Self Refresh mode. Value represents number of clocks multiplied by 1024.

111111111 = 2111452 clocks

. . . .

000000001 = 1024 clocks

bit 11-4 PWDNDLY<7:0>: Refresh Count bits

Specifies the minimum number of clock cycles of idle time the controller needs to wait before automatic entry into Power Down mode (Active or Precharge). Value represents number of clocks multiplied by 4.

11111111 = 1020 clocks

. . . .

00000001 = 4 clocks

- bit 3 ASLFREFEN: Automatic Self Refresh Enable bit
 - 1 = Allow automatic entry into Self Refresh mode.
 - 0 = Do not allow automatic entry into Self Refresh mode.
- bit 2 **APWRDNEN:** Automatic Power Down Enable bit
 - 1 = Allow automatic entry into Power Down mode.
 - 0 = Do not allow automatic entry into Power Down mode.
- bit 1-0 **Unimplemented:** Read as '0'

REGISTER 38-13: DDRDLYCFG0: DDR DELAY CONFIGURATION REGISTER 0

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24		RMWDI	_Y<3:0>		27/19/11/3 26/18/10/2 25/17/9/1 24/16/8/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 W2WDLY<3:0> R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R2RDLY<<3:0> R/W-0 R/W-0 R/W-0				
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16		W2WCSI	DLY<3:0>						
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8		R2RCSE)LY<3:0>		R2RDLY<3:0>				
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		W2RCSI	DLY<3:0>	•		W2RDL	Y<3:0>	•	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-28 RMWDLY<3:0>: Read-Modify-Write Delay bits

These bits specify the minimum number of clocks required between the read and write commands issued for a read-modify-write operation.

bit 27-24 R2WDLY<3:0>: Read-to-Write Delay bits

These bits specify the minimum number of clocks required between a read command and write command. Commands may be to the same or different Chip Selects.

bit 23-20 W2WCSDLY<3:0>: Write-to-Write Chip Select Delay bits

These bits specify the minimum number of clocks required between two write commands to different Chip Selects.

bit 19-16 W2WDLY<3:0>: Write-to-Write Delay bits

These bits specify the minimum number of clocks required between two write commands to the same Chip Select

bit 15-12 R2RCSDLY<3:0>: Read-to-Read Chip Select Delay bits

These bits specify the minimum number of clocks required between two read commands to different Chip Selects.

bit 11-8 R2RDLY<3:0>: Read-to-Read Delay bits

These bits specify the minimum number of clocks required between two read commands to the same Chip Select.

bit 7-4 W2RCSDLY<3:0>: Write-to-Read Chip Select Delay bits

These bits specify the minimum number of clocks required between a write command and a read command to different Chip Selects.

bit 3-0 W2RDLY<3:0>: Write-to-Read Delay bits

These bits specify the minimum number of clocks required between a write command and a read command to the same Chip Select.

REGISTER 38-14: DDRDLYCFG1: DDR DELAY CONFIGURATION REGISTER 1

Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit		
Range	31/23/15/7	30/22/14/6	29/21/13/5	28/20/12/4	27/19/11/3	26/18/10/2	25/17/9/1	24/16/8/0		
	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24	_	SLFREF EXDLY<8>	NXTDAT AVDLY<4>	W2RCS DLY<4>	W2RDLY<4>	W2PCHRG- DLY<4>	PWRDNE)	KDLY<5:4>		
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23.10		PWRDNE)	XDLY<3:0>			PWRDNMIN	DLY <3:0>			
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8		SLFREFEXDLY<7:0>								
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7.0				SLFREFI	MINDLY<7:0>					

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31 Unimplemented: Read as '0'

bit 30 SLFREFEXDLY: Self Refresh Exit Delay bit 8

This bit specifies the minimum number of clocks required before normal operation after exiting Self Refresh mode.

bit 29 NXTDATAVDLY: Next Data Available Delay bit 4

These bits specify the minimum number of clock cycles required between a Write command and the write data transfer handshake signal "next data request". Also, see the NXTDATAVDLY<3:0> bits (DDRXFERCFG<7:4>).

bit 28 W2RCSDLY: Write-to-Read Chip Select Delay bit 4

This bit specify the minimum number of clocks required between a write command and a read command to different Chip Selects. Also, see W2RCSDLY<3:0> (DDRDLYCFG0<7:4>).

bit 27 **W2RDLY:** Write-to-Read Delay bit 4

This bit specifies the minimum number of clocks required between a write command and a read command to the same Chip Select. Also, see W2RDLY<3:0> (DDRDLYCFG0<3:0>).

bit 26 W2PCHRGDLY: Write to Precharge Delay bit 4

These bits specify the minimum number of clocks required from a Write command to a Precharge command to the same bank as the write. Also, see WPCHRGDLY<3:0> (DDRDLYCFG2<15:12>).

bit 25-20 PWRDNEXDLY<5:0>: Power Down Exit Delay bits

These bits specify the minimum number of clocks required before normal operation after exiting Power Down mode

bit 19-16 PWRDNMINDLY<3:0>: Power Down Minimum Delay bits

These bits specify the minimum number of clocks to stay in Power Down mode after entering it.

bit 15-8 **SLFREFEXDLY<7:0>:** Self Refresh Exit Delay bits

These bits specify the minimum number of clocks required before normal operation after exiting Self Refresh mode.

bit 7-0 **SLFREFMINDLY<7:0>:** Self Refresh Minimum Delay bits

These bits specify the minimum number of clocks to stay in Self Refresh mode after entering it.

REGISTER 38-15: DDRDLYCFG2: DDR DELAY CONFIGURATION REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04:04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24		RBENDE)LY<3:0>							
00:40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16		RAS2CAS	DLY<3:0>		R/W-0 R/W-0 R/W-0 R/W-0 PCHRG2RASDLY<3:0> R/W-0 R/W-0 R/W-0 RAS2RASDLY R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0					
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	5:8 W2PCHRGDLY<3:0>						GDLY<3:0>			
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	_	_	_	_		PCHRGAL	LDLY<3:0>	R/W-0 R/W-0 DLY<3:0> R/W-0 R/W-0 Y<3:0> R/W-0 R/W-0 Y<3:0> R/W-0 R/W-0 PX<3:0> R/W-0 R/W-0		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-28 RBENDDLY<3:0>: Read Burst End Delay bits

These bits specify the minimum number of clocks required from issue of a Read command to the read data burst completion.

bit 27-24 PCHRG2RASDLY<3:0>: Precharge-to-RAS Delay bits

These bits specify the minimum number of clocks required from a Precharge command to a RAS command to the same bank.

bit 23-20 RAS2CASDLY<3:0>: RAS-to-CAS Delay bits

These bits specify the minimum number of clocks required from a RAS command to a CAS command to the same bank.

bit 19-16 RAS2RASDLY<3:0>: Write-to-Read Delay bits

These bits specify the minimum number of clocks required from a RAS command to a RAS command to a different bank on the same Chip Select.

bit 15-12 W2PCHRGDLY<3:0>: Write-to-Precharge Delay bits 3-0

These bits specify the minimum number of clocks required from a Write command to a Precharge command to the same bank as the write.

An overflow bit (DDRDLYCFG1<26>) is provided for delays greater than 15 clock cycles.

bit 11-8 R2PCHRGDLY<3:0>: Read-to-Precharge Delay bits

These bits specify the minimum number of clocks required from a read command to a Precharge command to the same bank as the read.

bit 7-4 Unimplemented: Read as '0'

bit 3-0 PCHRGALLDLY<3:0>: Precharge All Delay bits

These bits specify the minimum number of clocks required from a Precharge all banks command to an Activate or Refresh command.

REGISTER 38-16: DDRDLYCFG3: DDR DELAY CONFIGURATION REGISTER 3

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	_	_	_	_	_	_	_	_		
22.40	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	_	_	FAWTDLY<5:0>							
45.0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8	_	_	RAS2RASSBNKDLY<5:0>							
7.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	_	_	_		RAS2	PCHRGDLY	<4:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-22 Unimplemented: Read as '0'

bit 21-16 FAWTDLY<5:0>: Four Activate Window Time Delay bits

These bits specify the minimum number of clocks within which only four banks may be opened.

bit 15-14 Unimplemented: Read as '0'

bit 13-8 RAS2RASSBNKDLY<5:0>: RAS-to-RAS Same Bank Delay bits

These bits specify the minimum number of clocks required between RAS commands to the same bank.

bit 7-5 Unimplemented: Read as '0'

bit 4-0 RAS2PCHRGDLY<4:0>: RAS-to-Precharge Delay bits

These bits specify the minimum number of clocks required from a RAS command to a Precharge command to the same bank.

REGISTER 38-17: DDRODTCFG: DDR ON-DIE TERMINATION CONFIGURATION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04:04	U-0 U-0								
31:24	_	_	_	_	_	_	_	_	
00:40	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	
23:16	_	0	DTWLEN<2:0)>	_	ODTRLEN<2:0>			
45.0	R/W-0 R/W-0								
15:8		OTDWD	LY<3:0>		OTDRDLY<3:0>				
7.0	R/W-0 R/W-0								
7:0				OTDCSI	EN<7:0>				

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-23 Unimplemented: Read as '0'

bit 22-20 ODTWLEN<2:0>: On-Die Termination Write Length bits

These bits specify the number of clocks ODT is turned on for writes.

bit 19 Unimplemented: Read as '0'

bit 18-16 ODTRLEN<2:0>: On-Die Termination Read Length bits

These bits specify the number of clocks ODT is turned on for reads.

bit 15-12 ODTWDLY<3:0>: On-Die Termination Write Delay bits

These bits specify the number of clocks after a Write command before turning on ODT to the DDR.

bit 11-8 ODTRDLY<3:0>: On-Die Termination Read Delay bits

These bits specify the number of clocks after a Read command before turning on ODT to the DDR.

bit 7-0 ODTCSEN<7:0>: On-Die Termination Chip Select Enable bits

These bits are used with the DDRODTENCFG register (Register 38-20) to program the ODT control for each Chip Select. The value in this field represents the number of Chip Selects multiplied by the Chip Select number to be programmed.

REGISTER 38-18: DDRXFERCFG: DDR TRANSFER CONFIGURATION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	R/W-0	U-0	U-0	U-0	R/W-0	R/W-1	R/W-0	R/W-0	
31:24	BIGENDIAN	_	_	_	MAXBURST<3:0>				
22.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	_	_	_	_	RDATENDLY<3:0>				
45.0	U-0 U-0								
15:8	_	_	_	_	_	_	_	_	
7.0	R/W-0 R/W-0								
7:0		NXTDATAV	/DLY<3:0>			NXTDATRO	QDLY<3:0>		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31 **BIGENDIAN:** Big Endian bit

1 = Data is big endian format0 = Data is little endian format

bit 30-28 Unimplemented: Read as '0'

bit 27-24 MAXBURST<3:0>: Maximum Command Burst Count bits

These bits specify the maximum number of commands that can be written to the DDR controller in Burst mode.

bit 23-20 Unimplemented: Read as '0'

bit 19-16 RDATENDLY<3:0>: PHY Read Data Enable Delay bits

These bits specify the minimum number of clocks Required between issuing a Read command to the PHY and when the "read data enable" signal to the PHY is asserted.

bit 15-8 Unimplemented: Read as '0'

bit 7-4 NXTDATAVDLY<3:0>: Next Data Available Delay bits

These bits specify the minimum number of clock cycles required between issuing a Read command and the read data being received.

bit 3-0 NXTDATRQDLY<3:0>: Next Data Request Delay bits

These bits specify the minimum number of clock cycles required between issuing a Write command and the write data transfer handshake signal "next data request".

REGISTER 38-19: DDRCMDISSUE: DDR COMMAND ISSUE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	_	_		_	_	_	_	_
22:46	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	U-0 U-0							
15:8	_	_	_	_	_	_	_	_
7.0	U-0	U-0	U-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_		VALID		NUMHOST	CMDS<3:0>	

Legend: HC = Hardware Cleared

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-5 Unimplemented: Read as '0'

bit 4 VALID: Host Command Valid bit

When written with a '1', this bit indicates to the controller that the data in the Host command registers are valid, and should be transmitted to the SDRAM. This bit is cleared by hardware when all data has been transmitted.

bit 3-0 NUMHOSTCMDS<3:0>: Number of Host Commands bits

The number of Host commands to be transmitted to the SDRAM.

REGISTER 38-20: DDRODTENCFG: DDR ON-DIE TERMINATION ENABLE CONFIGURATION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	_	_	_	_	_		_	_
22:46	U-0 R/W-0							
23:16	_	_	_	_	_	_	_	ODTWEN
45.0	U-0 U-0							
15:8	_	_	_	_	_	_	_	_
7.0	U-0 R/W-0							
7:0	_	_	_	_	_	_	_	ODTREN

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-17 Unimplemented: Read as '0'

bit 16 ODTWEN: On-Die Termination Write Enable bit

- 1 = The Chip Select represented by the OTDCSEN<7:0> bits (DDRODTCFG<7:0>) has ODT enabled for data reads
- 0 = The Chip Select represented by the OTDCSEN<7:0> bits (DDRODTCFG<7:0>) has ODT disabled for data reads
- bit 15-1 Unimplemented: Read as '0'
- bit 0 **ODTREN:** On-Die Termination Read Enable bit
 - 1 = The Chip Select represented by the OTDCSEN<7:0> bits (DDRODTCFG<7:0>) has ODT enabled for data writes
 - 0 = The Chip Select represented by the OTDCSEN<7:0> bits (DDRODTCFG<7:0>) has ODT disabled for data writes

REGISTER 38-21: DDRMEMWIDTH: DDR MEMORY WIDTH REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	_			_	_	_	_	_
22:16	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
15.0	U-0 U-0							
15:8	_	_	_	_	_	_	_	_
7:0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
7:0	_	_	_	_	HALFRATE	_	_	_

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-4 **Unimplemented:** Read as '0' bit 3 **HALFRATE:** Half-rate Mode bit

The PIC32 always operates in Half-rate mode. This bit must be set during initialization.

1 = Half-rate mode0 = Full-rate mode

bit 2-0 Unimplemented: Read as '0'

REGISTER 38-22: DDRCMD1x: DDR HOST COMMAND 1 REGISTER 'x' ('x' = 0 THROUGH 15)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	R/W-0 R/W-0									
31:24		MDALCMD<7:0>								
22.40	R/W-0 R/W-0									
23:16	WENCMD2	CASCMD2	RASCMD2	CSCMD2<7:3>						
45.0	R/W-0 R/W-0									
15:8	C	SCMD2<2:0	>	CLKENCMD2	WENCMD1	CASCMD1	RASCMD1	CSCMD1<7>		
7.0	R/W-0 R/W-0									
7:0				CSCMD1<6:0>	•			CLKENCMD1		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-24 MDALCMD<7:0>: Mode Address Low Command bits

These bits specify the value to be driven on the SDRAM address bits 7 through 0 when issuing the command.

bit 23 WENCMD2: Write Enable Command 2 bit

This bit specifies the value to be driven on WE_N on the second and subsequent cycles of issuing the com-

bit 22 CASCMD2: Column Address Strobe Command 2 bit

This bit specifies the value to be driven on CAS_N on the second and subsequent cycles of issuing the command

bit 21 RASCMD2: Row Address Strobe Command 2 bit

This bit specifies the value to be driven on RAS_N on the second and subsequent cycles of issuing the command

bit 20-13 CSCMD2<7:0>: Chip Select Command 2 bits

These bits specify the value to be driven on the CS_N signals (maximum of 8) on the second and subsequent cycles of issuing the command.

bit 12 CLKENCMD2: Clock Enable Command 2 bit

This bit specifies the value to be driven on CKE on the second and subsequent cycles of issuing the com-

bit 11 WENCMD1: Write Enable Command 1 bit

This bit specifies the value to be driven on the WE_N on the first cycle of issuing the command.

bit 10 CASCMD1: Column Address Strobe Command 1 bit

This bit specifies the value to be driven on the CAS N on the first cycle of issuing the command.

bit 9 RASCMD1: Row Address Strobe Command 1 bit

This bit specifies the value to be driven on the RAS_N on the first cycle of issuing the command.

bit 8-1 CSCMD1<7:0>: Chip Select Command 1 bit

These bits specify the value to be driven on the CS_N signals (maximum of 8) on the first cycle of issuing the command.

bit 0 CLKENCMD1: Clock Enable Command 1 bit

This bit specifies the value to be driven on CKE on the first cycle of issuing the command.

REGISTER 38-23: DDRCMD2x: DDR HOST COMMAND 2 REGISTER 'x' ('x' = 0 THROUGH 15)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0 U-0									
31:24	_	_	_	_	_	_	_	_		
22.46	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	_	_	_	_		WAIT<8:5>				
45.0	R/W-0 R/W-0									
15:8			WAIT<4:0>			BN	NKADDRCMD<	2:0>		
7.0	R/W-0 R/W-0									
7:0				MDADDR	HCMD<7:0>	•				

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-20 **Unimplemented:** Read as '0' bit 19-11 **WAIT<8:0>:** Wait Command bits

These bits specify the number of clock cycles to wait after issuing a command before issuing the next command.

bit 10-8 BNKADDRCMD<2:0>: Bank Address Command bit

These bits specify the value to be driven on the bank address bits when issuing the command.

bit 7-0 MDADDRHCMD<7:0>: Mode Address High Command bits

These bits specify the value to be driven on the SDRAM address bits 15 through 8 when issuing the command.

REGISTER 38-24: DDRSCLSTART: DDL SELF CALIBRATION LOGIC START REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/ 5	Bit 28/20/12/4	Bit 27/19/11/ 3	Bit 26/18/10/ 2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0	U-0	U-0	R/W-0	U-0	W-0	U-0	R/W-0
31:24	_	_	_	SCLSTART	_	SCLEN	_	_
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	-	_	_			_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6	_	_	_	_	_	_		_
	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R-0	R-0
7:0	_	_	_	_	_	_	SCLUBPASS ⁽¹⁾	SCLLB- PASS ⁽¹⁾

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-29 Unimplemented: Read as '0'

bit 28 SCLSTART: Start Self Calibration Logic bit

1 = Start self calibration

0 = Do not start self calibration

bit 27 Unimplemented: Read as '0'

bit 26 SCLEN: Self Calibration Logic Enable bit

1 = Enable dynamic self calibration logic

0 = Disable dynamic self calibration logic

bit 25-2 Unimplemented: Read as '0'

bit 1 SCLUBPASS: Self Calibration Logic Upper Data Byte Status bit (1)

1 = Self calibration logic for upper data byte is passed0 = Self calibration logic for upper data byte is failed

bit 0 SCLLBPASS: Self Calibration Logic Lower Data Byte Status bit⁽¹⁾

1 = Self calibration logic for lower data byte is passed 0 = Self calibration logic for lower data byte is passed

Note 1: This bit is set by hardware when the SCL process has passed and is complete.

REGISTER 38-25: DDRSCLLAT: DDL SELF CALIBRATION LOGIC LATENCY REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/ 5	Bit 28/20/12/4	Bit 27/19/11/ 3	Bit 26/18/10/ 2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
31.24	_	_	1		_			_
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	_	_	_	_	_	_
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_	1		_			_
7:0	R/W-0	R/W-1	R/W-1	R/W-0	U-0	U-0	R/W-1	R/W-0
7:0		DDRCLK	DLY<3:0>	•		CAPO	CLKDLY<3:0>	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-4 DDRCLKDLY<3:0>: DDR Clock Delay bit

Recommended value is 4.

bit 3-0 CAPCLKDLY<3:0>: Capture Clock Delay bit

Recommended value is 3.

REGISTER 38-26: DDRSCLCFG0: DDR SCL CONFIGURATION REGISTER 0

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24:24	U-0 R/W-1							
31:24	_	_	_	_	_	_	_	ODTCSW
22.40	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	U-0 U-0							
15:8	_	_	_	_	_	_	_	_
7:0	R/W-1	R/W-0	R/W-1	R/W-1	U-0	U-0	R/W-0	R/W-1
7:0		RCASL	AT<3:0>		_	_	DDR2	BURST8

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-25 Unimplemented: Read as '0'

bit 24 ODTCSW: On-Die Termination Chip Select Write bit

 $_{1}$ = ODT is turned on to the DRAM on CS0 during writes performed by the SCL $_{0}$ = ODT is turned off to the DRAM on CS0 during writes performed by the SCL.

bit 23-8 Unimplemented: Read as '0'

bit 7-4 RCASLAT<3:0>: Read CAS Latency bits

DRAM read CAS latency in clock cycles

bit 3-2 Unimplemented: Read as '0'

bit 1 DDR2: DDR2 bit

1 = DDR2 is connected0 = DDR2 is not connected

bit 0 BURST8: PHY Burst 8 bit

 $\tt 1$ = DRAM is in burst 8 mode while running SCL test $\tt 0$ = DRAM is in burst 4 mode while running SCL test

REGISTER 38-27: DDRSCLCFG1: DDR SCL CONFIGURATION REGISTER 1

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	_	_	_	_	_	_	_	_
22.40	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	U-0	U-0	U-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0
15:8	_	_	_	DBLREFDLY		WCASL	AT<3:0>	
7:0	U-0 R/W-1							
7:0	_	_	_	_	_	_	_	SCLCSEN

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-13 Unimplemented: Read as '0'

bit 12 DBLREFDLY: Double Reference Delay bit

Determines whether the PHY will delay an SCL operation following an acknowledge by one or two time intervals. The time interval is a function of the hardware design.

1 = SCL operation delay doubled

0 = SCL operation delay not doubled

bit 11-8 WCASLAT<3:0>: Write CAS Latency bits

DRAM write CAS latency in clock cycles.

bit 7-1 Unimplemented: Read as '0'

bit 0 SCLCSEN: SCL Chip Select Enable bit

1 = Run SCL on Chip Select 0

0 = Do not run SCL on Chip Select 0

REGISTER 38-28: DDRPHYPADCON: DDR PHY PAD CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	R/W-1	R/W-0	R/W-1	U-0	U-0	U-0	U-0
31.24	_	PREAMB	DLY<1:0>	RCVREN	_	_	_	_
22.46	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0
23:16		DRVSTRF	PFET<3:0>			DRVSTRN	IFET<3:0>	
	U-0	R/W-1	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
15:8	_	HALFRATE	WR CMDDLY	_	_	_	NOEXTDLL	EOEN CLKCYC
	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
7:0	ODTPUC	CAL<1:0>	ODTPDO	CAL<1:0>	ADDC DRVDLY	DAT DRVSEL	ODTEN	ODTSEL

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31 Unimplemented: Read as '0'

bit 30-29 PREAMBDLY<1:0>: Preamble Delay bits

Controls the length of the preamble for writes.

11 = Reserved

10 = 1 cycle preamble

01 = 1.5 cycle preamble

00 = 2 cycle preamble

bit 28 **RCVREN:** Receiver Enable bit

1 = Pad receivers on bidirectional I/Os are turned on

0 = Pad receivers on bidirectional I/Os are turned off

bit 27-24 Unimplemented: Read as '0'

bit 23-20 DRVSTRPFET<3:0>: PFET Drive Strength bits

Pad PFET driver output impedance adjustment control

1111 = Maximum drive strength

0000 = Minimum drive strength.

bit 19-16 DRVSTRNFET<3:0>: NFET Drive Strength bits

Pad NFET driver output impedance adjustment control

1111 = Maximum drive strength

0000 = Minimum drive strength.

bit 15 Unimplemented: Read as '0'

bit 14 **HALFRATE:** Half Rate bit

1 = Controller clock is running at half rate with respect to PHY

0 = Controller clock is running at full rate with respect to PHY

bit 13 WRCMDDLY: Write Command Delay bit

This bit should be set to '1' if Write Latency (WL) is an even number.

1 = Write command delay

0 = No Write command delay

bit 12-10 Unimplemented: Read as '0'

REGISTER 38-28: DDRPHYPADCON: DDR PHY PAD CONTROL REGISTER (CONTINUED) **NOEXTDLL:** No External DLL bit 1 = Use internal digital DLL. 0 = Use external DLL. bit 8 **EOENCLKCYC:** Extra Output Enable bit 1 = Drive pad output enables for an extra clock cycle after a write burst 0 = Do not drive pad output enables for an extra clock cycle after a write burst bit 7-6 ODTPUCAL<1:0>: On-Die Termination Pull-up Calibration bits 11 = Maximum ODT impedance 00 = Minimum ODT impedance ODTPFDCAL<1:0>: On-Die Termination Pull-down Calibration bits bit 5-4 11 = Maximum ODT impedance 00 = Minimum ODT impedance bit 3 ADDCDRVSEL: Address and Control Pads Drive Strength Select bit 1 = Full drive strength 0 = 60% driver strength bit 2 **DATDRVSEL:** Data Pad Drive Strength Select bit 1 = Full Drive Strength 0 = 60% Drive Strength **ODTEN:** On-Die Termination Enable bit bit 1 1 = ODT Enabled 0 = ODT Disabled **ODTSEL:** On-Die Termination Select bit bit 0 1 = 150 ohm On-Die Termination 0 = 75 ohm On-Die Termination

REGISTER 38-29: DDRPHYDLLR: DDR PHY DLL RECALIBRATE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
31:24		DLYSTV	'AL<3:0>		_	DISRECALIB	RECALIBC	NT<17:16>
22.40	R/W-0 R/W-0							
23:16				RECALIE	3CNT<15:8>			
45.0	R/W-0 R/W-0							
15:8				RECALI	BCNT<7:0>			
7:0	U-0 U-0							
7:0	_	_	_	_	_	_	_	_

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR $(1)^2$ = Bit is set $(0)^2$ = Bit is cleared $(0)^2$ = Bit is cleared $(0)^2$ = Bit is cleared $(0)^2$ = Bit is cleared $(0)^2$ = Bit is cleared $(0)^2$ = Bit is cleared

bit 31-28 DLYSTVAL<3:0>: Delay Start Value bits

Start value of the digital DLL master delay line. Recommended value is '0011'.

bit 27 Unimplemented: Read as '0'

bit 26 DISRECALIB: Disable Recalibration bit

1 = Do not recalibrate the digital DLL after the first time

0 = Recalibrate the digital DLL in accordance with the value of the RECALIBCNT<17:0> bits

bit 25-8 RECALIBCNT<17:0>: Recalibration Count bits

Determines the period of recalibration of the digital DLL in units of (256 * PHY clock cycles).

bit 7-0 Unimplemented: Read as '0'

REGISTER 38-30: DDRPHYCLKDLY: DDR CLOCK DELTA DELAY REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	_	_	1	-	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	_	_	_	_	1	-	_
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6	_	_	_	_	_			_
7:0	U-0	U-0	R-0	R-0	U-0	R/W-0	R/W-0	R/W-0
7:0	_	_	SCLUBPASS ⁽¹⁾	SCLLBPASS ⁽¹⁾	_	CLKI	DLYDELTA<	2:0>

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-6 Unimplemented: Read as '0

bit 5 SCLUBPASS: Self Calibration Logic Upper Data Byte Status bit (1)

1 = Self calibration logic for upper data byte is passed

0 = Self calibration logic for upper data byte is failed

bit 4 **SCLLBPASS:** Self Calibration Logic Lower Data Byte Status bit⁽¹⁾

 ${\tt 1}$ = Self calibration logic for lower data byte is passed

0 = Self calibration logic for lower data byte is failed

bit 3 Unimplemented: Read as '0'

bit 2-0 CLKDLYDELTA<2:0>: DDR Clock Delay Delta bits

These bits indicate the SCL latency setting programmed per byte lane.

111 **= 7 DDR clocks**

110 = 6 DDR clocks

•

000 = 0 DDR clocks

Note: These bits are automatically programmed by the SCL logic and can also be programmed by the user. This bit is specifically useful in case of SCL retires.

Note 1: These bits indicate the same status as the SCLLBPASS (DDRSCLSTART<0>) and SCLUBPASS (DDRSCLSTART<0>) bits.

39.0 SECURE DIGITAL HOST CONTROLLER (SDHC)

Note:

This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 57. "Secure Digital Host Controller (SDHC)" (DS60001334), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The SDHC module uses a 32-bit System Bus master and slave interface to connect the Host system and standard card interface on the device side.

The core has a built-in DMA controller so that data can be automatically transferred between system memory and the SD/SDIO/eMMC card without intervention from the CPU.

The SDHC module includes the following features:

· SD Association specification compliance:

- SD Host Controller Simplified Specification, version 2.00
- Physical Layer Simplified Specification, version 2.00
- SDIO Simplified Specification, version 2.00
- eMMC Standard: JESD84-A441
- · Default and High-Speed modes of operation
- · 1-bit or 4-bit data transfers
- · Built-in clock divider
- · PIO and ADMA modes of data transfer
- · 3.3V operation
- Interrupt support
- · Stop at block gap

A block diagram of the SDHC module is provided in Figure 39-1.

Note: Transmit and receive buffer addresses in ADMA mode should be word-aligned. When multiple descriptors are used to transfer a single block, all but the last descriptor should have a transfer size in multiples of four.

FIGURE 39-1: SECURE DIGITAL HOST CONTROLLER (SDHC) BLOCK DIAGRAM

39.1 Control Registers
TABLE 39-1: SDHC SFR SUMMARY

	steseЯ IIA	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
	16/0					PE<1:0>	DMAEN											CARDINS	CINHCMD	SBGREQ	I		ICLKEN	CTOEIF	CCIF	CTOEIE	CCE	CCRCEISE	SCISE	Ι	ACNEXEC	<1:0>				FECTOE	FEACNEE
	1//1					RESPTYPE<1:0>	BCEN											CARDST	CINHDAT	CONTREQ	DTXWIDTH	DTOC<3:0>	ICLKSTABLE	CCRCEIF	TXCIF	CCRCEIE	TXCIE	CEBEISE	TXCISE	1	ACTOE	MBLEN<1:0>		_		FECCRCE	FEACTOE
	18/2					1	ACEN<1:0>											CDSLVL	DLACTIVE	RDWTCON	HSEN	DTOC	SDCLKEN	CEBEIF	BGIF	CDEBEIE	BGIE	CEBEISE	BGISE	1	ACCRCE	1	TOCLKFREQ<5:0>	1		FECEBE	FEACEBE FEACCRCE
	19/3					CCRCCEN	ACEN											WPSLVL	1	INTBG	L<1:0>		1	CIDXEIF	DMAIF	CIDXEIE	DMAIE	CIDXEISE	DMAISE	1	ACEBE	ADMA2	TOCLKF		MC3V3<7:0>	FEIDXE	FEACEBE
	20/4		BSIZE<9:0>			CIDXCEN CCRCCEN	DTXDSEL											DATA0SLVL	I	Ι	DMASEL<1:0>	I	I	DTOEIF	BWRDYIF	DTOEIE	BWRDYIE	DTOEISE	BWRDYISE	1	ACIDXE	1		1	MC3V;	FEDTOE	FEACIDXE
	21/5		BSIZE			DPSEL	BSEL											DATA3SLVL DATA2SLVL DATA1SLVL DATA0SLVL	I	I	ı	I	ı	DCRCEIF	BRRDYIF	DCRCEIE	BRRDYIE	DCRCEISE	BRRDYISE	1	ı	HISPEED		1		FEDCRCE	1
	22/6	_				<1:0>	I											DATA2SLVL	_	_	CDTLVL	I	1	DEBEIF	CARDIIF	DEBEIE	CARDIIE	DEBEISE	CARDIISE	1	I	1	1	_		FEDEBE	1
Bits	23/7	BCOUNT<15:0>		ARG<31:16>	ARG<15:0>	CTYPE<1:0>	1	RESP<31:16>	RESP<15:0>	RESP<31:16>	RESP<15:0>	RESP<31:16>	RESP<15:0>	RESP<31:16>	RESP<15:0>	DATA<31:16>	DATA<15:0>	DATA3SLVL	I	Ι	CDSSEL	I	1	CLEIF	CARDRIF	CLEIE	CARDRIE	CLEISE	CARDRISE	1	CNISSE	SRESUME	TOCLKU	Ι		FECLE	FECNIACE
	24/8	B(1			I	Œ		œ		œ		œ				CMDSLVL	WRACTIVE	WKONINT	SDBP	SWRALL		ACEIF	CARDIF	AACEIE	CARDIE	ACEISE	CARDISE	1	I	VOLT3V3		_	I	FEACE	I
	25/9						ı											ı	RDACTIVE	WKONINS	I	SWRCMD		ADEIF	ı	ADEIE	ı	ADEISE	ı	1	I	ı		ı	ı	FEAE	1
	26/10					CIDX<5:0>	I											Ι	BWEN	WKONREM	1	SWRDATA		_	I	_	_	_	_	1	1	1		_	Ι	1	1
	27/11		-			CID	Ι											-	BREN	_	1	-	SDCLKDIV<7:0>	_	-	_	_	_	_	_	1	Ι	BASECLK<7:0>	_	-	-	I
	28/12		I				Ι											Ι	Ι	Ι	I	I	SDC	Ι	I	Ι	Ι	-	Ι	1	I	Ι	BAS	Ι	I	Ι	I
	29/13		Ι				I											Ι	Ι	Ι	1	I		Ι	I	Ι	Ι	1	Ι	1	1	ASYNCINT		Ι	Ι	I	1
	30/14		I			1	Ι											I	I	I	1	1		I	I	Ι	I	Ι	1	1	1	SLOTTYPE<1:0>		1	I	1	15:0 — — — — — — — — — — — — — — — — — — —
	31/15		-			1	Ι											I	_	_	I	Ι		_	EIF	-	FTZIE	-	FTZEISE	1	I			-	Ι	1	
	Bit Range	31:16	N 15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16		31:16		31:16	15:0	31:16	15:0	31:16	15:0	31:16	T 15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	P 15:0	31:16	
	Register Name	SDHC	BLKCON	SDHC	ARG	SDHC	MODE	SHDC	RESPO	SHDC	RESP1	SHDC	RESP2		RESP3	SHDC	DATA	SDHC	STAT1	SDHC	CON1		CONZ	SDHC	INTSTA	SDHC	INTEN	SDHC	INTSEN	SDHC		SDHC	CAP	SDHC	MAXCA	SPHCE	·
	Virtual Address	7000	5000	0000	2002	0000	2002	0,00	200		C014	0100	000	0,00	C01C		C020	7000	C024	0000	CUZS		2020		000	0.034	-000	8800	0000	0000	วรถว	900	C040	aros	5	0500	- Date I

TAB	LE 39-		SDHC	SFR 5	TABLE 39-1: SDHC SFR SUMMARY (CONTINU	RY (CO		ED)											
		,									Bits								ţ
Virtual SeerbbA	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	1/11	16/0	steseЯ IIA
0	SDHC	31:16	I	ı	I	ı	ı	ı	I	I	I	I	I	ı	I	ı	ı	I	0000
C054		15:0	I	-	I	I	ı	I	I	I	I	I	I	Ι	I	ALMERR	AERRST<1:0>	<1:0>	0000
C	SDHC 31:16	31:16								A	ADDR<31:16>								0000
0000		15:0								1	ADDR<15:0>								0000
																			Ī

d: '—' = unimplemented; read as '0'.

REGISTER 39-1: SDHCBLKCON: SDHC BLOCK CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24				BCOUNT	<15:8> ⁽¹⁾			
00.46	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16				BCOUN ⁻	Γ<7:0> ⁽¹⁾			
45.0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
15:8	_	_	_	_	_	_	BSIZE	<9:8> ⁽²⁾
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				BSIZE<	<7:0> ⁽²⁾			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-16 BCOUNT<31:0>: Blocks Count for Current Transfer bits⁽¹⁾

These bits represent the number of blocks. The software sets this value between 1 and 65,535 blocks and the SDHC decrements the count after each block transfer and stops when the count reaches zero.

0xFFFF = 65,535 blocks

0x0002 = 2 blocks

0x0001 = 1 block

0x0000 = Stop count Blocks Count for Current Transfer bits

bit 15-10 Unimplemented: Read as '0'

bit 9-0 BSIZE<9:0>: Transfer Block Size bits⁽²⁾

These bits specify the block size of the data transfer for CMD17, CMD18, CMD24, CMD25, and CMD53.

0x200 = 512 bytes

0x1FF = 511 bytes

•

.

0x002 = 2 bytes

0x001 = 1 byte

0x000 = No data transfer

- Note 1: These bits are only used when the BCEN bit (SDHCMODE<1>) is set to '1' and is valid only for multiple block transfers. The BCOUNT<15:0> bits need not be set if the BSIZE bit (SDHCMODE<5>) is set to '0'.
 - **2:** These bits can only be accessed when no transactions are in progress. Read operations during transfers will return an invalid value and write operations to these bits will be ignored.

REGISTER 39-2: SDHCARG: SDHC ARGUMENT REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0 R/W-0							
31:24				ARG<	31:24>			
00.40	R/W-0 R/W-0							
23:16				ARG<	23:16>			
45.0	R/W-0 R/W-0							
15:8				ARG<	:15:8>			
7:0	R/W-0 R/W-0							
7:0				ARG	<7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 ARG<31:0>: Command Argument bits

REGISTER 39-3: SDHCMODE: SDHC MODE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04:04	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	_	_			CIDX<5:0>	(1)		
22.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
23:16	CTYPI	E<1:0>	DPSEL	CIDXCEN ⁽²⁾	CCRCCEN ⁽³⁾	_	RESPTYF	PE<1:0>
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	_	_	_	_	_	_	_
7.0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_	BSEL	DTXDSEL	ACEN<	:1:0>	BCEN	DMAEN

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-30 Unimplemented: Read as '0'

bit 29-24 CIDX<5:0>: Command Index bits(1)

These bits represent the command number (0-63).

bit 23-22 CTYPE<1:0>: Command Type bits

11 **=** Abort

10 = Resume

01 = Suspend

00 = Normal

bit 21 DPSEL: Data Present Select bit

1 = Data is present

0 = Data is not present

bit 20 CIDXCEN: Command Index Check Enable bit(2)

1 = Command index check is enabled

0 = Command index check is disabled

bit 19 **CCRCCEN:** Command CRC Check Enable bit⁽³⁾

1 = Command CRC check is enabled

0 = Command CRC check is disabled

bit 18 Unimplemented: Read as '0'

bit 17-16 RESPTYPE<1:0>: Response Type Select bits

11 = Response length 48; check busy after response

10 = Response length 48

01 = Response length 136

00 = No response

bit 15-6 **Unimplemented:** Read as '0'

bit 5 BSEL: Multiple/Single Block Select bit

- 1 = Multiple block, set when issuing multiple transfer commands using DAT lines
- 0 = Single block
- **Note 1:** Refer to bits 45-40 of the command format in the "SD Host Controller Simplified Specification" (version 2.00).
 - 2: If these bits are set to '1', the SDHC will check the index field in the response to see if it has the same value as the CIDX<5:0> bits, if not, it will be reported as a command index error.
 - 3: If these bits are set to '1', the SDHC will check the CRC field in the response and reports a command CRC error upon a CRC error detection.

REGISTER 39-3: SDHCMODE: SDHC MODE REGISTER (CONTINUED)

- bit 4 DTXDSEL: Data Transfer Direction Select bit
 - 1 = Read (card to SDHC)
 - 0 = Write (SDHC to card)
- bit 3-2 ACEN<1:0>: Auto CMD12 Enable bits

Auto CMD12 is used to stop multiple-block read/write operations.

- 11 = Reserved
- 10 = Reserved
- 01 = Auto CMD12 is enabled
- 00 = Auto CMD 12 is disabled
- bit 1 BCEN: Block Count Enable Bit
 - 1 = Block count is enabled
 - 0 = Block count is disabled
- bit 0 **DMAEN:** DMA Enable bit
 - 1 = DMA (ADMA) is used to transfer data
 - 0 = CPU is used to transfer data
- **Note 1:** Refer to bits 45-40 of the command format in the "SD Host Controller Simplified Specification" (version 2.00).
 - 2: If these bits are set to '1', the SDHC will check the index field in the response to see if it has the same value as the CIDX<5:0> bits, if not, it will be reported as a command index error.
 - 3: If these bits are set to '1', the SDHC will check the CRC field in the response and reports a command CRC error upon a CRC error detection.

REGISTER 39-4: SDHCRESPx: SDHC RESPONSE REGISTER 'x' ('x' = 0-3)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R-0 R-0							
31:24				RESP<	:31:24>			
22.46	R-0 R-0							
23:16				RESP<	:23:16>			
45.0	R-0 R-0							
15:8				RESP-	<15:8>			
7:0	R-0 R-0							
7:0				RESP	2<7:0>			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 RESP<31:0>: Response bits

These bits indicate the bit positions of Responses [31:0] defined in the "SD Host Controller Simplified Specification (version 2.00). Refer to Table 39-2 for full bit definitions.

TABLE 39-2: RESPONSE BIT DEFINITION FOR EACH RESPONSE TYPE

Response Type (see Note 1)	Response Meaning	Response Register
R1, R1b (normal response)	Card status	SDHCRESP0<31:0>
R1b (Auto CMD12 response)	Card status for Auto CMD12	SDHCRESP3<31:0>
R2 (CID, CSD register)	CID or CSD register	SDHCRESP0<31:0> SDHCRESP1<31:0> SDHCRESP2<31:0> SDHCRESP3<31:0>
R3 (OCR register)	OCR register for memory	SDHCRESP0<31:0>
R4 (OCR register)	OCR register for I/O, etc.	SDHCRESP0<31:0>
R5, R5b	SDIO response	SDHCRESP0<31:0>
R6 (published RCA response)	New published RCA<31:16>, etc.	SDHCRESP0<31:0>

Note 1: For additional information, refer to the "SD Host Controller Simplified Specification" (version 2.00), the "Physical Layer Simplified Specification" (version 2.00), and the "SDIO Simplified Specification" (version 2.00). These documents are available for download by visiting the SD Association web site at: http://www.sdcard.org/downloads/pls/simplified specs/archive/index.html

REGISTER 39-5: SDHCDATA: SDHC DATA REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R/W-0 R/W-0										
31:24		DATA<31:24>									
22:46	R/W-0 R/W-0										
23:16	DATA<23:16>										
45.0	R/W-0 R/W-0										
15:8	DATA<15:8>										
7:0	R/W-0 R/W-0										
7:0				DATA	<7:0>						

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 DATA<31:0>: Buffer Data bits

These bits are used to access bits 31 through 0 of the internal data buffer.

REGISTER 39-6: SDHCSTAT1: SDHC STATUS REGISTER 1

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 R-x, HC							
31:24	_	I			1	_	_	CMDSLVL
23:16	R-x, HC R-x, HC							
23.10	DATA3SLVL	DATA2SLVL	DATA1SLVL	DATA0SLVL	WPSLVL	CDSLVL	CARDST	CARDINS
45.0	U-0	U-0	U-0	U-0	R-0, HC	R-0, HC	R-0, HC	R-0, HC
15:8	_		_	_	BREN	BWEN	RDACTIVE	WRACTIVE
7:0	U-0	U-0	U-0	U-0	U-0	R-0, HC	R-0, HC	R-0, HC
7:0	_	_	_	_	_	DLACTIVE	CINHDAT	CINHCMD

Legend: HC = Hardware Cleared

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR $(1)^2$ = Bit is set $(0)^2$ = Bit is cleared $(0)^2$

bit 31-25 Unimplemented: Read as '0'

bit 24 CMDSLVL: Command Line Signal Level bit

1 = CMD line is high 0 = CMD line is low

bit 23 DATA3SLVL: DATA3 Signal Level bit

1 = DAT3 line is high0 = DAT3 line is low

bit 22 DATA2SLVL: DATA2 Signal Level bit

1 = DAT2 line is high0 = DAT2 line is low

bit 21 DATA1SLVL: DATA1 Signal Level bit

1 = DAT1 line is high 0 = DAT1 line is low

bit 20 DATA0SLVL: DATA0 Signal Level bit

1 = DAT0 line is high 0 = DAT0 line is low

bit 19 WPSLVL: Write-protect Signal Level bit

1 = Write-protect is disabled0 = Write-protect is enabled

bit 18 CDSLVL: Card Detect Signal Level bit

1 = Card is not present0 = Card is present

bit 17 CARDST: Card State Stable bit

1 = No card or inserted

0 = Reset or debouncingCARDINS: Card Inserted bit

1 = Card inserted

0 = Reset or debouncing or no card

bit 15-12 **Unimplemented:** Read as '0'

bit 11 BREN: Buffer Read Enable bit

1 = Buffer read is enabled

0 = Buffer read is disabled

Note: This register is used to recover from errors and for debugging.

bit 16

REGISTER 39-6: SDHCSTAT1: SDHC STATUS REGISTER 1 (CONTINUED)

bit 10 **BWEN:** Buffer Write Enable bit

1 = Buffer write is enabled

0 = Buffer write is disabled

bit 9 RDACTIVE: Read Transfer Active bit

1 = Data is being transferred

0 = No valid data

bit 8 WRACTIVE: Write Transfer Active bit

1 = Data is being transferred

0 = No valid data

bit 7-3 Unimplemented: Read as '0'

bit 2 **DLACTIVE:** DAT Line Active bit

1 = DAT line is active0 = DAT line is inactive

bit 1 **CINHDAT:** Command Inhibit (DAT) bit

1 = A command that uses the DAT line cannot be issued 0 = A command that uses the DAT line can be issued

bit 0 CINHCMD: Command Inhibit (CMD) bit

1 = A command cannot be issued

0 = A command can only be issued using the CMD line

Note: This register is used to recover from errors and for debugging.

REGISTER 39-7: SDHCCON1: SDHC CONTROL REGISTER 1

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
31:24	_	_	_	-		WKONREM	WKONINS	WKONINT
22.40	U-0	U-0	U-0	U-0	R/W-0	R/W-0	HC, R/W-0	R/W-0
23:16	_	_	_	_	INTBG	RDWTCON	CONTREQ	SBGREQ
45.0	U-0 R/W-0							
15:8	_	_	_	-		_	-	SDBP
7:0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
7:0	CDSSEL	CDTLVL	_	DMAS	EL<1:0>	HSEN	DTXWIDTH	

Legend: HC = Hardware Cleared

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

bit 26 WKONREM: Wake-up Event Enable on SD Card Removal bit

1 = Wake-up event is enabled

0 = Wake-up event is disabled

bit 25 **WKONINS:** Wake-up Event Enable on SD Card Insertion bit

1 = Wake-up event is enabled

0 = Wake-up event is disabled

bit 24 WKONINT: Wake-up Event Enable on SD Card Interrupt bit

1 = Wake-up event is enabled

0 = Wake-up event is disabled

bit 23-20 Unimplemented: Read as '0'

bit 19 INTBG: Interrupt at Block Gap bit

1 = Interrupt is enabled

0 = Interrupt is disabled

bit 18 RDWTCON: Read Wait Control bit

1 = Read wait control is enabled

0 = Read wait control is disabled

bit 17 CONTREQ: Continue Request bit

A write to this bit is ignored if STOPREQ is set to '1'.

1 = Restart

0 = No effect

bit 16 SBGREQ: Stop at Block Gap Request bit

1 = Stop

0 = Transfer

bit 15-9 Unimplemented: Read as '0'

bit 8 SDBP: SD Bus Power bit

1 = Bus power is on

0 = Bus power is off

bit 7 CDSSEL: Card Detect Signal Selection bit

1 = The card detect test level is select (for test purposes)

0 = SDCDx is selected (for normal use)

bit 6 CDTLVL: Card Detect Test Level bit

1 = Card is inserted

0 = Card is not inserted

REGISTER 39-7: SDHCCON1: SDHC CONTROL REGISTER 1 (CONTINUED)

bit 5 **Unimplemented:** Read as '0'

bit 4-3 DMASEL<1:0>: DMA Select bits

11 = Reserved

10 = 32-bit address ADMA2 is selected

01 = Reserved 00 = Reserved

bit 2 HSEN: High-Speed Enable bit

1 = High-Speed mode is enabled0 = Normal Speed mode is enabled

bit 1 DTXWIDTH: Data Transfer Width bit

1 = 4-bit mode 0 = 1-bit mode

bit 0 Unimplemented: Read as '0'

REGISTER 39-8: SDHCCON2: SDHC CONTROL REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
24.24	U-0	U-0	U-0	U-0	U-0	R/W-0, HC	R/W-0, HC	R/W-0, HC		
31:24	_	_	_	_	_	SWRDATA	SWRCMD	SWRALL		
22:46	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	_	_	_	_	DTOC<3:0>					
15.0	R/W-0 R/W-0									
15:8	SDCLKDIV<7:0>									
	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
7:0	1	1	1	-		SDCLKEN	ICLK STABLE	ICLKEN		

Legend: HC = Hardware Cleared

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

bit 26 **SWRDATA:** Software Reset for DATA Line bit

1 = DMA and part of the data logic are reset

0 = Continue operation

bit 25 **SWRCMD:** Software Reset for CMD Line bit

1 = Clears Present State and Interrupt Status registers and CMD bits

0 = Continue operation

bit 24 SWRALL: Software Reset for All bit

1 = Issue reset command and reinitialize the SD card

0 = Divided Clock mode is selected

bit 23-20 Unimplemented: Read as '0'

bit 19-16 DTOC<3:0>: Data Time-out Counter Value bits

1111 = Reserved

1110 = Time-out clock x 2²⁷

:

 $0001 = \text{Time-out clock x } 2^{14}$

 $0001 = \text{Time-out clock x } 2^{13}$ $0000 = \text{Time-out clock x } 2^{13}$

bit 15-8 SDCLKDIV<7:0>: SDCLK Divider Select bits

When 8-bit Divided Clock mode is selected:

0x80 - Base clock divided by 256

0x40 - Base clock divided by 128

0x20 - Base clock divided by 64 0x10 - Base clock divided by 32

0x08 - Base clock divided by 16

0x04 - Base clock divided by 8

0x02 - Base clock divided by 4

0x01 - Base clock divided by 2

0x00 - Base clock

bit 7-3 Unimplemented: Read as '0'

bit 2 SDCLKEN: SD Clock Enable bit

1 = SD clock is enabled

0 = SD clock is disabled

bit 1 ICLKSTABLE: Internal Clock Stable bit

1 = Internal clock is ready

0 = Internal clock is not ready

bit 0 ICLKEN: Internal Clock Enable bit

1 = Oscillate

0 = Stop

REGISTER 39-9: SDHCINTSTAT: SDHC INTERRUPT STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HC	R/W-0, HC
31:24	I	_	_		_	1	ADEIF	ACEIF
00.40	R/W-0, HC R/W-0, HC							
23:16	CLEIF	DEBEIF	DCRCEIF	DTOEIF	CIDXEIF	CEBEIF	CCRCEIF	CTOEIF
45.0	R-0, HC	U-0	U-0	U-0	U-0	U-0	U-0	R-0, HC
15:8	EIF	_	_		_	_	-	CARDIF
7:0	R/W-0, HC R/W-0, HC							
7:0	CARDRIF	CARDIIF	BRRDYIF	BWRDYIF	DMAIF	BGIF	TXCIF	CEIF

Legend: HC = Hardware Cleared

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-26 Unimplemented: Read as '0'

bit 25 ADEIF: ADMA Error Interrupt Flag bit

1 = ADMA error has occurred

0 = ADMA error has not occurred

bit 24 ACEIF: Auto CMD12 Error Interrupt Flag bit

1 = Auto CMD12 error has occurred

0 = Auto CMD12 error has not occurred

bit 23 CLEIF: Current-Limit Error Interrupt Flag bit

1 = Current-limit error has occurred

0 = Current-limit error has not occurred

bit 22 **DEBEIF:** Data End Bit Error Interrupt Flag bit

1 = Data End bit error has occurred

0 = Data End bit error has not occurred

bit 21 DCRCEIF: Data CRC Error Interrupt Flag bit

1 = Data CRC error has occurred

0 = Data CRC error has not occurred

bit 20 DTOEIF: Data Time-out Error Interrupt Flag bit

1 = Data time-out error has occurred

0 = Data time-out error has not occurred

bit 19 **CIDXEIF:** Command Index Error Interrupt Flag bit

1 = Command index error has occurred

0 = Command index error has not occurred

bit 18 **CEBEIF:** Command End Bit Error Interrupt Flag bit

1 = End bit error was generated

0 = End bit error was not generated

bit 17 CCRCEIF: Command CRC Error Interrupt Flag bit

1 = Command CRC error has occurred

0 = Command CRC error has not occurred

bit 16 CTOEIF: Command Time-out Error Interrupt Flag bit

1 = Command time-out error has occurred

0 = Command time-out error has not occurred

bit 15 **EIF:** Error Interrupt Flag bit

This bit is set if any or all bits, 0 through 9, in this register are set.

1 = Error was detected

0 = No error was detected

REGISTER 39-9: SDHCINTSTAT: SDHC INTERRUPT STATUS REGISTER (CONTINUED)

bit 14-9	Unimplemented: Read as 101
bit 8	CARDIF: Card Interrupt Status bit
	1 = Generate card interrupt
	0 = Do not generate card interrupt
bit 7	CARDRIF: Card Removal Interrupt Flag bit
	1 = Card has been removed
	0 = Card state is stable or debouncing
bit 6	CARDIIF: Card Insertion Interrupt Flag bit

- 1 = Card has been inserted
- 0 = Card state is stable or debouncing
- bit 5 BRRDYIF: Buffer Read Ready Interrupt Flag bit
 - 1 = Ready to read buffer0 = Not ready to read buffer
- bit 4 BWRDYIF: Buffer Write Ready Interrupt Flag bit
 - 1 = Ready to write buffer0 = Not ready to write buffer
- bit 3 **DMAIF:** DMA Interrupt Status bit 1 = DMA interrupt was generated
 - 0 = DMA interrupt was generated
- bit 2 **BGIF:** Block Gap Interrupt Flag bit
 - 1 = Transaction stopped at block gap0 = No block gap event has occurred
- bit 1 **TXEIF:** Transfer Complete Interrupt Flag bit
 - 1 = Command execution has completed
 - 0 = Command execution has not completed
- bit 0 CEIF: Command Complete Interrupt Flag bit
 - 1 = Command is complete
 - 0 = Command is not complete

REGISTER 39-10: SDHCINTEN: SDHC INTERRUPT FLAG ENABLE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HC	R/W-0, HC
31:24	-	_	_	-	_	_	ADEFIE	ACEFIE
22.46	R/W-0, HC R/W-0, HC							
23:16	CLEFIE	DEBEFIE	DCRCEFIE	DTOEFIE	CIDXEFIE	CDEBEFIE	CCRCEFIE	CTOEFIE
45.0	R-0, HC	U-0	U-0	U-0	U-0	U-0	U-0	R-0, HC
15:8	FTZIE	_	_	_	_	_	-	CARDIE
7.0	R/W-0, HC R/W-0, HC							
7:0	CARDRIE	CARDIIE	BRRDYIE	BWRDYIE	DMAIE	BGIE	TXEIE	CEIE

Legend: HC = Hardware Cleared

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 21-26 Unimplemented: Read as '0'

bit 25 ADEFIE: ADMA Interrupt Flag Error Enable bit

1 = ADMA error interrupt flag is enabled

0 = ADMA error interrupt flag is masked

bit 24 ACEFIE: Auto CMD12 Interrupt Flag Error Enable bit

1 = Auto CMD12 error interrupt flag is enabled

0 = Auto CMD12 error interrupt flag is masked

bit 23 CLEFIE: Current-Limit Interrupt Flag Error Enable bit

1 = Current-limit error interrupt flag is enabled

0 = Current-limit error interrupt flag is masked

bit 22 **DEBEFIE:** Data End Bit Interrupt Flag Error Enable bit

1 = Data End bit error interrupt flag is enabled

0 = Data End error interrupt flag is masked

bit 21 DCRCEFIE: Data CRC Interrupt Flag Error Enable bit

1 = Data CRC error interrupt flag is enabled

0 = Data CRC error interrupt flag is masked

bit 20 **DTOEFIE:** Data Time-out Interrupt Flag Error Enable bit

1 = Data time-out error interrupt flag is enabled

0 = Data time-out error interrupt flag is masked

bit 19 CIDXEFIE: Command Index Interrupt Flag Error Enable bit

1 = Command index error interrupt flag is enabled

 $_{
m 0}$ = Command index error interrupt flag is masked

bit 18 CDEBEFIE: Command End Bit Interrupt Flag Error Enable bit

1 = Command End bit error interrupt flag is enabled

0 = Command End bit error interrupt flag is masked

1 = Command CRC error interrupt flag is enabled

0 = Command CRC error interrupt flag is masked

bit 16 CTOEFIE: Command Time-out Interrupt Flag Error Enable bit

1 = Command time-out error interrupt flag is enabled

0 = Command time-out error interrupt flag is masked

bit 15 **FTZIE:** Fixed to Zero Interrupt Flag Enable bit

This bit is set if any or all bits, 0 through 9, in this register are set.

1 = Error was detected

0 = No error was detected

REGISTER 39-10: SDHCINTEN: SDHC INTERRUPT FLAG ENABLE REGISTER (CONTINUED)

bit 8	CARDIE: Card Interrupt Flag Enable bit 1 = Card interrupt flag is enabled 0 = Card interrupt flag is masked
bit 7	CARDRIE: Card Removal Interrupt Flag Enable bit 1 = Card removal interrupt flag is enabled 0 = Card removal interrupt flag is masked
bit 6	CARDIIE: Card Insertion Interrupt Flag Enable bit 1 = Card insertion interrupt flag is enabled 0 = Card insertion interrupt flag is masked
bit 5	BRRDYIE: Buffer Read Ready Interrupt Flag Enable bit 1 = Buffer read ready interrupt flag is enabled 0 = Buffer read ready interrupt flag is masked
bit 4	BWRDYIE: Buffer Write Ready Interrupt Flag Enable bit 1 = Buffer write ready interrupt flag is enabled 0 = Buffer write ready interrupt flag is masked

bit 3 **DMAIE:** DMA Interrupt Flag Enable bit

bit 14-9 Unimplemented: Read as '0'

- 1 = DMA interrupt flag is enabled
- 0 = DMA interrupt flag is masked
- bit 2 BGIE: Block Gap Interrupt Flag Enable bit
 - $_{1}$ = Block gap event interrupt flag is enabled
 - 0 = Block gap event interrupt flag is masked
- bit 1 TXEIE: Transfer Complete Interrupt Flag Enable bit
 - 1 = Transfer complete interrupt flag is enabled
 - 0 = Transfer complete interrupt flag is masked
- bit 0 CEIE: Command Complete Interrupt Flag Enable bit
 - 1 = Command complete interrupt flag is enabled
 - 0 = Command complete interrupt flag is masked

REGISTER 39-11: SDHCINTSEN: SDHC INTERRUPT SIGNAL ENABLE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HC	R/W-0, HC
31:24	_	_	_	-		-	ADEISE	ACEISE
22.40	R/W-0, HC R/W-0, HC							
23:16	CLEISE	DEBEISE	DCRCEISE	DTOEISE	CIDXEISE	CEBEISE	CCRCEISE	CTOEISE
45.0	R-0, HC	U-0	U-0	U-0	U-0	U-0	U-0	R-0, HC
15:8	FTZEISE	_	_	_		_	_	CARDISE
7.0	R/W-1, HC R/W-1, HC							
7:0	CARDRISE	CARDIISE	BRRDYISE	BWRDYISE	DMAISE	BGISE	TXEISE	CEISE

Legend: HC = Hardware Cleared

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-26 Unimplemented: Read as '0'

bit 25 ADEISE: ADMA Error Interrupt Signal Enable bit

1 = ADMA error signal is enabled

0 = ADMA error signal is masked

bit 24 ACEISE: Auto CMD12 Error Interrupt Signal Enable bit

1 = Auto CMD12 error signal is enabled

0 = Auto CMD12 error signal is masked

bit 23 CLEISE: Current-Limit Error Interrupt Signal Enable bit

1 = Current-limit error signal is enabled

0 = Current-limit error signal is masked

bit 22 **DEBEISE:** Data End Bit Error Interrupt Signal Enable bit

1 = Data end bit error signal is enabled

0 = Data end bit error signal is masked

bit 21 DCRCEISE: Data CRC Error Interrupt Signal Enable bit

1 = Data CRC error signal is enabled

0 = Data CRC error signal is masked

bit 20 DTOEISE: Data Time-out Error Interrupt Signal Enable bit

1 = Data time-out error signal is enabled

0 = Data time-out error signal is masked

bit 19 **CIDXEISE:** Command Index Error Interrupt Signal Enable bit

1 = Command index error signal is enabled

0 = Command index error signal is masked

bit 18 **CEBEISE:** Command End Bit Error Interrupt Signal Enable bit

1 = Command End bit error signal is enabled

0 = Command End bit error signal is masked

1 = Command CRC error signal is enabled

0 = Command CRC error signal is masked

bit 16 CTOEISE: Command Time-out Error Interrupt Signal Enable bit

1 = Command time-out error signal is enabled

0 = Command time-out error signal is masked

bit 15 FTZEISE: Fixed to Zero Error Interrupt Signal Enable bit

This bit is set if any or all bits, 0 through 9, in this register are set.

1 = Error was detected

0 = No error was detected

REGISTER 39-11: SDHCINTSEN: SDHC INTERRUPT SIGNAL ENABLE REGISTER (CONTINUED)

bit 14-9	Unimplemented: Read as '0'
hit 8	CAPRISE: Card Interrunt Signal F

- bit 8 CARDISE: Card Interrupt Signal Enable bit
 - 1 = Card interrupt signal is enabled
 - 0 = Card interrupt signal is masked
- bit 7 CARDRISE: Card Removal Interrupt Signal Enable bit
 - 1 = Card removal signal is enabled
 - 0 = Card removal signal is masked
- bit 6 CARDIISE: Card Insertion Interrupt Signal Enable bit
 - 1 = Card insertion signal is enabled
 - 0 = Card insertion signal is masked
- bit 5 BRRDYISE: Buffer Read Ready Interrupt Signal Enable bit
 - 1 = Buffer read ready signal is enabled
 - 0 = Buffer read ready signal is masked
- bit 4 BWRDYISE: Buffer Write Ready Interrupt Signal Enable bit
 - 1 = Buffer write ready signal is enabled
 - 0 = Buffer write ready signal is masked
- bit 3 **DMAISE:** DMA Interrupt Signal Enable bit
 - 1 = DMA interrupt signal is enabled
 - 0 = DMA interrupt signal is masked
- bit 2 BGISE: Block Gap Interrupt Signal Enable bit
 - 1 = Block gap event signal is enabled
 - 0 = Block gap event signal is masked
- bit 1 **TXEISE:** Transfer Complete Interrupt Signal Enable bit
 - 1 = Transfer complete signal is enabled
 - 0 = Transfer complete signal is masked
- bit 0 CEISE: Command Complete Interrupt Signal Enable bit
 - 1 = Command complete signal is enabled
 - 0 = Command complete signal is masked

REGISTER 39-12: SDHCSTAT2: SDHC STATUS REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0 U-0							
31:24	_	_	_	_	_	_	_	_
22.40	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	U-0 U-0							
15:8	_	_	_	_	_	_	_	_
7:0	R-0, HC	U-0	U-0	R-0, HC	R-0, HC	R-0, HC	R-0, HC	R-0, HC
	CNISSE	_	_	ACIDXE	ACEBE	ACCRCE	ACTOE	ACNEXEC

Legend: HC = Hardware Cleared

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7 CNISSE: Command Not Issued by Auto CMD12 Error bit

1 = Command was not issued

0 = No error

bit 6-5 Unimplemented: Read as '0'

bit 4 ACIDXE: Auto CMD12 Index Error bit

1 = Index error was generated

0 = Index error was not generated

bit 3 ACEBE: Auto CMD12 End Bit Error bit

1 = End bit error was generated

0 = End bit error was not generated

bit 2 ACCRCE: Auto CMD12 CRC Error bit

1 = CRC error was generated

0 = CRC error was not generated

bit 1 ACTOE: Auto CMD12 Time-out Error bit

1 = Time-out error was generated

0 = Time-out error was not generated

bit 0 ACNEXEC: Auto CMD12 Not Executed bit

1 = Auto CMD12 was not executed

0 = Auto CMD12 was executed

REGISTER 39-13: SDHCCAP: SDHC CAPABILITIES REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0 R-1, HS								
31:24		_	_	_	_		_	VOLT3V3	
22:16	R-x, HS	U-0	R-x, HS	U-0	R-x, HS	U-0	R-0, HS	R-0, HS	
23:16	SRESUME	_	HISPEED	_	ADMA2	_	MBLE	MBLEN<1:0>	
45.0	U-0	U-0	R-x, HS R-x, HS						
15:8		_			BASEC	CLK<5:0>			
7:0	R-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0	
7:0	TOCLKU	_			TOCLKF	REQ<5:0>			

Legend: HS = Hardware settable

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-25 Unimplemented: Read as '0'

bit 24 VOLT3V3: 3.3V Voltage Support bit

1 = Voltage of 3.3V is supported

bit 23 SRESUME: Suspend/Resume Support bit

1 = Suspend/resume is supported0 = Suspend/resume is not supported

bit 22 Unimplemented: Read as '0'

bit 21 HISPEED: High-speed Support bit

1 = High speed is supported

0 = High speed is not supported

bit 20 **Unimplemented:** Read as '0'

bit 19 ADMA2: ADMA2 Support bit

1 = ADMA2 is supported

0 = ADMA2 is not supported

bit 18 Unimplemented: Read as '0'

bit 17-16 MBLEN<1:0>: Maximum Block Length bits

11 = Reserved

10 = 2048

01 = 1024

00 = 512

bit 15-14 Unimplemented: Read as '0'

bit 13-8 BASECLK<5:0>: Base Clock Frequency for SDCLK bits

111111 = 63 MHz

111110 = 62 MHz

111101 **= 61 MHz**

:

000010 = 2 MHz

000001 **= 1 MHz**

000000 = Reserved

bit 7 TOCLKU: Time-out Clock Unit bit

1 = Time-out clock unit is in kHz

0 = Time-out clock unit is in MHz

bit 6 Unimplemented: Read as '0'

REGISTER 39-13: SDHCCAP: SDHC CAPABILITIES REGISTER (CONTINUED)

bit 5-0 **TOCLKFREQ<5:0>:** Time-out Clock Frequency bits

The TOCLKU bit defines the unit, either kHz or MHz, of these bit values.

111111 = 63 kHz or 63 MHz 111110 = 62 kHz or 62 MHz 111101 = 61 kHz or 61 MHz . . 000010 = 2 kHz or 2 MHz 000001 = 1 kHz or 1 MHz

000000 = Reserved

REGISTER 39-14: SDHCMAXCAP: SDHC MAXIMUM CURRENT CAPABILITIES REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	_	_		_			-	_
22.46	U-0 U-0							
23:16	_	_	_	_	_	_	_	_
45.0	U-0 U-0							
15:8	_	_	_	_	_	_	_	_
7.0	R-x, HS R-x, HS							
7:0				MC3V	3<7:0>			

Legend: HS = Hardware Set

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 MC3V3<7:0>: Maximum Current for 3.3V bits

11111111 = 1020 mA 111111110 = 1016 mA

11111101 **= 1012 mA**

•

00000011 **= 12 mA**

00000010 **= 8 mA**

00000001 **= 4 mA**

00000000 = Reserved

REGISTER 39-15: SDHCFE: SDHC FORCE EVENT REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	W-0, HC	W-0, HC
31:24		_	_	_	_	_	FEADE	FEACE
22.46	W-0, HC W-0, HC							
23:16	FECLE	FEDEBE	FEDCRCE	FEDTOE	FEIDXE	FECEBE	FECCRCE	FECTOE
45.0	U-0 U-0							
15:8	_	_	_	_	_	_	_	_
7.0	W-0	U-0	U-0	W-0	W-0	W-0	W-0	W-0
7:0	FECNIACE	_	_	FEACIDXE	FEACEBE	FEACCRCE	FEACTOE	FEACNEE

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-26 Unimplemented: Read as '0'

bit 25 **FEADE:** Force Event for ADMA Error bit

1 = Interrupt was generated

0 = Interrupt was not generated

bit 24 FEACE: Force Event for Auto CMD 12 Error bit

1 = Interrupt was generated

0 = Interrupt was not generated

bit 23 FECLE: Force Event for Current-Limit Error bit

1 = Interrupt was generated

0 = Interrupt was not generated

bit 22 FEDEBE: Force Event for Data End Bit Error bit

1 = Interrupt was generated

0 = Interrupt was not generated

bit 21 FEDCRCE: Force Event for Data CRC Error bit

1 = Interrupt was generated

0 = Interrupt was not generated

bit 20 FEDTOE: Force Event for Data Time-out Error bit

1 = Interrupt was generated

0 = Interrupt was not generated

bit 19 **FEIDXE:** Force Event for Command Index Error bit

1 = Interrupt was generated

0 = Interrupt was not generated

bit 18 FECEBE: Force Event for Command End Bit Error bit

1 = Interrupt was generated

0 = Interrupt was not generated

bit 17 FECCRCE: Force Event for Command CRC Error bit

1 = Interrupt was generated

0 = Interrupt was not generated

bit 16 FECTOE: Force Event for Command Time-out Error bit

1 = Interrupt was generated

0 = Interrupt was not generated

bit 15-8 **Unimplemented:** Read as '0'

REGISTER 39-15: SDHCFE: SDHC FORCE EVENT REGISTER (CONTINUED)

bit 7 FECNIACE: Force Event for Command Not Issued by Auto CMD12 Error bit

1 = Interrupt was generated

0 = Interrupt was not generated

bit 6-5 **Unimplemented:** Read as '0'

bit 4 FEACIDXE: Force Event for Auto CMD12 Index Error bit

1 = Interrupt was generated

0 = Interrupt was not generated

bit 3 FEACEBE: Force Event for Auto CMD12 End Bit Error bit

1 = Interrupt was generated

0 = Interrupt was not generated

bit 2 FEACCRCE: Force Event for Auto CMD12 CRC Error bit

bit 1 **FEACTOE:** Force Event for Auto CMD12 Time-out Error bit

1 = Interrupt was generated

0 = Interrupt was not generated

bit 0 FEACNEE: Force Event for Auto CMD12 Not Executed Error bit

1 = Interrupt was generated

0 = Interrupt was not generated

REGISTER 39-16: SDHCADESTAT: SDHC ADMA ERROR STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	U-0 U-0							
31:24	_	-	-	_	_	-	_	-
00.46	U-0 U-0							
23:16	_	_	_	_	_	-	_	_
45.0	U-0 U-0							
15:8	_	-	_	_	_	-	_	_
7.0	U-0	U-0	U-0	U-0	U-0	R-0, HC	R-0, HC	R-0, HC
7:0	_	_	_	_	_	ADLMERR	ADERR	ST<1:0>

Legend: HC = Hardware Cleared

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-3 Unimplemented: Read as '0'

bit 2 ADLMERR: ADMA Length Mismatch Error bit

1 = Length mismatch error has occurred

0 = Length mismatch error has not occurred

bit 1-0 ADERRST<1:0>: ADMA Error State bits

11 = Data transfer error

10 = Reserved

01 = Fetch descriptor error

00 = Stop DMA error

REGISTER 39-17: SDHCAADDR: SDHC ADMA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0 R/W-0							
31:24				ADDR<	:31:24>			
00.40	R/W-0 R/W-0							
23:16				ADDR<	:23:16>			
15.0	R/W-0 R/W-0							
15:8				ADDR	<15:8>			
7.0	R/W-0 R/W-0							
7:0				ADDR	R<7:0>	•		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 ADDR<31:0>: ADMA Address Register bits

These bits contain the address of the executing command of the ADMA descriptor table.

NOTES:			
NOTES:			

40.0 POWER-SAVING FEATURES

Note:

This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 10. "Power-Saving Features" (DS60001130), which is available from the Documentation > Reference Manual section οf the Microchip PIC32 web site (www.microchip.com/pic32).

This section describes the power-saving features on the PIC32MZ DA devices. These devices have multiple power domains and offer various methods and modes that allow the user to balance the power consumption with device performance.

40.1 Power Saving with CPU Running

When the CPU is running, power consumption can be controlled by reducing the CPU clock frequency, lowering the speed of PBCLK7, or selecting a lower power clock source (i.e., LPRC or Sosc).

In addition, the Peripheral Bus Scaling mode is available for each peripheral bus where peripherals are clocked at reduced speed by selecting a higher divider for the associated PBCLKx, or by disabling the clock completely.

40.2 Power-Saving with CPU Halted

Peripherals and the CPU can be Halted or disabled to further reduce power consumption.

40.2.1 SLEEP MODE

Sleep mode has the lowest power consumption of the device power-saving operating modes. The CPU and most peripherals are Halted and the associated clocks are disabled. Select peripherals can continue to operate in Sleep mode and can be used to wake the device from Sleep. See the individual peripheral module sections for descriptions of behavior in Sleep mode.

Sleep mode includes the following characteristics:

- There can be a wake-up delay based on the oscillator selection
- The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode
- The BOR circuit remains operative during Sleep mode
- The WDT, if enabled, is not automatically cleared prior to entering Sleep mode

- Some peripherals can continue to operate at limited functionality in Sleep mode. These peripherals include I/O pins that detect a change in the input signal, WDT, ADC, UART and peripherals that use an external clock input or the internal LPRC oscillator (e.g., RTCC, Timer1 and Input Capture).
- I/O pins continue to sink or source current in the same manner as they do when the device is not in Sleep

The processor will exit, or 'wake-up', from Sleep on one of the following events:

- On any interrupt from an enabled source that is operating in Sleep. The interrupt priority must be greater than the current CPU priority.
- · On any form of device Reset
- · On a WDT time-out

If the interrupt priority is lower than or equal to the current priority, the CPU will remain Halted, but the peripheral bus clocks will start running and the device will enter into Idle mode.

40.2.2 IDLE MODE

In Idle mode, the CPU is Halted; however, all clocks are still enabled. This allows peripherals to continue to operate. Peripherals can be individually configured to Halt when entering Idle by setting their respective SIDL bit. Latency, when exiting Idle mode, is very low due to the CPU oscillator source remaining active.

The device enters Idle mode when the SLPEN bit (OSCCON<4>) is clear and a WAIT instruction is executed.

The processor will wake or exit from Idle mode on the following events:

- On any interrupt event for which the interrupt source is enabled. The priority of the interrupt event must be greater than the current priority of the CPU. If the priority of the interrupt event is lower than or equal to current priority of the CPU, the CPU will remain Halted and the device will remain in Idle mode.
- · On any form of device Reset
- · On a WDT time-out interrupt

40.2.3 DEEP SLEEP MODE

Deep Sleep mode brings the device into its lowest power consumption state without requiring the use of external switches to remove power from the device.

Deep Sleep

In this mode, the CPU, RAM and most peripherals are powered down. Power is maintained to the DSGPR0 register and one or more of the RTCC, DSWDT and DSGPR1 through DSGPR32 registers.

Which of these peripherals is active depends on the state of the following register bits when Deep Sleep mode is entered:

• RTCDIS (DSCON<12>)

This bit must be set to disable the RTCC in Deep Sleep mode (see Register 40-1).

• DSWDTEN (DEVCFG2<27>)

This Configuration bit must be set to enable the DSWDT register in Deep Sleep mode (see Register 41-5)

• DSGPREN (DSCON<13>)

This bit must be set to enable the DSGPR1 through DSGPR32 registers in Deep Sleep mode (see Register 40-1).

Note:

The Deep Sleep Control registers can only be accessed after the system unlock sequence has been performed. In addition, the Deep Sleep Control registers must be written twice.

In addition to the conditionally enabled peripherals described above, the $\overline{\text{MCLR}}$ filter and INT0 pin are enabled in Deep Sleep mode.

40.2.4 VBAT MODE

VBAT mode is similar to Deep Sleep mode, except that the device is powered from the VBAT pin. VBAT mode is controlled strictly by hardware, without any software intervention. Device enters VBAT mode upon VDDCORE Power-on Reset (refer to Table 44-4 for definitions of VPORCORE and VBATSW). An external power source must be connected to the VBAT pin before power is removed from VDDIO/VDDCORE to enter VBAT mode. VBAT is the lowest battery-powered mode that can maintain an RTCC. Wake-up from VBAT mode can only occur when VDDIO/VDDCORE is reapplied. The wake-up will appear to be a POR to the rest of the device.

In VBAT mode, the Deep Sleep Watchdog Timer is disabled. The RTCC and DSGPR1 through DSGPR32 registers may be enabled or disabled depending on the state of the RTCDIS bit (DSCON<12>) and the DSGPREN bit (DSCON<13>), respectively. Deep Sleep Persistent General Purpose Register 0 (DSGPR0) is always enabled in VBAT mode.

40.2.5 XLP POWER-SAVING MODES

Figure 40-1 shows a block diagram of the system domain for XLP devices and the related power-saving features. The various blocks are controlled by the following Configuration bit settings and SFRs:

- DSBOREN (DEVCFG2<20>)
- DSEN (DSCON<15>)
- DSGPREN (DSCON<13>)
- DSWDTEN (DEVCFG2<27>)
- DSWDTOSC (DEVCFG2<26>)
- RELEASE (DSCON<0>)
- RTCCLKSEL (RTCCON <9:8>)
- RTCDIS (DSCON<12>)
- SLPEN (OSCCON<4>)
- VREGS (PWRCON<0>)

FIGURE 40-1: XLP DEVICE BLOCK DIAGRAM

TABLE 40-1: POWER-SAVING MODES REGISTER SUMMARY Deep Sleep (DSCTRL) Control Registers

										a	Bits								(
Register Name ⁽²⁾ Bit Range	Bit Range		31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	⁾ stəsəЯ IIA
DSCON 31:16	31:16	н—	1	1	1	1	1	1	1	I	I	1	1	1	I	ı	1	1	0000
15:0	15:0	1	DSEN	I	DSGPREN	RTCDIS	1	I	1	RTCCWDIS	Ι	I	I	_	I	I	DSBOR	RELEASE	0000
DSWAKE 31:16	31:16		I	I	I	I	I	I	Ι	I	I	1	I	_	I	I	1	I	0000
15:0	15:0		1	1	1	1	1	1	1	DSINT0	DSFLT	1	1	DSWDT	DSRTC	DSMCLR	_	1	0000
DSGPR0 ⁽¹⁾ 31:16	31:1	9						Dee	deelS de	Deep Sleep Persistent General Purpose bits <31:16>	eneral Purp	ose bits <3	31:16>						0000
15:0	15	0:						De	ep Sleep	Deep Sleep Persistent General Purpose bits <15:0>	eneral Pur	ose bits <	15:0>						0000
DSGPR1 31:16	31:	16						Dee	deelS de	Deep Sleep Persistent General Purpose bits <31:16>	eneral Purp	ose bits <3	31:16>						0000
15:0	15:	0.						De	ep Sleep	Deep Sleep Persistent General Purpose bits <15:0>	eneral Purp	ose bits <	15:0>						0000
DSGPR2 31:16	31:	16						Dec	deelS de	Deep Sleep Persistent General Purpose bits <31:16>	eneral Purp	ose bits <	31:16>						0000
15:0	15:	0.						De	ep Sleep	Deep Sleep Persistent General Purpose bits <15:0>	eneral Purp	ose bits <	15:0>						0000
DSGPR3 31:16	31:	9						Dec	deelS de	Deep Sleep Persistent General Purpose bits <31:16>	eneral Purp	ose bits <	31:16>						0000
15:0	15:	0						De	ep Sleep	Deep Sleep Persistent General Purpose bits <15:0>	eneral Pur	ose bits <	15:0>						0000
DSGPR4 31:16	31:1	9						Dee	deelS de	Deep Sleep Persistent General Purpose bits <31:16>	eneral Purp	ose bits <3	31:16>						0000
15:0	15:0							De	ep Sleep	Deep Sleep Persistent General Purpose bits <15:0>	eneral Pur	ose bits <	15:0>						0000
DSGPR5 31:16	31:1	9						Dee	deelS de	Deep Sleep Persistent General Purpose bits <31:16>	eneral Purp	ose bits <3	31:16>						0000
15:0	15:	0						De	ep Sleep	Deep Sleep Persistent General Purpose bits <15:0>	eneral Pur	ose bits <	15:0>						0000
DSGPR6 31:16	31:1	9						Dee	deelS de	Deep Sleep Persistent General Purpose bits <31:16>	eneral Purp	ose bits <3	31:16>						0000
15:0	15:	0						De	ep Sleep	Deep Sleep Persistent General Purpose bits <15:0>	eneral Pur	ose bits <	15:0>						0000
DSGPR7 31:16	31:	16						Dee	deelS de	Deep Sleep Persistent General Purpose bits <31:16>	eneral Purp	ose bits <3	31:16>						0000
15:0	15	0.						De	ep Sleep	Deep Sleep Persistent General Purpose bits <15:0>	eneral Pur	ose bits <	15:0>						0000
DSGPR8 31:16	31:	16						Dee	deelS de	Deep Sleep Persistent General Purpose bits <31:16>	eneral Purp	ose bits <3	31:16>						0000
15:0	15	0.						De	ep Sleep	Deep Sleep Persistent General Purpose bits <15:0>	eneral Pur	ose bits <	15:0>						0000
DSGPR9 31:16	31:	16						Dee	deelS de	Deep Sleep Persistent General Purpose bits <31:16>	eneral Purp	ose bits <3	31:16>						0000
15:0	15:	0						De	ep Sleep	Deep Sleep Persistent General Purpose bits <15:0>	eneral Pur	ose bits <	15:0>						0000
DSGPR10 31:16	31:	9						Dee	deelS de	Deep Sleep Persistent General Purpose bits <31:16>	eneral Purp	ose bits <3	31:16>						0000
15:0	15:(De	ep Sleep	Deep Sleep Persistent General Purpose bits <15:0>	eneral Pur	ose bits <	15:0>						0000
DSGPR11 31:16	31:	91						Dec	deelS de	Deep Sleep Persistent General Purpose bits <31:16>	eneral Purp	ose bits <3	31:16>						0000
15:0	15:	0						De	ep Sleep	Deep Sleep Persistent General Purpose bits <15:0>	eneral Purp	ose bits <	15:0>						0000
- =	Jun.	eme	= unimplemented. read as '0'	d as '0'.														-	

Legend: Note 1:

— = unimplemented, read as '0'.
The DSGPR0 register is persistent in all device modes of operation.
The Deep Sleep Control registers can only be accessed after the system unlock sequence has been performed. In addition, these registers must be written twice.

POWER-SAVING MODES REGISTER SUMMARY **TABLE 40-1**:

DSGPR12 DSGPR13 DSGPR13 DSGPR14 DSGPR17 DSGPR19 DSGPR19 DSGPR19	30/14	29/13					Bits —	S)					- -		(
Bit Range Name Name Name Name Name Name Name Nam		29/13													L)
DSGPR13 DSGPR14 DSGPR16 DSGPR16 DSGPR16 DSGPR17 DSGPR18 DSGPR19 DSGPR19			28/12	27/11	26/10	25/9	24/8	23/7	22/6 21/5	5 20/4	19/3	18/2	17/1	16/0	stəsəЯ IIA
DSGPR14 DSGPR16 DSGPR16 DSGPR17 DSGPR18 DSGPR19 DSGPR19					Dec	yp Sleep F	ersistent Gen	ieral Purpo	Deep Sleep Persistent General Purpose bits <31:16>						0000
DSGPR14 DSGPR16 DSGPR16 DSGPR17 DSGPR17 DSGPR19 DSGPR19					De	ep Sleep	Persistent Ger	neral Purp	Deep Sleep Persistent General Purpose bits <15:0>						0000
DSGPR15 DSGPR16 DSGPR17 DSGPR17 DSGPR18 DSGPR19 DSGPR20					Dec	Sleep F	ersistent Ger	neral Purpo	Deep Sleep Persistent General Purpose bits <31:16>						0000
DSGPR15 DSGPR16 DSGPR17 DSGPR18 DSGPR19 DSGPR20					De	ep Sleep	Persistent Ge	neral Purp	Deep Sleep Persistent General Purpose bits <15:0>						0000
DSGPR16 DSGPR16 DSGPR17 DSGPR18 DSGPR18 DSGPR19					Dee	g Sleep F	ersistent Ger	neral Purpo	Deep Sleep Persistent General Purpose bits <31:16>						0000
DSGPR16 DSGPR17 DSGPR17 DSGPR18 DSGPR19 DSGPR20					De	ep Sleep	Persistent Gei	neral Purp	Deep Sleep Persistent General Purpose bits <15:0>						0000
DSGPR17 DSGPR17 DSGPR18 DSGPR19 DSGPR20					Dec	Sleep F	ersistent Ger	neral Purpo	Deep Sleep Persistent General Purpose bits <31:16>						0000
DSGPR17 DSGPR17 DSGPR18 DSGPR19 DSGPR20					De	ep Sleep	Persistent Ger	neral Purp	Deep Sleep Persistent General Purpose bits <15:0>						0000
DSGPR17 DSGPR18 DSGPR19 DSGPR20					Dec	Sleep F	ersistent Ger	neral Purpo	Deep Sleep Persistent General Purpose bits <31:16>						0000
DSGPR18 DSGPR19 DSGPR20					De	ep Sleep	Persistent Gei	neral Purp	Deep Sleep Persistent General Purpose bits <15:0>						0000
DSGPR19 DSGPR19 DSGPR20					Dee	g Sleep F	ersistent Ger	neral Purpo	Deep Sleep Persistent General Purpose bits <31:16>						0000
DSGPR19 DSGPR19 DSGPR20					De	ep Sleep	Persistent Ge	neral Purp	Deep Sleep Persistent General Purpose bits <15:0>						0000
DSGPR19 DSGPR20					Dee	g Sleep F	ersistent Ger	neral Purpo	Deep Sleep Persistent General Purpose bits <31:16>						0000
DSGPR19					De	ep Sleep	Persistent Gei	neral Purp	Deep Sleep Persistent General Purpose bits <15:0>						0000
DSGPR20					Dee	g Sleep F	ersistent Ger	neral Purpo	Deep Sleep Persistent General Purpose bits <31:16>						0000
DSGPR20					De	ep Sleep	Persistent Gel	neral Purp	Deep Sleep Persistent General Purpose bits <15:0>						0000
					Dee	g Sleep F	ersistent Ger	neral Purpo	Deep Sleep Persistent General Purpose bits <31:16>						0000
					De	ep Sleep	Persistent Gei	neral Purp	Deep Sleep Persistent General Purpose bits <15:0>						0000
0290 DSGPR21 31:16					Dee	g Sleep F	ersistent Ger	neral Purpo	Deep Sleep Persistent General Purpose bits <31:16>						0000
15:0					De	ep Sleep	Persistent Gei	neral Purp	Deep Sleep Persistent General Purpose bits <15:0>						0000
0294 DSGPR22 31:16					Dee	g Sleep F	ersistent Ger	neral Purpo	Deep Sleep Persistent General Purpose bits <31:16>						0000
15:0					De	ep Sleep	Persistent Gel	neral Purp	Deep Sleep Persistent General Purpose bits <15:0>						0000
0298 DSGPR23 31:16					Dee	g Sleep F	ersistent Ger	neral Purpo	Deep Sleep Persistent General Purpose bits <31:16>						0000
15:0					De	ep Sleep	Persistent Gei	neral Purp	Deep Sleep Persistent General Purpose bits <15:0>						0000
029C DSGPR24 31:16					Dee	g Sleep F	ersistent Ger	neral Purpo	Deep Sleep Persistent General Purpose bits <31:16>						0000
15:0					De	ep Sleep	Persistent Gel	neral Purp	Deep Sleep Persistent General Purpose bits <15:0>						0000
02A0 DSGPR25 31:16					Dee	g Sleep F	ersistent Ger	neral Purpo	Deep Sleep Persistent General Purpose bits <31:16>						0000
15:0					De	ep Sleep	Persistent Gel	neral Purp	Deep Sleep Persistent General Purpose bits <15:0>						0000
02A4 DSGPR26 31:16					Dee	Sleep F	ersistent Ger	eral Purpo	Deep Sleep Persistent General Purpose bits <31:16>						0000
15:0					Dē	ep Sleep	Persistent Ge	neral Purp	Deep Sleep Persistent General Purpose bits <15:0>						0000

© 2015-2017 Microchip Technology Inc.

(1	All Resets ⁽	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	
	16/0													
	1/11													
	18/2													
	19/3													
	20/4													
	21/5	31:16>	:15:0>	31:16>	:15:0>	31:16>	:15:0>	31:16>	:15:0>	31:16>	:15:0>	31:16>	:15:0>	
	22/6	ose bits <	pose bits <											
Bits	23/7	eneral Purp	eneral Pur											
	24/8	Deep Sleep Persistent General Purpose bits <31:16>	Deep Sleep Persistent General Purpose bits <15:0>	Deep Sleep Persistent General Purpose bits <31:16>	Deep Sleep Persistent General Purpose bits <15:0>	Deep Sleep Persistent General Purpose bits <31:16>	Deep Sleep Persistent General Purpose bits <15:0>	Deep Sleep Persistent General Purpose bits <31:16>	Deep Sleep Persistent General Purpose bits <15:0>	Deep Sleep Persistent General Purpose bits <31:16>	Deep Sleep Persistent General Purpose bits <15:0>	Deep Sleep Persistent General Purpose bits <31:16>	Deep Sleep Persistent General Purpose bits <15:0>	
	25/9	ep Sleep	sep Sleep	ep Sleep	ep Sleep	ep Sleep	ep Sleep	ep Sleep	ep Sleep	ep Sleep	ep Sleep	ep Sleep	sep Sleep	
	26/10	De	Ğ	De	ă									
	27/11													
	28/12													
	29/13													
	30/14													
	31/15													
,	Bit Range	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	
	Register Name ⁽²⁾	DSGPR27		DSGPR28		DSGPR29		DSGPR30		DSGPR31		DSGPR32		
	Virtual Addre (BF8C_#)	02A8		02AC		02B0		02B4		02B8		02BC		

— = unimplemented, read as '0'.
The DSGPR0 register is persistent in all device modes of operation.
The Deep Sleep Control registers can only be accessed after the system unlock sequence has been performed. In addition, these registers must be written twice.

TABLE 40-1: POWER-SAVING MODES REGISTER SUMMARY

REGISTER 40-1: DSCON: DEEP SLEEP CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_		_	_	_	_	_	_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	-	_		_		-	_
45.0	HC, R/W-y	U-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0
15:8	DSEN ⁽¹⁾	_	DSGPREN	RTCDIS	_	_	_	RTCCWDIS
7.0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
7:0	_	_			_		DSBOR ⁽²⁾	RELEASE

Legend:HC = Hardware Clearedy = Value set from Configuration bits on PORR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15 **DSEN:** Deep Sleep Enable bit⁽¹⁾

1 = Deep Sleep mode is entered on a WAIT instruction

 ${\tt 0}$ = Sleep mode is entered on a ${\tt WAIT}$ instruction

bit 14 Unimplemented: Read as '0'

bit 13 DSGPREN: General Purpose Registers Enable bit

1 = General purpose register retention is enabled in Deep Sleep mode

0 = No general purpose register retention in Deep Sleep mode

bit 12 RTCDIS: RTCC Module Disable bit

1 = RTCC module is not enabled

0 = RTCC module is enabled

bit 11-9 Unimplemented: Read as '0'

bit 8 RTCCWDIS: RTCC Wake-up Disable bit

1 = Wake-up from RTCC is disabled

0 = Wake-up from RTCC is enabled

bit 7-2 Unimplemented: Read as '0'

bit 1 DSBOR: Deep Sleep BOR Event Status bit (2)

1 = DSBOREN was enabled and VDDCORE dropped below the DSBOR threshold during Deep Sleep(2)

0 = DSBOREN was disabled, or VDDCORE did not drop below the DSBOR threshold during Deep Sleep

bit 0 RELEASE: I/O Pin State Release bit

1 = Upon waking from Deep Sleep, the I/O pins maintain their previous states

0 = Release I/O pins and allow their respective TRIS and LAT bits to control their states

Note 1: To enter Deep Sleep mode, Sleep mode must be executed after setting the DSEN bit.

2: Unlike all other events, a Deep Sleep Brown-out Reset (BOR) event will not cause a wake-up from Deep Sleep mode; this bit is present only as a status bit.

REGISTER 40-2: DSWAKE: DEEP SLEEP WAKE-UP SOURCE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0 U-0							
31:24	_	_	_	_	_	_	_	_
22:16	U-0 U-0							
23:16	_	-	1	1		_		_
45.0	U-0 R/W-0, HS							
15:8	_		ı	ı	_	_		DSINT0
7.0	R/W-0, HS	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0	U-0
7:0	DSFLT	_	_	DSWDT	DSRTC	DSMCLR	_	_

Legend: HS = Hardware Set

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-9 **Unimplemented:** Read as '0'

bit 8 **DSINT0:** Interrupt-on-Change bit

1 = Interrupt-on-change was asserted during Deep Sleep

0 = Interrupt-on-change was not asserted during Deep Sleep

bit 7 DSFLT: Deep Sleep Fault Detected bit

1 = A Fault occurred during Deep Sleep and some Deep Sleep configuration settings may have been corrupted

0 = No Fault was detected during Deep Sleep

bit 6-5 **Unimplemented:** Read as '0'

bit 4 **DSWDT:** Deep Sleep Watchdog Timer Time-out bit

1 = The Deep Sleep Watchdog Timer timed out during Deep Sleep

0 = The Deep Sleep Watchdog Timer did not time-out during Deep Sleep

bit 3 DSRTC: Real-Time Clock and Calendar Alarm bit

1 = The Real-Time Clock and Calendar triggered an alarm during Deep Sleep

0 = The Real-Time Clock and Calendar did not trigger an alarm during Deep Sleep

bit 2 DSMCLR: MCLR Event bit

1 = The $\overline{\text{MCLR}}$ pin was active and was asserted during Deep Sleep

 $0 = \text{The } \overline{\text{MCLR}}$ pin was not active, or was active, but not asserted during Deep Sleep

bit 1-0 Unimplemented: Read as '0'

Note: All bits in this register are cleared when the DSEN bit (DSCON<15>) is set.

REGISTER 40-3: DSGPRX: DEEP SLEEP PERSISTENT GENERAL PURPOSE REGISTER 'x' (x = 0 THROUGH 32)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-x R/W-x							
31:24			Deep Slo	eep Persisten	t General Purp	oose bits		
22.46	R/W-x R/W-x							
23:16			Deep Slo	eep Persisten	t General Pur	oose bits		
45.0	R/W-x R/W-x							
15:8			Deep Slo	eep Persisten	t General Pur	oose bits		
7.0	R/W-x R/W-x							
7:0			Deep Slo	eep Persisten	t General Pur	oose bits		_

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 Deep Sleep Persistent General Purpose bits

Note: The contents of the DSGPR0 register are retained, even in Deep Sleep and VBAT modes. The DSPGR1 through DSPGR32 registers are disabled by default in Deep Sleep and VBAT modes, but can be enabled with the DSGPREN bit (DSCON<13>). All register bits are reset only in the case of a VDDCORE Power-on Reset (POR) event outside of Deep Sleep mode.

40.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid.

To disable a peripheral, the associated PMDx bit must be set to '1'. To enable a peripheral, the associated PMDx bit must be cleared (default). See Table 40-2 for more information.

Note:

Disabling a peripheral module while it's ON bit is set, may result in undefined behavior. The ON bit for the associated peripheral module must be cleared prior to disable a module via the PMDx bits.

ŘΥ
MMA
R SUM
GISTE
E REGIS
SABL
RAL MODULE DISABLE REGIST
MODU
ERAL I
PERIPH
∺
3LE 40-

		0,	0,0	0,	0,	0,0	0,	0.0	0,0	0,	0,	0,0	0,	0,	0,0	
(1)	steseЯ IIA	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	1000	0000	
	16/0	Ι	ADCMD	_	CMP1MD	OC1MD	IC1MD	Ι	T1MD	I2C1MD	U1MD	DMAMA	_	_	Ι	
	1/11	Ι	Ι	_	CMP2MD	OCZMD	ICZMD	Ι	T2MD	ISCZMD	OMZN	GWIBE	_	_	I	
	18/2	I	I	I	I	OC3MD	IC3MD	1	T3MD	12C3MD	U3MD	GPUMD	I	I	I	
	19/3	Ι	I	-	-	OC4MD	IC4MD	_	T4MD	I2C4MD	U4MD	I	-	-	I	
	20/4	HLVDMD	I	I	Ι	OCSMD	ICSMD	1	T5MD	12C5MD	USMD	GLCDMD	I	RNGMD	DMAMD	
	21/5	I	Ι	_	_	OCEMD	IC6MD	I	T6MD	_	U6MD	SDHCMD	_	_	I	
	22/6	I	I	I	Ι	OC7MD	IC7MD	1	T7MD	I	I	I	I	CRYPTMD	I	
	23/7	I	Ι	_	-	OC8MD	IC8MD	I	T8MD	_	_	SQI1MD	_	_	I	
Bits	24/8	I	CTMUMD	I	Ι	OC9MD	IC9MD	1	T9MD	USBMD	SP11MD	I	REFO1MD	I	I	xadecimal.
	25/9	Ι	-	_	_	-	_	1	1	_	SPI2MD	-	REF02MD	_	ı	hown in he
	26/10	I	Ι	_	_	Ι	_	I	1	_	SPI3MD	Ι	REFO3MD	_	I	as '0'. Reset values are shown in hexadecimal
	27/11	I	Ι	_	_	Ι	_	I	I	_	SPI4MD	Ι	REFO4MD	_	I	ʻ0'. Reset
	28/12	I	CVRMD	ı	1	I	ı	1	ı	CAN1MD	SPI5MD	ETHMD	REFO5MD	DDR2CMD	ı	, read
	29/13	I	Ι	_	_	Ι	_	1	1	CAN2MD	SPI6MD	Ι	_	_	ı	$\rm x$ = unknown value on Reset; — = unimplemented, read Reset values are dependent on the device variant.
	30/14	I	I	_	-	I	_	-	I	-	-	I	_	_	Ι	Reset; — =
	31/15	Ι	Ι	-	-	Ι	-	Ι	1	-	-	Ι	-	-	I	value on F are depen
•	Bit Range	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	knowr values
	Register emsN	2010	_ 	כרויים	ZONT	מ ביי	SOM	VUNO	1	30,40	2		2	70740	Ž	: x = ur 1: Reset

© 2015-2017 Microchip Technology Inc.

Virtual Address (BF80_#)

TABLE 40-3: PERIPHERAL MODULE DISABLE BITS AND LOCATIONS

Peripheral	PMDx Bit Name	Register Name and Bit Location
ADC	ADCMD	PMD1<0>
СТМU	CTMUMD	PMD1<8>
Comparator Voltage Reference	CVRMD	PMD1<12>
High/Low-Voltage Detect	HLVDMD	PMD1<20>
Comparator 1	CMP1MD	PMD2<0>
Comparator 2	CMP2MD	PMD2<1>
Input Capture 1	IC1MD	PMD3<0>
Input Capture 2	IC2MD	PMD3<1>
Input Capture 3	IC3MD	PMD3<2>
Input Capture 4	IC4MD	PMD3<3>
Input Capture 5	IC5MD	PMD3<4>
Input Capture 6	IC6MD	PMD3<5>
Input Capture 7	IC7MD	PMD3<6>
Input Capture 8	IC8MD	PMD3<7>
Input Capture 9	IC9MD	PMD3<8>
Output Compare 1	OC1MD	PMD3<16>
Output Compare 2	OC2MD	PMD3<17>
Output Compare 3	OC3MD	PMD3<18>
Output Compare 4	OC4MD	PMD3<19>
Output Compare 5	OC5MD	PMD3<20>
Output Compare 6	OC6MD	PMD3<21>
Output Compare 7	OC7MD	PMD3<22>
Output Compare 8	OC8MD	PMD3<23>
Output Compare 9	OC9MD	PMD3<24>
Timer1	T1MD	PMD4<0>
Timer2	T2MD	PMD4<1>
Timer3	T3MD	PMD4<2>
Timer4	T4MD	PMD4<3>
Timer5	T5MD	PMD4<4>
Timer6	T6MD	PMD4<5>
Timer7	T7MD	PMD4<6>
Timer8	T8MD	PMD4<7>
Timer9	T9MD	PMD4<8>
UART1	U1MD	PMD5<0>
UART2	U2MD	PMD5<1>
UART3	U3MD	PMD5<2>
UART4	U4MD	PMD5<3>
UART5	U5MD	PMD5<4>
UART6	U6MD	PMD5<5>
SPI1	SPI1MD	PMD5<8>
SPI2	SPI2MD	PMD5<9>

Note 1: The USB module must not be busy after clearing the associated ON bit and prior to setting the USBMD bit

^{2:} This peripheral is not available on all devices. Refer to the pin feature tables (Table 2 through Table 4) to determine availability.

TABLE 40-3: PERIPHERAL MODULE DISABLE BITS AND LOCATIONS (CONTINUED)

Peripheral	PMDx Bit Name	Register Name and Bit Location
SPI3	SPI3MD	PMD5<10>
SPI4	SPI4MD	PMD5<11>
SPI5	SPI5MD	PMD5<12>
SPI6	SPI6MD	PMD5<13>
I2C1	I2C1MD	PMD5<16>
I2C2	I2C2MD	PMD5<17>
I2C3	I2C3MD	PMD5<18>
I2C4	I2C4MD	PMD5<19>
I2C5	I2C5MD	PMD5<20>
USB ⁽¹⁾	USBMD	PMD5<24>
CAN1	CAN1MD	PMD5<28>
CAN2	CAN2MD	PMD5<29>
Reference Clock Output 1	REFO1MD	PMD6<8>
Reference Clock Output 2	REFO2MD	PMD6<9>
Reference Clock Output 3	REFO3MD	PMD6<10>
Reference Clock Output 4	REFO4MD	PMD6<11>
Reference Clock Output 5	REFO5MD	PMD6<12>
PMP	PMPMD	PMD6<16>
EBI	EBIMD	PMD6<17>
2-D GPU	GPUMD	PMD6<18>
GLCD	GLCDMD	PMD6<20>
SDHC	SDHCMD	PMD6<21>
SQI1	SQI1MD	PMD6<23>
Ethernet	ETHMD	PMD6<28>
DMA	DMAMD	PMD7<4>
RNG	RNGMD	PMD7<20>
Crypto ⁽²⁾	CRYPTMD	PMD7<22>
DDR2 SDRAM Controller ⁽²⁾	DDR2CMD	PMD7<28>

Note 1: The USB module must not be busy after clearing the associated ON bit and prior to setting the USBMD bit.

^{2:} This peripheral is not available on all devices. Refer to the pin feature tables (Table 2 through Table 4) to determine availability.

40.4.1 CONTROLLING CONFIGURATION CHANGES

Because peripherals can be disabled during run time, some restrictions on disabling peripherals are needed to prevent accidental configuration changes. PIC32MZ DA devices include two features to prevent alterations to enabled or disabled peripherals:

- · Control Register Lock Sequence
- · Configuration Bit Select Lock

40.4.1.1 Control Register Lock

Under normal operation, writes to the PMDx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the PMDLOCK Configuration bit (CFGCON<12>). Setting the PMDLOCK bit prevents writes to the control registers and clearing the PMDLOCK bit allows writes.

To set or clear the PMDLOCK bit, an unlock sequence must be executed. Refer to **Section 42. "Oscillators with Enhanced PLL"** (DS60001250) in the *"PIC32 Family Reference Manual"* for details.

40.4.1.2 Configuration Bit Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the PMDx registers. The PMDL1WAY Configuration bit (DEVCFG3<28>) blocks the PMDLOCK bit from being cleared after it has been set once. If the PMDLOCK bit remains set, the register unlock procedure does not execute, and the PPS control registers cannot be written to. The only way to clear the bit and re-enable PMD functionality is to perform a device Reset.

41.0 SPECIAL FEATURES

Note:

This data sheet summarizes the features of the PIC32MZ Graphics (DA) Family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data refer **Section** to "Configuration" (DS60001124) and Section 33. "Programming and Diagnostics" (DS60001129), which are available from the Documentation > section Reference Manual the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MZ DA devices include several features intended to maximize application flexibility and reliability and minimize cost through elimination of external components. These are:

- · Flexible device configuration
- · Joint Test Action Group (JTAG) interface
- In-Circuit Serial Programming™ (ICSP™)
- · Internal temperature sensor

41.1 Configuration Bits

PIC32MZ DA devices contain two Boot Flash memories (Boot Flash 1 and Boot Flash 2), each with an associated configuration space. These configuration spaces can be programmed to contain various device configurations. Configuration space that is aliased by the Lower Boot Alias memory region is used to provide values for the following Configuration registers. See 4.1.1 "Boot Flash Sequence and Configuration Spaces" for more information.

- DEVSIGN0/ADEVSIGN0: Device Signature Word 0 Register
- DEVCP0/ADEVCP0: Device Code-Protect 0 Register
- DEVCFG0/ADEVCFG0: Device Configuration Word 0
- DEVCFG1/ADEVCFG1: Device Configuration Word 1
- DEVCFG2/ADEVCFG2: Device Configuration Word 2
- DEVCFG3/ADEVCFG3: Device Configuration Word 3
- DEVCFG4/ADEVCFG4: Device Configuration Word 4
- DEVADCx: Device ADC Calibration Word 'x' ('x' = 0-4, 7)

The following run-time programmable Configuration registers provide additional configuration control:

- CFGCON: Configuration Control Register
- CFGEBIA: External Bus Interface Address Pin Configuration Register
- CFGEBIC: External Bus Interface Control Pin Configuration Register
- CFGPG: Permission Group Configuration Register
- CFGCON2: Configuration Control Register 2
- · CFGMPLL: Memory PLL Configuration Register

In addition, the DEVID register (see Register 41-15) provides device and revision information and the DEVSN0 and DEVSN1 registers contain a unique serial number of the device (see Register 41-16).

Note

Do not use word program operation (NVMOP<3:0> = 0001) when programming the device words that are described in this chapter.

41.2 Registers
TABLE 41-1: DEVCFG: DEVICE CONFIGURATION WORD SUMMARY

22/6 21/5 20/4 19/3 18/2 18/2											Bits								steses
	4 8)		31/15	5 30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	IIA
1.00 1.00	ا		16 —	1	1		SW	VDTPS<4;0>			1	1	1	1	1	_	1	1	×××
11-19 1-19	UE	_	0:0	1	1	I	Ι	1	1	I	ı	1	-	I	I	_	Ι	-	xxxx
Part Color State Part Color State Part Color اُ			I	IOL1WAY		PGL1WAY	I	FETHIO	FMIIEN	I	I	_	1		EXTDDRSIZE	=<3:0>		××××	
DEVOTEGE 3116 — IDEPLICATE — FPLIANUTAGO DSWOTTPS<-4.00- DSWOTTPS<-4.00- PRUICKE FPLIANUTAGO PRUICKE FPLIANUTAGO PRUICKE FPLIANUTAGO PRUICKE FPLIANUTAGO PRUICKE FPLIANUTAGO PRUICKE	7		0:9							NSE	ERID<15:0>								××××
Figure 1				UPLLFSEL	1		DSWDTEN	DSWDTOSC			>SWDTPS<	:4:0>		DSBOREN	VBATBOREN	FPLI	FPLLODIV<2:0>		XXXX
DEVCFOIL 31.16 FDMTEN FOXSMAT40> DMTCNIT<4.0> FOXSMONDNINSZ-61:0> FWDTDNINSZ-61:0> FWDTDNINSZ-61:0> FWDTDNINSZ-61:0> FWDTDNINSZ-61:0> FWDTDNINSZ-61:0> FWDTDNINSZ-61:0> FWDTDNINSZ-61:0> FWDTSNINSZ-61:0> PWDTSNINSZ-61:0> PW			0:0			FPI		^			FPLLICLK		PLLRNG<2:0>			FPL	FPLLIDIV<2:0>		××××
DEVOTED 15:0 FCKSMC102 — OSCIOFNG POSCIOFNG POSCIOFNG POSCIOFNG POSCIOFNG POSCIOFNG POSCIONALIDO POSCIONALIDAD POSCIONALIDAD POSCIONALIDAD POSCIONALIDAD			16 FDMT	EN		DMTCNT<4:0	4		FWDTWIN	SZ<1:0>	FWDTEN	WINDIS	WDTSPGM		5	/DTPS<4:0>			XXXX
DEVICEGIA 31:16 — EJTAGBEN — POSCAGG — POSCAGG — POSCAGONSTIONS — — POSCEDIOST POSCEDIATIONS DEVOP3 31:16 —		_		CKSM<1:0>	Ι	Ι		OSCIOFNC	POSCMC	D<1:0>		FSOSCEN	NO	1TINTV<2:0.		FN	FNOSC<2:0>		××××
DEVORA TATELIA LORDINALIA TROCTONALIO LORDINA LORDIN	DE\			EJTAGBEN		-	POSCAGO	-	POSCTYF	⁵ E<1:0>	-	Ι	POSCBOOST	POSCG	AIN<1:0>	SOSCBOOST	SOSCGAIN<1:0>		××××
DEVCP3 31:16 — — — — — — — — — — — — — — — — — — —		15:			DBGPER<2:	<0	Ι	FSLEEP	FECCCO	N<1:0>	I	BOOTISA	TRCEN	ICESE	-T<1:0>	JTAGEN	DEBUG<1:0>		XXXX
DEVORA 15:0 — — — — — — — — — — — — — — — — — — —			91:	1	-	I	-	Ι	1	1	I	Ι	-	Ι	-	_	_	_	XXXX
DEVCP2 31:16 —	ח			1	1	I	Ι	-	Ι	Ι	Ι	Ι	-	Ι	_	_	1	-	XXXX
15:0 —	Ĺ		16 —	1	1	1	1	1	1	Ι	I	Ι	1	Ι	1	1	1	I	XXXX
31:16 — <td>7</td> <td></td> <td>0:5</td> <td>1</td> <td>1</td> <td>I</td> <td>I</td> <td>1</td> <td>I</td> <td>I</td> <td>I</td> <td>Ι</td> <td>1</td> <td>Ι</td> <td> </td> <td>-</td> <td>1</td> <td>I</td> <td>XXXX</td>	7		0:5	1	1	I	I	1	I	I	I	Ι	1	Ι		-	1	I	XXXX
DEVCPO 31:16 — — — — — — — — — — — — — — — — — — —	Ë		16 —	1	1	I	1	1	1	Ι	I	Ι	1	Ι	-	-	1	1	XXXX
DEVCIOL 31:16 — <th< td=""><td>UL</td><td></td><td></td><td>1</td><td>1</td><td>I</td><td>1</td><td>1</td><td>1</td><td>I</td><td>I</td><td>Ι</td><td>1</td><td>Ι</td><td>-</td><td>-</td><td>1</td><td>I</td><td>XXXX</td></th<>	UL			1	1	I	1	1	1	I	I	Ι	1	Ι	-	-	1	I	XXXX
DEVSIGNA 45.0 — — — — — — — — — — — — — — — — — — —	Ë		•	1	1	CP	ı	I	1	I	I	I	1	1	1	1	1	1	XXXX
DEVSIGNA 31:16 — — — — — — — — — — — — — — — — — — —	7		0:5	I	Ι	1	I	Ι	1	Ι	I	I	1	Ι	-	_	1	Ι	××××
DEVSIGNAL 45:0 — — — — — — — — — — — — — — — — — — —	J.	31:	16 —	1	1	ı	I	Ι	I	Ι	I	Ι	1	1	1	1	1	1	XXXX
DEVSIGNAL 31:16 — — — — — — — — — — — — — — — — — — —	Ĺ		0:5	1	Ι	I	ı	1	I	I	I	1	I	I	I	1	1	1	XXXX
DEVSIGNA 15:0	Ĺ	31:	16 —	1	_	1	I	1	I	I	I	I	1	I	-	_	I	I	XXXX
DEVSIGN 31:16 — — — — — — — — — — — — — — — — — — —	UE,		0:9	1	1	I	1	1	1	I	I	Ι	1	Ι	-	-	1	I	XXXX
15:0		-	91:	1	1	1	Ι	1	I	1	Ι	Ι	1	1	-	1	1	1	XXXX
DEVSIGNO 31:16 0	ב ב		0:9	1	1	I	Ι	-	Ι	Ι	Ι	Ι	-	Ι	_	_	1	-	XXXX
15:0	J.				1	ı	I	Ι	I	Ι	I	Ι	1	1	1	1	1	1	XXXX
	١		0:0	1	1	I	1	1	I	I	I	1	1	I	1	1	ı	I	××××

SOSCGAIN<1:0> 9/9 Ī DEBUG<1:0> FPLLODIV<2:0> FPLLIDIV<2:0> 17/1 EXTDDRSIZE<3:0> SOSCBOOST JTAGEN 18/2 **JSBOREN VBATBOREN** 19/3 POSCGAIN<1:0> ICESEL<1:0> 20/4 I FPLLRNG<2:0> WDTSPGM TRCEN WINDIS BOOTISA 22/6 ADEVCFG: ALTERNATE DEVICE CONFIGURATION WORD SUMMARY DSWDTPS<4:0> **FWDTEN** IESO 23/7 I FWDTWINSZ<1:0> FMIIEN POSCMOD<1:0> FECCON<1:0> 24/8 — = unimplemented, read as '0'. Reset values are shown in hexadecimal **FETHIO** 25/9 DSWDTEN DSWDTOSC FSLEEP 26/10 FPLLMULT<6:0> PGL1WAY DMTCNT<4:0> PMDL1WAY FDSEN 28/12 CP DBGPER<2:0> IOL1WAY 29/13 I UPLLFSEL x = unknown value on Reset; Ī FCKSM<1:0> DMTEN SMCLR 15:0 15:0 15:0 15:0 15:0 15:0 15:0 15:0 15:0 15:0 15:0 15:0 Bit Range 41-2: ADEVSIGN2 ADEVSIGN0 ADEVCFG2 ADEVCFG0 DEVSIGN DEVSIGN DEVCFG4 ADEVCFG1 TABLE FF54 (BFC0_#)

All Resets

(1)	stəsəЯ IIA	0000	000B	xxxx	xxxx	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	7F40	FFFF
	16/0	OCACLK	TDOEN					EBIA16EN	EBIA0EN	EBIRPEN	EBIDEN0	ETHPG<1:0>	CPUPG<1:0>		GPURESET	ı	
	17/1	ICACLK	I					EBIA17EN	EBIA1EN	EBI RDYLVL	EBIDEN1	ETHP(CPUP		I	I	
	18/2	ı	TROEN					EBIA18EN	EBIA2EN	ı	I	G<1:0>	I		SDWPPOL	I	V<5:0>
	19/3	ı	JTAGEN					EBIA19EN	EBIA3EN	_	I	SDHCPG<1:0>	I		ı	_	MPLLIDIV<5:0>
	20/4	ı	N<1:0>					EBIA20EN	EBIA4EN	ı	EBICSENO	3<1:0>	3<1:0>	SDWRFTHR<9:0>		ı	
	21/5	ı	ECCCON<1:0>	DEVID<27:16>				EBIA21EN EBIA20EN EBIA19EN EBIA18EN EBIA17EN EBIA16EN 0000	EBIA5EN	ı	EBICSEN1 EBICSEN0	SQI1PG<1:0>	DMAPG<1:0>	SDWRF		ı	
	22/6	1	I	DEVID				EBIA23EN EBIA22EN	EBIA6EN	_	EBIBSEN1 EBIBSEN0 EBICSEN3 EBICSEN2	FCPG<1:0>	I			MPLL VREGDIS	INTVREFCON<1:0>
Bits	23/7	I	USBSSEN IOANCPEN		DEVID<15:0>	CVCKEV/34:0>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	EBIA23EN	EBIA7EN	_	EBICSEN3	FCPG	I			MPLL MPLL VREGRDY VREGDIS	INTVREF
a	24/8	I	USBSSEN		DEVID	CVCKE	O TONO	-	EBIA8EN	Ι	EBIBSEN0	CRYPTPG<1:0>	USBPG<1:0>		SDRDFTHR<9:0>	<0:	
	25/9	I	I					_	EBIA9EN	EBI RDYEN1	EBIBSEN1	CRYPTI	USBP		SDRDF	MPLLODIV1<2:0>	
	26/10	I	I					Ι	EBIA10EN	EBI RDYEN2	-	GLCDPG<1:0>	I	I		M	
	27/11	1	PGLOCK					Ι	EBIA11EN	EBI RDYEN3	I	GLCDF	I	I		5:0>	//ULT<7:0>
	28/12	I	IOLOCK PMDLOCK PGLOCK					I	EBIA12EN	Ι	EBIOEEN	GPUPG<1:0>	CAN1PG<1:0>	SDWPEN		MPLLODIV2<2:0>	MPLLMULT<
	29/13	I	IOLOCK	<0:1				I	EBIA13EN	EBI RDYINV1	EBIWEEN EBIOE	GPUF	CAN1F	SDCDEN		≅	
	30/14	1	I	VER<3:0>				Ι	EBIA14EN	EBI RDYINV2	_	1	G<1:0>	31:16 GLCDPINEN GLCDMODE SDCDEN	1	MPLLDIS	
	31/15	ı	I					ı	EBIA15EN	EBI RDYINV3	ı	I	CAN2PG<1:0>	3LCDPINEN	I	MPLLRDY	
e	Bit Range	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0
	Registerem 9msM	140000	NO SECON			CVCVEV	13010		Y GID	CFGEBIC			2 2 2		CFGCONZ	CFGMPLL	
ssə	Virtual Addr (#_0878)	0000	0000	0000	0000	0000	0000		2000	00D0		L	OUEU	L	2	0100	

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset values are dependent on the specific device.

DEVICE SERIAL NUMBER SUMMARY

TABLE 41-4:

(1)	steseЯ IIA	×××	××××	×××	×××	××××	×××	×××	××××	
	16/0									
	1/21									
	18/2									
	19/3									
	20/4									
	21/5									
	22/6	:16>	<0:9	:16>	<0:9	:16>	<0:9	:16>	<0:0>	
Bits	23/7	Device Serial Number <31:16>	Device Serial Number <15:0>	Device Serial Number <31:16>	Device Serial Number <15:0>	Device Serial Number <31:16>	Device Serial Number <15:0>	Device Serial Number <31:16>	Device Serial Number <15:0>	
B	24/8	ice Serial N	vice Serial I	ice Serial №	vice Serial I	ice Serial №	vice Serial I	ice Serial N	vice Serial I	minahevan
	25/9	Dev	De	Dev	De	Dev	De	Dev	De	shown in h
	26/10									t value are
	27/11									lemipebexed ai awods ere seulev tesed '∩' se l
	28/12									
	29/13									
	30/14									
	31/15									= unknown value on Beset
•	Bit Range	31:16	15:0	31:16	15:0	31:16	15:0	31:16	15:0	W Cada
	Register 9msM	0140	DEV SIND	1407.770	DEV SIN	CIVOVI	DEVOINE	403C DEVENS	DEV GING	
	Virtual Addr (#_3078)	0007	4020	7007	4024	40.00	4020	7007	7204	- Puene

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Note 1: Reset values are dependent on the device variant.

TABLE 41-3:

DEVICE ID, REVISION, AND CONFIGURATION SUMMARY

TAB	TABLE 41-5 :		VICE A	DEVICE ADC CALIBRATION SI	IBRATI		IMMARY												
		6								Bits	Ş								(1)
Virtual Addr (#_3078)	Register AmsM	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	1//1	16/0	steseЯ IIA
9		31:16							ADC	ADC Calibration Data <31:16>	Data <31:1	<9						^	XXXX
4000	DEVADO	15:0							AD	ADC Calibration Data <15:0>	า Data <15:C	^						^	××××
3		31:16							ADC	ADC Calibration Data <31:16>	Data <31:1	<9						^	XXXX
4004 4	DEVADO	15:0							AD	ADC Calibration Data <15:0>	η Data <15:C	^						^	XXXX
000		31:16							ADC	ADC Calibration Data <31:16>	Data <31:1	<9						^	XXXX
4008	DEVADOZ	15:0							AD	ADC Calibration Data <15:0>	η Data <15:C	^						^	×××
0		31:16							ADC	ADC Calibration Data <31:16>	Data <31:1	<9						^	××××
400C	SOLVED	15:0							AD	ADC Calibration Data <15:0>	η Data <15:C	^						^	××××
9		31:16							ADC	ADC Calibration Data <31:16>	Data <31:1	<9						^	xxxx
4010	DEVADO4	15:0							AD	ADC Calibration Data <15:0>	η Data <15:C	^						^	××××
7	70%	31:16							ADC	ADC Calibration Data <31:16>	Data <31:1	<9						^	XXXX
7 0	401C DEVADO	15:0							AD	ADC Calibration Data <15:0>	η Data <15:C	^						^	×××
Legend:		\ uwouyur	x = unknown value on Reset	set.															

 Legend:
 x = unknown value on Reset.

 Note
 1:
 Reset values are dependent on the device variant.

REGISTER 41-1: DEVSIGNO/ADEVSIGNO: DEVICE SIGNATURE WORD 0 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	r-0	r-1	r-1	r-1	r-1	r-1	r-1	r-1
31:24	_	_	_	_	_		_	_
00:40	r-1 r-1							
23:16	_	_	_	_	_	_	_	_
45.0	r-1 r-1							
15:8	_	_	_	_	_	_	_	_
7.0	r-1 r-1							
7:0	_	_	_	_	_	_	_	_

Legend: r = Reserved bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31 **Reserved:** Write as '0' bit 30-0 **Reserved:** Write as '1'

Note: The DEVSIGN1 through DEVSIGN3 and ADEVSIGN1 through ADEVSIGN3 registers are used for Quad Word programming operation when programming the DEVSIGN0/ADESIGN0 registers, and do not contain

any valid information.

REGISTER 41-2: DEVCP0/ADEVCP0: DEVICE CODE-PROTECT 0 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04:04	r-1	r-1	r-1	R/P	r-1	r-1	r-1	r-1
31:24	_	_	_	CP	_	_	_	_
22.40	r-1 r-1							
23:16	_	_	_	_	_	_	_	_
45.0	r-1 r-1							
15:8	_	_	_	_	_	_	_	_
7.0	r-1 r-1							
7:0	_	_	_	_	_	_	_	_

Legend: r = Reserved bit P = Programmable bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-29 Reserved: Write as '1'

bit 28 **CP:** Code-Protect bit

Prevents boot and program Flash memory from being read or modified by an external programming device.

1 = Protection is disabled0 = Protection is enabled

bit 27-0 Reserved: Write as '1'

Note: The DEVCP1 through DEVCP3 and ADEVCP1 through ADEVCP3 registers are used for Quad Word programming operation when programming the DEVCP0/ADEVCP0 registers, and do not contain any valid

information.

REGISTER 41-3: DEVCFG0/ADEVCFG0: DEVICE CONFIGURATION WORD 0

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.04	r-x	R/P	r-1	r-1	r-1	r-1	r-1	r-1
31:24	_	EJTAGBEN	_	_	POSCACG	_	POSCTY	PE<1:0>
22.46	r-1	r-1	R/P	R/P	R/P	R/P	R/P	R/P
23:16	_	_	POSCBOOST	POSCGA	\IN<1:0>	SOSCBOOST	SOSCGA	AIN<1:0>
45.0	R/P	R/P	R/P	R/P	r-y	R/P	R/P	R/P
15:8	SMCLR	ı	DBGPER<2:0>		_	FSLEEP	FECCC	ON<1:0>
7.0	r-1	R/P	R/P	R/P	R/P	R/P	R/P	R/P
7:0		BOOTISA	TRCEN	ICESE	L<1:0>	JTAGEN ⁽¹⁾	DEBU	G<1:0>

Legend:r = Reserved bity = Value set from Configuration bits on PORR = Readable bitP = Programmable bitU = Unimplemented bit, read as '0'<math>-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

- bit 31 Reserved: The reset value of this bit is the same as DEVSIGN0<31>.
- bit 30 **EJTAGBEN:** EJTAG Boot Enable bit
 - 1 = Normal EJTAG functionality
 - 0 = Reduced EJTAG functionality
- bit 29-28 Reserved: Write as '1'
- bit 27 POSCAGC: Primary Oscillator Auto Gain Control bit
 - 1 = POSC Auto Gain Control Enabled
 - 0 = POSC Auto Gain Control Disabled/Manual Gain Control Enabled
- bit 26 Reserved: Write as '1'
- bit 25-24 **POSCTYPE:** Primary Oscillator Type bits

NOTE: These bits are used to control the gain loop, which differs based on the crystal frequency.

- 11 = 12 MHz Crystal
- 10 = 24 MHz Crystal
- 01 = Resonator
- 00 = 8 MHz Crystal
- bit 23-22 Reserved: Write as '1'
- bit 21 POSCBOOST: Primary Oscillator Boost Kick Start Enable bit
 - 1 = Boost the kick start of the oscillator
 - 0 = Normal start of the oscillator
- bit 20-19 POSCGAIN<1:0>: Primary Oscillator Gain Control bits
 - 11 = Gain Level 3 (highest)
 - 10 = Gain Level 2
 - 01 = Gain Level 1
 - 00 = Gain Level 0 (lowest)
- bit 18 SOSCBOOST: Secondary Oscillator Boost Kick Start Enable bit
 - 1 = Boost the kick start of the oscillator
 - 0 = Normal start of the oscillator
- bit 17-16 SOSCGAIN<1:0>: Secondary Oscillator Gain Control bits
 - 11 = Gain Level 3 (highest)
 - 10 = Gain Level 2
 - 01 = Gain Level 1
 - 00 = Gain Level 0 (lowest)
- bit 15 SMCLR: Soft Master Clear Enable bit
 - 1 = MCLR pin generates a normal system Reset
 - 0 = MCLR pin generates a POR Reset
- **Note 1:** This bit sets the value of the JTAGEN bit in the CFGCON register. When this fuse bit is set to '0' at start-up, the JTAGEN bit in the CFGCON register is ignored at run-time.

REGISTER 41-3: DEVCFG0/ADEVCFG0: DEVICE CONFIGURATION WORD 0 (CONTINUED)

bit 14-12 DBGPER<2:0>: Debug Mode CPU Access Permission bits

1xx = Allow CPU access to Permission Group 2 permission regions

x1x = Allow CPU access to Permission Group 1 permission regions

xx1 = Allow CPU access to Permission Group 0 permission regions

0xx = Deny CPU access to Permission Group 2 permission regions

x0x = Deny CPU access to Permission Group 1 permission regions

xx0 = Deny CPU access to Permission Group 0 permission regions

When the CPU is in Debug mode and the CPU1PG<1:0> bits (CFGPG<1:0>) are set to a denied permission group as defined by DBGPER<2:0>, the transaction request is assigned Group 3 permissions.

- bit 11 **Reserved:** This bit is controlled by debugger/emulator development tools and should not be modified by the user.
- bit 10 FSLEEP: Flash Sleep Mode bit
 - 1 = Flash is powered down when the device is in Sleep mode
 - 0 = Flash power down is controlled by the VREGS bit (PWRCON<0>)
- bit 9-8 **FECCON<1:0>:** Dynamic Flash ECC Configuration bits

Upon a device Reset, the value of these bits is copied to the ECCCON<1:0> bits (CFGCON<5:4>).

- 11 = ECC and dynamic ECC are disabled (ECCCON<1:0> bits are writable)
- 10 = ECC and dynamic ECC are disabled (ECCCON<1:0> bits are locked)
- 01 = Dynamic Flash ECC is enabled (ECCCON<1:0> bits are locked)
- 00 = Flash ECC is enabled (ECCCON<1:0> bits are locked; disables word Flash writes)
- bit 7 **Reserved:** Write as '1'
- bit 6 BOOTISA: Boot ISA Selection bit
 - 1 = Boot code and Exception code is MIPS32

(ISAONEXC bit is set to '0' and the ISA<1:0> bits are set to '10' in the CP0 Config3 register)

 $_{
m 0}$ = Boot code and Exception code is microMIPS

(ISAONEXC bit is set to '1' and the ISA<1:0> bits are set to '11' in the CP0 Config3 register)

- bit 5 TRCEN: Trace Enable bit
 - 1 = Trace features in the CPU are enabled
 - 0 = Trace features in the CPU are disabled
- bit 4-3 ICESEL<1:0>: In-Circuit Emulator/Debugger Communication Channel Select bits
 - 11 = PGEC1/PGED1 pair is used
 - 10 = PGEC2/PGED2 pair is used
 - 01 = Reserved
 - 00 = Reserved
- bit 2 **JTAGEN:** JTAG Enable bit⁽¹⁾
 - 1 = JTAG is enabled
 - 0 = JTAG is disabled
- bit 1-0 **DEBUG<1:0>:** Background Debugger Enable bits (forced to '11' if code-protect is enabled)
 - 1x = Debugger is disabled
 - 0x = Debugger is enabled
- **Note 1:** This bit sets the value of the JTAGEN bit in the CFGCON register. When this fuse bit is set to '0' at start-up, the JTAGEN bit in the CFGCON register is ignored at run-time.

REGISTER 41-4: DEVCFG1/ADEVCFG1: DEVICE CONFIGURATION WORD 1

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	R/P R/P								
31:24	FDMTEN		D	MTCNT<4:0>	•		FWDTWI	NSZ<1:0>	
22.46	R/P R/P								
23:16	FWDTEN	WINDIS	WDTSPGM	M WDTPS<4:0>					
45.0	R/P	R/P	r-1	r-1	r-1	R/P	R/P	R/P	
15:8	FCKSN	/<1:0>	_	_	_	OSCIOFNC	POSCM	OD<1:0>	
7.0	R/P R/P								
7:0	IESO	FSOSCEN		OMTINV<2:0>		F	NOSC<2:0>	•	

Legend:r = Reserved bitP = Programmable bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

```
bit 31 FDMTEN: Deadman Timer enable bit
```

- 1 = Deadman Timer is enabled and *cannot* be disabled by software
- 0 = Deadman Timer is disabled and can be enabled by software

bit 30-26 DMTCNT<4:0>: Deadman Timer Count Select bits

```
11111 = Reserved •
```

:

11000 = Reserved

 $10111 = 2^{31} (2147483648)$

 $10110 = 2^{30} (1073741824)$

 $10101 = 2^{29} (536870912)$

 $10100 = 2^{28} (268435456)$

•

 $00001 = 2^9 (512)$

 $00000 = 2^8 (256)$

bit 25-24 FWDTWINSZ<1:0>: Watchdog Timer Window Size bits

- 11 = Window size is 25%
- 10 = Window size is 37.5%
- 01 = Window size is 50%
- 00 = Window size is 75%

bit 23 FWDTEN: Watchdog Timer Enable bit

- 1 = Watchdog Timer is enabled and cannot be disabled by software
- 0 = Watchdog Timer is not enabled; it can be enabled in software

bit 22 WINDIS: Watchdog Timer Window Enable bit

- 1 = Watchdog Timer is in non-Window mode
- 0 = Watchdog Timer is in Window mode

bit 21 WDTSPGM: Watchdog Timer Stop During Flash Programming bit

- 1 = Watchdog Timer stops during Flash programming
- 0 = Watchdog Timer runs during Flash programming (for read/execute while programming Flash applications)

REGISTER 41-4: DEVCFG1/ADEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED) bit 20-16 WDTPS<4:0>: Watchdog Timer Postscale Select bits 10100 = 1:1048576 10011 = 1:524288 10010 = 1:262144 10001 = 1:131072 10000 = 1:65536 01111 = 1:32768 01110 = 1:16384 01101 = 1:8192 01100 = 1:4096 01011 = 1:2048 01010 = 1:1024 01001 = 1:512 01000 = 1:256 00111 = 1:128 00110 = 1:6400101 = 1:32 00100 = 1:1600011 = 1:8 00010 = 1:4 00001 = 1:2 00000 = 1:1All other combinations not shown result in operation = 10100 bit 15-14 FCKSM<1:0>: Clock Switching and Monitoring Selection Configuration bits 11 = Clock switching is enabled and clock monitoring is enabled 10 = Clock switching is disabled and clock monitoring is enabled 01 = Clock switching is enabled and clock monitoring is disabled 00 = Clock switching is disabled and clock monitoring is disabled bit 13-11 Reserved: Write as '1' bit 10 OSCIOFNC: CLKO Enable Configuration bit 1 = CLKO output disabled 0 = CLKO output signal active on the OSCO pin; Primary Oscillator must be disabled or configured for the External Clock mode (EC) for the CLKO to be active (POSCMOD<1:0> = 11 or 00) bit 9-8 POSCMOD<1:0>: Primary Oscillator Configuration bits 11 = Posc disabled 10 = HS Oscillator mode selected 01 = Reserved 00 = EC mode selected bit 7 IESO: Internal External Switchover bit 1 = Internal External Switchover mode is enabled (Two-Speed Start-up is enabled) 0 = Internal External Switchover mode is disabled (Two-Speed Start-up is disabled) bit 6 FSOSCEN: Secondary Oscillator Enable bit 1 = Enable Sosc 0 = Disable Sosc bit 5-3 DMTINV<2:0>: Deadman Timer Count Window Interval bits 111 = Window/Interval value is 127/128 counter value 110 = Window/Interval value is 63/64 counter value 101 = Window/Interval value is 31/32 counter value 100 = Window/Interval value is 15/16 counter value

011 = Window/Interval value is 7/8 counter value 010 = Window/Interval value is 3/4 counter value 001 = Window/Interval value is 1/2 counter value

000 = Window/Interval value is zero

REGISTER 41-4: DEVCFG1/ADEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED)

bit 2-0 FNOSC<2:0>: Oscillator Selection bits

- 111 **= SPLL**
- 110 = Reserved
- 101 **= LPRC**
- 100 **= Sosc**
- 011 = Reserved
- 010 = Posc (HS, EC)
- 001 **= SPLL**
- 000 = FRC divided by FRCDIV<2:0> bits (FRCDIV)

REGISTER 41-5: DEVCFG2/ADEVCFG2: DEVICE CONFIGURATION WORD 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	r-1	R/P	r-1	R/P	R/P	R/P	R/P	R/P
31:24	_	UPLLFSEL	_	FDSEN	DSWDTEN	DSWDTOSC	DSWDT	PS<4:3>
00:40	R/P R/P							
23:16	D:	SWDTPS<2:	<0>	DSBOREN	VBATBOREN	FP	LLODIV<2:0	>
45.0	r-1	R/P	R/P	R/P	R/P	R/P	R/P	R/P
15:8	_			1	FPLLMULT<6:0	>		
7.0	R/P	R/P	R/P	R/P	r-1	R/P	R/P	R/P
7:0	FPLLICLK	F	PLLRNG<2:	0>	_	FF	LLIDIV<2:0>	>

Legend:r = Reserved bitP = Programmable bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31 Reserved: Write as '1'

bit 30 UPLLFSEL: USB PLL Input Frequency Select bit

1 = UPLL input clock is 24 MHz 0 = UPLL input clock is 12 MHz

bit 29 Reserved: Write as '1'

bit 28 FDSEN: Deep Sleep Enable bit

1 = Deep Sleep mode is entered on a WAIT instruction 0 = Sleep mode is entered on a WAIT instruction

bit 27 **DSWDTEN:** Deep Sleep Watchdog Timer Enable bit

1 = Enable the Deep Sleep Watchdog Timer (DSWDT) during Deep Sleep mode

0 = Disable the DSWDT during Deep Sleep mode

bit 26 DSWDTOSC: Deep Sleep Watchdog Timer Reference Clock Select bit

1 = Select the LPRC Oscillator as the DSWDT reference clock

0 = Select the Secondary Oscillator as the DSWDT reference clock

REGISTER 41-5: DEVCFG2/ADEVCFG2: DEVICE CONFIGURATION WORD 2 (CONTINUED)

```
bit 25-21 DSWDTPS<4:0>: Deep Sleep Watchdog Timer Postscale Select bits
           111111 = 1:2^{36}
           11110 = 1:2<sup>35</sup>
           11101 = 1:2<sup>34</sup>
           11100 = 1:2^{33}
           11011 = 1:2<sup>32</sup>
           11010 = 1:2<sup>31</sup>
           11001 = 1:2<sup>30</sup>
           11000 = 1:2<sup>29</sup>
           10111 = 1:2<sup>28</sup>
           10110 = 1:2<sup>27</sup>
           10101 = 1:2<sup>26</sup>
           10100 = 1:2<sup>25</sup>
           10011 = 1:2^{24}
           10010 = 1:2^{23}
           10001 = 1:2<sup>22</sup>
           10000 = 1:2^{21}
           01111 = 1:2^{20}
           01110 = 1:2^{19}
           01101 = 1:2^{18}
           01100 = 1:2^{17}
           01011 = 1:2^{16}
           01010 = 1:2^{15}
           01001 = 1:2^{14}
           01000 = 1:2^{13}
           00111 = 1:2^{12}
           00110 = 1:2^{11}
           00101 = 1:2^{10}
           00100 = 1:2<sup>9</sup>
           00011 = 1:2^8
           00010 = 1:2^7
           00001 = 1:2^6
           00000 = 1:2^5
bit 20
           DSBOREN: Deep Sleep BOR Enable bit
           1 = Enable BOR during Deep Sleep mode
           0 = Disable BOR during Deep Sleep mode
bit 19
           VBATBOREN: VBAT BOR Enable bit
           1 = Enable BOR during VBAT mode
           0 = Disable BOR during VBAT mode
bit 18-16 FPLLODIV<2:0>: Default System PLL Output Divisor bits
           111 = PLL output divided by 32
           110 = PLL output divided by 32
           101 = PLL output divided by 32
           100 = PLL output divided by 16
           011 = PLL output divided by 8
           010 = PLL output divided by 4
           001 = PLL output divided by 2
           000 = PLL output divided by 2
           Reserved: Write as '1'
bit 15
```

REGISTER 41-5: DEVCFG2/ADEVCFG2: DEVICE CONFIGURATION WORD 2 (CONTINUED)

```
bit 14-8 FPLLMULT<6:0>: System PLL Feedback Divider bits
         1111111 = Multiply by 128
         1111110 = Multiply by 127
         1111101 = Multiply by 126
         1111100 = Multiply by 125
         0000000 = Multiply by 1
bit 7
         FPLLICLK: System PLL Input Clock Select bit
         1 = FRC is selected as input to the System PLL
         0 = Posc is selected as input to the System PLL
bit 6-4
         FPLLRNG<2:0>: System PLL Divided Input Clock Frequency Range bits
         111 = Reserved
         110 = Reserved
         101 = 34-64 MHz
         100 = 21-42 MHz
         011 = 13-26 MHz
         010 = 8-16 MHz
         001 = 5-10 MHz
         000 = Bypass
bit 3
         Reserved: Write as '1'
bit 2-0
         FPLLIDIV<2:0>: PLL Input Divider bits
         111 = Divide by 8
         110 = Divide by 7
         101 = Divide by 6
         100 = Divide by 5
         011 = Divide by 4
         010 = Divide by 3
         001 = Divide by 2
         000 = Divide by 1
```

REGISTER 41-6: DEVCFG3/ADEVCFG3: DEVICE CONFIGURATION WORD 3

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	r-1	r-1	R/P	R/P	R/P	r-1	R/P	R/P
31:24	_	_	IOL1WAY	PMDL1WAY	PGL1WAY	_	FETHIO	FMIIEN
22:40	r-1	r-1	r-1	r-1	R/P	R/P	R/P	R/P
23:16	_	_	_	_		EXTDDRS	SIZE<3:0>	
45.0	R/P R/P							
15:8				USERID<1	15:8>			
7:0	R/P R/P							
7:0				USERID<	7:0>			

Legend:	r = Reserved bit	P = Programmable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x =	Bit is unknown

bit 31-30 Reserved: Write as '1'

bit 29 IOL1WAY: Peripheral Pin Select Configuration bit

1 = Allow only one reconfiguration0 = Allow multiple reconfigurations

bit 28 PMDL1WAY: Peripheral Module Disable Configuration bit

1 = Allow only one reconfiguration0 = Allow multiple reconfigurations

bit 27 PGL1WAY: Permission Group Lock One Way Configuration bit

1 = Allow only one reconfiguration0 = Allow multiple reconfigurations

bit 26 Reserved: Write as '1'

bit 25 FETHIO: Ethernet I/O Pin Selection Configuration bit

1 = Default Ethernet I/O pins0 = Alternate Ethernet I/O pins

This bit is ignored for devices that do not have an alternate Ethernet pin selection.

bit 24 FMIIEN: Ethernet MII Enable Configuration bit

1 = MII is enabled 0 = RMII is enabled

bit 23-20 **Reserved:** Write as '1' bit 19-16 **EXTDDRSIZE<3:0>:** External DDR2 SDRAM Size bits

This field is used to configure the DDR2 memory map. Refer to Table 4-1 for address mapping details.

1111 = 128 MB 1110 = 128 MB •

.

0111 **= 128 MB**

0110 **= 64 MB**

0101 **= 32 MB**

0100 **= 16 MB**

0011 = 8 MB 0010 = 4 MB

0010 = 4 MB

0000 = 1 MB

bit 15-0 USERID<15:0>: This is a 16-bit value that is user-defined and is readable via ICSP™ and JTAG

REGISTER 41-7: DEVCFG4/ADEVCFG4: DEVICE CONFIGURATION WORD 4

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	r-1	r-1	r-1	R/P	R/P	R/P	R/P	R/P
31:24	_	_	_		S	WDTPS<4:0>	>	
22.40	r-1 r-1							
23:16	_	_	_	_	_	_	_	_
45.0	r-1 r-1							
15:8	_	_	_	_	_	_	_	_
7:0	r-1 r-1							
7.0	_	_	_	_	_	_	_	_

Legend:r = Reserved bitP = Programmable bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-29 Reserved: Write as '1'

bit 29-24 SWDTPS<4:0>: Sleep Mode Watchdog Timer Postscale Select bits

10100 = 1:1048576

10011 **= 1:524288**

10010 = 1:262144

10001 = 1:131072

10000 = 1:65536

01111 = 1:32768

01110 = 1:16384

01101 = 1:8192

01100 = 1:4096

01011 = 1:2048

01010 = 1:1024

01001 = 1:512

01000 = 1:256

00111 = 1:128 00110 = 1:64

00110 - 1.0400101 = 1:32

00100 = 1:16

00011 = 1:8

00010 = 1:4

00001 = 1:2

00000 = 1:1

All other combinations not shown result in operation = 10100

bit 31-29 Reserved: Write as '1'

REGISTER 41-8: DEVADCx: DEVICE ADC CALIBRATION WORD 'x' ('x' = 0-4, 7)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R	R	R	R	R	R	R	R
31:24				ADCFG	<31:24>			
22:46	R	R	R	R	R	R	R	R
23:16				ADCFG	<23:16>			
15.0	R	R	R	R	R	R	R	R
15:8				ADCFO	G<15:8>			
7:0	R	R	R	R	R	R	R	R
7.0				ADCF	G<7:0>			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 ADCFG<31:0>: Calibration Data for the ADC Module bits

This data must be copied to the corresponding ADCxCFG register. Refer to **Section 28.0 "Pipelined Analog-to-Digital Converter (ADC)"** for more information.

REGISTER 41-9: CFGCON: CONFIGURATION CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	_	_	_	_	_
00:40	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
23:16	_	_	_	_	_	_	ICACLK ⁽¹⁾	OCACLK ⁽¹⁾
45.0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
15:8	_	_	IOLOCK ⁽¹⁾	PMDLOCK ⁽¹⁾	PGLOCK ⁽¹⁾	_	_	USBSSEN ⁽¹⁾
7.0	R/W-0	U-0	R/W-1	R/W-1	R/W-1	R/W-0	U-0	R/W-1
7:0	IOANCPEN	_	ECCC	ON<1:0>	JTAGEN ⁽²⁾	TROEN	_	TDOEN

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-18 Unimplemented: Read as '0'

bit 17 ICACLK: Input Capture Alternate Clock Selection bit (1)

1 = Input Capture modules use an alternative Timer pair as their timebase clock

0 = All Input Capture modules use Timer2/3 as their timebase clock

bit 16 OCACLK: Output Compare Alternate Clock Selection bit (1)

1 = Output Compare modules use an alternative Timer pair as their timebase clock

0 = All Output Compare modules use Timer2/3 as their timebase clock

bit 15-14 Unimplemented: Read as '0'

bit 13 **IOLOCK:** Peripheral Pin Select Lock bit⁽¹⁾

1 = Peripheral Pin Select is locked. Writes to PPS registers is not allowed.

0 = Peripheral Pin Select is not locked. Writes to PPS registers is allowed.

bit 12 **PMDLOCK:** Peripheral Module Disable bit⁽¹⁾

1 = Peripheral module is locked. Writes to PMD registers is not allowed.

0 = Peripheral module is not locked. Writes to PMD registers is allowed.

bit 11 **PGLOCK:** Permission Group Lock bit⁽¹⁾

1 = Permission Group registers are locked. Writes to PG registers are not allowed.

0 = Permission Group registers are not locked. Writes to PG registers are allowed.

bit 10-9 Unimplemented: Read as '0'

bit 8 USBSSEN: USB Suspend Sleep Enable bit(1)

Enables features for USB PHY clock shutdown in Sleep mode.

1 = USB PHY clock is shut down when Sleep mode is active

0 = USB PHY clock continues to run when Sleep is active

Note 1: To change this bit, the unlock sequence must be performed. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.

2: The JTAGEN bit is only available at run-time when the JTAGEN (DEVCFG0<2>) fuse bit is set at start-up.

REGISTER 41-9: CFGCON: CONFIGURATION CONTROL REGISTER (CONTINUED)

- bit 7 IOANCPEN: I/O Analog Charge Pump Enable bit
 - 1 = Charge pumps are enabled
 - 0 = Charge pumps are disabled
 - **Note 1:** For proper analog operation at VDD is less than 2.5V, the AICPMPEN bit (ADCCON1<12>) must be = 1 and the IOANCPEN bit must be set to '1'; however, the charge pumps will consume additional current. These bits should not be set if VDD is greater than 2.5V.
 - 2: ADC throughput rate performance is reduced as defined in the table below if ADCCON1<AICP-MPEN> = 1 and CFGCON<IOANCPEN> = 1.

ADC0	ADC1	ADC2	ADC3	ADC4	ADC7	Maximum combined
ON	OFF	OFF	OFF	OFF	OFF	2 MSPS
ON	ON	OFF	OFF	OFF	OFF	4 MSPS
ON	ON	ON	OFF	OFF	OFF	5 MSPS
OFF	OFF	OFF	ON	OFF	OFF	2 MSPS
OFF	OFF	OFF	ON	ON	OFF	4 MSPS
OFF	OFF	OFF	ON	ON	ON	5 MSPS
ON	ON	ON	ON	OFF	OFF	7 MSPS
ON	ON	ON	ON	ON	OFF	9 MSPS
ON	ON	ON	ON	ON	ON	10 MSPS

- bit 6 **Unimplemented:** Read as '0'
- bit 5-4 **ECCCON<1:0>:** Flash ECC Configuration bits
 - 11 = ECC and dynamic ECC are disabled (ECCCON<1:0> bits are writable)
 - 10 = ECC and dynamic ECC are disabled (ECCCON<1:0> bits are locked)
 - 01 = Dynamic Flash ECC is enabled (ECCCON<1:0> bits are locked)
 - 00 = Flash ECC is enabled (ECCCON<1:0> bits are locked; disables word Flash writes)
- bit 3 **JTAGEN:** JTAG Port Enable bit⁽²⁾
 - 1 = Enable the JTAG port
 - 0 = Disable the JTAG port
- bit 2 TROEN: Trace Output Enable bit
 - 1 = Enable trace outputs and start trace clock (trace probe must be present)
 - 0 = Disable trace outputs and stop trace clock
- bit 1 Unimplemented: Read as '0'
- bit 0 TDOEN: TDO Enable for 2-Wire JTAG
 - 1 = 2-wire JTAG protocol uses TDO
 - 0 = 2-wire JTAG protocol does not use TDO
- Note 1: To change this bit, the unlock sequence must be performed. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.
 - 2: The JTAGEN bit is only available at run-time when the JTAGEN (DEVCFG0<2>) fuse bit is set at start-up.

REGISTER 41-10: CFGEBIA: EXTERNAL BUS INTERFACE ADDRESS PIN CONFIGURATION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0 U-0							
31.24	_	-	-	-	_	-	_	_
00.40	R/W-0 R/W-0							
23:16	EBIA23EN	EBIA22EN	EBIA21EN	EBIA20EN	EBIA19EN	EBIA18EN	EBIA17EN	EBIA16EN
45.0	R/W-0 R/W-0							
15:8	EBIA15EN	EBIA14EN	EBIA13EN	EBIA12EN	EBIA11EN	EBIA10EN	EBIA9EN	EBIA8EN
7.0	R/W-0 R/W-0							
7:0	EBIA7EN	EBIA6EN	EBIA5EN	EBIA4EN	EBIA3EN	EBIA2EN	EBIA1EN	EBIA0EN

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23-0 EBIA23EN: EBIA0EN: EBI Address Pin Enable bits

1 = EBIAx pin is enabled for use by EBI0 = EBIAx pin has is available for general use

Note: When EBIMD = 1, the bits in this register are ignored and the pins are available for general use.

REGISTER 41-11: CFGEBIC: EXTERNAL BUS INTERFACE CONTROL PIN CONFIGURATION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0
31:24	EBI RDYINV3	EBI RDYINV2	EBI RDYINV1	_	EBI RDYEN3	EBI RDYEN2	EBI RDYEN1	_
22.40	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
23:16	_	_	_	_	_	_	EBIRDYLVL	EBIRPEN
45.0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
15:8	_	_	EBIWEEN	EBIOEEN	_	_	EBIBSEN1	EBIBSEN0
7.0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
7:0	EBICSEN3	EBICSEN2	EBICSEN1	EBICSEN0	_	_	EBIDEN1	EBIDEN0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31 EBIRDYINV3: EBIRDY3 Inversion Control bit

1 = Invert EBIRDY3 pin before use

0 = Do not invert EBIRDY3 pin before use

bit 30 EBIRDYINV2: EBIRDY2 Inversion Control bit

1 = Invert EBIRDY2 pin before use

0 = Do not invert EBIRDY2 pin before use

bit 29 EBIRDYINV1: EBIRDY1 Inversion Control bit

1 = Invert EBIRDY1 pin before use

0 = Do not invert EBIRDY1 pin before use

bit 28 Unimplemented: Read as '0'

bit 27 EBIRDYEN3: EBIRDY3 Pin Enable bit

1 = EBIRDY3 pin is enabled for use by the EBI module

0 = EBIRDY3 pin is available for general use

bit 26 EBIRDYEN2: EBIRDY2 Pin Enable bit

1 = EBIRDY2 pin is enabled for use by the EBI module

0 = EBIRDY2 pin is available for general use

bit 25 EBIRDYEN1: EBIRDY1 Pin Enable bit

1 = EBIRDY1 pin is enabled for use by the EBI module

0 = EBIRDY1 pin is available for general use

bit 24-18 Unimplemented: Read as '0'

bit 17 EBIRDYLVL: EBIRDYx Pin Sensitivity Control bit

1 = Use level detect for EBIRDYx pins

0 = Use edge detect for EBIRDYx pins

bit 16 EBIRPEN: EBIRP Pin Sensitivity Control bit

 $1 = \overline{\mathsf{EBIRP}}$ pin is enabled for use by the EBI module

 $0 = \overline{EBIRP}$ pin is available for general use

bit 15-14 **Unimplemented:** Read as '0'

bit 13 **EBIWEEN:** EBIWE Pin Enable bit

 $1 = \overline{\mathsf{EBIWE}}$ pin is enabled for use by the EBI module

0 = EBIWE pin is available for general use

Note: When EBIMD = 1, the bits in this register are ignored and the pins are available for general use.

REGISTER 41-11: CFGEBIC: EXTERNAL BUS INTERFACE CONTROL PIN CONFIGURATION REGISTER (CONTINUED)

bit 12 EBIOEEN: EBIOE Pin Enable bit

 $1 = \overline{\mathsf{EBIOE}}$ pin is enabled for use by the EBI module

 $0 = \overline{\mathsf{EBIOE}}$ pin is available for general use

bit 11-10 Unimplemented: Read as '0'

bit 9 **EBIBSEN1:** EBIBS1 Pin Enable bit

 $1 = \overline{EBIBS1}$ pin is enabled for use by the EBI module

0 = EBIBS1 pin is available for general use

bit 8 EBIBSEN0: EBIBSO Pin Enable bit

 $1 = \overline{\mathsf{EBIBS0}}$ pin is enabled for use by the EBI module

 $0 = \overline{\mathsf{EBIBS0}}$ pin is available for general use

bit 7 EBICSEN3: EBICS3 Pin Enable bit

 $1 = \overline{EBICS3}$ pin is enabled for use by the EBI module

0 = EBICS3 pin is available for general use

bit 6 EBICSEN2: EBICS2 Pin Enable bit

 $1 = \overline{\mathsf{EBICS2}}$ pin is enabled for use by the EBI module

0 = EBICS2 pin is available for general use

bit 5 EBICSEN1: EBICS1 Pin Enable bit

 $1 = \overline{EBICS1}$ pin is enabled for use by the EBI module

0 = EBICS1 pin is available for general use

bit 4 EBICSEN0: EBICSO Pin Enable bit

 $1 = \overline{\mathsf{EBICS0}}$ pin is enabled for use by the EBI module

 $0 = \overline{EBICS0}$ pin is available for general use

bit 3-2 Unimplemented: Read as '0'

bit 1 **EBIDEN1:** EBI Data Upper Byte Pin Enable bit

1 = EBID<15:8> pins are enabled for use by the EBI module

0 = EBID<15:8> pins have reverted to general use

bit 0 **EBIDEN01:** EBI Data Upper Byte Pin Enable bit

1 = EBID<7:0> pins are enabled for use by the EBI module

0 = EBID<7:0> pins have reverted to general use

Note: When EBIMD = 1, the bits in this register are ignored and the pins are available for general use.

REGISTER 41-12: CFGPG: PERMISSION GROUP CONFIGURATION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	31:24 — GPUPG<1:		G<1:0>	GLCDPG<1:0>		CRYPTPG<1:0>		
22:46	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23:16	FCPC	G<1:0>	<1:0> SQI1PG<		SDHCPG<1:0>		ETHPG<1:0>	
15:0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
15:8	CAN2F	² G<1:0>	CAN1F	G<1:0>	_	_	USBPG<1:0>	
7:0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
7:0	_	_	DMAP	G<1:0>	_	_	CPUPG<1:0>	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared

bit 31-30 Unimplemented: Read as '0'

bit 29-28 GPUPG<1:0>: 2D Graphics Processing Unit Permission Group bits

11 = Initiator is assigned to Permission Group 3

10 = Initiator is assigned to Permission Group 2

01 = Initiator is assigned to Permission Group 1

00 = Initiator is assigned to Permission Group 0

bit 27-26 GLCDPG<1:0>: Graphics LCD Controller Permission Group bits

Same definition as bits 29-28.

bit 25-24 CRYPTPG<1:0>: Crypto Engine Permission Group bits

Same definition as bits 29-28.

bit 23-22 FCPG<1:0>: Flash Control Permission Group bits

Same definition as bits 29-28.

bit 21-20 SQI1PG<1:0>: SQI Module Permission Group bits

Same definition as bits 29-28.

bit 19-18 SDHCPG<1:0>: Secure Digital Host Controller Permission Group bits

Same definition as bits 29-28.

bit 17-16 ETHPG<1:0>: Ethernet Module Permission Group bits

Same definition as bits 29-28.

bit 15-14 CAN2PG<1:0>: CAN2 Module Permission Group bits

Same definition as bits 29-28.

bit 13-12 CAN1PG<1:0>: CAN1 Module Permission Group bits

Same definition as bits 29-28.

bit 11-10 Unimplemented: Read as '0'

bit 9-8 USBPG<1:0>: USB Module Permission Group bits

Same definition as bits 29-28.

bit 7-6 Unimplemented: Read as '0'

bit 5-4 **DMAPG<1:0>:** DMA Module Permission Group bits

Same definition as bits 29-28.

bit 3-2 Unimplemented: Read as '0'

bit 1-0 CPUPG<1:0>: CPU Permission Group bits

Same definition as bits 29-28.

REGISTER 41-13: CFGCON2: CONFIGURATION CONTROL REGISTER 2

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	
31:24	GLCDPINEN	GLCDMODE ⁽¹⁾	SDCDEN	SDWPEN	_	1	SDWRF	THR<9:8>	
22.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	SDWRFTHR<7:0>								
45.0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	_	_			SDRDFTHR<9:4>				
7:0	R/W-0	R/W-0	R/W-0	R/W-0	r-1	R/W-0	U-0	R/W-0	
7:0		SDRDFTHR	<3:0>	_	SDWPPOL	_	GPURESET		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31 GLCDPINEN: Graphics Display Pin Enable bit

1 = GLCD pins are used by the GLCD module

0 = GLCD pins are available for general purpose use

bit 30 **GLCDMODE:** Graphics Display Mode bit⁽¹⁾

1 = GLCD pins are set to RGB565 mode. Other GDx pins are available for general purpose use.

0 = GLCD pins are set to RGB888 mode

bit 29 SDCDEN: SD Card Detect Pin Enable bit

 $1 = \overline{SDCD}$ pin is enabled for use by SDHC

 $0 = \overline{SDCD}$ pin is available for general purpose use

bit 28 SDWPEN: SD card Write Protect Enable bit

 $1 = \overline{\text{SDWP}}$ pin is enabled for use by SDHC

 $0 = \overline{SDWP}$ pin is available for general purpose use

bit 27-26 Unimplemented: Read as '0'

bit 25-16 SDWRFTHR<9:0>: SDHC Write FIFO Threshold bits

SDHC FIFO threshold value in bytes (FIFO size is 512 bytes).

bit 15-14 Unimplemented: Read as '0'

bit 13-4 SDRDFTHR<9:0>: SDHC Read FIFO Threshold bits

SDHC FIFO threshold value in bytes (FIFO size is 512 bytes).

bit 3 Reserved: Read as '1'

bit 2 SDWPPOL: SD card Write Protect Polarity bit

 $1 = \overline{\text{SDWP}}$ pin is Active-High

 $0 = \overline{\text{SDWP}}$ pin is Active-Low

Note: This bit supports SD cards with different write-protect polarity types.

bit 1 **Unimplemented:** Read as '0'

bit 0 GPURESET: GPU Reset Bit

1 = Release RESET to the GPU module

0 = Hold GPU in RESET.

Note: This bit is only used if the GPU functionality is to be enabled or disabled at run-time. Writing to this bit requires the GPUMD bit (PMD6<18>) be set to '0' (GPU is enabled).

Note 1: To use GLCD in RGB888 mode, the GLCDMODE bit should be set to '0', which will turn-off the general purpose I/O functionality on six additional pins. Refer to the specific package in "Device Pin Tables" for information on GDx pin sharing.

REGISTER 41-14: CFGMPLL: MEMORY PLL CONFIGURATION REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
31:24	MPLLRDY	MPLLDIS	M	PLLODIV2<2:	0>	MPLLODIV1<2:0>		
	R-0	R/W-1	U-0	U-0	U-0	U-0	U-0	U-0
23:16	MPLL VREGRDY	MPLL VREGDIS	_	_	-	-	_	_
15:0	R/W-1 R/W-1							
15:8	MPLLMULT<7:0>							
7:0	R/W-1 R/W-1							
1.0	INTVREF	CON<1:0>			MPLLID	IV<5:0>		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31 MPLLRDY: Memory PLL Status bit

1 = MPLL clock is stable and is ready for use

0 = MPLL clock is not ready. Initializing DDR2 SDRAM when the clock is not ready will result in undefined behavior.

bit 30 MPLLDIS: MPLL Disable bit

1 = MPLL is disabled

0 = MPLL is enabled

Note: Clear this bit only after the MPLLVREGRDY bit is set to '1'.

bit 29-27 MPLLODIV2<2:0>: MPLL Output Divider 2 bits

111 = MPLL second stage output is divided by 7

110 = MPLL second stage output is divided by 6

101 = MPLL second stage output is divided by 5

100 = MPLL second stage output is divided by 4

011 = MPLL second stage output is divided by 3

010 = MPLL second stage output is divided by 2

001 = MPLL second stage output is divided by 1

000 = Reserved

Note: The Value in this field should be less than MPLLODIV1. Unless it is necessary, setting these bits to '001' (MPLL second stage output is divided by 1) will produce less clock jitter.

bit 26-24 MPLLODIV1<2:0>: MPLL Output Divider 1 bits

See bits 29-27 for available selections.

bit 23 MPLLVREGRDY: MPLL Voltage Regulator Ready bit

1 = MPLL voltage regulator is ready for use

0 = MPLL voltage regulator is not ready or is disabled

bit 22 MPLLVREGDIS: MPLL Voltage regulator Disable bit

1 = MPLL voltage regulator is disabled

0 = MPLL voltage regulator is enabled

bit 21-16 Unimplemented: Read as '0'

REGISTER 41-14: CFGMPLL: MEMORY PLL CONFIGURATION REGISTER (CONTINUED)

```
bit 15-8 MPLLMULT<7:0>: MPLL Multiplier bits
         11111111 = Reserved
         11111110 = Reserved
         10100001 = Reserved
         10100000 = Multiply by 160
         10011111 = Multiply by 159
         00010000 = Multiply by 16
         00001111 = Reserved
         00000000 = Reserved
bit 7-6
         INTVREFCON<1:0>: Internal DDRVREF Control bits
         11 = Enable the internal DDRVREF circuit
         10 = Disable the internal DDRVREF circuit and drive the DDRVREF pin to Vss1v8
         01 = Disable the internal DDRVREF circuit and drive the DDRVREF pin to VDDR1V8
         00 = Use the external DDRVREF circuit
                    Set the INTVREFCON<1:0> bits to the desired state before applying VDDR1V8.
bit 5-0
         MPLLIDIV<5:0>: MPLL Input Divider bits
          111111 = MPLL input clock is divider by 63
         111110 = MPLL input clock is divider by 62
         000001 = MPLL input clock is divider by 1
         000000 = Reserved
```

REGISTER 41-15: DEVID: DEVICE AND REVISION ID REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	R	R	R	R	R	R	R	R	
31:24		VER<3	3:0> ⁽¹⁾		DEVID<27:24>(1)				
00.40	R	R	R	R	R	R	R	R	
23:16				DEVID<2	3:16> ⁽¹⁾				
45.0	R	R	R	R	R	R	R	R	
15:8	DEVID<15:8> ⁽¹⁾								
7.0	R	R	R	R	R	R	R	R	
7:0	DEVID<7:0> ⁽¹⁾								

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-28 VER<3:0>: Revision Identifier bits⁽¹⁾

bit 27-0 **DEVID<27:0>:** Device ID⁽¹⁾

Note 1: See the "PIC32 Flash Programming Specification" (DS60001145) for a list of Revision and Device ID values.

REGISTER 41-16: DEVSNx: DEVICE SERIAL NUMBER REGISTER 'x' ('x' = 0, 1)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	R	R	R	R	R	R	R	R	
31.24				SN<3	31:24>				
23:16	R	R	R	R	R	R	R	R	
23.10			SN<23:16>						
15:8	R	R	R	R	R	R	R	R	
15.6	SN<15:8>								
7:0	R	R	R	R	R	R	R	R	
7.0				SN<	:7:0>				

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 31-0 **SN<31:0>:** Device Unique Serial Number bits

41.3 High-Voltage Detect (HVD1V8) on VDDR1V8

The High-Voltage Detect (HVD) module monitors the DDR2 PHY voltage at the VDDR1V8 supply voltage (1.8V). If a dangerously high voltage is detected, the device is held in reset as long as the HVD condition persists.

Recovery from an HVD event is indicated by the HVD1V8R bit (RCON<29>).

41.4 On-Chip Voltage Regulator

The core and digital logic for all PIC32MZ DA devices is designed to operate at a nominal 1.8V. To simplify system designs, devices in the PIC32MZ DA family incorporate an on-chip regulator providing the required core logic voltage from VDDIO.

41.4.1 ON-CHIP REGULATOR AND POR

It takes a fixed delay for the on-chip regulator to generate an output. During this time, designated as TPU, code execution is disabled. TPU is applied every time the device resumes operation after any power-down, including Sleep mode.

41.4.2 ON-CHIP REGULATOR AND BOR

PIC32MZ DA devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain a regulated level, the regulator Reset circuitry will generate a Brown-out Reset. This event is captured by the BOR flag bit (RCON<1>). The brown-out voltage levels are specific in Section 44.1 "DC Characteristics".

41.5 On-chip Temperature Sensor

PIC32MZ DA devices include a temperature sensor that provides accurate measurement of a device's junction temperature (see Section 44.2 "AC Characteristics and Timing Parameters" for more information).

The temperature sensor is connected to the ADC module and can be measured using the shared S&H circuit (see Section 29.0 "12-bit High-Speed Successive Approximation Register (SAR) Analog-to-Digital Converter (ADC)" for more information).

41.6 Programming and Diagnostics

PIC32MZ DA devices provide a complete range of programming and diagnostic features that can increase the flexibility of any application using them. These features allow system designers to include:

- Simplified field programmability using two-wire In-Circuit Serial Programming™ (ICSP™) interfaces
- · Debugging using ICSP
- Programming and debugging capabilities using the EJTAG extension of JTAG
- JTAG boundary scan testing for device and board diagnostics

PIC32 devices incorporate two programming and diagnostic modules, and a trace controller, that provide a range of functions to the application developer.

FIGURE 41-1: BLOCK DIAGRAM OF PROGRAMMING, DEBUGGING AND TRACE PORTS

42.0 INSTRUCTION SET

The PIC32MZ Graphics (DA) Family family instruction set complies with the MIPS32® Release 2 instruction set architecture. The PIC32MZ DA device family *does not* support the following features:

- · Core extend instructions
- · Coprocessor 2 instructions

Note: Refer to "MIPS32® Architecture for Programmers Volume II: The MIPS32® Instruction Set" at www.imgtec.com for more information.

	•	(=1.1)		
NOTES:				

43.0 DEVELOPMENT SUPPORT

The PIC® microcontrollers (MCU) and dsPIC® digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
 - MPLAB® X IDE Software
- · Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM™ Assembler
 - MPLINK™ Object Linker/ MPLIB™ Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- · In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- · Third-party development tools

43.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac OS[®] X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window

Project-Based Workspaces:

- · Multiple projects
- Multiple tools
- · Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- · Built-in support for Bugzilla issue tracker

43.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- · Command-line interface
- · Rich directive set
- · Flexible macro language
- · MPLAB X IDE compatibility

43.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel® standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

43.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

43.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- · Command-line interface
- · Rich directive set
- · Flexible macro language
- · MPLAB X IDE compatibility

43.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

43.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

43.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDF.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

43.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a full-speed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming™ (ICSP™).

43.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDIOMIN and VDDIOMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

43.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM™ and dsPICDEM™ demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELoQ® security ICs, CAN, IrDA®, PowerSmart battery management, SEEVAL® evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

43.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

44.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC32MZ DA electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC32MZ DA devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions, above the parameters indicated in the operation listings of this specification, is not implied.

ABSOLUTE MAXIMUM RATINGS

(see Note1)

Ambient temperature under bias	40°C to +85°C
Storage temperature	65°C to +150°C
Voltage on VDDIO, VDDCORE, and VBAT with respect to VSS	0.3V to +4.0V
Voltage on VDDR1V8 pin with respect to VSS1V8	0.5V to +1.98V
Voltage on DDR2 pins with respect to Vss1v8	0.3V to (VDDR1V8 + 0.3V)
Voltage on any pin that is not 5V tolerant, with respect to Vss (Note 3)	0.3V to (VDDIO + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDDIO ≥ 2.2V (Note 3)	0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when VDDIO < 2.2V (Note 3)	0.3V to +3.6V
Voltage on D+ or D- pin with respect to Vusb3v3	
Voltage on VBUS with respect to VSS	0.3V to +5.5V
Maximum current out of Vss pin(s)	200 mA
Maximum current into VDDIO pin(s) (Note 2)	200 mA
Maximum current sunk/sourced by DDR2 pin	22 mA
Maximum current sunk/sourced by any 4x I/O pin (Note 4)	15 mA
Maximum current sunk/sourced by any 8x I/O pin (Note 4)	25 mA
Maximum current sunk/sourced by any 12x I/O pin (Note 4)	
Maximum current sunk by all ports (Note 5)	
Maximum current sourced by all ports (Note 2, Note 5)	150 mA

- **Note** 1: Stresses above those listed under "**Absolute Maximum Ratings**" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions, above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 44-2).
 - 3: See the pin name tables (Table 5 through Table 7) for the 5V tolerant pins.
 - **4:** Characterized, but not tested. Refer to parameters DO10, DO20, and DO20a for the 4x, 8x, and 12x I/O pin lists.
 - 5: Excludes DDR2 pins.

44.1 DC Characteristics

TABLE 44-1: OPERATING MIPS VS. VOLTAGE

	V _{DDIO} Range	V _{DDCORE}	T B	Max. Frequency	
Characteristic	(in Volts) (Note 1)	Range (in Volts) (Note 1)	Temp. Range (in °C)	PIC32MZ DA Devices	Comments
DC5	2.2V-3.6V	1.7V-1.9V	-40°C to +85°C	200 MHz	_

Note 1: Overall functional device operation below operating voltages guaranteed (but not characterized) until Reset is issued. All device Analog modules, when enabled, will function, but with degraded performance below operating voltages. Refer to Table 44-5 for Reset values.

TABLE 44-2: THERMAL OPERATING CONDITIONS

Rating		Min.	Тур.	Max.	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	_	+125	°C
Operating Ambient Temperature Range	TA	-40	_	+85	°C
Power Dissipation: Internal Chip Power Dissipation: PINT = VDDIO x (IDD – S IOH) I/O Pin Power Dissipation: PI/O = S (({VDDIO – VOH} x IOH) + S (VOL x IOL))	PD	PD PINT + PI/O			W
Maximum Allowed Power Dissipation	Ромах	(ΓJ – TA)/θJ	IA	W

TABLE 44-3: THERMAL PACKAGING CHARACTERISTICS

Characteristics	Symbol	Тур.	Max.	Unit	Notes
Package Thermal Resistance, 169-pin LFBGA (11x11x1.4 mm)	θЈА	25	_	°C/W	1
Package Thermal Resistance, 169-pin LFBGA (11x11x1.56 mm)	θЈА	24	_	°C/W	1,2
Package Thermal Resistance, 176-pin LQFP (20x20x1.45 mm)	θЈА	17	_	°C/W	1
Package Thermal Resistance, 176-pin LQFP (20x20x1.45 mm)	θЈА	19	_	°C/W	1,2
Package Thermal Resistance, 288-pin LFBGA (15x15x1.4 mm)	θЈА	22	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θJA) numbers are achieved by package simulations.

^{2:} Devices with internal DDR2 SDRAM.

TABLE 44-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

			Standard Operating Conditions: VDDIO = 2.2V to 3.6V,							
DC CHARACTERISTICS			V _{DDCORE} = 1.7V to 1.9V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial							
Param. No.	Symbol Characteristics		Min.	Тур.	Max.	Units	Conditions			
Operati	Operating Voltage									
DC10	VDDIO	I/O Supply Voltage (Note 1)	2.2	_	3.6	V	_			
DC11	VDDCORE	Core Supply Voltage (Note 1)	1.7	1.8	1.9	V	_			
DC12	SVDDIO/ SVDDCORE	VDDIO/VDDCORE Rise Rate to Ensure Internal Power-on Reset Signal (Note 2)	0.000011	_	1.1	V/µs	300 ms to 3 μs @ 3.3v			
DC13	VBAT	Battery Supply Voltage	2.2	_	3.6	V	_			
DC14	VDDR1V8	DDR Memory Supply Voltage	1.7	1.8	1.9	V	_			
DC15	DDRVREF	DDR Reference Voltage	0.49 x VDDR1V8	0.50 x VDDR1V8	0.51 x VDDR1V8	V	_			

Note 1: Overall functional device operation below operating voltages guaranteed (but not characterized) until Reset is issued. All device Analog modules, when enabled, will function, but with degraded performance below operating voltages. Refer to Table 44-5 for Reset values.

TABLE 44-5: ELECTRICAL CHARACTERISTICS: RESETS

DC CHARACTERISTICS (Note 1)		Standard Operating Conditions: $V_{DDIO} = 2.2V$ to 3.6V, $V_{DDCORE} = 1.7V$ to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param. No. Characteristics			Min.	Тур.	Max.	Units	Conditions
RST10	VPORIO	VDDIO POR Voltage (Note 2)	Vss + 0.3		1.75	>	_
RST11	VPORCORE /VBATSW	VDDCORE POR Voltage (Note 2) VDDCORE to VBAT Switch Voltage (Note 3)	Vss + 0.3	_	1.7	V	_
RST12	VBORIO	BOR Event on VDDIO transition high-to-low (Note 4)	1.92	_	2.2	>	
RST13	VPORBAT	POR Event on VBAT (Note 4)	1.35	_	2.2	V	_
RST14	VHVD1V8	High Voltage Detect on VDDR1V8 pins	2.16	_	2.24	V	_

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

^{2:} Voltage on VDDIO must always be greater than or equal to VDDCORE during power-up.

^{2:} This is the limit to which VDDIO/VDDCORE must be lowered to ensure Power-on Reset.

^{3:} Device enters VBAT mode upon VDDCORE Power-on Reset.

^{4:} Overall functional device operation below operating voltages guaranteed (but not characterized) until Reset is issued. All device Analog modules, when enabled, will function, but with degraded performance below operating voltages.

TABLE 44-6: LOW-VOLTAGE DETECT CHARACTERISTICS

DC CHARACTERISTICS		Standard Operating Conditions: $VDDIO = 2.2V$ to 3.6V, $VDDCORE = 1.7V$ to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param No.	Symbol	Symbol Characteristic			Тур.	Max.	Units	Conditions
LV10	VHLVD	HLVD Voltage on	HLVDL<3:0> = 0100 ⁽¹⁾	_	3.52	_	V	1
		VDDIO Transition	HLVDL<3:0> = 0101	_	3.29	_	V	_
			HLVDL<3:0> = 0110	_	3.00	_	V	_
			HLVDL<3:0> = 0111	_	2.79	_	V	_
			HLVDL<3:0> = 1000	_	2.70	_	V	_
			HLVDL<3:0> = 1001	_	2.50	_	V	_
			HLVDL<3:0> = 1010	_	2.40	_	V	_
			HLVDL<3:0> = 1011	_	2.30		V	_
			HLVDL<3:0> = 1100	_	2.20	_	V	_
			HLVDL<3:0> = 1101	_	2.12	_	V	_
			HLVDL<3:0> = 1110	_	2.00	_	V	_
LV11	VTHL	Voltage on HLVDIN Pin Transition	HLVDL<3:0> = 1111	_	1.20	_	V	_

Note 1: Trip points for values of LVD<3:0>, from '0000' to '0011', are not implemented.

TABLE 44-7: DC CHARACTERISTICS: OPERATING CURRENT (IDD = IDDIO + IDDCORE)

DC CHARAC	CTERISTICS ⁽	1,2)	Standard Operating Conditions: $VDDIO = 2.2V$ to 3.6V, $VDDCORE = 1.7V$ to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Parameter No.	Typical ⁽³⁾	Maximum	Units	Conditions			
I/O Operatin	g Current (ID	סוס): Periphe	erals Enabled	d (PMDx=0, ON(PBxDIV<15>)=1)			
DC20	1.4	2.1	mA	8 MHz			
DC21	3.5	4.1	mA	100 MHz ⁽⁴⁾			
DC22	5.6	6.5	mA	200 MHz			
DC23	5.6	6.5	mA	200 MHz (L1 Cache and Prefetch modules disabled) ⁽⁴⁾			
I/O Operating Current (IDDCORE): Peripherals Enabled (PMDx=0, ON(PBxDIV<15>)=1)							
DC20a	20	34	mA	8 MHz			
DC21a	97	118	mA	100 MHz ⁽⁴⁾			
DC22a	152	180	mA	200 MHz			
DC23a	128	153	mA	200 MHz (L1 Cache and Prefetch modules disabled) ⁽⁴⁾			
I/O Operatin	g Current (ID	ыо): Periphe	rals Disable	d (PMDx=1, ON(PBxDIV<15>)=0)			
DC24	1.4	2.1	mA	8 MHz			
DC25	3.5	4.1	mA	100 MHz ⁽⁴⁾			
DC26	5.6	6.5	mA	200 MHz			
DC27	5.6	6.5	mA	200 MHz (L1 Cache and Prefetch modules disabled) ⁽⁴⁾			
I/O Operatin	g Current (ID	DCORE): Peri	pherals Disa	bled (PMDx=1, ON(PBxDIV<15>)=0)			
DC24a	19	33	mA	8 MHz			
DC25a	90	109	mA	100 MHz ⁽⁴⁾			
DC26a	146	177	mA	200 MHz			
DC27a	121	147	mA	200 MHz (L1 Cache and Prefetch modules disabled) ⁽⁴⁾			

- Note 1: A device's IDD supply current is mainly a function of the operating voltage and frequency. Other factors, such as Peripheral Bus Clock (PBCLK) frequency, number of peripheral modules enabled, internal code execution pattern, I/O pin loading and switching rate, oscillator type, as well as temperature, can have an impact on the current consumption.
 - 2: The test conditions for IDD measurements are as follows:
 - VDDR1v8 = 1.8V
 - Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
 - OSC2/CLKO is configured as an I/O input pin
 - USB PLL is disabled (USBMD = 1), VusB3v3 is connected to Vss
 - CPU, Program Flash, and SRAM data memory are operational, Program Flash memory Wait states are equal to two
 - No peripheral modules are operating (ON bit = 0)
 - L1 Cache and Prefetch modules are enabled, unless otherwise specified in conditions.
 - No peripheral modules are operating, (ON bit = 0)
 - WDT, DMT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
 - All I/O pins are configured as inputs and pulled to Vss
 - MCLR = VDDIO
 - CPU executing while (1) statement from Flash
 - · RTCC and JTAG are disabled
 - I/O Analog Charge Pump is disabled (IOANCPEN bit (CFGCON<7>) = 0)
 - ADC Input Charge Pump is disabled (AICPMPEN bit (ADCCON1<12> = 0)
 - All Peripheral Bus Clocks, except PBCLK7, are disabled (ON bit (PBxDIV<15>) = 0, x = 2 through 6)
 - **3:** Data in "Typical" column is at 3.3V, +25°C at specified operating frequency unless otherwise stated. Parameters are for design guidance only and are not tested.
 - 4: This parameter is characterized, but not tested in manufacturing.

TABLE 44-8: DC CHARACTERISTICS: IDLE CURRENT (IDLE)

TABLE 44-0: DO CHARACTERIOTICS: IDEE CONTRENT (IIDEE)								
DC CHARACTI	ERISTICS		Standard Operating Conditions: $V_{DDIO} = 2.2V$ to 3.6V, $V_{DDCORE} = 1.7V$ to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Parameter No.	Typical ⁽²⁾	Maximum	Units Conditions					
Idle Current (III	DLE): Core Of	f, Clock on B	ase Currer	it ⁽¹⁾				
DC30	19	35	mA	8 MHz ⁽³⁾				
DC31	55	70	mA	100 MHz ⁽³⁾				
DC32	90	123	mA 200 MHz					

Note 1: The test conditions for IIDLE current measurements are as follows:

- VDDR1V8 = 1.8V
- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL is disabled (USBPMD = 1), VUSB3V3 is connected to Vss, PBCLKx divisor = 1:2 (' $x' \neq 7$)
- CPU is in Idle mode (CPU core Halted)
- No peripheral modules are operating, (ON bit = 0), but the associated PMD bit is cleared (except USBPMD)
- WDT, DMT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDDIO
- · RTCC and JTAG are disabled
- I/O Analog Charge Pump is disabled (IOANCPEN bit (CFGCON<7>) = 0)
- ADC Input Charge Pump is disabled (AICPMPEN bit (ADCCON1<12> = 0)
- **2:** Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: This parameter is characterized, but not tested in manufacturing.

TABLE 44-9: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

IABEL	TABLE 14-3. BO OTALAGIERIO TIGO: I GWER-BOWN GORRENT (IFB)								
CHARACTERISTICS ^(1,2) VDDCORE = 1.7V to					g Conditions: $V_{DDIO} = 2.2V$ to 3.6V, 1.9V (unless otherwise stated) ure $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param. No.	Typical ⁽²⁾	Maximum	Units	nits Conditions					
Power-Down Current (IPD) (Note 1)									
DC40k	9	14	mA	-40°C					
DC40I	9.5	14	mA	+25°C	Sleep ⁽¹⁾				
DC40m	15	25	mA	+85°C					
Module [Differential (Current							
DC44a	50	350	μА	3.6V	Watchdog Timer Current: ∆IWDT ⁽³⁾				
DC44b	3.5	5	mA	3.6V ADC Current: ΔIADC ^(3,4)					
DC44c	50	350	μA	3.6V Deadman Timer Current: ∆IDMT					

Note 1: The test conditions for IPD current measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)
- OSC2/CLKO is configured as an I/O input pin
- USB PLL is disabled (USBMD = 1), VUSB3V3 is connected to VSS
- · CPU is in Sleep mode
- · L1 Cache and Prefetch modules are disabled
- No peripheral modules are operating, (ON bit = 0), and the associated PMD bit is set. All clocks are disabled ON bit (PBxDIV<15>) = 0 (x ≠ 1,7)
- WDT, DMT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDDIO
- · RTCC and JTAG are disabled
- Voltage regulator is in Stand-by mode (VREGS = 0; IOANCPEN = 0)
- 2: Data in the "Typical" column is at 3.3V, unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- **4:** Voltage regulator is operational (VREGS = 1).

TABLE 44-10: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

DC CHARACTERISTICS			VDDCORE = 1.7V	Standard Operating Conditions: V_{DDIO} = 2.2V to 3.6V, V_{DDCORE} = 1.7V to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial						
Param. No.	Symbol	Characteristics	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions			
	VIL	Input Low Voltage								
DI10		I/O Pins with PMP	Vss	_	0.15*VDDIO	V	_			
		I/O Pins	Vss	_	0.2*VDDIO	V	_			
DI18		SDAx, SCLx	Vss	_	0.3*VDDIO	V	SMBus disabled (Note 4)			
DI19		SDAx, SCLx	Vss	_	0.8	V	SMBus enabled (Note 4)			
	VIH	Input High Voltage								
DI20		I/O Pins not 5V-tolerant ⁽⁵⁾	0.65*VDDIO	_	VDDIO	V	(Note 4)			
		I/O Pins 5V-tolerant with PMP ⁽⁵⁾	0.65*VDDIO	_	5.5	V	(Note 4)			
		I/O Pins 5V-tolerant ⁽⁵⁾	0.65*VDDIO	_	5.5	V	_			
DI28a		SDAx, SCLx on non-5V tolerant pins ⁽⁵⁾	0.65*VDDIO	_	VDDIO	V	SMBus disabled (Note 4)			
DI29a		SDAx, SCLx on non-5V tolerant pins ⁽⁵⁾	2.1	_	VDDIO	V	SMBus enabled, 2.2V ≤ VPIN ≤ 5.5 (Note 4)			
DI28b		SDAx, SCLx on 5V tolerant pins ⁽⁵⁾	0.65*VDDIO	_	5.5	V	SMBus disabled (Note 4)			
DI29b		SDAx, SCLx on 5V tolerant pins ⁽⁵⁾	2.1	_	5.5	V	SMBus enabled, $2.2V \le VPIN \le 5.5$ (Note 4)			
DI30	ICNPU	Change Notification Pull-up Current	-400	-300	-50	μА	VDDIO = 3.3V, VPIN = VSS			
DI31	ICNPD	Change Notification Pull-down Current ⁽⁴⁾	50	175	400	μA	VDDIO = 3.3V, VPIN = VDDIO			
	liL	Input Leakage Current (Note 3)								
DI50		I/O Ports	_	_	<u>+</u> 1	μА	Vss ≤ VPIN ≤ VDDIO, Pin at high-impedance			
DI51		Analog Input Pins	_	_	<u>+</u> 1	μА	VSS ≤ VPIN ≤ VDDIO, Pin at high-impedance			
DI55		MCLR ⁽²⁾	_	_	<u>+</u> 1	μА	$Vss \le Vpin \le Vddio$			
DI56		OSC1	_	_	<u>+</u> 1	μА	$\label{eq:VSS} \begin{aligned} &V\text{SS} \leq V\text{PIN} \leq V\text{DDIO}, \\ &\text{HS mode} \end{aligned}$			

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

^{2:} The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

^{3:} Negative current is defined as current sourced by the pin.

^{4:} This parameter is characterized, but not tested in manufacturing.

^{5:} See the pin name tables (Table 5 through Table 7) for the 5V-tolerant pins.

TABLE 44-11: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: $V_{DDIO} = 2.2V$ to 3.6V, $V_{DDCORE} = 1.7V$ to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param.	Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions ⁽¹⁾
		Output Low Voltage I/O Pins 4x Sink Driver Pins - RA0-RA3, RA9, RA10, RA14, RA15 RB0, RB4, RB6, RB7, RB10, RB11, RB12, RB14 RC12-RC15 RD6, RD7, RD11, RD14 RE8, RE9 RF2, RF3, RF8, RF12 RG15 RH0, RH1, RH4-RH14 RJ0-RJ2, RJ8, RJ9, RJ11	_	_	0.4	V	IOL ≤ 10 mA, VDDIO = 3.3V
DO10	VOL	Output Low Voltage I/O Pins: 8x Sink Driver Pins - RA4, RA5 RB2, RB3, RB5, RB8, RB9, RB13, RB14, RB15 RC1-RC4 RD0-RD3, RD9, RD10, RD12, RD13 RE0-RE7 RF0, RF1, RF4, RF5, RF13 RG0, RG1, RG6, RG7, RG8, RG9 RH2, RH3, RH7, RH15 RJ3-RJ7, RJ10, RJ12-RJ15 RK0-RK7	_	_	0.4	V	IOL ≤ 15 mA, VDDIO = 3.3V
Note 1:		Output Low Voltage I/O Pins: 12x Sink Driver Pins - RA6, RA7 RD4, RD5 RG12-RG14	_	_	0.4	V	IOL ≤ 20 mA, VDDIO = 3.3V

Note 1: Parameters are characterized, but not tested.

TABLE 44-11: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS (CONTINUED)

DC CHARACTERISTICS			VDDCC	Standard Operating Conditions: VDDIO = 2.2V to 3.6V, VDDCORE = 1.7V to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial					
Param.	Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions ⁽¹⁾		
		Output High Voltage I/O Pins 4x Sink Driver Pins - RA0-RA3, RA9, RA10, RA14, RA15 RB0, RB4, RB6, RB7, RB10, RB11, RB12, RB14 RC12-RC15 RD6, RD7, RD11, RD14 RE8, RE9 RF2, RF3, RF8, RF12 RG15 RH0, RH1, RH4-RH14 RJ0-RJ2, RJ8, RJ9, RJ11	2.4	_	_	V	IOH ≥ -10 mA, VDDIO = 3.3V		
DO20	Vон	Output High Voltage I/O Pins: 8x Sink Driver Pins - RA4, RA5 RB2, RB3, RB5, RB8, RB9, RB13, RB14, RB15 RC1-RC4 RD0-RD3, RD9, RD10, RD12, RD13 RE0-RE7 RF0, RF1, RF4, RF5, RF13 RG0, RG1, RG6, RG7, RG8, RG9 RH2, RH3, RH7, RH15 RJ3-RJ7, RJ10, RJ12-RJ15 RK0-RK7	2.4	_	_	V	IOH ≥ -15 mA, VDDIO = 3.3V		
		Output High Voltage I/O Pins: 12x Source Driver Pins - RA6, RA7 RD4, RD5 RG12-RG14	2.4	_	_	V	IOH ≥ -20 mA, VDDIO = 3.3V		

Note 1: Parameters are characterized, but not tested.

TABLE 44-11: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS (CONTINUED)

DC CHA	ARACT	ERISTICS	VDDCO	RE = 1.7	V to 1.9	V (unle	ons: $V_{DDIO} = 2.2V$ to 3.6V, ess otherwise stated) C \leq TA \leq +85°C for Industrial
Param.	Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions ⁽¹⁾
		Output High Voltage	1.5	_	_	V	IOH ≥ -14 mA, VDDIO = 3.3V
		I/O Pins 4x Sink Driver Pins -	2.0	_	_	V	IOH ≥ -12 mA, VDDIO = 3.3V
		RA0-RA3, RA9, RA10, RA14, RA15 RB0, RB4, RB6, RB7, RB10, RB11, RB12, RB14 RC12-RC15 RD6, RD7, RD11, RD14 RE8, RE9 RF2, RF3, RF8, RF12 RG15 RH0, RH1, RH4-RH14 RJ0-RJ2, RJ8, RJ9, RJ11	3.0	_	_	V	IOH ≥ -7 mA, VDDIO = 3.3V
		Output High Voltage	1.5	_	_	V	IOH ≥ -22 mA, VDDIO = 3.3V
		I/O Pins: 8x Sink Driver Pins - RA4, RA5 RB2, RB3, RB5, RB8, RB9, RB10, RB13, RB14, RB15 RC1-RC4 RD0-RD3, RD9, RD10, RD12, RD13 RE0-RE7 RF0, RF1, RF4, RF5, RF13 RG0, RG1, RG6, RG7, RG8, RG9 RH2, RH3, RH7, RH15 RJ3-RJ7, RJ10, RJ12-RJ15 RK0-RK7	2.0	_	_	V	IOH ≥ -18 mA, VDDIO = 3.3V
DO20a	DO20a VoH1		3.0	_	_	V	IOH ≥ -10 mA, VDDIO = 3.3V
		Output High Voltage	1.5	_	_	V	IOH ≥ -32 mA, VDDIO = 3.3V
		I/O Pins: 12x Source Driver Pins -	2.0	_	_	V	IOH ≥ -25 mA, VDDIO = 3.3V
Note 1:	RA6, RA7 RD4, RD5 RG12-RG14		3.0	_	_	V	IOH ≥ -14 mA, VDDIO = 3.3V

Note 1: Parameters are characterized, but not tested.

TABLE 44-12: DC CHARACTERISTICS: I/O PIN INPUT INJECTION CURRENT SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: VDDIO = 2.2V to 3.6V, VDDCORE = 1.7V to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial					
Param. No.	Symbol	Characteristics	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions	
DI60a	licl	Input Low Injection Current	0	I	₋₅ (2,5)	mA	This parameter applies to all pins, with the exception of RB10. Maximum IICH current for this exception is 0 mA.	
DI60b	ІІСН	Input High Injection Current	0	_	+5(3,4,5)	mA	This parameter applies to all pins, with the exception of all 5V tolerant pins, SOSCI, and RB10. Maximum IICH current for these exceptions is 0 mA.	
DI60c	∑liCT	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁶⁾	_	+20 ⁽⁶⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \Sigma$ IICT	

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: VIL source < (Vss 0.3). Characterized but not tested.
- 3: VIH source > (VDDIO + 0.3) for non-5V tolerant pins only.
- **4:** Digital 5V tolerant pins do not have an internal high side diode to VDDIO, and therefore, cannot tolerate any "positive" input injection current.
- 5: Injection currents > | 0 | can affect the ADC results by approximately 4 to 6 counts (i.e., VIH Source > (VDDIO + 0.3) or VIL source < (VSS 0.3)).
- **6:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. If **Note 2**, IICL = (((Vss 0.3) VIL source) / Rs). If **Note 3**, IICH = ((IICH source (VDDIO + 0.3)) / RS). RS = Resistance between input source voltage and device pin. If (Vss 0.3) ≤ Vsource ≤ (VDDIO + 0.3), injection current = 0.

TABLE 44-13: DDR2 SDRAM CONTROLLER I/O SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: $V_{DDIO} = 2.2V$ to 3.6V, $V_{DDCORE} = 1.7V$ to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param. No.	Symbol	Characteristics	Min.	Min. Typ. Max. Units					
DDR1	Vон	Output High Voltage	VDDR1V8 – 0.28	_	_	V	_		
DDR2	Vol	Output Low Voltage	_	_	0.28	V	_		
DDR5	ViH	Input High Voltage	DDRVREF + 0.125	_	VDDR1V8 + 0.3	_	_		
DDR6	VIL	Input Low Voltage	0.3	_	DDRVREF – 0.125		_		

Note 1: These parameters are characterized but not tested.

TABLE 44-14: SD HOST CONTROLLER I/O SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: $VDDIO = 2.2V$ to 3.6V, $VDDCORE = 1.7V$ to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param. No.	Symbol	Characteristic	Min. Typ. Max. Units Conditions					
SD10	Vон	Output High Voltage	2.4	_	_	V	IOH ≥ 20 mA, VDDIO = 3.3V	
SD11	Vol	Output Low Voltage	_	_	0.4	V	$IOL \le 20$ mA, $VDDIO = 3.3V$	
SD12	VIH	Input High Voltage	0.65*VDDIO	_	VDDIO	V	_	
SD13	VIL	Input Low Voltage	Vss		0.2*VDDIO	V	_	

TABLE 44-15: DC CHARACTERISTICS: PROGRAM MEMORY(3)

DC CHA	ARACTE	ERISTICS	Standard Operating Conditions: $V_{DDIO} = 2.2V$ to 3.6V, $V_{DDCORE} = 1.7V$ to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param. No.	Sym.	Characteristics	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions		
D130a	ЕР	Cell Endurance	10,000	_	_	E/W	Without ECC		
D130b			20,000	_	_	E/W	With ECC		
D131	VPR	VDDCORE for Read	VDDCOREMIN		VDDCOREMAX	V	_		
D132	VPEW	VDDCORE for Erase or Write	VDDCOREMIN	_	VDDCOREMAX	V	_		
D134a	TRETD	Characteristic Retention	10	_	_	Year	Without ECC		
D134b			20	_	_	Year	With ECC		
D135	IDDP	Supply Current during Programming	_	_	30	mA	_		
D136	Trw	Row Write Cycle Time (Notes 2, 4)	_	66813	_	FRC Cycles	_		
D137	TQWW	Quad Word Write Cycle Time (Note 4)	_	773	_	FRC Cycles	_		
D138	Tww	Word Write Cycle Time (Note 4)	_	383	_	FRC Cycles	_		
D139	TCE	Chip Erase Cycle Time (Note 4)	_	515373		FRC Cycles			
D140	TPFE	All Program Flash (Upper and Lower regions) Erase Cycle Time (Note 4)	_	256909	_	FRC Cycles	_		
D141	ТРВЕ	Program Flash (Upper or Lower regions) Erase Cycle Time (Note 4)	_	128453	_	FRC Cycles	_		
D142	TPGE	Page Erase Cycle Time (Note 4)	_	128453	_	FRC Cycles	_		

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

TABLE 44-16: DC CHARACTERISTICS: PROGRAM FLASH MEMORY WAIT STATES

DC CHARACTERISTICS	Standard Operating Conditions: V_{DDIO} = 2.2V to 3.6V, V_{DDCORE} = 1.7V to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}C \le T_A \le +85^{\circ}C$ for Industrial					
Required Flash Wait States ⁽¹⁾	SYSCLK Units		Conditions			
With ECC:						
0 Wait states 1 Wait state 2 Wait states	0 < SYSCLK ≤ 60 60 < SYSCLK ≤ 120 120 < SYSCLK ≤ 200	MHz	_			
Without ECC:						
Wait states Wait state Wait states	0 < SYSCLK ≤ 74 74 < SYSCLK ≤ 140 140 < SYSCLK ≤ 200	MHz	_			

Note 1: To use Wait states, the Prefetch module must be enabled (PREFEN<1:0> ≠ 00) and the PFMWS<2:0> bits must be written with the desired Wait state value.

^{2:} The minimum PBCLK5 for row programming is 4 MHz.

^{3:} Refer to the "PIC32 Flash Programming Specification" (DS60001145) for operating conditions during programming and erase cycles.

^{4:} This parameter depends on FRC accuracy (see Table 44-27) and FRC tuning values (see the OSCTUN register: Register 8-2).

TABLE 44-17: DC CHARACTERISTICS: DDR2 SDRAM MEMORY

DC CHARACTERISTICS			Standard Operating Conditions: $VDDIO = 2.2V$ to 3.6V, $VDDCORE = 1.7V$ to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param. No. (Note 1)	Symbol	Characteristics	Min.	Тур.	Max.	Units	Conditions	
DDRM12	IDD0	Operating Current, One Bank Active Precharge	-		90	mA	Note 2	
DDRM13	IDD1	Operating Current, One Back Active-Read Precharge	1		100	mA	Note 2	
DDRM14	IDD2	Precharge Power-Down Current			8	mA	Note 3	
DDRM15	IDD3	Precharge Stand-by Current			45	mA	Note 2	
DDRM16	IDD4	Precharge Quiet Stand-by Current			35	mA	Note 4	
DDRM17	IDD5	Active Power-Down Current			12	mA	Note 3	
DDRM18	IDD6	Active Stand-by Current			65	mA	Note 2	
DDRM19	IDD7	Operating Burst Read Current			140	mA	Note 2	
DDRM20	IDD8	Operating Burst Write Current	_		165	mA	Note 2	
DDRM21	IDD9	Burst Refresh Current	_		95	mA	Note 2	
DDRM22	IDD10	Self-Refresh Current			6	mA	Note 5	
DDRM23	IDD11	Operating Bank Interleave Read Current	_	_	200	mA	Note 6	

- **Note 1:** These parameters are characterized, but not tested in manufacturing. The specifications are only valid after the memory is initialized.
 - 2: DDRCKE is high, DDRCS0 is high between valid commands. Address, control, and data bus inputs are switching.
 - 3: DDRCKE is low. Other control and address inputs are stable. Data bus inputs are floating.
 - **4:** DDRCKE is high and DDRCS0 is high. Other control and address inputs are stable. Data bus inputs are floating.
 - **5:** DDRCKE is low and DDRCK/DDRCK are low. Other control and address inputs are floating. Data bus inputs are floating.
 - **6:** DDRCKE is high and DDRCS0 is high between valid commands. Address bus inputs are stable. Data bus inputs are switching.

TABLE 44-18: COMPARATOR SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: VDDIO = 2.2V to 3.6V, VDDIORE = 1.7V to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial					
Param. No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Comments	
D300	VIOFF	Input Offset Voltage	_	±10		mV	AVDD = VDDIO, AVSS = VSS	
D301	VICM	Input Common Mode Voltage	0	_	2.5	V	AVDD = VDDIO, AVSS = VSS (Note 2)	
D302	CMRR	Common Mode Rejection Ratio	55	_	_	dB	Max VICM = (VDDIO - 1)V (Note 2)	
D303	TRESP	Response Time	_	150	_	ns	AVDD = VDDIO, AVSS = VSS (Notes 1,2)	
D304	ON2ov	Comparator Enabled to Output Valid	_		10	μЅ	Comparator module is configured before setting the comparator ON bit (Note 2)	
D305	IVREF	Internal Voltage Reference		1.2	_	V		
D306	VHYST	Input Hysteresis Voltage	48	120	192	mV	_	

Note 1: Response time measured with one comparator input at (VDDIO – 1.5)/2, while the other input transitions from Vss to VDDIO.

^{2:} These parameters are characterized but not tested.

^{3:} The Comparator module is functional at VBORIOMIN < VDDIO < VDDIOMIN, but with degraded performance. Unless otherwise stated, module functionality is guaranteed, but not characterized.

TABLE 44-19: COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS

DC CHA	RACTERIS	STICS	Standard Operating Conditions: VDDIO = 2.2V to 3.6V, VDDCORE = 1.7V to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial							
Param. No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Comments			
D312	TSET	Internal 4-bit DAC Comparator Reference Settling time	_	_	10	μs	See Note 1			
D313	DACREFH	CVREF Input Voltage	AVss	_	AVDD	V	CVRSRC with CVRSS = 0			
		Reference Range	VREF-	_	VREF+	V	CVRSRC with CVRSS = 1			
D314	DVREF	CVREF Programmable Output Range	0	_	0.625 x DACREFH	V	0 to 0.625 DACREFH with DACREFH/24 step size			
			0.25 x DACREFH	_	0.719 x DACREFH	V	0.25 x DACREFH to 0.719 DACREFH with DACREFH/32 step size			
D315	DACRES	Resolution	_	_	DACREFH/24		CVRCON <cvrr> = 1</cvrr>			
			_	_	DACREFH/32		CVRCON <cvrr> = 0</cvrr>			
D316	DACACC	Absolute Accuracy ⁽²⁾	_	_	1/4	LSB	DACREFH/24, CVRCON <cvrr> = 1</cvrr>			
			_	_	1/2	LSB	DACREFH/32, CVRCON <cvrr> = 0</cvrr>			

Note 1: Settling time was measured while CVRR = 1 and CVR<3:0> transitions from '0000' to '1111'. This parameter is characterized, but is not tested in manufacturing.

^{2:} These parameters are characterized but not tested.

TABLE 44-20: CTMU CURRENT SOURCE SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: $V_{DDIO} = 2.2V$ to 3.6V, $V_{DDCORE} = 1.7V$ to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
CTMU CUR	RENT SOUR	CE						
CTMUI1	IOUT1	Base Range ⁽¹⁾	_	0.55	_	μΑ	CTMUICON<9:8> = 01	
CTMUI2	Іоит2	10x Range ⁽¹⁾		5.5		μΑ	CTMUICON<9:8> = 10	
CTMUI3	Іоит3	100x Range ⁽¹⁾	_	55	_	μA	CTMUICON<9:8> = 11	
CTMUI4	Iout4	1000x Range ⁽¹⁾		550		μA	CTMUICON<9:8> = 00	
CTMUFV1	VF	Temperature Diode Forward Voltage ^(1,2)		0.598	_	V	TA = +25°C, CTMUICON<9:8> = 01	
			_	0.658	_	V	TA = +25°C, CTMUICON<9:8> = 10	
			_	0.721	_	V	TA = +25°C, CTMUICON<9:8> = 11	
CTMUFV2	VFVR	Temperature Diode Rate of	_	-1.92	_	mV/°C	CTMUICON<9:8> = 01	
		Change ^(1,2)		-1.74	_	mV/ºC	CTMUICON<9:8> = 10	
			_	-1.56	_	mV/ºC	CTMUICON<9:8> = 11	

- **Note 1:** Nominal value at center point of current trim range (CTMUICON<15:10> = 000000).
 - **2:** Parameters are characterized but not tested in manufacturing. Measurements taken with the following conditions:
 - VREF+ = AVDD = 3.3V
 - ADC module configured for conversion speed of 500 ksps
 - All PMD bits are cleared (PMDx = 0)
 - Executing a while (1) statement
 - Device operating from the FRC with no PLL

TABLE 44-21: GLCD CONTROLLER DC SPECIFICATIONS

DC CHA	RACTER	RISTICS	Standard Operating Conditions: $VDDIO = 2.2V$ to 3.6V, $VDDCORE = 1.7V$ to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
Param. No.	Symbol	Characteristic	Min. Typ. Max. Units Conditions							
GD10	Vон	Output High Voltage	2.4	_	_	V	IOH ≥ 20 mA, VDDIO = 3.3V			
GD11	Vol	Output Low Voltage	1		0.4	V	$IOL \le 20$ mA, $VDDIO = 3.3V$			
GD12	VIH	Input High Voltage	0.65*VDDIO	0.65*VDDIO — VDDIO V —						
GD13	VIL	Input Low Voltage	Vss	_	0.2*VDDIO	V	_			

44.2 AC Characteristics and Timing Parameters

The information contained in this section defines PIC32MZ DA device AC characteristics and timing parameters.

FIGURE 44-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 44-22: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

AC CHARACTERISTICS			Standard Operating Conditions: VDDIO = 2.2V to 3.6V, VDDCORE = 1.7V to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial						
Param. No.	Symbol	Characteristics	Min. Typ. ⁽¹⁾ Max. Units Conditions						
DO50	Cosco	OSC2 Pin	_	_	15	pF	In HS mode when the external clock is used to drive OSC1		
DO56	CL	All I/O pins	_	_	50	pF	EC mode for OSC2		
DO58	Св	SCLx, SDAx	_	_	400	pF	In I ² C mode		
DO59	CsQI	All SQI pins		_	10	pF	_		

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 44-2: EXTERNAL CLOCK TIMING

TABLE 44-23: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHA	RACTERI	STICS	Standard Operating Conditions: $V_{DDIO} = 2.2V$ to 3.6V, $V_{DDCORE} = 1.7V$ to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param. No.	Symbol	Characteristics	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions		
OS10	Fosc	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	_	64	MHz	EC (Note 2)		
OS13		Oscillator Crystal Frequency	4	_	32	MHz	HS (Note 2)		
OS15			32	32.768	100	kHz	Sosc (Note 2)		
OS20	Tosc	Tosc = 1/Fosc	_	_	_	_	See parameter OS10 for Fosc value		
OS30	TosL, TosH	External Clock In (OSC1) High or Low Time	0.375 x Tosc	_	_	ns	EC (Note 2)		
OS31	TosR, TosF	External Clock In (OSC1) Rise or Fall Time	_		7.5	ns	EC (Note 2)		
OS40	Тоѕт	Oscillator Start-up Timer Period (Only applies to HS, HSPLL, and Sosc Clock Oscillator modes)	_	1024	_	Tosc	(Note 2)		
OS41	TFSCM	Primary Clock Fail Safe Time-out Period	_	2	_	ms	(Note 2)		
OS42	Gм	External Oscillator Transconductance	_	400	_	μA/V	VDDIO = 3.3V, TA = +25°C (Note 2)		

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are characterized but are not tested

^{2:} This parameter is characterized, but not tested in manufacturing.

TABLE 44-24: SYSTEM TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: $VDDIO = 2.2V$ to 3.6V, $VDDCORE = 1.7V$ to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param. No.	Symbol	Characteristics	Min. Typ. Max. Units Condit				Conditions		
OS51	Fsys	System Frequency	DC		200	MHz	USB module disabled		
			30	_	200	MHz	USB module enabled		
OS55a	Fрв	Peripheral Bus Frequency	DC	_	100	MHz	For PBCLKx, 'x' < 7		
OS55b			DC	_	200	MHz	For PBCLK7		
OS56	FREF	Reference Clock Frequency	_	_	50	MHz	For REFCLK1, REFCLK3, REFCLK4, REFCLKO1, REFCLK3, and REFCLK4 pins		

TABLE 44-25: SPLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS			VDDCORE =	Standard Operating Conditions: $V_{DDIO} = 2.2V$ to 3.6V, $V_{DDCORE} = 1.7V$ to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C}$ for Industrial					
Param. No.	Symbol	Characteristics ⁽¹⁾		Min.	Тур.	Max.	Units	Conditions	
OS50	FIN	PLL Input Frequency Range		5	_	64	MHz	ECPLL, HSPLL, FRCPLL modes	
OS52	TLOCK	PLL Start-up Time (L	ock Time)	_	_	100	μs	_	
OS53	DCLK	CLKO Stability ⁽²⁾ (Period Jitter or Cumulative)		-0.25	_	+0.25	%	Measured over 100 ms period	
OS54	FVco	PLL Vco Frequency Range		350	_	700	MHz	_	
OS54a	FPLL	PLL Output Frequen	cy Range	10	_	200	MHz	_	

- Note 1: These parameters are characterized, but not tested in manufacturing.
 - 2: This jitter specification is based on clock-cycle by clock-cycle measurements. To get the effective jitter for individual time-bases on communication clocks, use the following formula:

$$Effective Jitter = \frac{D_{CLK}}{\sqrt{\frac{PBCLK2}{CommunicationClock}}}$$

For example, if PBCLK2 = 100 MHz and SPI bit rate = 50 MHz, the effective jitter is as follows:

$$Effective Jitter = \frac{D_{CLK}}{\sqrt{\frac{100}{50}}} = \frac{D_{CLK}}{1.41}$$

TABLE 44-26: MPLL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: $VDDIO = 2.2V$ to 3.6V, $VDDCORE = 1.7V$ to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param. No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions		
MP10	MFIN	MPLL Input Frequency	8	_	64	MHz	_		
MP11	MFVco	MPLL Vco Frequency Range	400	_	1600	MHz	_		
MP12	MFMPLL	MPLL Output Frequency	8	_	400	MHz	_		
MP13	Мьоск	MPLL Start-up Time (Lock Time)	_	_	1500 x 1/MFIN	μs	_		
MP14	MpJ	MPLL Period Jitter	_		0.015	%	_		
MP15	McJ	MPLL Cycle Jitter	_	_	0.02	%	_		
MP16	MLTJ	MPLL Long-term Jitter	_	_	0.5	%	_		

Note 1: These parameters are characterized, but not test in manufacturing.

TABLE 44-27: INTERNAL FRC ACCURACY

AC CHA	RACTERISTICS	Standard Operating Conditions: $V_{DDIO} = 2.2V$ to 3.6V, $V_{DDCORE} = 1.7V$ to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial								
Param. No.	Characteristics	Min. Typ. Max. Units Conditions								
Internal	FRC Accuracy @ 8.00 MH	z ⁽¹⁾								
F20	FRC	-5 — +5 % 0°C ≤ TA ≤ +85°C								
		-8	-8 — +8 % -40°C ≤ TA ≤ +85°C							

Note 1: Frequency calibrated at +25°C and 3.3V. The TUN bits can be used to compensate for temperature drift.

TABLE 44-28: INTERNAL LPRC ACCURACY

AC CHA	ARACTERISTICS	Standard Operating Conditions: V_{DDIO} = 2.2V to 3.6V, V_{DDCORE} = 1.7V to 1.9V (unless otherwise stated) Operating temperature -40°C \leq TA \leq +85°C for Industrial								
Param. No.	Characteristics	Min.	Min. Typ. Max. Units Conditions							
LPRC @) 31.25 kHz ⁽¹⁾									
F21	LPRC	-8	_	+8	%	$0^{\circ}C \le TA \le +85^{\circ}C$				
		-25 — +25 % -40°C ≤ TA ≤ +85°C								

Note 1: Change of LPRC frequency as VDDIO changes.

TABLE 44-29: INTERNAL BACKUP FRC (BFRC) ACCURACY

media in a management and the control in a c										
AC CHA	ARACTERISTICS	Standard Operating Conditions: V_{DDIO} = 2.2V to 3.6V, V_{DDCORE} = 1.7V to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial								
Param. Characteristics		Min.	Тур.	Max.	Units	Conditions				
Internal BFRC Accuracy @ 8 MHz ^I										
F22	BFRC	-30	_	+30	%	_				

FIGURE 44-3: I/O TIMING CHARACTERISTICS

TABLE 44-30: I/O TIMING REQUIREMENTS

TABLE 4	Standard Operating Conditions: VDDIO = 2.2V to 3.6V,									
AC CHAI	RACTERIS	STICS	VDDCORE = 1.7	7V to 1.9V	(unless oth	nerwise st	ated)			
	1	T	Operating tem	perature	-40°C ≤ TA	≤ +85°C fc	r Industria	l		
Param. No.	Symbol	Characteris	stics ⁽²⁾	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions		
DO31 TIOR	TioR	Port Output Rise T I/O Pins: 4x Source Driver Pir RA3, RA9, RA10, R. RB0-7, RB11, RB13 RC12-RC15 RD0, RD6-RD7, RD	ns - A14, RA15	_	_	9.5	ns	CLOAD = 50 pF		
		RE8, RE9 RF2, RF3, RF8 RG15 RH0, RH1, RH4-RH RJ0-RJ2, RJ8, RJ9,	6, RH8-RH13	_	_	6	ns	CLOAD = 20 pF		
		Port Output Rise Ti I/O Pins: 8x Source Driver Pin RA0-RA2, RA4, RA5 RB8-RB10, RB12, R RC1-RC4 RD1-RD5, RD9, RD RD13, RD15 RE4-RE7 RF0, RF4, RF5, RF1 RG0, RG1, RG6-RG RH2, RH3, RH7, RH RJ3-RJ7, RJ10, RJ1 RK0-RK7	ns - 5 RB14, RB15	_	_	8	ns	CLOAD = 50 pF		
			69 I14, RH15	_	_	6	ns	CLOAD = 20 pF		
		Port Output Rise Time I/O Pins: 12x Source Driver Pins		_	_	3.5	ns	CLOAD = 50 pF		
	RA6, RA7 RE0-RE3 RF1 RG12-RG14			_	_	2	ns	CLOAD = 20 pF		

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

2: This parameter is characterized, but not tested in manufacturing.

TABLE 44-30: I/O TIMING REQUIREMENTS (CONTINUED)

AC CHARACTERISTICS	Standard Operating Conditions: VDDIO = 2.2V to 3.6V, VDDCORE = 1.7V to 1.9V (unless otherwise stated)
	Operating temperature -40°C ≤ TA ≤ +85°C for Industrial

_	1		p				1
Param. No.	Symbol	Characteristics ⁽²⁾	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions
DO32	TioF	Port Output Fall Time I/O Pins: 4x Source Driver Pins - RA3, RA9, RA10, RA14, RA15 RB0-7, RB11, RB13 RC12-RC15	_	ı	9.5	ns	CLOAD = 50 pF
		RD0, RD6-RD7, RD11, RD14 RE8, RE9 RF2, RF3, RF8 RG15 RH0, RH1, RH4-RH6, RH8-RH13 RJ0-RJ2, RJ8, RJ9, RJ11	1	1	6	ns	CLOAD = 20 pF
		Port Output Fall Time I/O Pins: 8x Source Driver Pins - RA0-RA2, RA4, RA5 RB8-RB10, RB12, RB14, RB15 RC1-RC4 RD1-RD5, RD9, RD10, RD12, RD13, RD15 RE4-RE7 RF0, RF4, RF5, RF12, RF13 RG0, RG1, RG6-RG9 RH2, RH3, RH7, RH14, RH15 RJ3-RJ7, RJ10, RJ12-RJ15 RK0-RK7	_	_	8	ns	CLOAD = 50 pF
			I	l	6	ns	CLOAD = 20 pF
		Port Output Fall Time I/O Pins: 12x Source Driver Pins - RA6, RA7	ı	1	3.5	ns	CLOAD = 50 pF
		RE0-RE3 RF1 RG12-RG14	_	_	2	ns	CLOAD = 20 pF
DI35	TINP	INTx Pin High or Low Time	5	_	_	ns	_
DI40	TRBP	CNx High or Low Time (input)	5	_	_	ns	_

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

^{2:} This parameter is characterized, but not tested in manufacturing.

FIGURE 44-4: POWER-ON RESET TIMING CHARACTERISTICS

Internal Voltage Regulator Enabled Clock Sources = (FRC, FRCDIV, FRCDIV16, FRCPLL, EC, ECPLL and LPRC) **V**DDCORE **V**PORCORE (TSYSDLY) SY02 Power-up Sequence (Note 2) CPU Starts Fetching Code SY00 (TPU) (Note 1) Internal Voltage Regulator Enabled Clock Sources = (HS, HSPLL, and Sosc) **V**DDCORE **VPORCORE** (TSYSDLY) SY02 Power-up Sequence (Note 2) CPU Starts Fetching Code SY00 OS40 (TPU) (Tost) (Note 1) Note 1: The power-up period will be extended if the power-up sequence completes before the device exits from BOR (VDDIO < VDDIOMIN).

2: Includes interval voltage regulator stabilization delay.

FIGURE 44-5: EXTERNAL RESET TIMING CHARACTERISTICS

TABLE 44-31: RESETS TIMING

AC CHARACTERISTICS			Standard Operating Conditions: VDDIO = 2.2V to 3.6V, VDDCORE = 1.7V to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SY00	TPU	Power-up Period Internal Voltage Regulator Enabled	_	400	600	μS	_	
SY02	TSYSDLY	System Delay Period: Time Required to Reload Device Configuration Fuses plus SYSCLK Delay before First instruction is Fetched.	_	1 μs + 8 SYSCLK cycles	_	_	_	
SY20	TMCLR	MCLR Pulse Width (low)	2	_	_	μS	_	
SY30	TBOR	BOR Pulse Width (low)	_	1	_	μS	_	

Note 1: These parameters are characterized, but not tested in manufacturing.

^{2:} Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Characterized by design but not tested.

FIGURE 44-6: TIMER1-TIMER9 EXTERNAL CLOCK TIMING CHARACTERISTICS

TABLE 44-32: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

AC CHA	\RACTERIS'	TICS	VDD	tandard Operating Conditions: $V_{DDIO} = 2.2V$ to 3.6V, $V_{DDCORE} = 1.7V$ to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param. No.	Symbol	Charac	teristics ⁽²⁾		Min.	Тур.	Max.	Units	Conditions	
-		TxCK High Time	Synchrono with presc		[(12.5 ns or 1 TPBCLK3) /N] + 20 ns		_	ns	Must also meet parameter TA15 (Note 3)	
			Asynchror with presc		10	_	_	ns	_	
TA11	TTXL	XL TxCK Synchrono with presca Asynchron with presca			[(12.5 ns or 1 TPBCLK3) /N] + 20 ns	_	_	ns	Must also meet parameter TA15 (Note 3)	
					10	_	_	ns	_	
TA15	ТтхР	TxCK Synchrono Input Period with presci			[(Greater of 20 ns or 2 TPBCLK3)/N] + 30 ns	_	_	ns	VDDIO > 2.7V (Note 3)	
					[(Greater of 20 ns or 2 TPBCLK3)/N] + 50 ns	_	_	ns	VDDIO < 2.7V (Note 3)	
			Asynchror	ious,	20	_	_	ns	VDDIO > 2.7V	
			with presc	aler	50	_	_	ns	VDDIO < 2.7V	
OS60	Fт1	SOSC1/T1CK Oscillator Input Frequency Range (oscillator enabled by setti TCS bit (T1CON<1>))			32	_	50	kHz	_	
TA20	TCKEXTMRL	Delay from E Clock Edge t Increment		CK	_	_	1	TPBCLK3	_	

Note 1: Timer1 is a Type A.

2: This parameter is characterized, but not tested in manufacturing.

3: N = Prescale Value (1, 8, 64, 256).

TABLE 44-33: TIMER2-TIMER9 EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS	Standard Operating Conditions: VDDIO = 2.2V to 3.6V, VDDCORE = 1.7V to 1.9V (unless otherwise stated)						
	Operating temperature -40°C ≤ TA ≤ +85°C for Industrial						

Param. No.	Symbol	Characteristics ⁽¹⁾		Min.	Max.	Units	Conditions	
TB10	ТтхН	TxCK High Time	Synchronous, with prescaler	[(12.5 ns or 1 TPBCLK3) /N] + 25 ns		ns	Must also meet parameter TB15	N = prescale value (1, 2, 4, 8, 16, 32, 64,
TB11	TTXL	TxCK Low Time	Synchronous, with prescaler	[(12.5 ns or 1 TPBCLK3) /N] + 25 ns	_	ns	Must also meet parameter TB15	256)
TB15	TTxP	TxCK Input	Synchronous, with prescaler	[(Greater of [(25 ns or 2 TPBCLK3)/N] + 30 ns	_	ns	VDDIO > 2.7V	
		Period		[(Greater of [(25 ns or 2 TPBCLK3)/N] + 50 ns	_	ns	VDDIO < 2.7V	
TB20	TCKEXTMRL	_	External TxCK to Timer Increment	_	1	TPBCLK3		_

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 44-7: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS

TABLE 44-34: INPUT CAPTURE MODULE TIMING REQUIREMENTS

AC CHA	RACTERI	STICS	VDDCORE = 1	Standard Operating Conditions: $V_{DDIO} = 2.2V$ to 3.6V, $V_{DDCORE} = 1.7V$ to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param. No.	Symbol Characteristics ⁽¹⁾		cteristics ⁽¹⁾	Min.	Max.	Units	Conditions		
IC10	TccL	ICx Input	t Low Time	[(12.5 ns or 1 TPBCLK3) /N] + 25 ns	_	ns	Must also meet parameter IC15.	N = prescale value (1, 4, 16)	
IC11	TccH	ICx Input	t High Time	[(12.5 ns or 1 TPBCLK3) /N] + 25 ns	_	ns	Must also meet parameter IC15.		
IC15	TccP	ICx Input	t Period	[(25 ns or 2 TPBCLK3) /N] + 50 ns	_	ns	_		

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 44-8: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS

TABLE 44-35: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

AC CHA	AC CHARACTERISTICS			Standard Operating Conditions: VDDIO = 2.2V to 3.6V, VDDCORE = 1.7V to 1.9V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial						
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typ. ⁽²⁾	Max. Units Conditions					
OC10	TccF	OCx Output Fall Time	_	_	_	ns	See parameter DO32			
OC11	TccR	OCx Output Rise Time	_	_	_	ns	See parameter DO31			

- Note 1: These parameters are characterized, but not tested in manufacturing.
 - **2:** Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 44-9: OCx/PWM MODULE TIMING CHARACTERISTICS

TABLE 44-36: SIMPLE OCx/PWM MODE TIMING REQUIREMENTS

AC CHAF	AC CHARACTERISTICS			Standard Operating Conditions: $V_{DDIO} = 2.2V$ to 3.6V, $V_{DDCORE} = 1.7V$ to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}C \le T_A \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristics ⁽¹⁾	Min,	Typ. ⁽²⁾	Max,	Units	Conditions		
OC15	TFD	Fault Input to PWM I/O Change	_	_	50	ns	_		
OC20	TFLT	Fault Input Pulse Width	50	_	_	ns	_		

- Note 1: These parameters are characterized, but not tested in manufacturing.
 - **2:** Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 44-10: SPIX MODULE MASTER MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 44-37: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS

AC CHA	RACTERIST	rics	Standard Operating Conditions: VDDIO = 2.2V to 3.6V, VDDCORE = 1.7V to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP10	TscL	SCKx Output Low Time (Note 3)	Tsck/2	_	_	ns	Note 5	
SP11	TscH	SCKx Output High Time (Note 3)	Tsck/2	_	_	ns	Note 5	
SP15	TscK	SPI Clock Speed (Note 5)		 - - -	25 50 25 50 25	MHz MHz MHz MHz MHz	SPI1, SPI3, SPI4, SPI6 SPI2 on RPG7, RPG8 SPI2 on other I/O SPI5 on RPC1, RPC4 SPI5 on other I/O	
SP20	TscF	SCKx Output Fall Time (Note 4)	_	_	_	ns	See parameter DO32	
SP21	TscR	SCKx Output Rise Time (Note 4)	_	_	_	ns	See parameter DO31	
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	_	_	_	ns	See parameter DO32	
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	_	_	_	ns	See parameter DO31	
SP35	TscH2DoV,	SDOx Data Output Valid after	_	_	7	ns	VDDIO > 2.7V	
	TscL2DoV	SCKx Edge	_	_	10	ns	VDDIO < 2.7V	
SP40	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	5	_	_	ns	_	
SP41	TSCH2DIL, TSCL2DIL	Hold Time of SDIx Data Input to SCKx Edge	5	_	_	ns	_	

Note 1: These parameters are characterized, but not tested in manufacturing.

- **2:** Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- **3:** The minimum clock period for SCKx is 20 ns. Therefore, the clock generated in Master mode must not violate this specification.
- 4: Assumes 30 pF load on all SPIx pins.
- **5:** To achieve maximum data rate, VDDIO must be greater than or equal to 3.0V and the SMP bit (SPIxCON<9>) must be set to '1'.

FIGURE 44-11: SPIX MODULE MASTER MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 44-38: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: $V_{DDIO} = 2.2V$ to 3.6V, $V_{DDCORE} = 1.7V$ to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}C \le T_A \le +85^{\circ}C$ for Industrial					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP10	TscL	SCKx Output Low Time (Note 3)	Tsck/2	_	_	ns	Note 5	
SP11	TscH	SCKx Output High Time (Note 3)	Tsck/2	_	_	ns	Note 5	
SP15	TscK	SPI Clock Speed (Note 5)			25 50 25 50 25	MHz MHz MHz MHz MHz	SSPI1, SPI3, SPI4, SPI6 SPI2 on RPG7, RPG8 SPI2 on other I/O SPI5 on RPC1, RPC4 SPI5 on other I/O	
SP20	TscF	SCKx Output Fall Time (Note 4)	_	_		ns	See parameter DO32	
SP21	TscR	SCKx Output Rise Time (Note 4)	_	_	_	ns	See parameter DO31	
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	_	_	_	ns	See parameter DO32	
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	_		_	ns	See parameter DO31	
SP35	TscH2DoV,	SDOx Data Output Valid after	_	_	7	ns	VDDIO > 2.7V	
	TscL2DoV	SCKx Edge	_		10		VDDIO < 2.7V	
SP36	TDOV2SC, TDOV2SCL	SDOx Data Output Setup to First SCKx Edge	7	_	_	ns	_	
SP40	TDIV2scH,	Setup Time of SDIx Data Input to	7	_		ns	VDDIO > 2.7V	
	TDIV2scL	SCKx Edge	10				VDDIO < 2.7V	
SP41	TscH2DIL,	Hold Time of SDIx Data Input	7	_		ns	VDDIO > 2.7V	
	TscL2DIL	to SCKx Edge	10	_	_	ns	VDDIO < 2.7V	

- Note 1: These parameters are characterized, but not tested in manufacturing.
 - **2:** Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
 - **3:** The minimum clock period for SCKx is 20 ns. Therefore, the clock generated in Master mode must not violate this specification.
 - 4: Assumes 30 pF load on all SPIx pins.
 - 5: To achieve maximum data rate, VDDIO must be greater than or equal to 3.0V and the SMP bit (SPIx-CON<9>) must be set to '1'.

SSx SP52 SP50 SCKx (CKP = 0)SP72 SP73 SCKx (CKP = 1)SP72 SP73 SP35 SDOx MSb Bit 14 LSb SP51 SP30,SP31 **SDIX** Bit 14 LSb In MSb In SP40 SP41 Note: Refer to Figure 44-1 for load conditions.

FIGURE 44-12: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 44-39: SPIx MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

		IX IIIODOZZ OZY (TZ IIIODZ (OKZ	0 , 1111111				
AC CHARACTERISTICS			Standard Operating Conditions: VDDIO = 2.2V to 3.6V, VDDCORE = 1.7V to 1.9V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial				
Param. No.	Symbol	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP70	TscL	SCKx Input Low Time (Note 3)	Tsck/2	_		ns	Note 5
SP71	TscH	SCKx Input High Time (Note 3)	Tsck/2	_	_	ns	Note 5
SP72	TscF	SCKx Input Fall Time	_	_	_	ns	See parameter DO32
SP73	TscR	SCKx Input Rise Time	_	_	_	ns	See parameter DO31
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	_	_	_	ns	See parameter DO32
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	_	_	_	ns	See parameter DO31
SP35	TscH2DoV,	SDOx Data Output Valid after	_	_	7	ns	VDDIO > 2.7V
	TscL2DoV	SCKx Edge	_	_	10	ns	VDDIO < 2.7V
SP40	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	5	_	_	ns	_
SP41	TSCH2DIL, TSCL2DIL	Hold Time of SDIx Data Input to SCKx Edge	5	_	_	ns	_
SP50	TssL2scH, TssL2scL	SSx ↓ to SCKx ↑ or SCKx Input	88	_	_	ns	_
SP51	TssH2DoZ	SSx ↑ to SDOx Output High-Impedance (Note 3)	2.5	_	12	ns	_

- Note 1: These parameters are characterized, but not tested in manufacturing.
 - 2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
 - 3: The minimum clock period for SCKx is 20 ns.
 - Assumes 10 pF load on all SPIx pins. 4:
 - TSCK is 40 ns for SPI1, SPI3, SPI4, and SPI6 and it is 20 ns for SPI2 and SPI5.

TABLE 44-39: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS (CONTINUED)

IABLE		IX MODULE SEAVE MODE (SIXE	<i>v</i>) ::::::::	IO IVE			(OOITIITOLD)	
			Standard Operating Conditions: VDDIO = 2.2V to 3.6V,					
AC CHARACTERISTICS			VDDCORE = 1.7V to 1.9V (unless otherwise stated)					
AC CITA	AINAO I LINIO	Operating temperature -4			40°C ≤ `	Ta ≤ +85°C for		
Param. No.	Symbol	Characteristics ⁽¹⁾	Min. Typ. ⁽²⁾ Max. Units Conditions					
SP52	TscH2ssH	SSx after SCKx Edge	10	_	_	ns	_	
	TscL2ssH							

- Note 1: These parameters are characterized, but not tested in manufacturing.
 - **2:** Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
 - 3: The minimum clock period for SCKx is 20 ns.
 - 4: Assumes 10 pF load on all SPIx pins.
 - 5: TSCK is 40 ns for SPI1, SPI3, SPI4, and SPI6 and it is 20 ns for SPI2 and SPI5.

FIGURE 44-13: SPIX MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 44-40: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS ('x' = 1, 3, 4, 6)

	(X - 1, 3, 4, 0) Standard Operating Conditions, Value 2 SV										
AC CHA	ARACTERIS'	Standard Operating Conditions: VDDIO = 2.2V to 3.6V, VDDCORE = 1.7V to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial									
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions				
SP70	TscL	SCKx Input Low Time (Note 3)	Tsck/2	_	_	ns	Note 5				
SP71	TscH	SCKx Input High Time (Note 3)	Tsck/2	_	_	ns	Note 5				
SP72	TscF	SCKx Input Fall Time	_	_	10	ns	_				
SP73	TscR	SCKx Input Rise Time	_	_	10	ns	_				
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	_	_	_	ns	See parameter DO32				
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	_	_	_	ns	See parameter DO31				
SP35	TscH2DoV,		_	_	10	ns	VDDIO > 2.7V				
	TscL2DoV	SCKx Edge	_	_	15	ns	VDDIO < 2.7V				
SP40	TDIV2scH, TDIV2scL	Setup Time of SDIx Data Input to SCKx Edge	0	_	_	ns	_				
SP41	TscH2DIL, TscL2DIL	Hold Time of SDIx Data Input to SCKx Edge	7	_	_	ns	_				
SP50	TssL2scH, TssL2scL	SSx ↓ to SCKx ↓ or SCKx ↑ Input	88	_	_	ns	_				
SP51	TssH2DoZ	SSx ↑ to SDOx Output High-Impedance (Note 4)	2.5	_	12	ns	_				
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	10	_	_	ns	_				
SP60	TssL2DoV	SDOx Data Output Valid after SSx Edge	_	_	12.5	ns	_				

- Note 1: These parameters are characterized, but not tested in manufacturing.
 - **2:** Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
 - 3: The minimum clock period for SCKx is 20 ns.
 - 4: Assumes 10 pF load on all SPIx pins.
 - 5: TSCK is 40 ns for SPI1, SPI3, SPI4, and SPI6 and it is 20 ns for SPI2 and SPI5.

FIGURE 44-14: SQI SERIAL INPUT TIMING CHARACTERISTICS

FIGURE 44-15: SQI SERIAL OUTPUT TIMING CHARACTERISTICS

TABLE 44-41: SQI TIMING REQUIREMENTS

			Standard Operating Conditions: VDDIO = 2.2V to 3.6V,						
AC CHA	RACTERIST	ICS	VDDCORE = 1.7V to 1.9V (unless otherwise stated)						
			Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial						
Param. No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions		
SQ10	FCLK	Serial Clock Frequency		_	80	MHz	DMA Read mode, SDR mode		
		(1/Tsqı)	_	_	66	MHz	DMA Read mode, DDR mode		
				_	100	MHz	PIO Write mode, SDR mode		
SQ11	TSCKH	Serial Clock High Time	6	_	_	ns	_		
SQ12	TSCKL	Serial Clock Low Time	6	_	_	ns	_		
SQ13	TSCKR	Serial Clock Rise Time	0.25	_	_	ns	_		
SQ14	TSCKF	Serial Clock Fall Time	0.25			ns	_		
SQ15	TCSS (TCES)	CS Active Setup Time	5	_	_	ns	_		
SQ16	TCSH(TCEH)	CS Active Hold Time	5	_	_	ns	_		
SQ17	Tchs	CS Not Active Setup Time	3	_	_	ns	_		
SQ18	Тснн	CS Not Active Hold Time	3	_	_	ns	_		
SQ19	Тсрн	CS High Time	6	_	_	ns	_		
SQ20	Тснz	CS High to High-Z Data Out	_	_	6	ns	_		
SQ21	TCLZ	SCK Low to Low-Z Data Out	0	_	_	ns	_		
SQ22	TDS	Data In Setup Time	3	_	_	ns	_		
SQ23	TDH	Data In Hold Time	4	_	_	ns	_		
SQ24	Тон	Data Out Hold	0	_		ns			
SQ25	Tov (Tv)	Data Out Valid		_	6	ns	_		

FIGURE 44-16: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)

FIGURE 44-17: I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE)

TABLE 44-42: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

AC CHARACTERISTICS				Standard Operating Conditions: VDDIO = 2.2V to 3.6V, VDDCORE = 1.7V to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial					
Param. No.	Symbol	Charact	eristics	Min. ⁽¹⁾	Max.	Units	Conditions		
IM10	TLO:SCL	Clock Low Time	100 kHz mode	TPBCLK2 * (BRG + 2)	_	μS	_		
			400 kHz mode	TPBCLK2 * (BRG + 2)	_	μS	_		
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)	_	μS	_		
IM11	THI:SCL	Clock High Time	100 kHz mode	TPBCLK2 * (BRG + 2)	_	μS	_		
			400 kHz mode	TPBCLK2 * (BRG + 2)	_	μS	_		
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)	_	μS	_		
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be		
		Fall Time	400 kHz mode	20 + 0.1 CB	300	ns	from 10 to 400 pF		
			1 MHz mode (Note 2)	_	100	ns			

- **Note 1:** BRG is the value of the I²C Baud Rate Generator.
 - 2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).
 - **3:** The typical value for this parameter is 104 ns.

TABLE 44-42: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE) (CONTINUED)

AC CHA	RACTER	ISTICS		Standard Operating Conditions: VDDIO = 2.2V to 3.6V, VDDCORE = 1.7V to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial					
Param. No.	Symbol	bol Characteristics Min. ⁽¹⁾		Min. ⁽¹⁾	Max.	Units	Conditions		
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be		
		Rise Time	400 kHz mode	20 + 0.1 CB	300	ns	from 10 to 400 pF		
			1 MHz mode (Note 2)	_	300	ns			
IM25	TSU:DAT	Data Input	100 kHz mode	250	_	ns	_		
		Setup Time	400 kHz mode	100	_	ns			
			1 MHz mode (Note 2)	100	_	ns			
IM26	THD:DAT	Data Input	100 kHz mode	0	_	μS	_		
		Hold Time	400 kHz mode	0	0.9	μS			
			1 MHz mode (Note 2)	0	0.3	μS			
IM30	Tsu:sta	Start Condition Setup Time	100 kHz mode	TPBCLK2 * (BRG + 2)	_	μS	Only relevant for Repeated Start condition		
			400 kHz mode	TPBCLK2 * (BRG + 2)	_	μS			
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)	_	μS			
IM31	THD:STA	Start Condition Hold Time	100 kHz mode	TPBCLK2 * (BRG + 2)	_	μS	After this period, the		
			400 kHz mode	TPBCLK2 * (BRG + 2)	_	μS	first clock pulse is generated		
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)	_	μS	generated		
IM33	Tsu:sto	Stop Condition Setup Time	100 kHz mode	TPBCLK2 * (BRG + 2)	_	μS	_		
			400 kHz mode	TPBCLK2 * (BRG + 2)	_	μS	1		
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)	_	μS			
IM34	THD:STO	ID:STO Stop Condition	100 kHz mode	TPBCLK2 * (BRG + 2)	_	ns	_		
		Hold Time	400 kHz mode	TPBCLK2 * (BRG + 2)	_	ns			
			1 MHz mode (Note 2)	TPBCLK2 * (BRG + 2)	_	ns			
IM40	TAA:SCL	Output Valid	100 kHz mode	_	3500	ns	_		
		from Clock	400 kHz mode	_	1000	ns	_		
			1 MHz mode (Note 2)	_	350	ns	_		
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μS	The amount of time		
			400 kHz mode	1.3		μS	the bus must be free before a new transmission can start		
			1 MHz mode (Note 2)	0.5		μS			
IM50	Св	Bus Capacitive Loading				pF	See parameter DO58		
IM51	TPGD	Pulse Gobbler De	elay	52	312	ns	See Note 3		

Note 1: BRG is the value of the I²C Baud Rate Generator.

^{2:} Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

^{3:} The typical value for this parameter is 104 ns.

FIGURE 44-18: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)

FIGURE 44-19: I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)

TABLE 44-43: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

AC CHA	RACTERIS	STICS		Standard Operating Conditions: $V_{DDIO} = 2.2V$ to 3.6V, $V_{DDCORE} = 1.7V$ to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param. No. Characteristics				Min.	Conditions				
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	_	μS	PBCLK must operate at a minimum of 800 kHz		
			400 kHz mode	1.3	_	μS	PBCLK must operate at a minimum of 3.2 MHz		
			1 MHz mode (Note 1)	0.5	_	μS	_		
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	_	μS	PBCLK must operate at a minimum of 800 kHz		
			400 kHz mode	0.6	_	μS	PBCLK must operate at a minimum of 3.2 MHz		
			1 MHz mode (Note 1)	0.5	_	μS	_		

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

TABLE 44-43: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) (CONTINUED)

AC CHA	RACTERIS	STICS		VDDCORE = 1.	7V to 1.9	V (unle	ns: VDDIO = 2.2V to 3.6V, ss otherwise stated) C \leq TA \leq +85°C for Industrial
Param. No.	Symbol	Characte	ristics	Min.	Max.	Units	Conditions
IS20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	CB is specified to be from
		Fall Time	400 kHz mode	20 + 0.1 CB	300	ns	10 to 400 pF
			1 MHz mode (Note 1)		100	ns	
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be from
		Rise Time	400 kHz mode	20 + 0.1 CB	300	ns	10 to 400 pF
			1 MHz mode (Note 1)	_	300	ns	
IS25	TSU:DAT	Data Input	100 kHz mode	250	_	ns	_
		Setup Time	400 kHz mode	100		ns	
			1 MHz mode (Note 1)	100	_	ns	
IS26	THD:DAT	Data Input	100 kHz mode	0		ns	_
		Hold Time	400 kHz mode	0	0.9	μS	
			1 MHz mode (Note 1)	0	0.3	μS	
IS30	Tsu:sta	Start Condition Setup Time	100 kHz mode	4700	_	ns	Only relevant for Repeated
			400 kHz mode	600	_	ns	Start condition
			1 MHz mode (Note 1)	250	_	ns	
IS31	THD:STA	Start Condition	100 kHz mode	4000	_	ns	After this period, the first
		Hold Time	400 kHz mode	600	_	ns	clock pulse is generated
			1 MHz mode (Note 1)	250	_	ns	
IS33	Tsu:sto	Stop Condition	100 kHz mode	4000		ns	_
		Setup Time	400 kHz mode	600		ns	
			1 MHz mode (Note 1)	600	_	ns	
IS34	THD:STO	Stop Condition	100 kHz mode	4000		ns	_
		Hold Time	400 kHz mode	600		ns	
			1 MHz mode (Note 1)	250	_	ns	
IS40	TAA:SCL	Output Valid from	100 kHz mode	0	3500	ns	
		Clock	400 kHz mode	0	1000	ns	
			1 MHz mode (Note 1)	0	350	ns	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μS	The amount of time the bus
			400 kHz mode	1.3	_	μS	must be free before a new
			1 MHz mode (Note 1)	0.5	_	μS	transmission can start
IS50	Св	Bus Capacitive Loa	ading	_	_	pF	See parameter DO58

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

FIGURE 44-20: CANX MODULE I/O TIMING CHARACTERISTICS

TABLE 44-44: CANX MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: VDDIO = 2.2V to 3.6V, VDDCORE = 1.7V to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial					
Param No.	Symbol	Characteristic ⁽¹⁾	Min. Typ. ⁽²⁾ Max. Units Conditi					
CA10	TioF	Port Output Fall Time	_	_	_	ns	See parameter DO32	
CA11	TioR	Port Output Rise Time	_	_	_	ns	See parameter DO31	
CA20	Tcwf	Pulse Width to Trigger CAN Wake-up Filter	700	_	_	ns	_	

Note 1: These parameters are characterized but not tested in manufacturing.

^{2:} Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 44-45: ADC MODULE SPECIFICATIONS

	ARACTERI	STICS	Standard Operating Conditions: VDDIO = 2.2V to 3.6V, VDDCORE = 1.7V to 1.9V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial						
Param. No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Conditions		
Device :	Supply								
AD01	AVDD	Module VDDIO Supply	Greater of VDDIO – 0.3 or 2.3	_	Lesser of VDDIO + 0.3 or 3.6	٧	_		
AD02	AVss	Module Vss Supply	Vss	_	Vss + 0.3	V	_		
Referen	ce Inputs								
AD05	VREFH	Reference Voltage High	VREFL + 1.8		AVDD	V	(Note 1)		
AD06	VREFL	Reference Voltage Low	AVss	_	VREFH – 1.8	V	(Note 1)		
AD07	VREF	Absolute Reference Voltage (VREFH – VREFL)	1.8	_	AVDD	>	(Note 2)		
AD08	IREF	Current Drain		102	_	μΑ	ADC is operating or is in Stand-by.		
Analog	Input								
AD12	VINH-VINL	Full-Scale Input Span	VREFL	_	VREFH	V	_		
AD13	VINL	Absolute VINL Input Voltage	AVss	_	VREFL	٧	_		
AD14	VINH	Absolute VINH Input Voltage	AVss	_	VREFH	V	_		
ADC Ac	curacy - N	leasurements with Exte	rnal VREF+/VI	REF-					
AD20c	Nr	Resolution	6		12	bits	Selectable 6, 8, 10, 12 Resolution Ranges		
AD21c	INL	Integral Nonlinearity		±3	_	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V		
AD22c	DNL	Differential Nonlinearity		±1	_	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V		
AD23c	GERR	Gain Error	_	±8	_	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.3V		
AD24c	EOFF	Offset Error	_	±2		LSb	VINL = AVSS = 0V, AVDD = 3.3V		
AD25c	_	Monotonicity	_	_	_		Guaranteed (Note 2)		
Dynami	c Perform	ance							
AD31b	SINAD	Signal to Noise and Distortion	_	65	_	dB	Single-ended (Notes 2,3)		
AD34b	ENOB	Effective Number of bits	_	10.5	_	bits	(Notes 2,3)		

Note 1: These parameters are not characterized or tested in manufacturing.

^{2:} These parameters are characterized, but not tested in manufacturing.

^{3:} Characterized with a 1 kHz sine wave.

^{4:} The ADC module is functional at VBORIOMIN < VDDIO < VDDIOMIN, but with degraded performance. Unless otherwise stated, module functionality is guaranteed, but not characterized.

TABLE 44-46: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS

AC CHA	RACTER	RISTICS ⁽²⁾	VDDCC	RE = 1.7	V to 1.9	V (unle	ons: V_{DDIO} = 2.2 V to 3.6 V , ess otherwise stated) C \leq TA \leq +85 $^{\circ}$ C for Industrial
Param. No.	Symbol	Characteristics	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions
Clock P	arameter	S					
AD50	TAD	ADC Clock Period	20	_	6250	ns	_
Through	nput Rate	•		•			
AD51	FTP	Sample Rate for ADC0-ADC4 (Class 1 Inputs)	 - -		3.125 3.57 4.16 5		
		Sample Rate for ADC7 (Class 2 and Class 3 Inputs)	1111		2.94 3.33 3.84 4.55	Msps Msps Msps Msps	10-bit resolution Source Impedance $\leq 200\Omega$
Timing I	Paramete	ers					
AD60	Тѕамр	Sample Time for ADC0-ADC4 (Class 1 Inputs)	3 4 5 13			TAD	Source Impedance $\leq 200\Omega$, Max ADC clock Source Impedance $\leq 500\Omega$, Max ADC clock Source Impedance ≤ 1 K Ω , Max ADC clock Source Impedance ≤ 5 K Ω , Max ADC clock
		Sample Time for ADC7 (Class 2 and Class 3 Inputs)	4 5 6 14	_	_	TAD	Source Impedance $\leq 200\Omega$, Max ADC clock Source Impedance $\leq 500\Omega$, Max ADC clock Source Impedance ≤ 1 K Ω , Max ADC clock Source Impedance ≤ 5 K Ω , Max ADC clock
		Sample Time for ADC7 (Class 2 and Class 3 Inputs)	See Table 44-47	_	_	TAD	CVDEN (ADCCON1<11>) = 1
AD62	TCONV	Conversion Time (after sample time is complete)		_ _ _	13 11 9 7	TAD	12-bit resolution 10-bit resolution 8-bit resolution 6-bit resolution
AD65	TWAKE	Wake-up time from Low-Power Mode		500 20		Tad µs	Lesser of 500 TAD or 20 µs.

Note 1: These parameters are characterized, but not tested in manufacturing.

^{2:} The ADC module is functional at VBORIOMIN < VDDIO < VDDIOMIN, but with degraded performance. Unless otherwise stated, module functionality is guaranteed, but not characterized.

TABLE 44-47: ADC SAMPLE TIMES WITH CVD ENABLED

AC CHA	ARACTE	RISTICS ⁽²⁾	VDDCC	Standard Operating Conditions: V_{DDIO} = 2.2V to 3.6V, V_{DDCORE} = 1.7V to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}C \le T_A \le +85^{\circ}C$ for Industrial						
Param. No.	Symbol	Characteristics	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions			
AD60a	TSAMP	Sample Time for ADC7 (Class 2 and Class 3 Inputs) with the CVDEN bit (ADCCON1<11>) = 1	8 9 11 12 14 16 17	_	-	TAD	Source Impedance ≤ 200Ω CVDCPL<2:0> (ADCCON2<28:26>) = 001 CVDCPL<2:0> (ADCCON2<28:26>) = 010 CVDCPL<2:0> (ADCCON2<28:26>) = 011 CVDCPL<2:0> (ADCCON2<28:26>) = 100 CVDCPL<2:0> (ADCCON2<28:26>) = 101 CVDCPL<2:0> (ADCCON2<28:26>) = 101 CVDCPL<2:0> (ADCCON2<28:26>) = 110 CVDCPL<2:0> (ADCCON2<28:26>) = 111			
			10 12 14 16 18 19 21	_	1	TAD	Source Impedance ≤ 500Ω CVDCPL<2:0> (ADCCON2<28:26>) = 001 CVDCPL<2:0> (ADCCON2<28:26>) = 010 CVDCPL<2:0> (ADCCON2<28:26>) = 011 CVDCPL<2:0> (ADCCON2<28:26>) = 100 CVDCPL<2:0> (ADCCON2<28:26>) = 101 CVDCPL<2:0> (ADCCON2<28:26>) = 101 CVDCPL<2:0> (ADCCON2<28:26>) = 110 CVDCPL<2:0> (ADCCON2<28:26>) = 110			
			13 16 18 21 23 26 28	_	_	TAD	Source Impedance \leq 1 K Ω CVDCPL<2:0> (ADCCON2<28:26>) = 001 CVDCPL<2:0> (ADCCON2<28:26>) = 010 CVDCPL<2:0> (ADCCON2<28:26>) = 011 CVDCPL<2:0> (ADCCON2<28:26>) = 100 CVDCPL<2:0> (ADCCON2<28:26>) = 101 CVDCPL<2:0> (ADCCON2<28:26>) = 110 CVDCPL<2:0> (ADCCON2<28:26>) = 110 CVDCPL<2:0> (ADCCON2<28:26>) = 111			
			41 48 56 63 70 78 85	_	_	TAD	Source Impedance \leq 5 K Ω CVDCPL<2:0> (ADCCON2<28:26>) = 001 CVDCPL<2:0> (ADCCON2<28:26>) = 010 CVDCPL<2:0> (ADCCON2<28:26>) = 011 CVDCPL<2:0> (ADCCON2<28:26>) = 100 CVDCPL<2:0> (ADCCON2<28:26>) = 101 CVDCPL<2:0> (ADCCON2<28:26>) = 110 CVDCPL<2:0> (ADCCON2<28:26>) = 110 CVDCPL<2:0> (ADCCON2<28:26>) = 111			

Note 1: These parameters are characterized, but not tested in manufacturing.

^{2:} The ADC module is functional at VBORIOMIN < VDDIO < VDDIOMIN, but with degraded performance. Unless otherwise stated, module functionality is guaranteed, but not characterized.

TABLE 44-48: TEMPERATURE SENSOR SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: $V_{DDIO} = 2.2V$ to 3.6V, $V_{DDCORE} = 1.7V$ to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param. No.	Symbol	nbol Characteristics Min. Typ. Max. Units Conditions							
TS10	VTS	Rate of Change	_	5	_	mV/°C	_		
TS11	TR	Resolution	-2	_	+2	°C	_		
TS12	IVTEMP	Voltage Range	0.5		1.5	٧	_		
TS13	TMIN	Minimum Temperature	_	-40	°C	IVTEMP = 0.5V			
TS14	Тмах	Maximum Temperature	_	160	_	°C	IVTEMP = 1.5V		

Note 1: The temperature sensor is functional at VBORIOMIN < VDDIO < VDDIOMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

FIGURE 44-21: PARALLEL SLAVE PORT TIMING

TABLE 44-49: PARALLEL SLAVE PORT REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: $V_{DDIO} = 2.2V$ to 3.6V, $V_{DDCORE} = 1.7V$ to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Para m.No.	Symbol	Characteristics ⁽¹⁾	Units	Conditions				
PS1	TdtV2wrH	Data In Valid before PMWR or PMCSx Inactive (setup time)	20	_	_	ns	_	
PS2	TwrH2dtl	PMWR or PMCSx Inactive to Data-in Invalid (hold time)	40	_	_	ns		
PS3	TrdL2dtV	PMRD and PMCSx Active to Data-out Valid	_	_	60	ns	_	
PS4	TrdH2dtl	PMRD Active or PMCSx Inactive to Data-out Invalid	0	_	10	ns	_	
PS5	Tcs	PMCSx Active Time	TPBCLK2 + 40	_	_	ns	_	
PS6	Twr	PMWR Active Time	TPBCLK2 + 25			ns	_	
PS7	TRD	PMRD Active Time	TPBCLK2 + 25	_	_	ns	_	

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 44-22: PARALLEL MASTER PORT READ TIMING DIAGRAM

TABLE 44-50: PARALLEL MASTER PORT READ TIMING REQUIREMENTS

AC CHA	AC CHARACTERISTICS			Standard Operating Conditions: $V_{DDIO} = 2.2V$ to 3.6V, $V_{DDCORE} = 1.7V$ to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions			
PM1	TLAT	PMALL/PMALH Pulse Width	_	1 TPBCLK2	_	_	<u>—</u>			
PM2	TADSU	Address Out Valid to PMALL/ PMALH Invalid (address setup time)	_	2 TPBCLK2	_	_	_			
РМ3	TADHOLD	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	_	1 TPBCLK2	_	_				
PM4	TAHOLD	PMRD Inactive to Address Out Invalid (address hold time)	5	_	_	ns	_			
PM5	TRD	PMRD Pulse Width	_	1 TPBCLK2	_	_	_			
РМ6	Tosu	PMRD or PMENB Active to Data In Valid (data setup time)	15	_	_	ns	_			
PM7	TDHOLD	PMRD or PMENB Inactive to Data In Invalid (data hold time)	5	_	_	ns	_			

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 44-23: PARALLEL MASTER PORT WRITE TIMING DIAGRAM

TABLE 44-51: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: $V_{DDIO} = 2.2V$ to 3.6V, $V_{DDCORE} = 1.7V$ to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions		
PM11	Twr	PMWR Pulse Width	_	1 TPBCLK2	_	_	_		
PM12	TDVSU	Data Out Valid before PMWR or PMENB goes Inactive (data setup time)	_	2 TPBCLK2	_	_	_		
PM13	TDVHOLD	PMWR or PMEMB Invalid to Data Out Invalid (data hold time)	_	1 TPBCLK2	_	_	_		

Note 1: These parameters are characterized, but not tested in manufacturing.

TABLE 44-52: USB OTG ELECTRICAL SPECIFICATIONS

AC CHA	RACTERIS	STICS	Standard Operating Conditions: $V_{DDIO} = 2.2V$ to 3.6V, $V_{DDCORE} = 1.7V$ to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions		
USB313	VUSB3V3	USB Voltage	3.0	_	3.6	V	Voltage on VUSB3V3 must be in this range for proper USB operation		
Low-Spe	ed and Fu	ull-Speed Modes							
USB315	VILUSB	Input Low Voltage for USB Buffer	_	_	0.8	V	_		
USB316	VIHUSB	Input High Voltage for USB Buffer	2.0	_	_	V	_		
USB318	VDIFS	Differential Input Sensitivity	0.2	_	_	V	The difference between D+ and D- must exceed this value while VCM is met		
USB319	VCM	Differential Common Mode Range	0.8	_	2.5	V	_		
USB321	Vol	Voltage Output Low	0.0	_	0.3	V	1.425 kΩ load connected to VUSB3V3		
USB322	Vон	Voltage Output High	2.8	_	3.6	V	14.25 kΩ load connected to ground		
Hi-Speed	d Mode								
USB323	VHSDI	Differential input signal level	150	_	_	mV	_		
USB324	VHSSQ	SQ detection threshold	100	_	150	mV	_		
USB325	VHSCM	Common mode voltage range	-50	_	500	mV	_		
USB326	VHSOH	Data signaling high	360		440	mV	_		
USB327	VHSOL	Data signaling low	-10	_	10	mV	_		
USB328	VCHIRPJ	Chirp J level	700	_	1100	mV	_		
USB329	VCHIRPK	Chirp K level	-900	_	-500	mV	_		
USB330	ZHSDRV	Driver output resistance		45	_	Ω	_		

Note 1: These parameters are characterized, but not tested in manufacturing.

TABLE 44-53: ETHERNET MODULE SPECIFICATIONS

AC CHA	RACTERISTICS	Standard Operating Conditions: VDDIO = 2.2V to 3.6V, VDDCORE = 1.7V to 1.9V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial						
Param. No.	Characteristic	Min.	Тур.	Max.	Units	Conditions		
MIIM Tin	ning Requirements							
ET1	MDC Duty Cycle	40	_	60	%	_		
ET2	MDC Period	400	_	_	ns	_		
ET3	MDIO Output Setup and Hold	10	_	10	ns	See Figure 44-24		
ET4	MDIO Input Setup and Hold	0	_	300	ns	See Figure 44-25		
MII Timi	ng Requirements							
ET5	TX Clock Frequency	_	25	_	MHz	_		
ET6	TX Clock Duty Cycle	35	_	65	%	_		
ET7	ETXDx, ETEN, ETXERR Output Delay	0	_	25	ns	See Figure 44-26		
ET8	RX Clock Frequency	_	25	_	MHz	_		
ET9	RX Clock Duty Cycle	35	_	65	%	_		
ET10	ERXDx, ERXDV, ERXERR Setup and Hold	10	_	30	ns	See Figure 44-27		
RMII Tim	ning Requirements							
ET11	Reference Clock Frequency	_	50	_	MHz	_		
ET12	Reference Clock Duty Cycle	35	_	65	%	_		
ET13	ETXDx, ETEN, Setup and Hold	2	_	16	ns	_		
ET14	ERXDx, ERXDV, ERXERR Setup and Hold	2	_	16	ns	_		

FIGURE 44-24: MDIO SOURCED BY THE PIC32 DEVICE

FIGURE 44-25: MDIO SOURCED BY THE PHY

FIGURE 44-26: TRANSMIT SIGNAL TIMING RELATIONSHIPS AT THE MII

FIGURE 44-27: RECEIVE SIGNAL TIMING RELATIONSHIPS AT THE MII

FIGURE 44-28: EBI PAGE READ TIMING

FIGURE 44-29: EBI WRITE TIMING

TABLE 44-54: EBI TIMING REQUIREMENTS

AC CHA	AC CHARACTERISTICS			Standard Operating Conditions: VDDIO = 2.2V to 3.6V, VDDCORE = 1.7V to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial				
Param. No.	Symbol	Characteristic	Min. Typ. Max. Units Conditions					
EB10	TEBICLK	Internal EBI Clock Period (SYSCLK)	5	_		ns	_	
EB11	TEBIRC	EBI Read Cycle Time (TRC<5:0>)	10	_	_	ns	_	
EB12	TEBIPRC	EBI Page Read Cycle Time (TPRC<3:0>)	10	_	_	ns	_	
EB13	TEBIAS	EBI Write Address Setup (TAS<1:0>)	5	_	_	ns	_	
EB14	TEBIWP	EBI Write Pulse Width (TWP<5:0>)	5	_	_	ns	_	
EB15	TEBIWR	EBI Write Recovery Time (TWR<1:0>)	5	_	_	ns	_	
EB16	ТЕВІСО	EBI Output Control Signal Delay	-	_	5	ns	See Note 1	
EB17	TEBIDO	EBI Output Data Signal Delay	_	_	5	ns	See Note 1	
EB18	TEBIDS	EBI Input Data Setup	2.5	_	_	ns	See Note 1	
EB19	TEBIDH	EBI Input Data Hold	1.5	_	_	ns	See Note 1, 2	

Note 1: Maximum pin capacitance = 10 pF.

TABLE 44-55: GLCD CONTROLLER TIMING SPECIFICATIONS

AC CHA	RACTER	RISTICS	Standard Operating Conditions: VDDIO = 2.2V to 3.6V, VDDCORE = 1.7V to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial						
Param. No.	Symbol	Characteristic	Min. Typ. Max. Units Conditions						
GD20	tGCLK	Pixel Clock Frequency	_	50 MHz					

^{2:} Hold time from EBI Address change is 0 ns.

TABLE 44-56: DDR2 SDRAM CONTROLLER TIMING SPECIFICATIONS

AC CHA	ARACTER	ISTICS	VDDCORE	= 1.7V to 1.	9V (unless	otherwi	= 2.2V to 3.6V, se stated) 5°C for Industrial
Param. No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
DDR10	tCK	Clock Frequency	_	5		ns	_
DDR11	tDUTY	Duty Cycle	48	50	52	%	_
DDR12	tRCD	Active to Read/Write Command Delay Time	20	_	_	ns	_
DDR13	tRP	Precharge to Active Command Period	20	_	_	ns	_
DDR14	tRC	Active to Ref/Active Command Period	110	_	120	ns	_
DDR15	tRAS	Active to Precharge Command Period	40	70000	_	ns	Note 1
DDR16	tRFC	Auto Refresh to Active/Auto Refresh Command Period	130	_	_	ns	Note 2
DDR17	tREFI	Average Periodic Refresh Interval	_	_	7.8	μs	Note 2
DDR18	tCKE	DDRCKE Minimum High and Low Pulse Width	6	_	_	ntCK	_
DDR19	tRRD	Active to active command period for 1 KB page size	10	_	_	ns	Note 3
DDR20	tFAW	Four Activate Window for 1 KB Page Size	35	_	_	ns	_
DDR21	tWR	Write Recovery Time	25	_	_	ns	_
DDR22	tWTR	Internal Write to Read Command Delay	10	_	_	ns	Note 4
DDR23	tRTP	Internal Read To Precharge Command Delay	10	_	_	ns	Note 1
DDR24	tXSRD	Exit Self Refresh to a Read Command	200	_	_	ntCK	_
DDR25	tXP	Exit Precharge Power Down to Any Command	6	_	_	ntCK	_
DDR26	tMRD	Mode Register Set Command Cycle Time	4	_	_	ntCK	_
DDR27	RL	Read Latency	CL	_	_	ntCK	_
DDR28	CL	CAS Latency	3	_	4	ntCK	_
DDR29	WL	Write Latency	RL – 1	_		ntCK	_
DDR30	BL	Burst Length	8	_	_	ntCK	_

Note 1: This is a minimum requirement. Minimum read to precharge timing is AL + BL / 2 provided that the tRTP and tRAS(min) have been satisfied.

^{2:} If refresh timing is violated, data corruption may occur and the data must be rewritten with valid data before a valid READ can be executed.

^{3:} A minimum of two clocks (2 * ntCK) is required regardless of operating frequency.

^{4:} tWTR is at least two clocks (2 * ntCK) independent of operation frequency.

TABLE 44-57: SD HOST CONTROLLER DEFAULT MODE TIMING SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: VDDIO = 2.2V to 3.6V, VDDCORE = 1.7V to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial				
Param. No.	Symbol	Characteristic	Min. Typ. Max. Units Conditions				
SD20	tSDCK	Clock Frequency	_	_	25	MHz	_
SD21	tDUTY	Duty Cycle	_	50	_	%	_
SD22	tHIGH	Clock High Time	10	_	_	ns	_
SD23	tLOW	Clock Low Time	10	_	_	ns	_
SD24	tRISE	Clock Rise Time	_	10	_	ns	_
SD25	tFALL	Clock Fall Time	_	10	_	ns	_
SD26	tSETUP	Input Setup Time	5	_	_	ns	_
SD27	tHOLD	Input Hold Time	5	_	_	ns	_

TABLE 44-58: SD HOST CONTROLLER HIGH-SPEED MODE TIMING SPECIFICATIONS

AC CHA	RACTER	RISTICS	VDDCORE = 1	.7V to 1.9V (nditions: V_{DDI} unless otherv $-40^{\circ}C \le T_A \le +8$	vise state	d)
Param. No.	Symbol	Characteristic	Min. Typ. Max. Units Conditions				
SD30	tSDCK	Clock Frequency	_	_	50	MHz	_
SD31	tDUTY	Duty Cycle	_	50		%	_
SD32	tHIGH	Clock High Time	7	_		ns	_
SD33	tLOW	Clock Low Time	7			ns	_
SD34	tRISE	Clock Rise Time	_	3		ns	_
SD35	tFALL	Clock Fall Time	_	3		ns	_
SD36	tSETUP	Input Setup Time	6	_		ns	_
SD37	tHOLD	Input Hold Time	2	_		ns	_

FIGURE 44-30: EJTAG TIMING CHARACTERISTICS

TABLE 44-59: EJTAG TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: VDDIO = 2.2V to 3.6V, VDDIORE = 1.7V to 1.9V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C}$ for Industrial				
Param. No.	Symbol	Description ⁽¹⁾	Min.	Max.	Units	Conditions	
EJ1	Ттсксүс	TCK Cycle Time	25	_	ns	_	
EJ2	Ттскнідн	TCK High Time	10	_	ns	_	
EJ3	TTCKLOW	TCK Low Time	10	_	ns	_	
EJ4	TTSETUP	TAP Signals Setup Time Before Rising TCK	5	_	ns	_	
EJ5	TTHOLD	TAP Signals Hold Time After Rising TCK	3	_	ns	_	
EJ6	Ттроопт	TDO Output Delay Time from Falling TCK	_	5	ns	_	

Note 1: These parameters are characterized, but not tested in manufacturing.

TABLE 44-59: EJTAG TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: V_{DDIO} = 2.2V to 3.6V, V_{DDCORE} = 1.7V to 1.9V (unless otherwise stated) Operating temperature -40°C \leq TA \leq +85°C for Industrial				
Param. No.	Symbol	Description ⁽¹⁾	Min. Max. Units Conditions				
EJ7	TTDOZSTATE	TDO 3-State Delay Time from Falling TCK	_	5	ns	_	
EJ8	TTRSTLOW	TRST Low Time	25	_	ns	_	
EJ9	TRF	TAP Signals Rise/Fall Time, All Input and Output	_	_	ns	_	

Note 1: These parameters are characterized, but not tested in manufacturing.

AC AND DC CHARACTERISTICS GRAPHS 45.0

(A) HOI

46.0 PACKAGING INFORMATION

46.1 Package Marking Information

169-Lead LFBGA (11x11x1.56 mm)

169-Lead LFBGA (11x11 mm)

176-Lead LQFP (20x20x1.45 mm)

288-Lead LFBGA (15x15x1.4 mm)

Example

Example

Example

Example

Legend:	XXX	Customer-specific information
	Υ	Year code (last digit of calendar year)
	YY	Year code (last 2 digits of calendar year)
	WW	Week code (week of January 1 is week '01')
	NNN	Alphanumeric traceability code
		Pb-free JEDEC designator for Matte Tin (Sn)
	*	This package is Pb-free. The Pb-free JEDEC designator (e3 can be found on the outer packaging for this package.

lote: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

46.2 Package Details

The following sections give the technical details of the packages.

169-Ball Low Profile Fine Pitch Ball Grid Array (HF) - 11x11x1.4 mm Body [LFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-365B Sheet 1 of 2

169-Ball Low Profile Fine Pitch Ball Grid Array (HF) - 11x11x1.4 mm Body [LFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Terminals (Balls)	N		169		
Pitch	е		0.80 BSC		
Overall Height	Α	1.17	1.285	1.40	
Terminal (Ball) Height	A1	0.25	0.325	0.40	
Mold Cap Thickness	(A2)		0.70 REF		
Substrate Thickness	(A3)		0.26 REF		
Overall Length	D		11.00 BSC		
Overall Width	Е		11.00 BSC		
Overall Ball Pitch	D1	9.60			
Overall Ball Pitch	E1	9.60			
Ball Diameter	b	0.40	0.45	0.50	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-365B Sheet 2 of 2

169 Ball Low Profile Fine Pitch Ball Grid Array (HF) - 11x11x1.4 mm Body [LFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimensio	MIN	NOM	MAX		
Contact Pitch	Е	0.80 BSC			
Contact Pad Spacing	C1		9.60 BSC		
Contact Pad Spacing	C2		9.60 BSC		
Contact Pad Diameter (X169)	В	0.40 0.45 0.50			
Pad-to-Pad Clearance	G	0.30			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2365B

169-Ball Low Profile Ball Grid Array (6JX) - 11x11 mm Body [LFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-439A Sheet 1 of 2

169-Ball Low Profile Ball Grid Array (6JX) - 11x11 mm Body [LFBGA]

lote: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Terminals	Ν		169		
Pitch	е		0.80 BSC		
Overall Height	Α	1.33	1.445	1.56	
Standoff	A1	0.40	0.45	0.50	
Mold Thickness	A2		0.86 REF		
Substrate Thickness	A3		0.26 REF		
Overall Length	D		11.00 BSC		
Overall Terminal Spacing	D1		9.60 BSC		
Overall Width	Е	11.00 BSC			
Overall Terminal Spacing	E1	9.60 BSC			
Terminal Diameter	b	0.40	0.45	0.50	

Notes:

- 1. Pin A1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-439A Sheet 2 of 2

169-Ball Low Profile Ball Grid Array (6JX) - 11x11 mm Body [LFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E		0.80 BSC	
Overall Contact Pad Spacing	C1		9.60	
Overall Contact Pad Spacing	C2		9.60	
Contact Pad Width (X169)	X1			0.50
Contact Pad to Contact Pad	G	0.30		

Notes:

Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2439A

176-Lead Low Profile Quad Flat Pack (2J) - 20x20x1.4 mm Body [LQFP] With 7x7 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-367A Sheet 1 of 2

176-Lead Low Profile Quad Flat Pack (2J) - 20x20x1.4 mm Body [LQFP] With 7x7 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Leads	N	176		
Pitch	е	0.40 BSC		
Overall Height	Α	1.60		
Standoff	A1	0.05	-	0.15
Molded Package Height	A2	1.35	1.40	1.45
Overall Length	D	22.00 BSC		
Molded Package Length	D1	20.00 BSC		
Overall Lead Pitch	D2	17.20 BSC		
Exposed Pad Length	D3	6.90	7.00	7.10
Overall Width	E	22.00 BSC		
Molded Package Width	E1	20.00 BSC		
Overall Lead Pitch	E2	17.20 BSC		
Exposed Pad Width	E3	6.90 7.00 7.10		

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Lead Width	b	0.13	0.16	0.23	
Lead Thickness	С	0.09	-	0.20	
Lead Length	L	0.45	0.60	0.75	
Footprint	(L1)	1.00 REF			
Bend Radius	R1	0.08	-	-	
Bend Radius	R2	80.0	-	0.20	
Foot Angle	Θ	0°	3.5°	7°	
Lead Angle	Θ1	0°	-	-	
Mold Draft Angle	Θ2	11°	12°	13°	
Mold Draft Angle	Θ3	11°	12°	13°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- Dimensions D1 and E1 do not include mold protrusion. Allowable Protrusion is 0.25mm per side.
 D1 and E1 are maximum body size dimensions including mold mismatch.
- 3. Dimension b does not include dambar protrusion. Allowable dam bar protrusion shall not cause the lead width to exceed the maximum b dimension by more than 0.08mm Dambar cannot be located on the lower radius or the foot. Minimum space between protrusion and adjacent lead is 0.07mm for 0.40mm pitch packages.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-367A Sheet 2 of 2

176-Lead Low Profile Quad Flat Pack (2J) - 20x20x1.4 mm Body [LQFP] With 7x7 mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.40 BSC		
Contact Pad Spacing	C1		21.40	
Contact Pad Spacing	C2		21.40	
Contact Pad Width (X176)	X1			0.20
Contact Pad Length (X176)	Y1			1.50
Center Pad Width	X2			7.90
Center Pad Length	Y2			7.90
Contact Pad to Pad (X172)	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2367B

288 Ball Low Profile Fine Pitch Ball Grid Array (4J) - 15x15x1.4 mm Body [LFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-366B Sheet 1 of 2

288 Ball Low Profile Fine Pitch Ball Grid Array (4J) - 15x15x1.4 mm Body [LFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Number of Terminals (Balls)	N	288		
Pitch	е	0.80 BSC		
Overall Height	Α	1.		
Terminal (Ball) Height	A1	0.30	0.35	0.40
Mold Cap Height	(A2)	0.70 REF		
Substrate Thickness	(A3)	0.26 REF		
Overall Length	D	15.00 BSC		
Overall Ball Pitch	D1	13.60 BSC		
Overall Width	Е	15.00 BSC		
Overall Ball Pitch	E1	13.60 BSC		
Ball Diameter	b	0.40 0.45 0.50		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensioning and tolerancing per ASME Y14.5M $\,$

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-366B Sheet 2 of 2

288 Ball Low Profile Fine Pitch Ball Grid Array (4J) - 15x15x1.4 mm Body [LFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е	0.80 BSC		
Contact Pad Spacing	C1	13.60 BSC		
Contact Pad Spacing	C2	13.60 BSC		
Contact Pad Diameter (X288)	В	0.40	0.45	0.50
Pad-to-Pad Clearance	G	0.30		

Notes:

Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2366B

APPENDIX A: REVISION HISTORY

Revision A (July 2015)

This is the initial released version of the document.

Revision B (November 2015)

In this revision, the document status has been updated from Advance Information to Preliminary.

This revision includes the following major changes, which are referenced by their respective chapter in Table A-1.

TABLE A-1: MAJOR SECTION UPDATES

Section Name	Update Description
32-bit Graphics Applications	The pin names for 169-pin devices were updated (see Table 5).
MCUs (up to 2 MB Live Update Flash, 640 KB SRAM, and 32 MB DDR2 SDRAM) with XLP Technology	The pin names for 288-pin devices were updated (see Table 7).
4.0 "Memory Organization"	The Boot Flash Sequence and Configuration Word Summary tables were updated (see Table 4-3 and Table 4-4).
	The BFxSEQ3/ABFxSEQ3: Boot Flash 'x' Sequence Word 0 Register was updated (see Register 4-1).
6.0 "Resets"	The All Resets values were updated for the RCON register in the Resets Register Map (see Table 6-1).
7.0 "CPU Exceptions and Interrupt Controller"	The OFF199 register was added to the Interrupt Register Map (see Table 7-3).
8.0 "Oscillator Configuration"	The All Resets values for the OSCON and PB6DIV registers were updated in the Oscillator Register Map (see Table 8-2).
	The PLLODIV<2:0> bit values in the SPLLCON register were updated (see Register 8-3).
10.0 "Direct Memory Access (DMA) Controller"	The All Resets values were updated in the DMA Channel 0 through Channel 7 Register Map (see Table 10-3).
11.0 "Hi-Speed USB with On- The-Go (OTG)"	The All Resets value for bits 15:0 of the USBOTG register was updated in the USB Register Map 1 (see Table 11-1).
	The value at POR was updated for bits 24 and 13 of the USBCRCON register (see Register 11-30).
12.0 "I/O Ports"	The TRISC bits in the PORTC Register Map were updated (see Table 12-5).
	The ANSH3 bit was added to the ANSELH register in the PORTH Register Map (see Table 12-10).
	The RPD15R register was removed from the Peripheral Pin Select Output Register Map (see Table 12-14).
18.0 "Watchdog Timer (WDT)"	The All Resets value for bits 15:0 of the WDTCON register in the Watchdog Timer Register Map was updated (see Table 18-1).
21.0 "Serial Peripheral Interface (SPI) and Inter-IC Sound (I ^{2S)} "	The All Resets value for bits 15:0 of the SPI1STAT and SPI1CON2 registers in the Watchdog Timer Register Map were updated (see Table 21-1).
22.0 "Serial Quad Interface (SQI)"	The All Resets value for bits 15:0 of the SQI1XCON1 register in the Serial Quadrature Interface (SQI) Register Map was updated (see Table 22-1).
25.0 "Parallel Master Port (PMP)"	The All Resets value for bits 15:0 of the PMSTAT register in the Parallel Master Port Register Map was updated (see Table 25-1).
26.0 "External Bus Interface (EBI)"	The All Resets values were updated in the EBI Register Map (see Table 26-2).

TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
29.0 "12-bit High-Speed Successive Approximation Register (SAR) Analog-to- Digital Converter (ADC)"	The All Resets values for the ADCCON1 and ADCxTIME registers were updated and the Virtual Addresses for the ADCxCFG, ADCSYSCFGx, and ADCDATAx registers were updated in the ADC Register Map (see Table 29-1).
34.0 "High/Low-Voltage Detect	The chapter was renamed and the introduction was updated.
(HLVD)"	The HLVDCON register was updated (see Table 34-1 and Register 34-1).
	High/Low-Voltage Detect (HLVD) Module Block Diagram was updated (see Figure 34-1)
36.0 "Graphics LCD (GLCD)	The Graphics LCD Controller Register Map was updated (see Table 36-1).
Controller"	These registers were updated:
	Register 36-2: "GLCDCLKCON: Graphics LCD Controller Clock Control Register"
	 Register 36-4: "GLCDRES: Graphics LCD Controller Resolution Register" Register 36-5: "GLCDFPORCH: Graphics LCD Controller Front Porch Register"
	Register 36-6: "GLCDBLANKING: Graphics LCD Controller Blanking Register"
	Register 36-7: "GLCDBPORCH: Graphics LCD Controller Back Porch Register"
	Register 36-8: "GLCDCURSOR: Graphics LCD Controller Cursor Register"
	 Register 36-10: "GLCDLxstart: graphics lcd controller layer 'x' start register ('x' = 0-2)"
	 Register 36-11: "GLCDLxsize: graphics lcd controller layer 'x' size register ('x' = 0-2)"
	 Register 36-14: "GLCDLxres: graphics lcd controller layer 'x' resolution register ('x' = 0-2)"
37.0 "2-D Graphics Processing Unit (GPU)"	The introduction was updated.
39.0 "Secure Digital Host	The SDHC block diagram was updated (see Figure 39-1).
Controller (SDHC)"	The SDHC Register Map was updated (see Table 39-1).
	The bit values for the CDSLVL bit in the SDHCSTAT1 register were updated (see Register 39-6).
	The SDHCCAP register was updated (see Register 39-13).
40.0 "Power-Saving Features"	40.2.3 "Deep Sleep Mode" was updated.
	References to High-Voltage Detect were removed in the PMD Register Summary (Table 40-2) and the PMD Bits and Locations (Table 40-3).
41.0 "Special Features"	The CFGCON2 register was updated (see Table 41-3 and Register 41-12).
44.0 "Electrical	The following tables were updated:
Characteristics"	Table 44-1: "Operating MIPS vs. Voltage"
	Table 44-3: "Thermal Packaging Characteristics" Table 44-4: "DC Temperature and Voltage Specifications"
	 Table 44-4: "DC Temperature and Voltage Specifications" Table 44-8: "DC Characteristics: Operating Current (Idd)"
	Table 44-9: "DC Characteristics: Operating current (lidle)"
	Table 44-10: "DC Characteristics: Power-Down Current (Ipd)"
	Table 44-12: "DC Characteristics: I/O Pin Output Specifications"
	Table 44-38: "SPIx Master Mode (CKE = 0) Timing Requirements"
	• Table 44-39: "SPIx Module Master Mode (CKE = 1) Timing Requirements"
	Table 44-53: "USB OTG Electrical Specifications"

Revision C (October/November 2016)

All instances of VDD1V8 were changed to: VDDR1V8 and VDD were changed to VDDIO throughout the data sheet.

All instances of V-Temp specifications were removed throughout the data sheet.

This revision includes the following major changes, which are referenced by their respective chapter in Table A-2.

TABLE A-2: MAJOR SECTION UPDATES

Section Name	Update Description
32-bit Graphics Applications	The Operating Conditions were updated from 2.0V to 3.6V to 2.2V to 3.6V.
MCUs (up to 2 MB Live Update Flash, 640 KB SRAM, and 32 MB DDR2 SDRAM) with XLP Technology	All Device Pin Tables were updated (see Table 5 through Table 7).
1.0 "Device Overview"	Note 1 was added to the Timer1 through Timer9 and RTCC Pinout I/O Descriptions (see Table 1-7).
	Note 2 and the pin numbers for the Power, Ground, and Voltage Reference Pinout I/O Descriptions were updated (see Table 1-23).
2.0 "Guidelines for Getting	The Recommended Minimum Connection diagram was updated (see Figure 2-1).
Started with 32-bit Microcontrollers"	2.9.1.3 "EMI/EMC/EFT (IEC 61000-4-4 and IEC 61000-4-2) Suppression Considerations" was added.
3.0 "CPU"	The SB bit was updated in the Configuration Register; CP0 Register 16, Select 0 (see Register 3-1).
4.0 "Memory Organization"	4.3 "Timing Parameters" was updated.
6.0 "Resets"	Note 1 was added to the Resets Register Map (see Table 6-1).
8.0 "Oscillator Configuration"	The DIVSPLLRDY bit was removed from the CLKSTAT register (see Table 8-2 and Register 8-8).
	Updated bit 5-0 center frequency values from -2% to -4% and +2% to +4% (see Register 8-2).
12.0 "I/O Ports"	The CNCON registers in the Port Register Maps were updated (see Table 12-3 through Table 12-12).
	The SIDL bit was removed from the CNCONx registers (see Register 12-3).
20.0 "Real-Time Clock and Calendar (RTCC)"	A note regarding the RTCC pin was added in the key features.
22.0 "Serial Quad Interface (SQI)"	Note 1 in the SQI Module Block Diagram was updated (see Figure 22-1).
26.0 "External Bus Interface (EBI)"	Note 2 was added on EBI module usage with the Graphics LCD (GLCD) Controller.
	Table 26-1: EBI Module Features was removed.
	Note 1 was removed from the External Bus Interface Address Mask register (see Register 26-2).

TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
29.0 "12-bit High-Speed	EQUATION 29-1: "ADC Throughput Rate" and notes were added.
Successive Approximation	Note 1 was added to the ADC Register Map (see Table 29-1).
Register (SAR) Analog-to- Digital Converter (ADC)"	A note was added to the SELRES bits in the ADCCON1 and the ADCxTIME registers (see Register 29-1 and Register 29-27, respectively).
	The AICPMPEN bit was added to the ADC Control Register 1 (see Table 29-1 and Register 29-1).
	The bit values and the note for the CHNLID bits in the ADCFLTRx register were updated (see Register 29-16).
	The bit values for the ADCID bits in the ADCFSTAT register were updated (see Register 29-22).
	The ADCCFG bit definition and the note were updated in the ADCxCFG register (see Register 29-33).
34.0 "High/Low-Voltage Detect (HLVD)"	The SIDL bit was removed from the HLVDCON register (see Table 34-1 and Register 34-1).
36.0 "Graphics LCD (GLCD) Controller"	The bit positions of FORCEALPHA and DISABIFIL in the GLCDLxMODE register were switched (see Table 36-1 and Register 36-9).
38.0 "DDR2 SDRAM	The DDRPHYPADCON register was updated (see Table 38-1 and Register 38-28).
Controller"	The values at POR were updated in the following registers:
	• Register 38-18
	• Register 38-25
	• Register 38-26
	• Register 38-28
39.0 "Secure Digital Host Controller (SDHC)"	Note 1 in the Secure Digital Host Controller (SDHC) Block Diagram was updated (see Figure 39-1).
40.0 "Power-Saving Features"	The WAKEDIS bit was removed from the Deep Sleep Control register (see Table 40-1 and Register 40-1).
41.0 "Special Features"	DEVSN2 and DEVSN3 were added to the Device Serial Number Summary (see Table 41-4).
	The Device ADC Calibration Summary was added (see Table 41-5).
	Note 2 was added to the JTAGEN bit in the CFGCON register (see Register 41-9).
44.0 "Electrical Characteristics"	The Operating Conditions were updated from 2.0V - 3.6V to 2.2V - 3.6V for VDDIO and 1.7V - 1.9V for VDDCORE throughout the chapter.
	The Absolute Maximum Ratings were updated.
	Updated VDDIO values from 0.8*VDDIO to 0.65*VDDIO.(see Table 44-10, Table 44-15, Table 44-22).
	Updated thermal packaging characteristics (see Table 44-3).
	Updated typical DC characteristics (see Table 44-7).
	Updated Updated SD Host Controller timing specs - min. standard operating conditions (see Table 44-58 and Table 44-59).
	All tables were updated.
46.0 "Packaging Information"	Updated packaging dimensions (see 46.1 "Package Marking Information").
	Added information for 6JX packaging (see 46.1 "Package Marking Information" and 46.2 "Package Details").
Product Identification System	The package marking for V-Temp devices was changed to V.

Revision D (March 2017)

This revision includes the following major changes, which are referenced by their respective chapter in Table A-3.

TABLE A-3: MAJOR SECTION UPDATES

Section Name	Update Description
32-bit Graphics Applications MCUs (up to 2 MB Live Update Flash, 640 KB SRAM, and 32 MB DDR2 SDRAM) with XLP Technology	Table 5, updated pin B4 to VDDCORE and B6 to VDDIO.
4.0 "Memory Organization"	Figure 4-1, updated KSEG3 from "cacheable" to "not cacheable"
6.0 "Resets"	Updated Figure 6-1.
8.0 "Oscillator Configuration"	Table 8-1, added SYSCLK to peripheral EBI.
26.0 "External Bus Interface (EBI)"	Figure 26-1, changed PBCLK8 to SYSCLK.
29.0 "12-bit High-Speed Successive Approximation Register (SAR) Analog-to- Digital Converter (ADC)"	Register 29-1, bit 12, updated notes and added table.
38.0 "DDR2 SDRAM	Table 38-1, swapped register names DRVSTRPFET and DRVSTRNFET.
Controller"	Table 38-1, added offset address 9140.
	Register 38-28, swapped register names and definitions DRVSTRPFET and DRVSTRNFET.
	Added Register 38-30,
40.0 "Power-Saving Features"	Register 40-1, updated "command" to "instruction.".Updated 40.2.4 "VBAT Mode"
41.0 "Special Features"	Register 41-5, updated "command" to "instruction.".
	Register 41-9, bit 7, updated notes and added table.
44.0 "Electrical	Updated 44.1 "DC Characteristics"
Characteristics"	Updated Table 44-4 and Table 44-5.
	Table 44-18, Added parameter D306.
	Table 44-56, updated values for parameters DDR10, DDR19, DDR22, and DDR23.

Revision E (May 2017)

This revision includes the following major changes, which are referenced by their respective chapter in Table A-4.

TABLE A-4: MAJOR SECTION UPDATES

Section Name	Update Description
32-bit Graphics Applications MCUs (up to 2 MB Live Update Flash, 640 KB SRAM, and 32 MB DDR2 SDRAM) with XLP Technology	Table 6, updated the value of pin 168 from "CVREFOUT/AN5/RPB10/RB10" to "AN5/RPB10/RB10"
25.0 "Parallel Master Port (PMP)"	Table 25-1, updated Virtual Address column heading from BF80 to BF82. Updated virtual addresses from 70xx to E0xx.
36.0 "Graphics LCD (GLCD) Controller"	Updated resolutions in Key features list.
39.0 "Secure Digital Host Controller (SDHC)"	Added "eMMC Standard: JESD84-A441" to features list.
44.0 "Electrical Characteristics"	Table 44-7, Table 44-8, Table 44-9, Table 44-10, Table 44-11, Table 44-16, Table 44-18 updated various DC Characteristics parameters. Table 44-27, Table 44-28, Table 44-29 updated various AC Characteristics parameters.
Appendix A: "Revision History"	Revision C intro - corrected initial occurrence of VDDR1V8 TO VDD1V8.

INDEX

A	
AC Characteristics	. 735
ADC Specifications	. 761
Analog-to-Digital Conversion Requirements	. 762
DDR2 SDRAM Timing Requirements	
EBI Timing Requirements729, 734, 772	
EJTAG Timing Requirements	
Ethernet	
Internal BFRC Accuracy	
Internal FRC Accuracy	
Internal RC Accuracy	
OTG Electrical Specifications Parallel Master Port Read Requirements	
Parallel Master Port Write	
Parallel Master Port Write Requirements	
Parallel Slave Port Requirements	
PLL Clock Timing	
Assembler	
MPASM Assembler	. 714
n	
В	
Block Diagrams	
Comparator I/O Operating Modes	
Comparator Voltage Reference	
CPU	
Crypto Engine	605
CTMU Configurations Time Measurement	F77
DMA Ethernet Controller	
Graphics LCD (GLCD) Controller	
High/Low-Voltage Detect (HLVD)	
Input Capture	
Inter-Integrated Circuit (I2C)	
Interrupt Controller	
JTAG Programming, Debugging and Trace Ports	
Output Compare Module	
PIC32 CAN Module	
PMP Pinout and Connections to External Devices	. 377
Prefetch Module	. 173
Prefetch Module Block Diagram	
Random Number Generator (RNG)	
Reset System	
RTCC	
Serial Quad Interface (SQI)	
SPI Module	
Timer1	
Timer2/3/4/5 (16-Bit) Typical Multiplexed Port Structure	
UART	
WDT and Power-up Timer	
Brown-out Reset (BOR)	
and On-Chip Voltage Regulator	.710
С	
C Compilers	
MPLAB C18	. 714
Charge Time Measurement Unit. See CTMU.	
Comparator	
Specifications	
Comparator Module	
Comparator Voltage Reference (CVref	
Configuration Bit	. 683

Configuring Analog Port Pins	252
Controller Area Network (CAN)	
CP0 Register 16, Select 1)	52
CP0 Register 16, Select 2)	54
CP0 Register 16, Select 3)	53
CPU	
Architecture Overview	47
Coprocessor 0 Registers	48
Core Exception Types	124
EJTAG Debug Support	
Power Management	50
CPU Module	9, 45
Crypto	
Buffer Descriptors	
Format of SA_CTRL	418
Security Association Structure	
Crypto Engine	605
Customer Change Notification Service	
Customer Notification Service	805
Customer Support	805
D	
_	
DC Characteristics	
I/O Pin Input Specifications	
I/O Pin Output Specifications	
Idle Current (IIDLE)	
Power-Down Current (IPD)	
Program Memory	
Temperature and Voltage Specifications	
Development Support	
Direct Memory Access (DMA) Controller	177
E	
–	
Electrical Characteristics	
AC	735
ACHigh/Low-Voltage Detect	735 720
ACHigh/Low-Voltage DetectErrata	735 720 15
ACHigh/Low-Voltage DetectErrataEthernet Controller	735 720 15 521
ACHigh/Low-Voltage DetectErrataEthernet ControllerETHPMM0 (Ethernet Controller Pattern Match Mask 0)	735 720 15 521 531
ACHigh/Low-Voltage Detect	735 720 15 521 531 531
ACHigh/Low-Voltage Detect	735 720 15 521 531 531
AC	735 720 15 521 531 531 391
AC	735 720 15 521 531 531 391
AC	735 720 15 521 531 531 391 744 745
AC	735 720 15 521 531 531 391 744 745
AC	735 720 15 521 531 531 391 744 745
AC	735 720 15 521 531 531 391 744 745 736
AC	735 720 15 521 531 531 391 744 745 736 115 105
AC	735 720 15 521 531 531 391 744 745 736 115 105
AC	735 720 15 521 531 531 391 744 745 736 115 105
AC	735720 7200 15521 5311 5311 391 744 745736 115 105 583
AC	735720 7200 15521 5311 5311 391 744 745736 115 105 583 117 201
AC	735 720 15 521 531 531 391 744 745 736 115 105 583 117 201
AC	735 720 15 521 531 531 391 744 745 736 115 105 583 117 201 251 252 252
AC	735 720 15 521 531 531 391 744 745 736 115 105 583 117 201 251 252 252 711

nternet Address	805	System Bus Target 0	72
nterrupt Controller		System Bus Target 1	89, 90, 91
IRG, Vector and Bit Location	126	System Bus Target 10	
М		System Bus Target 11	
		System Bus Target 12	
Memory Maps	50	System Bus Target 13	
Devices with 2048 KB Program Memory		System Bus Target 2	
Memory Organization		System Bus Target 3	
Layout		System Bus Target 4	
Microchip Internet Web Site		System Bus Target 5	
MPLAB ASM30 Assembler, Linker, Librarian		System Bus Target 6	
MPLAB Integrated Development Environment So		System Bus Target 7	
MPLAB PM3 Device Programmer		System Bus Target 8	
MPLAB REAL ICE In-Circuit Emulator System		System Bus Target 9	
MPLINK Object Linker/MPLIB Object Librarian	714	System Control	
0		Timer1-Timer9	
Sscillator Configuration	157	UART1-5	
Output Compare		USB	203, 209
Julput Compare	293	Registers	
P		[pin name]R (Peripheral Pin Select I	
Packaging	785	AD1CON1 (A/D Control 1)	
Details		AD1CON1 (ADC Control 1)	
Marking		ADCANCON (ADC Analog Warm-up	Control Register).
Parallel Master Port (PMP)		479	470
Pinout I/O Descriptions (table) . 18, 19, 20, 21, 24		ADCBASE (ADC Base)	
28, 29, 30, 31, 32, 33, 34, 36, 38	, 20, 20, 27,	ADCCMP1CON (ADC Digital Cor	
Power-on Reset (POR)		Register)	
and On-Chip Voltage Regulator	710	ADCCMPENx (ADC Digital Company	-
Power-Saving Features		ister ('x' = 1 through 6))	
with CPU Running		ADCCMPx (ADC Digital Comparator	•
Prefetch Module		ister ('x' = 1 through 6))	
Total Module		ADCCMPxCON (ADC Digital Com	
R		Register ('x' = 1 through 6))	
Random Number Generator (RNG)	421	ADCCON1 (ADC Control Register 1	•
Real-Time Clock and Calendar (RTCC)		ADCCON2 (ADC Control Register 2	
Register		ADCCON3 (ADC Control Register 3	
GLCDLxBADDR (Graphics LCD Controll	er Laver 'x'	ADCCSS1 (ADC Common Scan Sel	- ,
Base Address)	•	ADCCSS2 (ADC Common Scan Sel	
Register Map		ADCDATAx (ADC Output Data Regi	
Comparator	566	44))	
Comparator Voltage Reference		ADCDSTATA (ADC Data Ready Sta	- '
Device ADC Calibration Summary		ADCDSTAT2 (ADC Data Ready Sta	
Device Configuration Word Summary		ADCEIEN1 (ADC Early Interrupt End	•
Device Serial Number Summary	•	ADCEIEN2 (ADC Early Interrupt Eng	
DMA Channel 0-3		ADCEISTAT2 (ADC Early Interrupt S	status Register 2)
DMA CRC		478	Deminton (by) - (
DMA Global		ADCFLTRx (ADC Digital Filter 'x'	
EBI	392	through 6))	
Flash Controller1		ADCGIRQEN1 (ADC Interrupt Enab	,
I2C1 Through I2C5		ADCIMCON1 (ADC Input Mode Con	,
Input Capture 1-9		ADCIMCON2 (ADC Input Mode Con	• ,
Interrupt		ADCIMCON3 (ADC Input Mode Con	,
Oscillator Configuration		ADCIRQEN2 (ADC Interrupt Enable	•
Output Compare1-9		ADCSYSCFG1 (ADC System Config	juration Register 1)
Parallel Master Port		482	
Peripheral Pin Select Input		ADCSYSCFG2 (ADC System Config	juration Register 2)
Peripheral Pin Select Output		482	
PORTA		ADCTRG1 (ADC Trigger Source 1 F	- '
PORTB		ADCTRG2 (ADC Trigger Source 2 F	• ,
PORTH		ADCTRG3 (ADC Trigger Source 3 F	• ,
PORTK		ADCTRGMODE (ADC Triggering M	
Prefetch	•	ADC)	
RTCC		ADCTRGSNS (ADC Trigger Level/E	
SPI1 through SPI6		ADCxCFG (ADCx Configuration R	•
System Bus		through 6))	48′
Cyclein Duc			

through 4))475
ALRMDATE (Alarm Date Value)322
ALRMDATECLR (ALRMDATE Clear)322
ALRMDATESET (ALRMDATE Set)322
ALRMTIME (Alarm Time Value)
ALRMTIMECLR (ALRMTIME Clear)322
ALRMTIMEINV (ALRMTIME Invert)
ALRMTIMESET (ALRMTIME Set)322
CFGCON (Configuration Control Register)700
CFGCON2 (Configuration Control Register 2)706
CFGMPLL (Memory PLL Configuration)707
CHECON (Cache Control)
CM1CON (Comparator 1 Control)
CMSTAT (Comparator Control Register)
CNCONx (Change Notice Control for PORTx)278
CONFIG (CP0 Register 16, Select 0)51
CONFIG1 (CONFIG1 Register 52
CONFIG2
(CONFIG2 Register 54
CONFIG2 (CONFIG2 Register54
CONFIG3 (CONFIG3 Register53
CTMUCON (CTMU Control)579
CVRCON (Comparator Voltage Reference Control). 571
DCHxCON (DMA Channel x Control)
DCHxCPTR (DMA Channel x Cell Pointer)
DCHxCSIZ (DMA Channel x Cell-Size)
DCHxDAT (DMA Channel x Pattern Data)
DCHxDPTR (Channel x Destination Pointer)197
DCHxDSA (DMA Channel x Destination
Start Address)195
DCHxDSIZ (DMA Channel x Destination Size)196
DCHxECON (DMA Channel x Event Control) 192
DCHxINT (DMA Channel x Interrupt Control) 193
DCHxSPTR (DMA Channel x Source Pointer) 197
DCHxSSA (DMA Channel x Source Start Address) . 195
DCHxSSIZ (DMA Channel x Source Size)196
DCHxSSIZ (DMA Channel x Source Size)
DCHxSSIZ (DMA Channel x Source Size) 196 DCRCCON (DMA CRC Control) 187 DCRCDATA (DMA CRC Data) 189
DCHxSSIZ (DMA Channel x Source Size) 196 DCRCCON (DMA CRC Control) 187 DCRCDATA (DMA CRC Data) 189 DCRCXOR (DMA CRCXOR Enable) 189
DCHxSSIZ (DMA Channel x Source Size) 196 DCRCCON (DMA CRC Control) 187 DCRCDATA (DMA CRC Data) 189 DCRCXOR (DMA CRCXOR Enable) 189 Description 644, 661
DCHxSSIZ (DMA Channel x Source Size) 196 DCRCCON (DMA CRC Control) 187 DCRCDATA (DMA CRC Data) 189 DCRCXOR (DMA CRCXOR Enable) 189 Description 644, 661 DEVCFG0/ADEVCFG0 (Device Configuration Word 0)
DCHxSSIZ (DMA Channel x Source Size) 196 DCRCCON (DMA CRC Control) 187 DCRCDATA (DMA CRC Data) 189 DCRCXOR (DMA CRCXOR Enable) 189 Description 644, 661 DEVCFG0/ADEVCFG0 (Device Configuration Word 0) 689
DCHxSSIZ (DMA Channel x Source Size) 196 DCRCCON (DMA CRC Control) 187 DCRCDATA (DMA CRC Data) 189 DCRCXOR (DMA CRCXOR Enable) 189 Description 644, 661 DEVCFG0/ADEVCFG0 (Device Configuration Word 0) 689 DEVCFG1 (Device Configuration Word 1 691
DCHxSSIZ (DMA Channel x Source Size) 196 DCRCCON (DMA CRC Control) 187 DCRCDATA (DMA CRC Data) 189 DCRCXOR (DMA CRCXOR Enable) 189 Description 644, 661 DEVCFG0/ADEVCFG0 (Device Configuration Word 0) 689 DEVCFG1 (Device Configuration Word 1 691 DEVCFG2 (Device Configuration Word 2 694
DCHxSSIZ (DMA Channel x Source Size) 196 DCRCCON (DMA CRC Control) 187 DCRCDATA (DMA CRC Data) 189 DCRCXOR (DMA CRCXOR Enable) 189 Description 644, 661 DEVCFG0/ADEVCFG0 (Device Configuration Word 0) 689 DEVCFG1 (Device Configuration Word 1 691 DEVCFG2 (Device Configuration Word 2 694 DEVCFG3 (Device Configuration Word 3 697, 698
DCHxSSIZ (DMA Channel x Source Size) 196 DCRCCON (DMA CRC Control) 187 DCRCDATA (DMA CRC Data) 189 DCRCXOR (DMA CRCXOR Enable) 189 Description 644, 661 DEVCFG0/ADEVCFG0 (Device Configuration Word 0) 689 DEVCFG1 (Device Configuration Word 1 691 DEVCFG2 (Device Configuration Word 2 694 DEVCFG3 (Device Configuration Word 3 697, 698 DEVID (Device and Revision ID) 62, 688, 709
DCHxSSIZ (DMA Channel x Source Size) 196 DCRCCON (DMA CRC Control) 187 DCRCDATA (DMA CRC Data) 189 DCRCXOR (DMA CRCXOR Enable) 189 Description 644, 661 DEVCFG0/ADEVCFG0 (Device Configuration Word 0) 689 DEVCFG1 (Device Configuration Word 1 691 DEVCFG2 (Device Configuration Word 2 694 DEVCFG3 (Device Configuration Word 3 697, 698 DEVID (Device and Revision ID) 62, 688, 709 DMAADDR (DMA Address) 186
DCHxSSIZ (DMA Channel x Source Size) 196 DCRCCON (DMA CRC Control) 187 DCRCDATA (DMA CRC Data) 189 DCRCXOR (DMA CRCXOR Enable) 189 Description 644, 661 DEVCFG0/ADEVCFG0 (Device Configuration Word 0) 689 DEVCFG1 (Device Configuration Word 1 691 DEVCFG2 (Device Configuration Word 2 694 DEVCFG3 (Device Configuration Word 3 697, 698 DEVID (Device and Revision ID) 62, 688, 709
DCHxSSIZ (DMA Channel x Source Size) 196 DCRCCON (DMA CRC Control) 187 DCRCDATA (DMA CRC Data) 189 DCRCXOR (DMA CRCXOR Enable) 189 Description 644, 661 DEVCFG0/ADEVCFG0 (Device Configuration Word 0) 689 DEVCFG1 (Device Configuration Word 1 691 DEVCFG2 (Device Configuration Word 2 694 DEVCFG3 (Device Configuration Word 3 697, 698 DEVID (Device and Revision ID) 62, 688, 709 DMAADDR (DMA Address) 186 DMAADDR (DMR Address) 186
DCHxSSIZ (DMA Channel x Source Size) 196 DCRCCON (DMA CRC Control) 187 DCRCDATA (DMA CRC Data) 189 DCRCXOR (DMA CRCXOR Enable) 189 Description 644, 661 DEVCFG0/ADEVCFG0 (Device Configuration Word 0) 689 DEVCFG1 (Device Configuration Word 1 691 DEVCFG2 (Device Configuration Word 2 694 DEVCFG3 (Device Configuration Word 3 697, 698 DEVID (Device and Revision ID) 62, 688, 709 DMAADDR (DMA Address) 186 DMACON (DMA Controller Control) 185
DCHxSSIZ (DMA Channel x Source Size) 196 DCRCCON (DMA CRC Control) 187 DCRCDATA (DMA CRC Data) 189 DCRCXOR (DMA CRCXOR Enable) 189 Description 644, 661 DEVCFG0/ADEVCFG0 (Device Configuration Word 0) 689 DEVCFG1 (Device Configuration Word 1 691 DEVCFG2 (Device Configuration Word 2 694 DEVCFG3 (Device Configuration Word 3 697, 698 DEVID (Device and Revision ID) 62, 688, 709 DMAADDR (DMA Address) 186 DMACON (DMA Controller Control) 185 DMASTAT (DMA Status) 186
DCHxSSIZ (DMA Channel x Source Size) 196 DCRCCON (DMA CRC Control) 187 DCRCDATA (DMA CRC Data) 189 DCRCXOR (DMA CRCXOR Enable) 189 Description 644, 661 DEVCFG0/ADEVCFG0 (Device Configuration Word 0) 689 DEVCFG1 (Device Configuration Word 1 691 DEVCFG2 (Device Configuration Word 2 694 DEVCFG3 (Device Configuration Word 3 697, 698 DEVID (Device and Revision ID) 62, 688, 709 DMAADDR (DMA Address) 186 DMACON (DMA Controller Control) 185 DMASTAT (DMA Status) 186 DMSTAT (Deadman Timer Status) 303
DCHxSSIZ (DMA Channel x Source Size) 196 DCRCCON (DMA CRC Control) 187 DCRCDATA (DMA CRC Data) 189 DCRCXOR (DMA CRCXOR Enable) 189 Description 644, 661 DEVCFG0/ADEVCFG0 (Device Configuration Word 0) 689 DEVCFG1 (Device Configuration Word 1 691 DEVCFG2 (Device Configuration Word 2 694 DEVCFG3 (Device Configuration Word 3 697, 698 DEVID (Device and Revision ID) 62, 688, 709 DMAADDR (DMA Address) 186 DMACON (DMA Controller Control) 185 DMASTAT (DMA Status) 186 DMSTAT (Deadman Timer Status) 303 DMTCLR (Deadman Timer Clear) 302
DCHxSSIZ (DMA Channel x Source Size) 196 DCRCCON (DMA CRC Control) 187 DCRCDATA (DMA CRC Data) 189 DCRCXOR (DMA CRCXOR Enable) 189 Description 644, 661 DEVCFG0/ADEVCFG0 (Device Configuration Word 0) 689 DEVCFG1 (Device Configuration Word 1 691 DEVCFG2 (Device Configuration Word 2 694 DEVCFG3 (Device Configuration Word 3 697, 698 DEVID (Device and Revision ID) 62, 688, 709 DMAADDR (DMA Address) 186 DMACON (DMA Controller Control) 185 DMASTAT (DMA Status) 186 DMSTAT (Deadman Timer Status) 303 DMTCLR (Deadman Timer Clear) 302 DMTCNT (Deadman Timer Count) 304
DCHxSSIZ (DMA Channel x Source Size) 196 DCRCCON (DMA CRC Control) 187 DCRCDATA (DMA CRC Data) 189 DCRCXOR (DMA CRCXOR Enable) 189 Description 644, 661 DEVCFG0/ADEVCFG0 (Device Configuration Word 0) 689 DEVCFG1 (Device Configuration Word 1 691 DEVCFG2 (Device Configuration Word 2 694 DEVCFG3 (Device Configuration Word 3 697, 698 DEVID (Device and Revision ID) 62, 688, 709 DMAADDR (DMA Address) 186 DMACON (DMA Controller Control) 185 DMASTAT (DMA Status) 186 DMSTAT (Deadman Timer Status) 303 DMTCLR (Deadman Timer Clear) 302 DMTCNT (Deadman Timer Count) 304 DMTCON (Deadman Timer Control) 301
DCHxSSIZ (DMA Channel x Source Size) 196 DCRCCON (DMA CRC Control) 187 DCRCDATA (DMA CRC Data) 189 DCRCXOR (DMA CRCXOR Enable) 189 Description 644, 661 DEVCFG0/ADEVCFG0 (Device Configuration Word 0) 689 DEVCFG1 (Device Configuration Word 1 691 DEVCFG2 (Device Configuration Word 2 694 DEVCFG3 (Device Configuration Word 3 697, 698 DEVID (Device and Revision ID) 62, 688, 709 DMAADDR (DMA Address) 186 DMACON (DMA Controller Control) 185 DMASTAT (Deadman Timer Status) 303 DMTCLR (Deadman Timer Clear) 302 DMTCNT (Deadman Timer Count) 304 DMTCON (Deadman Timer Control) 301 DMTPRECLR (Deadman Timer Preclear) 301
DCHxSSIZ (DMA Channel x Source Size) 196 DCRCCON (DMA CRC Control) 187 DCRCDATA (DMA CRC Data) 189 DCRCXOR (DMA CRCXOR Enable) 189 Description 644, 661 DEVCFG0/ADEVCFG0 (Device Configuration Word 0) 689 DEVCFG1 (Device Configuration Word 1 691 DEVCFG2 (Device Configuration Word 2 694 DEVCFG3 (Device Configuration Word 3 697, 698 DEVID (Device and Revision ID) 62, 688, 709 DMAADDR (DMA Address) 186 DMACON (DMA Controller Control) 185 DMASTAT (DMA Status) 186 DMSTAT (Deadman Timer Status) 303 DMTCLR (Deadman Timer Clear) 302 DMTCNT (Deadman Timer Count) 304 DMTCON (Deadman Timer Control) 301 DMTPRECLR (Deadman Timer Preclear) 301 EBICSx (External Bus Interface Chip Select) 393, 396,
DCHxSSIZ (DMA Channel x Source Size) 196 DCRCCON (DMA CRC Control) 187 DCRCDATA (DMA CRC Data) 189 DCRCXOR (DMA CRCXOR Enable) 189 Description 644, 661 DEVCFG0/ADEVCFG0 (Device Configuration Word 0) 689 DEVCFG1 (Device Configuration Word 1 691 DEVCFG2 (Device Configuration Word 2 694 DEVCFG3 (Device Configuration Word 3 697, 698 DEVID (Device and Revision ID) 62, 688, 709 DMAADDR (DMA Address) 186 DMACON (DMA Controller Control) 185 DMASTAT (Deadman Timer Status) 303 DMTCLR (Deadman Timer Clear) 302 DMTCNT (Deadman Timer Count) 304 DMTCON (Deadman Timer Control) 301 DMTPRECLR (Deadman Timer Preclear) 301 EBICSx (External Bus Interface Chip Select) 393, 396, 702, 703
DCHxSSIZ (DMA Channel x Source Size) 196 DCRCCON (DMA CRC Control) 187 DCRCDATA (DMA CRC Data) 189 DCRCXOR (DMA CRCXOR Enable) 189 Description 644, 661 DEVCFG0/ADEVCFG0 (Device Configuration Word 0) 689 DEVCFG1 (Device Configuration Word 1 691 DEVCFG2 (Device Configuration Word 2 694 DEVCFG3 (Device Configuration Word 3 697, 698 DEVID (Device and Revision ID) 62, 688, 709 DMAADDR (DMA Address) 186 DMACON (DMA Controller Control) 185 DMASTAT (Deadman Timer Status) 303 DMTCLR (Deadman Timer Clear) 302 DMTCNT (Deadman Timer Count) 304 DMTCON (Deadman Timer Control) 301 DMTPRECLR (Deadman Timer Preclear) 301 EBICSx (External Bus Interface Chip Select) 393, 396, 702, 703 EBIMSKx (External Bus Interface Address Mask) 394
DCHxSSIZ (DMA Channel x Source Size) 196 DCRCCON (DMA CRC Control) 187 DCRCDATA (DMA CRC Data) 189 DCRCXOR (DMA CRCXOR Enable) 189 Description 644, 661 DEVCFG0/ADEVCFG0 (Device Configuration Word 0) 689 DEVCFG1 (Device Configuration Word 1 691 DEVCFG2 (Device Configuration Word 2 694 DEVCFG3 (Device Configuration Word 3 697, 698 DEVID (Device and Revision ID) 62, 688, 709 DMAADDR (DMA Address) 186 DMACON (DMA Controller Control) 185 DMASTAT (Deadman Timer Status) 303 DMTCLR (Deadman Timer Clear) 302 DMTCNT (Deadman Timer Count) 304 DMTCON (Deadman Timer Control) 301 DMTPRECLR (Deadman Timer Preclear) 301 EBICSx (External Bus Interface Chip Select) 393, 396, 702, 703 EBIMSKX (External Bus Interface Static Memory Con-
DCHxSSIZ (DMA Channel x Source Size) 196 DCRCCON (DMA CRC Control) 187 DCRCDATA (DMA CRC Data) 189 DCRCXOR (DMA CRCXOR Enable) 189 Description 644, 661 DEVCFG0/ADEVCFG0 (Device Configuration Word 0) 689 DEVCFG1 (Device Configuration Word 1 691 DEVCFG2 (Device Configuration Word 2 694 DEVCFG3 (Device Configuration Word 3 697, 698 DEVID (Device and Revision ID) 62, 688, 709 DMAADDR (DMA Address) 186 DMAADDR (DMA Address) 186 DMACON (DMA Controller Control) 185 DMASTAT (Deadman Timer Status) 303 DMTCLR (Deadman Timer Clear) 302 DMTCNT (Deadman Timer Count) 304 DMTCON (Deadman Timer Control) 301 DMTPRECLR (Deadman Timer Control) 301 DMTPRECLR (Deadman Timer Control) 301 EBICSx (External Bus Interface Chip Select) 393, 396, 702, 703 EBISMCON (External Bus Interface Static Memory Control) 397
DCHxSSIZ (DMA Channel x Source Size) 196 DCRCCON (DMA CRC Control) 187 DCRCDATA (DMA CRC Data) 189 DCRCXOR (DMA CRCXOR Enable) 189 Description 644, 661 DEVCFG0/ADEVCFG0 (Device Configuration Word 0) 689 DEVCFG1 (Device Configuration Word 1 691 DEVCFG2 (Device Configuration Word 2 694 DEVCFG3 (Device Configuration Word 3 697, 698 DEVID (Device and Revision ID) 62, 688, 709 DMAADDR (DMA Address) 186 DMACON (DMA Controller Control) 185 DMASTAT (Deadman Timer Status) 303 DMTCLR (Deadman Timer Clear) 302 DMTCNT (Deadman Timer Count) 304 DMTCON (Deadman Timer Control) 301 DMTPRECLR (Deadman Timer Preclear) 301 EBICSx (External Bus Interface Chip Select) 393, 396, 702, 703 EBIMSKX (External Bus Interface Static Memory Con-
DCHxSSIZ (DMA Channel x Source Size) 196 DCRCCON (DMA CRC Control) 187 DCRCDATA (DMA CRC Data) 189 DCRCXOR (DMA CRCXOR Enable) 189 Description 644, 661 DEVCFG0/ADEVCFG0 (Device Configuration Word 0) 689 DEVCFG1 (Device Configuration Word 1 691 DEVCFG2 (Device Configuration Word 2 694 DEVCFG3 (Device Configuration Word 3 697, 698 DEVID (Device and Revision ID) 62, 688, 709 DMAADDR (DMA Address) 186 DMAADDR (DMA Address) 186 DMACON (DMA Controller Control) 185 DMASTAT (Deadman Timer Status) 303 DMTCLR (Deadman Timer Clear) 302 DMTCNT (Deadman Timer Count) 304 DMTCON (Deadman Timer Control) 301 DMTPRECLR (Deadman Timer Control) 301 DMTPRECLR (Deadman Timer Control) 301 EBICSx (External Bus Interface Chip Select) 393, 396, 702, 703 EBISMCON (External Bus Interface Static Memory Control) 397
DCHxSSIZ (DMA Channel x Source Size) 196 DCRCCON (DMA CRC Control) 187 DCRCDATA (DMA CRC Data) 189 DCRCXOR (DMA CRCXOR Enable) 189 Description 644, 661 DEVCFG0/ADEVCFG0 (Device Configuration Word 0) 689 DEVCFG1 (Device Configuration Word 1 691 DEVCFG2 (Device Configuration Word 2 694 DEVCFG3 (Device Configuration Word 3 697, 698 DEVID (Device and Revision ID) 62, 688, 709 DMAADDR (DMA Address) 186 DMACON (DMA Controller Control) 185 DMACON (DMA Status) 186 DMSTAT (Deadman Timer Status) 303 DMTCLR (Deadman Timer Clear) 302 DMTCNT (Deadman Timer Control) 304 DMTCON (Deadman Timer Control) 301 DMTPRECLR (Deadman Timer Preclear) 301 EBICSx (External Bus Interface Chip Select) 393, 396, 702, 703 EBISMCON (External Bus Interface Static Memory Control) 397 EBISMTx (External Bus Interface Static Memory Timing)

F40
549 EMAC1CLRT (Ethernet Controller MAC Collision Win-
dow/Retry Limit)
EMAC1IPGR (Ethernet Controller MAC Non-Back-to-
Back Interpacket Gap)552
EMAC1IPGT (Ethernet Controller MAC Back-to-Back In-
terpacket Gap)551
EMAC1MADR (Ethernet Controller MAC MII Manage-
ment Address)
EMAC1MAXF (Ethernet Controller MAC Maximum
Frame Length)
ment Configuration)557
EMAC1MCMD (Ethernet Controller MAC MII Manage-
ment Command)558
EMAC1MIND (Ethernet Controller MAC MII Manage-
ment Indicators)561
EMAC1MRDD (Ethernet Controller MAC MII Manage-
ment Read Data)
EMAC1MWTD (Ethernet Controller MAC MII Manage-
ment Write Data) 560 EMAC1SA0 (Ethernet Controller MAC Station Address
0)562
EMAC1SA1 (Ethernet Controller MAC Station Address
1) 563
EMAC1SA2 (Ethernet Controller MAC Station Address
2) 564
EMAC1SUPP (Ethernet Controller MAC PHY Support).
555
EMAC1TEST (Ethernet Controller MAC Test) 556
ETHALGNERR (Ethernet Controller Alignment Errors Statistics)
ETHCON1 (Ethernet Controller Control 1)
ETHCON2 (Ethernet Controller Control 2)
ETHFCSERR (Ethernet Controller Frame Check Se-
quence Error Statistics) 546
quence Error Statistics)

GLCDBLANKING (Graphics LCD Controller Blanking)
591 GLCDBPORCH (Graphics LCD Controller Back Porch). 592
GLCDCLKCON (Graphics LCD Controller Clock Control) 589
GLCDCURSOR (Graphics LCD Controller Cursor) 592
GLCDFPORCH (Graphics LCD Controller Front Porch).
591
GLCDINT (Graphics LCD Controller Cursor Data) 601
GLCDINT (Graphics LCD Controller Cursor LUT) 602
GLCDINT (Graphics LCD Controller Interrupt)598
GLCDLxMODE (Graphics LCD Controller Layer 'x'
Mode)
GLCDLxSIZE (Graphics LCD Controller Layer 'x' Size) .
595
GLCDLxSTART (Graphics LCD Controller Layer 'x' Start)
GLCDLxSTRIDE (Graphics LCD Controller Layer 'x'
Stride)
GLCDRES (Graphics LCD Controller Resolution) 590
GLCDSTAT (Graphics LCD Controller Status) 599
GLDCMODE (Graphics LCD Controller Mode)587
I2CxCON (I2C Control)
I2CxSTAT (I2C Status)
ICxCON (Input Capture x Control)
IFSx (Interrupt Flag Status)
INTCON (Interrupt Control)149
INTSTAT (Interrupt Status)
IPCx (Interrupt Priority Control)
IPTMR Interrupt Proximity Timer)152
NVMADDR (Flash Address)
NVMBWP (Flash Boot (Page) Write-protect)
NVMCON (Programming Control Register)
NVMCON2 (Programming Control Register 2)
NVMDATA (Flash Data)110
NVMKEY (Programming Unlock)109
NVMPWP (Program Flash Write-Protect)111
NVMSRCADDR (Source Data Address)110
OCxCON (Output Compare x Control)297
OSCCON (Oscillator Control)
OSCTUN (FRC Tuning)165
PMADDR (Parallel Port Address)
PMAEN (Parallel Port Pin Enable)386
PMCON (Parallel Port Control)
PMDIN (Parallel Port Input Data)385, 390
PMDOUT (Parallel Port Output Data)
PMMODE (Parallel Port Mode)381
PMRADDR (Parallel Port Read Address)
PMSTAT (Parallel Port Status (Slave Modes Only) 387
PMWADDR (Parallel Port Write Address)388
PRECON (Prefetch Module Control)175
PRISS (Priority Shadow Select)150
PSCNT (Post Status Configure DMT Count Status) 304
PSINTV (Post Status Configure DMT Interval Status)
305
REFOxCON (Reference Oscillator Control ('x' = 1-4))
168
REFOxTRIM (Reference Oscillator Trim ('x' = 1-4)) . 169
RPnR (Peripheral Pin Select Output)277
RSWRST (Software Reset) 119, 120, 122
RTCCON (RTCC Control)315

RTCTIME (RTC Time Value)319
RIGINIE (RIGINIE value)
SBFLAG (System Bus Status Flag) 93, 94, 95, 96
SBTxECLRM (System Bus Target 'x' Multiple Error Clear
SETALCERINI (System bus ranger & Muniple Entir Clear
100
SBTxECLRS (System Bus Target 'x' Single Error Single)
100
OPT-FOON (Ocatava Por Tanastici Face Ocatavi)
SBTxECON (System Bus Target 'x' Error Control) 99
SBTxELOG1 (System Bus Target 'x' Error Log 1) 97
SBTxELOG2 (System Bus Target 'x' Error Log 2) 99
SBTxRDy (System Bus Target 'x' Region 'y' Read Per-
missions) 102
SBTxREGy (System Bus Target 'x' Region 'y') 101
SBTxWRy (System Bus Target 'x' Region 'y' Write Per-
missions) 103
SPIxCON (SPI Control)
SPIxCON2 (SPI Control 2)
SPIxSTAT (SPI Status)
SPLLCON (System PLL Control)
SQI1XCON1 (SQI XIP Control 1)
SQI1XCON2 (SQI XIP Control Register 2)
T1CON (Type A Timer Control)
TxCON (Type B Timer Control)287
U1STAT (USB Status) 610, 611, 612, 613, 614, 615,
616, 617, 618, 619, 620, 621, 622, 623, 624, 625,
626, 627, 628, 629, 630, 631, 632, 635, 636, 637,
639
USBCRCON (USB Clock/Reset Control) 249
USBCSR0 (USB Control Status 0)
210
USBCSR1 (USB Control Status 1)212
USBCSR2 (USB Control Status 2)
USBCSR3 (USB Control Status 3) 215
USBDMAINT (USB DMA Interrupt) 240
USBDMAxA (USB DMA Channel 'x' Memory Address).
242
242
242 USBDMAxC (USB DMA Channel 'x' Control)241
242 USBDMAxC (USB DMA Channel 'x' Control)
242 USBDMAxC (USB DMA Channel 'x' Control)
242 USBDMAXC (USB DMA Channel 'x' Control)
242 USBDMAXC (USB DMA Channel 'x' Control)
242 USBDMAXC (USB DMA Channel 'x' Control)
242 USBDMAXC (USB DMA Channel 'x' Control)
242 USBDMAXC (USB DMA Channel 'x' Control)
242 USBDMAXC (USB DMA Channel 'x' Control)
242 USBDMAXC (USB DMA Channel 'x' Control)
USBDMAXC (USB DMA Channel 'x' Control)
USBDMAXC (USB DMA Channel 'x' Control)
USBDMAXC (USB DMA Channel 'x' Control)
USBDMAXC (USB DMA Channel 'x' Control)
USBDMAXC (USB DMA Channel 'x' Control)
USBDMAXC (USB DMA Channel 'x' Control)
USBDMAXC (USB DMA Channel 'x' Control)
USBDMAXC (USB DMA Channel 'x' Control)
USBDMAXC (USB DMA Channel 'x' Control)
USBDMAXC (USB DMA Channel 'x' Control)
USBDMAXC (USB DMA Channel 'x' Control)
USBDMAXC (USB DMA Channel 'x' Control)
USBDMAXC (USB DMA Channel 'x' Control)
USBDMAXC (USB DMA Channel 'x' Control)
USBDMAXC (USB DMA Channel 'x' Control)
USBDMAXC (USB DMA Channel 'x' Control)
USBDMAXC (USB DMA Channel 'x' Control)
242 USBDMAXC (USB DMA Channel 'x' Control)
USBDMAXC (USB DMA Channel 'x' Control)
USBDMAXC (USB DMA Channel 'x' Control)
242 USBDMAXC (USB DMA Channel 'x' Control)
USBDMAXC (USB DMA Channel 'x' Control)
USBDMAXC (USB DMA Channel 'x' Control)
USBDMAXC (USB DMA Channel 'x' Control)
USBDMAXC (USB DMA Channel 'x' Control)
USBDMAXC (USB DMA Channel 'x' Control)
USBDMAXC (USB DMA Channel 'x' Control)
USBDMAXC (USB DMA Channel 'x' Control)
USBDMAXC (USB DMA Channel 'x' Control)
USBDMAXC (USB DMA Channel 'x' Control)
USBDMAXC (USB DMA Channel 'x' Control)
USBDMAXC (USB DMA Channel 'x' Control)
USBDMAXC (USB DMA Channel 'x' Control)
USBDMAXC (USB DMA Channel 'x' Control)

USBTMCON2 (USB Timing Control 2)	
WDTCON (Watchdog Timer Control)309,	
Revision History	
RTCALRM (RTC ALARM Control)	317
S	
Serial Peripheral Interface (SPI)	323
Serial Quad Interface (SQI)	333
Software Simulator (MPLAB SIM)	715
Special Features	
т	
Timer1 Module	279
Timer2/3, Timer4/5, Timer6/7, and Timer8/9 Modules	
Timing Diagrams	
CAN I/O	760
EJTAG	775
External Clock	736
I/O Characteristics	740
I2Cx Bus Data (Master Mode)	756
I2Cx Bus Data (Slave Mode)	758
I2Cx Bus Start/Stop Bits (Master Mode)	756
I2Cx Bus Start/Stop Bits (Slave Mode)	
Input Capture (CAPx)	745
OCx/PWM	746
Output Compare (OCx)	746
Parallel Master Port Read	766
Parallel Master Port Write	767
Parallel Slave Port	765
SPIx Master Mode (CKE = 0)	747
SPIx Master Mode (CKE = 1)	749

SPIx Slave Mode (CKE = 0)	751
SPIx Slave Mode (CKE = 1)	752
Timer1, 2, 3, 4, 5 External Clock	744
UART Reception	
UART Transmission (8-bit or 9-bit Data)	376
Timing Requirements	
CLKO and I/O	740
Timing Specifications	
CAN I/O Requirements	760
I2Cx Bus Data Requirements (Master Mode)	756
I2Cx Bus Data Requirements (Slave Mode)	758
Input Capture Requirements	
Output Compare Requirements	746
Simple OCx/PWM Mode Requirements	
SPIx Master Mode (CKE = 0) Requirements	
SPIx Master Mode (CKE = 1) Requirements	
SPIx Slave Mode (CKE = 1) Requirements	
SPIx Slave Mode Requirements (CKE = 0)	751
U	
UART	369
USB Interface Diagram	202
V	
Voltage Regulator (On-Chip)	710
W	
Watchdog Timer and Power-up Timer SFR Summary WWW Address	805
WWW, On-Line Support	15

	•	, ,		
NOTES:				

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- · Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Example:

PIC32MZ0512DAA176-I/2J: Graphics MCU Family, PIC32, MIPS32[®] microAptiv™ MPU core, 512 KB program memory, 176-pin, Industrial temperature, LQFP package.

Flash Memory Family

Architecture = MIPS32[®] microAptiv™ MPU Core

Flash Memory Size = 1024 KB 20 = 2048 KB

RAM Size = 256 KB = 640 KB

Family DA = Graphics MCU Family

= PIC32 DA Family Features, no Crypto, no DDR memory = PIC32 DA Family Features, with Crypto, no DDR memory = PIC32 DA Family Features, no Crypto, with DDR memory = PIC32 DA Family Features, with Crypto, with DDR memory Key Feature

= 169-pin = 176-pin = 288-pin Pin Count

I = -40°C to +85°C (Industrial) Temperature Range

= 169-Lead (11x11x1.4 mm) LFBGA (Low Profile Fine Pitch Ball Grid Array) = 169-Lead (11x11x1.56 mm) LFBGA (Low Profile Fine Pitch Ball Grid Array) = 176-Lead (22x22x1.4 mm) LQFP (Low Profile Quad Flat Pack) = 288-Lead (15x15x1.4 mm) LFBGA (Low Profile Fine Pitch Ball Grid Array) Package

Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) Pattern

ES = Engineering Sample

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
 knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
 Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2015-2017, Microchip Technology Incorporated, All Rights Reserved.

ISBN:978-1-5224-1745-3

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd.

Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614

Fax: 678-957-1455 Austin, TX

Tel: 512-257-3370

BostonWestborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071

Fax: 630-285-0075 **Dallas** Addison, TX Tel: 972-818-7423

Fax: 972-818-2924 **Detroit** Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-3326-8000 Fax: 86-21-3326-8021

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

France - Saint Cloud Tel: 33-1-30-60-70-00

Germany - Garching Tel: 49-8931-9700 Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286 Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561 Poland - Warsaw

Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40 Sweden - Stockholm

Tel: 46-8-5090-4654 **UK - Wokingham**Tel: 44-118-921-5800
Fax: 44-118-921-5820

11/07/16