N

MICROCHIP

PIC32M X
Family Reference Manual

11111111

Note the following details of the code protection feature on Microchip devices:

. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicity or otherwise, under any Microchip
intellectual property rights.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

=—150/TS 16949:2002 —

Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, rfPIC and SmartShunt are registered trademarks
of Microchip Technology Incorporated in the U.S.A. and other
countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB,
SEEVAL, SmartSensor and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerlInfo,
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total
Endurance, UNI/O, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2008, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

Q Printed on recycled paper.

Microchip received 1ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company'’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMSs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS61132B-page ii

© 2008 Microchip Technology Inc.

MICROCHIP

Section 1. Introduction

=1
—
-
@)
Q.
c
O
=
o
>

HIGHLIGHTS

This section of the manual contains the following topics:

00 R [1o o [o3 1o) o [TSSO TPPRPRN 1-2
1.2 Objective of ThiS MANUAIcocuviiiiii e 1-2
G T B LoV o IS 1 U T (D (= PP 1-2
1.4 DeVElOPMENT SUPPOITevieiiieeeitiee ettt en et et e et e s e e nneeeas 1-4
1.5 Style and Symbol CONVENLIONSceeiiiiiieiiii e 1-4
1.6 Related DOCUMENLSccveieiiiie ettt ettt et ssbe e e st e e e e st e e e sbneeesnbeeasneneennes 1-6
A = oAV] (o) I 1) (o] YRR PR 1-7

© 2008 Microchip Technology Inc. Prelimin ary DS61127C-page 1-1

PIC32MX Family Reference Manual

11 INTRODUCTION

Microchip’s PIC32MX series of 32-bit microcontrollers is designed to fulfill customers’ require-
ments for enhanced features and performance for their MCU-based applications.

Common attributes among all devices in the PIC32MX series are:

* Pin, peripheral and source code compatibility with the PIC24F128GAXXX family
« MIPS32® M4K™ processor core

» Common development tools

1.2 OBJECTIVE OF THIS MANUAL

This manual describes the PIC32MX series of 32-bit microcontrollers. It explains the family archi-
tecture and operation of the peripheral modules, but does not cover the specifics of each device
in the family. Users should refer to the respective device’s data sheet for device-specific details,
such as:

» Pinout and packaging details

« Memory map

« List of peripherals included on the device, including multiple instances of peripherals

» Device-specific electrical specifications and characteristics

1.3 DEVICE STRUCTURE

The PIC32MX architecture has been broken down into the following functional blocks:
* MCU Core

¢ System Memory

» System Integration

 Peripherals

1.3.1 MCU Core

The MCU core consists of these essential basic features.

 32-bit RISC MIPS32 M4K Core

« Single Cycle ALU

 Load-Store Execution Unit

» 5-Stage Pipeline

» 32-bit Address and 32-bit Data Buses

« Two 32-element, 32-bit General Purpose Register Files

* FMT — Fixed Mapping Translation Memory Management

* FMDU - Fast-Multiply-Divide Unit

« MIPS32® Compatible Instruction Set

« MIPS16e™ Code Compression Instruction Set Architecture Support

The CPU section of this manual discusses the PIC32MX MCU core.

1.3.2 System Memory

The system memory provides on-chip nonvolatile Flash memory and volatile SRAM memory,
featuring user and protected kernel-segment-partitioning for real-time operating systems. The
following sections of this manual discuss the PIC32MX system memory:

» Section 3. Memory Organization

» Section 5. Flash Programming

DS61127C-page 1-2 Prelimin ary © 2008 Microchip Technology Inc.

Section 1. Introduction

Flash Memory Technology

1.3.3 System Integration

=

The Flash can be used for program memory or data.

The Flash allows program memory to be electrically erased or programmed under software
control during normal device operation.

The PIC32MX series has full-speed execution directly from program Flash through the use
of on-chip prefetch buffering by the Prefetch module.

The Flash has the capability to page erase, word or row program.

=1
—
=
o
Q.
c
O
=
o
>

System integration consists of a comprehensive set of modules and features that tie the MCU
core and peripheral modules into a single operational unit. System integration features also
provide these advantages:

Decreased system cost, by bringing traditionally off-chip functions into the microcontroller
Increased design flexibility, by adding a wider range of operating modes
Increased system reliability, by enhancing the ability to recover from unexpected events

The following sections of this manual discuss the PIC32MX system integration:

Section 3. Memory Organization

Section 4. Prefetch Module

Section 5. Flash Programming

Section 6. Oscillator

Section 7. Resets

Section 8. Interrupts

Section 9. Watchdog Timer and Power-up Timer
Section 10. Power-Saving Modes

Section 31. Direct Memory Access (DMA) Controller with programmable Cyclic
Redundancy Check (CRC)

Section 32. High-Level Integration (Configuration, Code Protection and Voltage Regulation)
Section 33. Device Programming, Debugging, In-Circuit and In-Circuit Testing

1.34 Peripherals

The PIC32MX devices have many peripherals that allow it to interface with the external world.
The following sections of this manual discuss the PIC32MX peripherals:

Section 12. 1/0O Ports

Section 13. Parallel Master Port

Section 14. Timers

Section 15. Input Capture Module

Section 16. Output Compare/Pulse Width Modulation (PWM) Module
Section 17. 10-bit A/D Converter

Section 19. Comparator Module

Section 20. Comparator Voltage Reference Module
Section 21. UART Module

Section 23. SPI Module

Section 24. I2C™ Module

Section 27. USB OTG

Section 29. Real-Time Clock/Calendar (RTCC) Module

© 2008 Microchip Technology Inc. Prelimin ary DS61127C-page 1-3

PIC32MX Family Reference Manual

1.4 DEVELOPMENT SUPPORT

Microchip offers a wide range of development tools that allow users to efficiently develop and
debug application code. Microchip’s development tools can be broken down into four categories:
» Code generation

« Hardware/software debug

» Device programmer

» Product evaluation boards

As new tools are developed, the latest product briefs and user guides can be obtained from the
Microchip web site (www.microchip.com) or from local Microchip Sales Offices.

Microchip offers other references and support to speed the development cycle. These include:
» Application notes

» Reference designs

* Microchip web site

* Local sales offices with field application support
» Corporate Applications support line

« Getting Stated guide

» “How to” brochures

» Masters Conferences

* Webinars

« Design Centers

These can all be found on the Microchip web site. Also, the Microchip web site lists other sites
that may provide useful references.

15 STYLE AND SYMBOL CONVENTIONS

Throughout this document, certain style, format, and font conventions are used to signal partic-
ular distinctions for the affected text. Table 1-1 lists these conventions, the MCU-industry-specific
symbols, and non-conventional word definitions and abbreviations used in this manual.

Located at the rear of this document, a glossary provides additional word and abbreviation
definitions for content used in this manual.

DS61127C-page 1-4

Prelimin ary © 2008 Microchip Technology Inc.

Section 1. Introduction

151 Document Conventions

Table 1-1 defines some of the symbols, terms and typographic conventions used in this manual.

Table 1-1: Document Conventions

SYMBOL AND TERM CONVENTIONS:

Convention |Description

set To force a bit/register to a value of logic ‘1'.

clear To force a bit/register to a value of logic ‘0’.

reset 1. To force a register/bit to its default state.
2. A condition in which the device places itself after a device Reset occurs. Some bits will be

forced to ‘0’ (such as interrupt enable bits), while others will be forced to ‘1’ (such as the I/O
data direction bits).

: (colon) Specifies a range or concatenation of registers/bits/pins. Concatenation order (left to right) usually
specifies a positional relationship (MSb to LSb, higher to lower).
For example, TMR3:TMR2 indicates the concatenation of two 16-bit registers to form a 32-bit timer
value, with the value of TMR3 representing the most significant half-word of the value.

<> Specifies a bit location or range of locations within a particular register or field of similarly-named bits.
For example, PTCON<2:0> specifies the range of the 3 Least Significant bits of the register PTCON.

MSb Most Significant bit and Least Significant bit.

LSb

MSB, LSB Most Significant Byte, Least Significant Byte. (A Byte is 8-bits wide.)

mshw, Ishw Most Significant half-word and least significant half-word
A Half-Word is 16-bits wide

msw, Isw Most Significant Word and Least Significant Word. (A Word is 32-bits wide.)

0xnn Designates the number ‘nn’ in the hexadecimal number system. This convention is used in code

examples, and is equivalent to the notation ‘nnh’ used in text.
For example, 0x13 is equivalent to 13h.

FONT CONVENT

IONS:

Arial Font The standard font used for all text, figures and tables within this manual. Other fonts, as described
below, are used to set off mathematical and logical expressions, or device instruction code, from
descriptive text.

Couri er Within text, this font is used for contrast with the standard text font and specifically denote the

New Font following:

1. aninstruction set mnemonic or assembler code fragment.

2. the binary value of a bit, range of bits, or a register.

3. thelogical state of a digital signal.

Within code examples, this font is used exclusively to denote an assembly or high-level language
instruction sequence.

Times New The standard font for mathematical expressions and variables.

Roman Font

GRAPHIC CONVI

ENTIONS!

Note

A note presents information that requires emphasis: either to help users avoid a common pitfall, or to
make them aware of operating differences between some device family members. A note is usually
in a shaded box, unless it is used in a bit description, or as a table or diagram footnote.

Note:

This is a Note in a shaded note box. ‘

Register Cells

A bit name that appears in a grayed-out cell of a register signals that the bit is not relevant
to the peripheral module described in that particular section of the manual. FRZ

© 2008 Microchip

Technology Inc. Prelimi nary DS61127C-page 1-5

=

=1
—
=
o
Q.
c
O
=
o
>

PIC32MX Family Reference Manual

15.2 Electrical Specifications

Throughout this manual, there are references to electrical specifications and their parameter
numbers. Table 1-2 shows the parameter numbering convention for PIC32MX devices. A
parameter number represents a unique set of characteristics and conditions that is consistent
between every data sheet, though the actual parameter value may vary from device to device.

This manual describes a family of devices and, therefore, does not specify the parameter values.
To determine the parameter values for a specific device, users should refer to the “Electrical
Specifications” section of that device’s data sheet.

Table 1-2: Electrical Specification Parameter Numbering Convention
Parameter Number Format Comment
DXXX DC Specification
AXXX DC Specification for Analog Peripherals
XXX Timing (AC) Specification
PDXXX Device Programming DC Specification
PXXX Device Programming Timing (AC) Specification

Legend: XXX represents a parameter number.

1.6 RELATED DOCUMENTS

Microchip, as well as other sources, offers additional documentation to aid you as you develop
PIC32MX-based applications. The list below contains the most common documentation,
but other documents may also be available. Please check the Microchip web site
(www.microchip.com) for the latest published technical documentation.

1.6.1 Microchip Documentation

The following PIC32MX documentation is available from Microchip. Many of these documents
provide application-specific information that gives actual examples of using, programming, and
designing with PIC32MX microcontrollers.

1. PIC32MX Family Reference Manual
The family reference manual describes the PIC32MX architecture and operation of the
peripheral modules, but does not cover the specifics of each device in the family.

2. PIC32MX Data Sheets
The data sheets contain device-specific information, such as pinout and packaging
details, electrical specifications and memory maps.

3. PIC32MX Programming Specification
The programming specifications contain detailed descriptions of, and electrical and timing
specifications for, the programming process. Both In-Circuit Serial Programming™
(ICSP™) and Enhanced ICSP are described in detail.

1.6.2 Third-Party Documentation

Microchip does not review third-party documentation for technical accuracy, but these references
may be helpful to understand operation of the devices. The Microchip web site may have
information on these third-party documents.

DS61127C-page 1-6 Prelimin ary © 2008 Microchip Technology Inc.

Section 1. Introduction

=

1.7 REVISION HISTORY
Revision A (September 2007)
This is the initial version of this document.
Revision B (October 2007)

Updated document to remove Confidential status.

Revision C (April 2008)

Revised status to Preliminary; Revised Section 1.1.

=1
—
-
@)
Q.
c
O
=
o
>

© 2008 Microchip Technology Inc. Prelimin ary DS61127C-page 1-7

PIC32MX Family Reference Manual

NOTES:

DS61127C-page 1-8 Prelimin ary © 2008 Microchip Technology Inc.

MICROCHIP

Section 2. MCU

HIGHLIGHTS

This section of the manual contains the following topics:

21
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
211
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19

[0 o 18 {od 1o] o PP PP OPPPRP 2-2
ATChItECIUIE OVEIVIEW ..ottt ettt e et e e e e et e e e e s satb e e e e e s etaaaaee s 2-3
PIC32MX CPU DELAlSciciiiciiiiiie ettt e e s etaaaae e 2-6
Special Considerations when Writing to CPO RegiSterscooccvvvrieeeiiie e 2-11
Architecture Release 2 Details

SPIECPU DUS ..o

INtErNAl SYSEM DUSSEScciiiiiiiii ettt e et e e s s e e e e s b e e e e e e s aaes

Set/Clear/Invert

ALU Status Bits

Interrupt and EXception MEChaniSMccovviiiiiiieiiiieee e 2-14
Programming MOGE!ccoiiiiiiii e 2-15
CPO REQISLEIS .ottt e et e et e e e 2-22
MIPSL1EE™ EXECULION ..eceuveiiiiiieeittieesiteie st e s sitee e eiee e sttt e e ante e e sateeesebeeeentneesnneeesnnee s 2-58
MEMOTY MOEL......eiiiiiiiiiie e e e e e et e e e e e st e e e e s eatbaeaeeeaaaes 2-58
CPU Instructions, Grouped By FUNCHON..........cccciiiiiiiiiiii e 2-60
CPU INItTALIZALION ...ttt e et e e e e e e e e e s enneeeeee s

EffECtS Of @ RESEL ...coiiiii e e eeeee e
Related Application Notes
Revision History

© 2008 Microchip Technology Inc.

Preliminary DS61113C-page 2-1

PIC32MX Family Reference Manual

2.1 INTRODUCTION

The PIC32MX Microcontroller Unit (MCU) is a complex system-on-a-chip that is based on a
M4K™ core from MIPS® Technologies. M4K™ s a state-of-the-art 32-bit, low-power, RISC
processor core with the enhanced MIPS32® Release 2 Instruction Set Architecture. This chapter
provides an overview of the CPU features and system architecture of the PIC32MX family of
microcontrollers.

Key Features

Up to 1.5 DMIPS/MHz of performance

Programmable prefetch cache memory to enhance execution from Flash memory
16-bit Instruction mode (MIPS16e) for compact code

Vectored interrupt controller with 63 priority levels

Programmable User and Kernel modes of operation

Atomic bit manipulations on peripheral registers (Single cycle)

Multiply-Divide unit with a maximum issue rate of one 32 x 16 multiply per clock

High speed Microchip ICD port with hardware-based non-intrusive data monitoring and
application data streaming functions

EJTAG debug port allows extensive third party debug, programming and test tools support
Instruction controlled power management modes

Five stage piplined instruction execution

Internal Code protection to help protect intellectual property

Related MIPS® Documentation

MIPS M4K™ Software User’s Manual — MD00249-2B-M4K-SUM

MIPS® Instruction Set — MD00086-2B-MIPS32BIS-AFP

MIPS16e™ — MD00076-2B-MIPS1632-AFP

MIPS32® Privileged Resource Architecture — MD00090-2B-MIPS32PRA-AFP

DS61113C-page 2-2

Prelimin ary © 2008 Microchip Technology Inc.

Section 2. MCU

2.2 ARCHITECTURE OVERVIEW

The PIC32MX family processors are complex systems-on-a-chip that contain many
features. Included in all processors of the PIC32MX family is a high-performance RISC CPU,
which can be programmed in 32-bit and 16-bit modes, and even mixed modes. The PIC32MX
MCU contains a high-performance interrupt controller, DMA controller, USB controller, in-circuit
debugger, high performance switching matrix for high-speed data accesses to the peripherals,
on-chip data RAM memory that holds data and programs. The unique prefetch cache and
prefetch buffer for the Flash memory, which hides the latency of the Flash, gives zero Wait state
equivalent performance.

Figure 2-1: PIC32MX MCU Block Diagram

Priority Interrupt
JTAG/BSCAN Controller LDO VREG
A A
Y \A Y Y Y
EJTAG | INT
PIC32MX CPU USB DMAC ICD > PORTS
s | bDs
Y A J \i A4 | \
Bus Matrix
\i Y A
Prefetch Cache Data RAM Peripheral Bridge
ﬁlZS-bit
» RTCC
- PMP/PSP |
q" -
S = Timers
5
Flash Memory @) »| Input Capture
- ADC -
8 _ | PWM/Output
L - *| Compare

» Dual Compare

™ SSP/SPI
Clock Control/ .
Generation Reset Generation > 2c™
» UART

© 2008 Microchip Technology Inc. Preliminary DS61113C-page 2-3

PIC32MX Family Reference Manual

There are two internal buses in the chip to connect all the peripherals. The main peripheral bus
connects most of the peripheral units to the bus matrix through a peripheral bridge. There is also
a high-speed peripheral bridge that connects the interrupt controller DMA controller, in-circuit
debugger, and USB peripherals. The heart of the PIC32MX MCU is the M4K CPU core. The CPU
performs operations under program control. Instructions are fetched by the CPU, decoded and
executed synchronously. Instructions exist in either the Program Flash memory or Data RAM
memory.

The PIC32MX CPU is based on a load/store architecture and performs most operations on a set

of internal registers. Specific load and store instructions are used to move data between these
internal registers and the outside world.

Figure 2-2: M4K™ Processor Core Block Diagram
Off-Chip
EJTAG Trace I/F
MDU Trace |« .
TAP |l —» Off-Chip
A Debug I/F
Execution " o>
Core - emory .58
(RF/ALU/Shift) MMU Interface Dual Memory” | 2 é
I/F
A t
\d
System
Coprocessor FMT Power
Mgmt
22.1 Busses

There are two separate busses on the PIC32MX MCU. One bus is responsible for the fetching
of instructions to the CPU, and the other is the data path for load and store instructions. Both the
instruction, or I-side bus, and the data, or D-side bus, are connected to the bus matrix unit. The
bus matrix is a switch that allows multiple accesses to occur concurrently in a system. The bus
matrix allows simultaneous accesses between different bus masters that are not attempting
accesses to the same target. The bus matrix serializes accesses between different masters to
the same target through an arbitration algorithm.

Since the CPU has two different data paths to the bus matrix, the CPU is effectively two different
bus masters to the system. When running from Flash memory, load and store operations to
SRAM and the internal peripherals will occur in parallel to instruction fetches from Flash memory.

In addition to the CPU, there are three other bus masters in the PIC32MX MCU — the DMA
controller, In-Circuit-Debugger Unit, and the USB controller.

DS61113C-page 2-4

Prelimin ary © 2008 Microchip Technology Inc.

Section 2. MCU

2.2.2 Introduction to the Programming Model

The PIC32MX processor has the following features:

» 5-stage pipeline

» 32-bit Address and Data Paths

» DSP-like Multiply-add and multiply-subtract instructions (MADD, MADDU, MSUB, MSUBU)
» Targeted multiply instruction (MJL)

» Zero and One detect instructions (CLZ, CLO)

* Wait instruction (WAl T)

» Conditional move instructions (MOVZ, MOVN)

* Implements MIPS32 Enhanced Architecture (Release 2)

» Vectored interrupts

» Programmable exception vector base

» Atomic interrupt enable/disable

« General Purpose Register (GPR) shadow sets

« Bit field manipulation instructions

* MIPS16e Application Specific Extension improves code density

» Special PC-relative instructions for efficient loading of addresses and constants
 Data type conversion instructions (ZEB, SEB, ZEH, SEH)

e Compact jumps (JRC, JALRC)

» Stack frame set-up and tear down “macro” instructions (SAVE and RESTORE)

* Memory Management Unit with simple Fixed Mapping Translation (FMT)

» Processor to/from Coprocessor register data transfers

 Direct memory to/from Coprocessor register data transfers
 Performance-optimized Multiply-Divide Unit (High-performance build-time option)
* Maximum issue rate of one 32 x 16 multiply per clock

* Maximum issue rate of one 32 x 32 multiply every other clock

« Early-in divide control — 11 to 34 clock latency

» Low-Power mode (triggered by WAI T instruction)

» Software breakpoints via the SDBBP instruction

2.2.3 Core Timer

The PIC32MX architecture includes a core timer that is available to application programs. This
timer is implemented in the form of two co-processor registers—the Count register
(CPO_COUNT), and the Compare register (CP0_COMPARE). The Count register is incremented
every two system clock (SYSCLK) cycles. The incrementing of Count can be optionally sus-
pended during Debug mode. The Compare register is used to cause a timer interrupt if desired.
An interrupt is generated when the Compare register matches the Count register. An interrupt is
taken only if it is enabled in the interrupt controller.

For more information on the core timer, see Section 2.12. “CP0 Registers” and Section 8.
“Interrupts.”

© 2008 Microchip Technology Inc. Preliminary DS61113C-page 2-5

PIC32MX Family Reference Manual

2.3 PIC32MX CPU DETAILS

2.3.1 Pipeline Stages

The pipeline consists of five stages:
« Instruction (I) Stage

« Execution (E) Stage

* Memory (M) Stage

« Align (A) Stage

» Writeback (W) Stage

2311 | Stage — Instruction Fetch

During | stage:
* An instruction is fetched from the instruction SRAM.
* MIPS16e instructions are converted into MIPS32-like instructions.

23.12 E Stage — Execution

During E stage:

» Operands are fetched from the register file.
« Operands from the M and A stage are bypassed to this stage.

» The Arithmetic Logic Unit (ALU) begins the arithmetic or logical operation for regis-
ter-to-register instructions.

* The ALU calculates the data virtual address for load and store instructions and the MMU
performs the fixed virtual-to-physical address translation.

* The ALU determines whether the branch condition is true and calculates the virtual branch
target address for branch instructions.

« Instruction logic selects an instruction address and the MMU performs the fixed
virtual-to-physical address translation.

« All multiply divide operations begin in this stage.
23.13 M Stage — Memory Fetch

During M stage:
» The arithmetic or logic ALU operation completes.
« The data SRAM access is performed for load and store instructions.

* A 16 x 16 or 32 x 16 MUL operation completes in the array and stalls for one clock in the M
stage to complete the carry-propagate-add in the M stage.

« A 32 x 32 MUL operation stalls for two clocks in the M stage to complete the second cycle
of the array and the carry-propagate-add in the M stage.

» Multiply and divide calculations proceed in the MDU. If the calculation completes before the
IU moves the instruction past the M stage, then the MDU holds the result in a temporary
register until the IlU moves the instructions to the A stage (and it is consequently known that
it won't be killed).

23.14 A Stage — Align

During A stage:

» A separate aligner aligns loaded data with its word boundary.

« A MUL operation makes the result available for writeback. The actual register writeback is
performed in the W stage.

» From this stage, load data or a result from the MDU are available in the E stage for
bypassing.

DS61113C-page 2-6

Prelimin ary © 2008 Microchip Technology Inc.

Section 2. MCU

2.3.15 W Stage — Writeback

During W stage:
For register-to-register or load instructions, the result is written back to the register file.

A M4K core implements a “Bypass” mechanism that allows the result of an operation to be sent
directly to the instruction that needs it without having to write the result to the register and then
read it back.

Figure 2-3: Simplified PIC32MX CPU Pipeline

| Stage ! E Stage ! M Stage ! A Stage I W Stage
I I I I
| A to E Bypass | | |
| M to E Bypass | | |
I
Reg File
1 — L 1 -
»|Rs Addr >
T
Rs Read >
Instruction j ALU ALU
— Rt Addr 1 >
MStage
— E Stage
Rd Write > e
T Rt Read =j \ L T L

| \ | | |
I \ \ I I I

Yy

Bypass Load Data, HI/LO Data
Multiplexers or CPO Data

The results of using instruction pipelining in the PIC32MX core is a fast, single-cycle instruction
execution environment.

Figure 2-4: Single-Cycle Execution Throughput

I I I I I I I I
One One One One One One One One One
Cycle | Cycle | Cycle | Cycle | Cycle | Cycle | Cycle | Cycle | Cycle
I I I I I I I I

L T e[m | a [w]| | | |
I I I I I I I
I I
I E M A W | |
| L’W |
| I E M A W |
oy
| | | E M A w
I I N
I I I i
| | | | E M A wo |
| | |

© 2008 Microchip Technology Inc. Preliminary DS61113C-page 2-7

PIC32MX Family Reference Manual

2.3.2 Execution Unit

The PIC32MX Execution Unit is responsible for carrying out the processing of most of the instruc-
tions of the MIPS instruction set. The Execution Unit provides single-cycle throughput for most
instructions by means of pipelined execution. Pipelined execution, sometimes referred to as
“pipelining”, is where complex operations are broken into smaller pieces called stages. Operation
stages are executed over multiple clock cycles.

The Execution Unit contains the following features:

» 32-bit adder used for calculating the data address

» Address unit for calculating the next instruction address

« Logic for branch determination and branch target address calculation
« Load aligner

» Bypass multiplexers used to avoid stalls when executing instructions streams where data
producing instructions are followed closely by consumers of their results

» Leading Zero/One detect unit for implementing the CLZ and CLOinstructions
* Arithmetic Logic Unit (ALU) for performing bitwise logical operations
 Shifter and Store Aligner

2.3.3 MDU

The Multiply/Divide unit performs multiply and divide operations. The MDU consists of a 32 x 16
multiplier, result-accumulation registers (HI and LO), multiply and divide state machines, and all
multiplexers and control logic required to perform these functions. The high-performance, pipe-
lined MDU supports execution of a 16 x 16 or 32 x 16 multiply operation every clock cycle;
32 x 32 multiply operations can be issued every other clock cycle. Appropriate interlocks are
implemented to stall the issue of back-to-back 32 x 32 multiply operations. Divide operations are
implemented with a simple 1 bit per clock iterative algorithm and require 35 clock cycles in worst
case to complete. Early-in to the algorithm detects sign extension of the dividend, if it is actual
size is 24, 16 or 8 bit. the divider will skip 7, 15, or 23 of the 32 iterations. An attempt to issue a
subsequent MDU instruction while a divide is still active causes a pipeline stall until the divide
operation is completed.

The M4K implements an additional multiply instruction, MJL, which specifies that lower 32-bits of
the multiply result be placed in the register file instead of the HI/LO register pair. By avoiding the
explicit move from LO (MFLO) instruction, required when using the LO register, and by supporting
multiple destination registers, the throughput of multiply-intensive operations is increased. Two
instructions, multiply-add (MADD/ MADDU) and multiply-subtract (MSUB/MSUBU), are used to per-
form the multiply-add and multiply-subtract operations. The MADD instruction multiplies two num-
bers and then adds the product to the current contents of the HI and LO registers. Similarly, the
MSUB instruction multiplies two operands and then subtracts the product from the Hl and LO reg-
isters. The MADD/MADDU and MSUB/MSUBU operations are commonly used in Digital Signal Pro-
cessor (DSP) algorithms.

234 Shadow Register Sets

The PIC32MX processor implements a copy of the General Purpose Registers (GPR) for use by
high-priority interrupts. This extra bank of registers is known as a shadow register set. When a
high-priority interrupt occurs the processor automatically switches to the shadow register set
without software intervention. This reduces overhead in the interrupt handler and reduces effec-
tive latency.

The shadow register set is controlled by registers located in the System Coprocessor (CP0) as
well as the interrupt controller hardware located outside of the CPU core.

For more information on shadow register sets, see the XREF Interrupt chapter.

DS61113C-page 2-8

Prelimin ary © 2008 Microchip Technology Inc.

Section 2. MCU

2.3.5 Pipeline Interlock Handling

Smooth pipeline flow is interrupted when an instruction in a pipeline stage can not advance due
to a data dependency or a similar external condition. Pipeline interruptions are handled entirely
in hardware. These dependencies, are referred to as interlocks. At each cycle, interlock condi-
tions are checked for all active instructions. An instruction that depends on the result of a previ-
ous instruction is an example of an interlock condition.

In general, MIPS processors support two types of hardware interlocks:

» Stalls
Stalls are resolved by halting the entire pipeline. All instructions currently executing in each
pipeline stage are affected by a stall.

 Slips
Slips allow one part of the pipeline to advance while another part of the pipeline is held
static.

In the PIC32MX processor core, all interlocks are handled as slips. These slips are minimized by

grabbing results from other pipeline stages by using a method called register bypassing, which
is described below.

Note: To illustrate the concept of a pipeline slip, the following example is what would
happen if the PIC32MX core did not implement register bypassing.

As shown in Figure 2-5, the sub instruction has a source operand dependency on register r3 with
the previous add instruction. The sub instruction slips by two clocks waiting until the result of the
add is written back to register r3. This slipping does not occur on the PIC32MX family of
processors.

Figure 2-5: Pipeline Slip (If Bypassing Was Not Implemented)

One One One One One One One One

Cycle | Cycle | Cycle 1 Cycle | Cycle | Cycle | Cycle | Cycle
I I I I I I I
Addr3,r2,rl
o | E M A w I I
@emery B M LA LA
I I I I I I I
I I I I I I I
Subr4, r3, r7 | [| EsLip | EsLip | E | M | A | w |
(r4=r8=rn | | | | | | |
I I I I I I I
| | | I I I I

© 2008 Microchip Technology Inc. Preliminary DS61113C-page 2-9

PIC32MX Family Reference Manual

2.3.6 Register Bypassing

As mentioned previously, the PIC32MX processor implements a mechanism called register
bypassing that helps reduce pipeline slips during execution. When an instruction is in the E stage
of the pipeline, the operands must be available for that instruction to continue. If an instruction
has a source operand that is computed from another instruction in the execution pipeline, register
bypassing allows a shortcut to get the source operands directly from the pipeline. An instruction
in the E stage can retrieve a source operand from another instruction that is executing in either
the M stage or the A stage of the pipeline. As seen in Figure 2-6, a sequence of three instructions
with interdependencies does not slip at all during execution. This example uses both A to E, and
M to E register bypassing. Figure 2-7 shows the operation of a load instruction utilizing A to E
bypassing. Since the result of load instructions are not available until the A pipeline stage, M to
E bypassing is not needed.

The performance benefit of register bypassing is that instruction throughput is increased to the
rate of one instruction per clock for ALU operations, even in the presence of register dependen-
cies.

Figure 2-6: IU Pipeline M to E Bypass

One One One One One One
Cycle ' Cycle ' Cycle ' Cycle ' Cycle ' Cycle

— | E M A w
M to E Bypass) Ato E Bypass

I | | | I
Sy e[| [[A [w]

| Mto E Bypaslsz& | |

Addq
r3=r2+rl

I
Adds -, | E M A]
r5=r3+r4 I
I | I | I
| | | | |
Figure 2-7: IU Pipeline A to E Data Bypass
One One One One One One
Cycle ! Cycle !' Cycle ' Cycle ! Cycle ! Cycle
I | I | I
Load Instruction —>I | E M A W

Consumer of Load Data Instruction > |

) Data Bypass from Ato E

—»IIIEI/MIAIWI

m
<
>

I One Clock ! | I |
Load Delay

DS61113C-page 2-10

Prelimin ary © 2008 Microchip Technology Inc.

Section 2. MCU

2.4 SPECIAL CONSIDERATIONS WHEN WRITING TO CPO REGISTERS

In general, the PIC32MX core ensures that instructions are executed following a fully sequential
program model. Each instruction in the program sees the results of the previous instruction.
There are some deviations to this model. These deviations are referred to as hazards.

In privileged software, there are two different types of hazards:

» Execution Hazards
 Instruction Hazards

2.4.0.1 Execution Hazards

Execution hazards are those created by the execution of one instruction, and seen by the
execution of another instruction. Table 2-1 lists execution hazards.

Table 2-1: Execution Hazards
Producer = Consumer Hazard On Spac”.‘g
(Instructions)
_ Coprocessor instruction execution depends
MTCO ~ onthe new value of Statuscy Statuscy 1
EPC
MTCO = ERET DEPC 1
ErrorEPC
MTCO = ERET Status 0
MTCO, EI, DI = Interrupted Instruction Status,g 1
MTCO = Interrupted Instruction Causep 3
_ RDPGPR
MTCO = WRPGPR SRSCtlpgg 1
— ; ; ; Compare update that clears
MTCO = Instruction not seeing a Timer Interrupt Timer Interrupt 4
MTCO = Instruction affected by change Any other CPO register 2
2.4.0.2 Instruction Hazards
Instruction hazards are those created by the execution of one instruction, and seen by the
instruction fetch of another instruction. Table 2-2 lists instruction hazards.
Table 2-2: Instruction Hazards
Producer = Consumer Hazard On
Instruction fetch seeing the new value (including a
MTCO = change to ERL followed by an instruction fetch from Status

the useg segment)

© 2008 Microchip Technology Inc. Preliminary DS61113C-page 2-11

PIC32MX Family Reference Manual

2.5 ARCHITECTURE RELEASE 2 DETAILS

The PIC32MX CPU utilizes Release 2 of the MIPS 32-bit architecture. The PIC32MX CPU imple-
ments the following Release 2 features:
» Vectored interrupts using and external-to-core interrupt controller
Provide the ability to vector interrupts directly to a handler for that interrupt.
» Programmable exception vector base

Allows the base address of the exception vectors to be moved for exceptions that occur
when Statusggy is ‘0’. This allows any system to place the exception vectors in memory
that is appropriate to the system environment.

« Atomic interrupt enable/disable

Two instructions have been added to atomically enable or disable interrupts, and return the
previous value of the Status register.

» The ability to disable the Count register for highly power-sensitive applications.
* GPR shadow registers

Provides the addition of GPR shadow registers and the ability to bind these registers to a
vectored interrupt or exception.

* Field, Rotate and Shuffle instructions
Add additional capability in processing bit fields in registers.
» Explicit hazard management

Provides a set of instructions to explicitly manage hazards, in place of the cycle-based
SSNOP method of dealing with hazards.

2.6 SPLIT CPU BUS

The PIC32MX CPU core has two distinct busses to help improve system performance over a sin-
gle-bus system. This improvement is achieved through parallelism. Load and store operations
occur at the same time as instruction fetches. The two busses are known as the I-side bus which
is used for feeding instructions into the CPU, and the D-side bus used for data transfers.

The CPU fetches instructions during the | pipeline stage. A fetch is issued to the I-side bus and
is handled by the bus matrix unit. Depending on the address, the BMX will do one of the following:
» Forward the fetch request to the Prefetch Cache Unit

» Forward the fetch request to the DRM unit or

» Cause an exception

Instruction fetches always use the I-side bus independent of the addresses being fetched. The

BMX decides what action to perform for each fetch request based on the address and the values
in the BMX registers. (See BMX chapter).

The D-side bus processes all load and store operations executed by the CPU. When a load or
store instruction is executed the request is routed to the BMX by the D-side bus. This operation
occurs during the M pipeline stage and is routed to one of several targets devices:

« Data Ram

 Prefetch Cache/Flash Memory

« Fast Peripheral Bus (Interrupt controller, DMA, Debug unit, USB, GPIO Ports)

» General Peripheral Bus (UART, SPI, Flash Controller, EPMP/EPSP, TRCC Timers, Input
Capture, PWM/Output Compare, ADC, Dual Compare, IC, Clock SIB, and Reset SIB)

DS61113C-page 2-12

Prelimin ary © 2008 Microchip Technology Inc.

Section 2. MCU

2.7 INTERNAL SYSTEM BUSSES

The PIC32MX processor internal busses connect the peripherals to the bus matrix unit. The bus
matrix routes bus accesses from 5 different initiators to a set of targets utilizing several data paths
throughout the chip to help eliminate performance bottlenecks.

Some of the paths that the bus matrix uses serve a dedicated purpose, while others are shared
between several targets.

The data RAM and Flash memory read paths are dedicated paths, allowing low-latency access
to the memory resources without being delayed by peripheral bus activity. The high-bandwidth
peripherals are placed on a high-speed bus. These include the Interrupt controller, debug unit,
DMA engine, and the USB host/peripheral unit.

Peripherals that do not require high-bandwidth are located on a separate peripheral bus to save
power.

2.8 SET/CLEAR/INVERT

To provide single-cycle bit operations on peripherals, the registers in the peripheral units can be
accessed in three different ways depending on peripheral addresses. Each register has four dif-
ferent addresses. Although the four different addresses appear as different registers, they are
really just four different methods to address the same physical register.

Figure 2-8: Four Addresses for a Single Physical Register

Register Address }<—>{ Peripheral Register

A
i | Clear Bits a
| Register Address + 4 | -~
| Register Address + 8 I Set Bits .
| Invert Bits

Y

Register Address + 12 |

The base register address provides normal Read/Write access, the other three provide special
write-only functions.

1. Normal access

2. Set bit atomic RMW access
3. Clear hit atomic RMW access
4. Invert bit atomic RMW access

Peripheral reads must occur from the base address of each peripheral register. Reading from a
set/clear/invert address has an undefined meaning, and may be different for each peripheral.

Writing to the base address writes an entire value to the peripheral register. All bits are written.
For example, assume a register contains Oxaaaa5555 before a write of 0x000000ff. After the
write, the register will contain 0x000000ff (assuming that all bits are R/W bits).

Writing to the Set address for any peripheral register causes only the bits written as ‘1’s to be set
in the destination register. For example, assume that a register contains Oxaaaa5555 before a
write of 0x000000ff to the set register address. After the write to the Set register address, the
value of the peripheral register will contain Oxaaaa55ff.

Writing to the Clear address for any peripheral register causes only the bits written as ‘1’s to be
cleared to ‘O’s in the destination register. For example, assume that a register contains
Oxaaaa5555 before a write of 0x000000ff to the Clear register address. After the write to the
Clear register address, the value of the peripheral register will contain Oxaaaa5500.

© 2008 Microchip Technology Inc. Preliminary DS61113C-page 2-13

PIC32MX Family Reference Manual

Writing to the Invert address for any peripheral register causes only the bits written as ‘1's to be
inverted, or toggled, in the destination register. For example, assume that a register contains
Oxaaaa5555 before a write of 0x000000ff to the invert register address. After the write to the
Invert register, the value of the peripheral register will contain Oxaaaa55aa.

2.9 ALU STATUS BITS

Unlike most other PIC® microcontrollers, the PIC32MX Processor does not use STATUS register
flags. Condition flags are used on many processors to help perform decision making operations
during program execution. Flags are set based on the results of comparison operations or some
arithmetic operations. Conditional branch instructions on these machines then make decisions
based on the values of the single set of condition codes.

The PIC32MX processor, instead, uses instructions that perform a comparison and stores a flag
or value into a General Purpose Register. A conditional branch is then executed with this general
purpose register used as an operand.

2.10 INTERRUPT AND EXCEPTION MECHANISM

The PIC32MX family of processors implement an efficient and flexible interrupt and exception
handling mechanism. Interrupts and exceptions both behave similarly in that the current instruc-
tion flow is changed temporarily to execute special procedures to handle an interrupt or excep-
tion. The difference between the two is that interrupts are usually a result of normal operation,
and exceptions are a result of error conditions such as bus errors.

When an interrupt or exception occurs, the processor does the following:

1. The PC of the next instruction to execute after the handler returns is saved into a copro-
cessor register.

Cause register is updated to reflect the reason for exception or interrupt

Status EXL or ERL is set to cause Kernel mode execution

Handler PC is calculated from EBASE and SPACING values

5. Processor starts execution from new PC

oD

This is a simplified overview of the interrupt and exception mechanism. See Section
8. “Interrupts” for more information regarding interrupt and exception handling.

DS61113C-page 2-14

Prelimin ary © 2008 Microchip Technology Inc.

Section 2. MCU

2.11 PROGRAMMING MODEL

The PIC32MX family of processors is designed to be used with a high-level language such as
the C programming language. It supports several data types and uses simple but flexible
addressing modes needed for a high-level language. There are 32 General Purpose Registers
and two special registers for multiplying and dividing.

There are three different formats for the machine language instructions on the PIC32MX
processor:

* immediate or I-type CPU instructions
* jump or J-type CPU instructions and
* registered or R-type CPU instructions

Most operations are performed in registers. The register type CPU instructions have three oper-
ands; two source operands and a destination operand.

Having three operands and a large register set allows assembly language programmers and
compilers to use the CPU resources efficiently. This creates faster and smaller programs by
allowing intermediate results to stay in registers rather than constantly moving data to and from
memory.

The immediate format instructions have an immediate operand, a source operand and a desti-
nation operand. The jump instructions have a 26-bit relative instruction offset field that is used to
calculate the jump destination.

2.11.1 CPU Instruction Formats

A CPU instruction is a single 32-bit aligned word. The CPU instruction formats are shown below:

* Immediate (see Figure 2-9)

e Jump (see Figure 2-10)

* Register (see Figure 2-11)

Table 2-3 describes the fields used in these instructions.

Table 2-3: CPU Instruction Format Fields
Field Description
opcode 6-bit primary operation code
rd 5-bit specifier for the destination register
rs 5-bit specifier for the source register
rt 5-bit specifier for the target (source/destination) register or used to specify functions within

the primary opcode REGIMM

immediate 16-bit signed immediate used for logical operands, arithmetic signed operands, load/store
address byte offsets, and PC-relative branch signed instruction displacement

instr_index 26-bit index shifted left two bits to supply the low-order 28 bits of the jump target address
sa 5-bit shift amount
function 6-bit function field used to specify functions within the primary opcode SPECIAL

© 2008 Microchip Technology Inc. Preliminary DS61113C-page 2-15

PIC32MX Family Reference Manual

Figure 2-9: Immediate (I-Type) CPU Instruction Format
31 26 25 21 20 16 15 0
opcode rs rt immediate
6 5 5 16
Figure 2-10: Jump (J-Type) CPU Instruction Format
31 26 25 21 20 16 15 11 10 6 5 0
opcode ‘ instr_index
6 26
Figure 2-11: Register (R-Type) CPU Instruction Format
31 26 25 21 20 16 15 11 10 6 5 0
opcode rs rt rd sa function
6 5 5 5 5 6

2.11.2 CPU Registers

The PIC32MX architecture defines the following CPU registers:

e 32 32-bit General Purpose Registers (GPRs)

2 special purpose registers to hold the results of integer multiply, divide, and multiply-accu-
mulate operations (HI and LO)

* a special purpose program counter (PC), which is affected only indirectly by certain instruc-
tions — it is not an architecturally visible register.

2.11.2.1 CPU General Purpose Registers

Two of the CPU General Purpose Registers have assigned functions:
* 10

r0 is hard-wired to a value of ‘0’, and can be used as the target register for any instruction the
result of which will be discarded. rO can also be used as a source when a ‘0’ value is needed.

e 131

r31 is the destination register used by JAL, BLTZAL, BLTZALL, BGEZAL, and BGEZALL, with-
out being explicitly specified in the instruction word. Otherwise r31 is used as a normal register.

The remaining registers are available for general purpose use.

DS61113C-page 2-16

Prelimin ary © 2008 Microchip Technology Inc.

Section 2. MCU

2.11.2.2 Register Conventions

Although most of the registers in the PIC32MX architecture are designated as General Purpose
Registers, there are some recommended uses of the registers for correct software operation with
high-level languages such as the Microchip C compiler.

Table 2-4: Register Conventions
CF_’U Sym_bolic Usage
Register Register
r0 zero Always 0
rl at Assembler Temporary
r2-r3 vO-vl Function Return Values
r4 -7 a0-a3 Function Arguments
r8 - r15 t0-t7 Temporary — Caller does not need to preserve contents
rl6 - r23 s0-s7 Saved Temporary — Caller must preserve contents
r24 - r25 t8 - t9 Temporary — Caller does not need to preserve contents
126 - r27 ko - k1 Kernel temporary — Used for interrupt and exception handling
r28 ap Global Pointer — Used for fast-access common data
r29 sp Stack Pointer — Software stack
r30 s8orfp Saved Temporary — Caller must preserve contents OR
Frame Pointer — Pointer to procedure frame on stack
r31 ra Return Address(?)

Note 1: Hardware enforced, not just convention.

2.11.2.3 CPU Special Purpose Registers

The CPU contains three special purpose registers:

* PC - Program Counter register
» HI — Multiply and Divide register higher result
e LO — Multiply and Divide register lower result
- During a multiply operation, the HI and LO registers store the product of integer multi-
ply.
- During a multiply-add or multiply-subtract operation, the HI and LO registers store the
result of the integer multiply-add or multiply-subtract.

- During a division, the HI and LO registers store the quotient (in LO) and remainder (in
HI) of integer divide.

- During a multiply-accumulate, the HI and LO registers store the accumulated result of
the operation.

© 2008 Microchip Technology Inc. Preliminary DS61113C-page 2-17

PIC32MX Family Reference Manual

Figure 2-12 shows the layout of the CPU registers.

Table 2-5: CPU Register

31 0 31 0
r0 (zero) HI
rl (at) LO
r2 (v0)
r3 (vl1)
r4 (a0)
r5 (al)
6 (a2)
r7 (a3)
r8 (t0)
r9 (t1)
rl0 (t2)
ri1 (t3)
rl2 (t4)
r13 (t5)
rl4 (t6)
r15 (t7)
ri6 (s0)
ri7 (sl)
ri8 (s2)
rl9 (s3)
r20 (s4)
r21 (s5)
r22 (s6)
r23 (s7)
r24 (t8)
r25 (t9)
r26 (k0)
r27 (k1)
r28 (gp)
r29 (sp)
r30 (s8 or fp) 31 0
r31 (ra) PC

General Purpose Registers Special Purpose Registers

DS61113C-page 2-18 Preliminary © 2008 Microchip Technology Inc.

Section 2. MCU

Table 2-6: MIPS16e Register Usage
I\F/QIIP_816e 32-Bit_ MIPS Symbolic o
eglsyer Reglsyer Name Description
Encoding Encoding
0 16 sO General Purpose Register
1 17 sl General Purpose Register
2 2 vO General Purpose Register
3 3 vl General Purpose Register
4 4 a0 General Purpose Register
5 5 al General Purpose Register
6 6 a2 General Purpose Register
7 7 a3 General Purpose Register
N/A 24 t8 MIPS16e Condition Code register; implicitly referenced by the
BTEQZ, BTNEZ, CMP, CVPI , SLT, SLTU, SLTI, and SLTI U
instructions
N/A 29 sp Stack Pointer register
N/A 31 ra Return Address register
Table 2-7: MIPS16e Special Registers
SyNn:r)nO;'C Purpose
PC Program counter. PC-relative Add and Load instructions can access this register as an operand.
HI Contains high-order word of multiply or divide result.
LO Contains low-order word of multiply or divide result.

2.11.3

How to implement a stack/MIPS calling conventions

The PIC32MX CPU does not have hardware stacks. Instead, the processor relies on software to
provide this functionality. Since the hardware does not perform stack operations itself, a conven-
tion must exist for all software within a system to use the same mechanism. For example, a stack
can grow either toward lower address, or grow toward higher addresses. If one piece of software
assumes that the stack grows toward lower address, and calls a routine that assumes that the
stack grows toward higher address, the stack would become corrupted.

Using a system-wide calling convention prevents this problem from occurring. The Microchip C
compiler assumes the stack grows toward lower addresses.

© 2008 Microchip Technology Inc.

Preliminary

DS61113C-page 2-19

PIC32MX Family Reference Manual

Figure 2-12:

2114

There are two operational modes and one special mode of execution in the PIC32MX family
CPUs; User mode, Kernel mode and DEBUG mode. The processor starts execution in Kernel
mode, and if desired, can stay in Kernel mode for normal operation. User mode is an optional
mode that allows a system designer to partition code between privileged and un-privileged soft-

Processor Modes

ware. DEBUG mode is normally only used by a debugger or monitor.

One of the main differences between the modes of operation is the memory addresses that soft-
ware is allowed to access. Peripherals are not accessible in User mode. Figure 2-12 shows the
different memory maps for each mode. For more information on the processor’s memory map,

see Section 3. “Memory Organization”.

CPU Modes

Virtual Address

User Mode

OXxFFFF_FFFF-"""""""""==°====°=°°"°

OXFF3F_FFFF

0xFF20_0000

OXFF1F_FFFF
0XE000_0000

OXDFFF_FFFF

0xC000_0000

OX9FFF_FFFF

0x8000_0000

OX7FFF_FFFF

0x0000_0000

useg

Kernel Mode DEBUG Mode

o kseg3

kseg3 - dseg
kseg3

kseg2 kseg2
ksegl ksegl
kseg0 kseg0
kuseg kuseg

DS61113C-page 2-20

Preliminary

© 2008 Microchip Technology Inc.

Section 2. MCU

2.11.4.1 Kernel Mode

In order to access many of the hardware resources, the processor must be operating in Kernel
mode. Kernel mode gives software access to the entire address space of the processor as well
as access to privileged instructions.

The processor operates in Kernel mode when the DM bit in the DEBUG register is ‘0’ and the
STATUS register contains one, or more, of the following values:
UuMm=0 ERL=1 EXL=1

When a non-debug exception is detected, EXL or ERL will be set and the processor will enter

Kernel mode. At the end of the exception handler routine, an Exception Return (ERET) instruction

is generally executed. The ERET instruction jumps to the Exception PC (EPC or Error PC
depending on the exception), clears ERL, and clears EXL if ERL= 0.

If UM = 1 the processor will return to User mode after returning from the exception when ERL
and EXL are cleared back to ‘0.
2.11.4.2 User Mode

When executing in User mode, software is restricted to use a subset of the processor’s
resources. In many cases it is desirable to keep application-level code running in User mode
where if an error occurs it can be contained and not be allowed to affect the Kernel mode code.

Applications can access Kernel mode functions through controlled interfaces such as the
SYSCALL mechanism.

As seen in Figure 2-12, User mode software has access to the USEG memory area.

To operate in User mode, the STATUS register must contain each the following bit values:
umMm=1 EXL=0 ERL=0

2.11.4.3 DEBUG Mode

DEBUG mode is a special mode of the processor normally only used by debuggers and system
monitors. DEBUG mode is entered through a debug exception and has access to all the Kernel
mode resources as well as special hardware resources used to debug applications.

The processor is in DEBUG mode when the DM bit in the DEBUG register is ‘1’.
DEBUG mode is normally exited by executing a DERET instruction from the debug handler.

© 2008 Microchip Technology Inc. Preliminary DS61113C-page 2-21

PIC32MX Family Reference Manual

2.12 CPO REGISTERS
The PIC32MX uses a special register interface to communicate status and control information
between system software and the CPU. This interface is called Coprocessor 0. The features of
the CPU that are visible through Coprocessor 0 are core timer, interrupt and exception control,
virtual memory configuration, shadow register set control, processor identification, and debugger
control. System software accesses the registers in CP0 using coprocessor instructions such as
MFCO0 and MTCO. Table 2-8 describes the CPO registers found on the PIC32MX MCU.
Table 2-8: CPO Registers
Register Register Name Function
Number
0-6 Reserved Reserved in the PIC32MX core
7 HWREna Enables access via the RDHWR instruction to selected hardware registers in
Non-privileged mode
BadVAddr Reports the address for the most recent address-related exception
Count Processor cycle count
10 Reserved Reserved in the PIC32MX core
11 Compare Timer interrupt control
12 Status/ Processor status and control; interrupt control; and shadow set control
IntCtl/
SRSCtl/
SRSMap
13 Cause Cause of last exception
14 EPC Program counter at last exception
15 PRId/ Processor identification and revision; exception base address
EBASE/
16 Config/ Configuration registers
Configl/
Config2/
Config3
17-22 Reserved Reserved in the PIC32MX core
23 Debug/ Debug control/exception status and EJTAG trace control
Debug2/
24 DEPC Program counter at last debug exception
25-29 Reserved Reserved in the PIC32MX core
30 ErrorEPC Program counter at last error
31 DeSAVE Debug handler scratchpad register

DS61113C-page 2-22 Preliminary © 2008 Microchip Technology Inc.

Section 2. MCU

2.12.1 HWREnNa Register (CPO Register 7, Select 0)

HWREna contains a bit mask that determines which hardware registers are accessible via the
RDHWR instruction.

Register 2-1: HWREna: Hardware Accessibility Register; CP0 Register 7, Select 0

r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0

bit 31 bit 24
r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0

bit 23 bit 16
r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0

bit 15 bit 8
r-0 r-0 r-0 r-0 R/W-0 R/W-0 R/W-0 R/W-0
— — — — MASK<3:0>

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit

U = Unimplemented bit n = Bit Value at POR: (‘0’, ‘1", x = Unknown)

bit 31-4 Reserved: Write ‘0’; returns ‘0’ on read

bit 3-0 MASK<3:0>: Bit Mask bits

1 = Access is enabled to corresponding hardware register

0 = Access is disabled

Each bit in this field enables access by the RDHWR instruction to a particular hardware register (which
may not be an actual register). See the RDHWR instruction for a list of valid hardware registers.

© 2008 Microchip Technology Inc. Preliminary DS61113C-page 2-23

PIC32MX Family Reference Manual

2.12.2

BadVAddr Register (CPO Register 8, Select 0)

BadVAddr is a read-only register that captures the most recent virtual address that caused an
address error exception. Address errors are caused by executing load, store, or fetch operations
from unaligned addresses, and also by trying to access Kernel mode addresses from User mode.

BadVAddr does not capture address information for bus errors, because they are not addressing

errors.

Register 2-2: BadVAddr: Bad Virtual Address Register; CP0O Register 8, Select 0

R-x R-x R-x R-x R-x R-x R-x R-x
BadVAddr<31:24>
bit 31 bit 24
R-x R-x R-x R-x R-x R-x R-x R-x
BadVAddr<23:16>
bit 23 bit 16
R-x R-x R-x R-x R-x R-x R-x R-x
BadVAddr<15:8>
bit 15 bit 8
R-x R-x R-x R-x R-x R-x R-x R-x
BadVAddr<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit

U = Unimplemented bit

n = Bit Value at POR: (‘0’, ‘1", x = Unknown)

bit 31-0 BadVAddr<31:0>: Bad Virtual Address bits
Captures the virtual address that caused the most recent address error exception.

DS61113C-page 2-24

Preliminary

© 2008 Microchip Technology Inc.

Section 2. MCU

2.12.3 COUNT Register (CPO Register 9, Select 0)

COUNT acts as a timer, incrementing at a constant rate, whether or not an instruction is exe-
cuted, retired, or any forward progress is made through the pipeline. The counter increments
every other clock, if the DC bit in the CAUSE register is ‘0"

COUNT can be written for functional or diagnostic purposes, including at Reset or to synchronize
processors.

By writing the CountDM bit in DEBUG register, it is possible to control whether COUNT continues
to increment while the processor is in DEBUG mode.

Register 2-3: COUNT: Interval Counter Register; CP0O Register 9, Select 0

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
COUNT<31:24>
bit 31 bit 24
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
COUNT<23:16>
bit 23 bit 16
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
COUNT<15:8>
bit 15 bit 8
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
COUNT<7:0>
bit 7 bit 0
Legend:
R = Readable hit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit n = Bit Value at POR: (‘0’, ‘1", x = Unknown)
bit 31-0 COUNT<31:0>: Interval Counter bits

This value is incremented every other clock cycle.

© 2008 Microchip Technology Inc. Preliminary DS61113C-page 2-25

PIC32MX Family Reference Manual

2.12.4 COMPARE Register (CPO Register 11, Select 0)

COMPARE acts in conjunction with COUNT to implement a timer and timer interrupt function.
COMPARE maintains a stable value and does not change on its own.

When the value of COUNT equals the value of COMPARE, the CPU asserts an interrupt signal
to the system interrupt controller. This signal will remain asserted until COMPARE is written.

Register 2-4: COMPARE: Interval Count Compare Register; CPO Register 11, Select 0

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
COMPARE<31:24>
bit 31 bit 24
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
COMPARE<23:16>
bit 23 bit 16
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
COMPARE<15:8>
bit 15 bit 8
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
COMPARE<7:0>
bit 7 bit 0
Legend:
R = Readable hit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit n = Bit Value at POR: (‘0’, ‘1", x = Unknown)
bit 31-0 COMPARE<31:0>: Interval Count Compare Value bits

DS61113C-page 2-26 Preliminary © 2008 Microchip Technology Inc.

Section 2. MCU

2.125 STATUS Register (CPO Register 12, Select 0)

STATUS is a read/write register that contains the operating mode, interrupt enabling, and the
diagnostic states of the processor. Fields of this register combine to create operating modes for
the processor.

2.12.5.0.1 Interrupt Enable

Interrupts are enabled when all of the following conditions are true:

IE=1 EXL=0 ERL=0 DM =0

If these conditions are met, then the settings of the IPL bits enable the interrupts.
2.125.0.2 Operating Modes

If the DM bit in the Debug register is ‘1’, then the processor is in DEBUG mode; otherwise, the
processor is in either Kernel or User mode.

The following CPU STATUS register bit settings determine User or Kernel mode:

Table 2-9: CPU Status Bits that Determine Processor Mode
User Mode (requires all of the following bits and values) UM=1 | EXL=0| ERL=0

Kernal Mode (requires one or more of the following bit values)] UM =0 | EXL=1 | ERL=1

Note: The STATUS register CU bits <31:28> control coprocessor accessibility. If any
coprocessor is unusable, then an instruction that accesses it generates an
exception.

© 2008 Microchip Technology Inc. Preliminary DS61113C-page 2-27

PIC32MX Family Reference Manual

Register 2-5: STATUS: Status Register; CP0 Register 12, Select 0

R-0 R-0 R-0 R/W-x R/W-0() r-x R/W-x r-0
CuU3 Ccu2 CuUl CuU0 RP FR RE —
bit 31 bit 24
r-0 R/W-1 r-0 R/W-0 R/W-0 r-0 r-0 r-0
— BEV Reserved SR NMI — — —
bit 23 bit 16
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
IPL<15:10> R<9:8>
bit 15 bit 8
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
— — — UM — ERL EXL IE
bit 7 bit 0
Legend:
R = Readable hit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit n = Bit Value at POR: (‘0’, ‘1", x = Unknown)
bit 31 CU3: Coprocessor 3 Usable bit

Controls access to Coprocessor 3

COP3 is not supported. This bit cannot be written and will read as ‘0’
bit 30 CU2: Coprocessor 2 Usable bit

Controls access to Coprocessor 2.

COP2 is not supported. This bit cannot be written and will read as ‘0’
bit 29 CU1: Coprocessor 1 Usable bit

Controls access to Coprocessor 1

COPL1 is not supported. This bit cannot be written and will read as ‘0’
bit 28 CUO: Coprocessor 0 Usable bit

Controls access to Coprocessor 0

0 = access not allowed

1 = access allowed

Coprocessor 0 is always usable when the processor is running in Kernel mode, independent of the
state of the CUO bit.

bit 27 RP: Reduced Powerbit
Enables reduced power mode
bit 26 FR: FR bit

Reserved on PIC32MX processors

bit 25 RE: Used to enable reverse-endian memory references while the processor is running in User mode

0 = User mode uses configured endianness
1 = User mode uses reversed endianness

Neither DEBUG mode nor Kernel mode nor Supervisor mode references are affected by the state of
this bit.

bit 24:23 R<24:23>: Reserved. Ignored on write and read as ‘0’.

DS61113C-page 2-28 Preliminary © 2008 Microchip Technology Inc.

Section 2. MCU

Register 2-5: STATUS: Status Register; CP0O Register 12, Select 0 (Continued)

bit 22 BEV: Control bit. Controls the location of exception vectors.
0 = Normal
1 = Bootstrap

bit 21 Reserved

bit 20 SR: Soft Reset bit

Indicates that the entry through the Reset exception vector was due to a Soft Reset.

0 = Not Soft Reset (NMI or Reset)
1 = Soft Reset

Software can only write a ‘0’ to this bit to clear it and cannot force a 0-1 transition.
bit 19 NMI: Soft Reset bit
Indicates that the entry through the reset exception vector was due to an NMI.

0 = Not NMI (Soft Reset or Reset)
1 =NMI
Software can only write a ‘0’ to this bit to clear it and cannot force a 0-1 transition.

bit 18 R: Reserved. ignored on write and read as ‘0.
bit 17 R: Reserved. ignored on write and read as ‘0.
bit 16 R: Reserved. ignored on write and read as ‘0.
bit 15-10 IPL<15:10>: Interrupt Priority Level bits

This field is the encoded (0..63) value of the current IPL. An interrupt will be signaled only if the
requested IPL is higher than this value

bit 9-8 R<9:8>: Reserved
These bits are writable, but have no effect on the interrupt system.

bit 7-5 R<7:5>: Reserved. Ignored on write and read as ‘0’

bit 4 UM:
This bit denotes the base operating mode of the processor. On the encoding of this bit is:
0 = Base mode in Kernal mode
1 = Base mode is User mode
Note: The processor can also be in Kernel mode if ERL or EXL is set, regardless of the state of the

UM bit.
bit 3 R: Reserved. Ignored on write and read as ‘0’
bit 2 ERL: Error Level bit

Set by the processor when a Reset, Soft Reset, NMI or Cache Error exception are taken.
0 = Normal level

1 = Error level

When ERL is set:

- Processor is running in Kernel mode
- Interrupts are disabled
- ERET instruction will use the return address held in ErrorEPC instead of EPC

- Lower 2%° bytes of kuseg are treated as an unmapped and uncached region. This allows
main memory to be accessed in the presence of cache errors. The operation of the proces-
sor is undefined if the ERL bit is set while the processor is executing instructions from
kuseg.

bit 1 EXL: Exception Level bit
Set by the processor when any exception other than Reset, Soft Reset, or NMI exceptions is taken.

0 = Normal level
1 = Exception level

When EXL is set:
- Processor is running in Kernel Mode

- Interrupts are disabled
EPC, CauseBD and SRSCtl will not be updated if another exception is taken.

© 2008 Microchip Technology Inc. Preliminary DS61113C-page 2-29

PIC32MX Family Reference Manual

Register 2-5: STATUS: Status Register; CP0O Register 12, Select 0 (Continued)

bit 0 IE: Interrupt Enable bit
Acts as the master enable for software and hardware interrupts:
0 = Interrupts are disabled
1 = Interrupts are enabled
This bit may be modified separately via the DI and El instructions

DS61113C-page 2-30 Preliminary © 2008 Microchip Technology Inc.

Section 2. MCU

2.12.6

Intctl: Interrupt Control Register (CPO Register 12, Select 1)

The Intctl register controls the vector spacing of the PIC32MX architecture.

Register 2-6: Intctl: Interrupt Control Register; CPO Register 12, Select 1
R-0 R-0 R-0 R-0 R-0 R-0 r-x r-x
bit 31 bit 24
r-x r-x r-x r-x r-x r-x r-x r-x
bit 23 bit 16
r-x r-x r-x r-x r-x r-x R/W-0 R/W-0
— — — — — — VS<9:8>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 r-x r-x r-x r-x r-x
VS<7:5> — — — — —
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit n = Bit Value at POR: (‘0’, ‘1", x = Unknown)

bit 31-29
bit 28-26
bit 25-10

bit 9-5

bit 4-0

R: Reserved

R: Reserved

Reserved: Write ‘0’; ignore read

Must be written as ‘0’; returns ‘0’ on read.
VS<9:5>: Vector Spacing bits

This field specifies the spacing between each interrupt vector.

Encoding | Spacing Between Vectors (hex) | Spacing Between Vectors (decimal)
16#00 16#000 0x 0
16#01 16#020 32
16#02 16#040 64
16#04 16#080 128
16#08 16#100 256
16#10 16#200 512

All other values are reserved. The operation of the processor is undefined if a reserved value is written

to this field.

Unimplemented: Read as ‘0’
Must be written as ‘0’; returns ‘0’ on read.

© 2008 Microchip Technology Inc.

Preliminary

DS61113C-page 2-31

PIC32MX Family Reference Manual

2.12.7

SRSCtl Register (CPO Register 12, Select 2)

The SRSCtl register controls the operation of GPR shadow sets in the processor.

Table 2-10: Sources for New SRSCtl-gg 0n an Exception or Interrupt

Exception Type Condition SRSCtl-gg Source Comment
Exception All SRSCtlgss
Non-Vectored Interrupt Causey =0 SRSCitlgsg Treat as exception
Vectored EIC Interrupt |Cause)y =1 and Config3ygc = 1 SRSCtlgcss Source is external interrupt controller.

Register 2-7: SRSCtl: Register; CPO Register 12, Select 2

R = Readable bit
U = Unimplemented bit

W = Writable bit
n = Bit Value at POR: (‘0’, ‘1", x = Unknown)

r-x r-x R-0 R-0 R-0 R-1 r-x r-x
— — HSS<29:26> — —
bit 31 bit 24
r-x r-x R-x R-x R-x R-x r-x r-x
— — EICSS<21:18> — —
bit 23 bit 16
R/W-0 R/W-0 R/W-0 R/W-0 r-x r-x R/W-0 R/W-0
ESS<15:12> — — PSS<9:8>
bit 15 bit 8
R/W-0 R/W-0 r-0 r-0 R-0 R-0 R-0 R-0
PSS<7:6> 0<5:4> CSS<3:.0>
bit 7 bit 0
Legend:

P = Programmable bit

r = Reserved bit

bit 31-30 Reserved: Write ‘0’; ignore read

Must be written as zeros; returns ‘0’ on read.

bit 29-26 HSS<29:26>: High Shadow Set bit
This field contains the highest shadow set number that is implemented by this processor. A value of

‘0’ in this field indicates that only the normal GPRs are implemented.

Possible values of this field for the PIC32MX processor are:

0 = One shadow set (normal GPR set) is present
1 = Two shadow sets are present
3 = Four shadow sets are present
2, 3-15 = Reserved

The value in this field also represents the highest value that can be written to the ESS, EICSS, PSS,
and CSS fields of this register, or to any of the fields of the SRSMAP register. The operation of the
processor is undefined if a value larger than the one in this field is written to any of these other fields.

bit 25-22 Reserved: Write ‘0’; ignore read

Must be written as ‘0’; returns ‘0’ on read.

DS61113C-page 2-32

Preliminary

© 2008 Microchip Technology Inc.

Section 2. MCU

Register 2-7:

bit 21-18

bit 17-16

bit 15-12

bit 11-10

bit 9-6

bit 5-4

3-0

SRSCtl: Register; CPO Register 12, Select 2 (Continued)
EICSS<21:18>: External Interrupt Controller Shadow Set bits
EIC Interrupt mode shadow set. This field is loaded from the external interrupt controller for each
interrupt request and is used in place of the SRSMAP register to select the current shadow set for the
interrupt.

Reserved: Write ‘0’; ignore read
Must be written as ‘0’; returns ‘0’ on read.

ESS<15:12>: Exception Shadow Set bits

This field specifies the shadow set to use on entry to Kernel mode caused by any exception other than
a vectored interrupt.

The operation of the processor is undefined if software writes a value into this field that is greater than
the value in the HSS field.

Reserved: Write ‘0’; ignore read
Must be written as ‘0’; returns ‘0’ on read.

PSS<9:6>: Previous Shadow Set bits

Since GPR shadow registers are implemented, this field is copied from the CSS field when an excep-
tion or interrupt occurs. An ERET instruction copies this value back into the CSS field if Statusggy = 0.
This field is not updated on any exception which sets Statusgr to 1 (i.e., Reset, Soft Reset, NMI,
cache error), an entry into EJTAG DEBUG mode, or any exception or interrupt that occurs with Sta-
tusgyx, =1, or Statusggy = 1. This field is not updated on an exception that occurs while Statusgg = 1.
The operation of the processor is undefined if software writes a value into this field that is greater than
the value in the HSS field.

Reserved: Write ‘0’; ignore read
Must be written as ‘0’; returns ‘0’ on read.

CSS<3:0>: Current Shadow Set bits

Since GPR shadow registers are implemented, this field is the number of the current GPR set. This
field is updated with a new value on any interrupt or exception, and restored from the PSS field on an
ERET. Table 2-10 describes the various sources from which the CSS field is updated on an exception
or interrupt.

This field is not updated on any exception which sets Statusgr, to 1 (i.e., Reset, Soft Reset, NMI,
cache error), an entry into EJTAG DEBUG mode, or any exception or interrupt that occurs with Sta-
tusgy, = 1, or Statusggy, = 1. Neither is it updated on an ERET with Statusgg, =1 or Statusggy = 1.
This field is not updated on an exception that occurs while Statusgg, = 1.

The value of CSS can be changed directly by software only by writing the PSS field and executing an
ERET instruction.

© 2008 Microchip Technology Inc. Preliminary DS61113C-page 2-33

PIC32MX Family Reference Manual

2.12.8 SRSMAP: Register (CP0O Register 12, Select 3)

The SRSMAP register contains eight 4-bit fields that provide the mapping from an vector number
to the shadow set number to use when servicing such an interrupt. The values from this register
are not used for a non-interrupt exception, or a non-vectored interrupt (Causen, = 0 or
IntCtlys = 0). In such cases, the shadow set number comes from SRSCtlggs.

If SRSCtlygg is ‘0, the results of a software read or write of this register are unpredictable.

The operation of the processor is undefined if a value is written to any field in this register that is
greater than the value of SRSCtlygs.

The SRSMAP register contains the shadow register set numbers for vector numbers 7..0. The
same shadow set number can be established for multiple interrupt vectors, creating a
many-to-one mapping from a vector to a single shadow register set number.

Register 2-8: SRSMAP: Register; CP0O Register 12, Select 3
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SSV7<31:28> SSV6<27:24>
bit 31 bit 24
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SSV5<23:20> SSV4<19:16>
bit 23 bit 16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SSv3k15:12> SSV2<11:8>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SSV1<7:4> SSV0<3:0>
bit 7 bit 0
Legend:
R = Readable hit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit n = Bit Value at POR: (‘0’, ‘1", x = Unknown)
bit 31-28 SSV7<31:28>: Shadow Set Vector 7 bits
Shadow register set number for Vector Number 7
bit 27-24 SSV6<27:24>: Shadow Set Vector 6 bits
Shadow register set number for Vector Number 6
bit 23-20 SSV5<23:20>: Shadow Set Vector 5 bits
Shadow register set number for Vector Number 5
bit 19-16 SSV4<19:16>: Shadow Set Vector 4 bits
Shadow register set number for Vector Number 4
bit 15-12 SSV3<15:12>: Shadow Set Vector 3 bits
Shadow register set number for Vector Number 3
bit 11-8 SSV2<11:8>: Shadow Set Vector 2 bits
Shadow register set number for Vector Number 2
bit 7-4 SSV1<7:4>: Shadow Set Vector 1 bits

Shadow register set number for Vector Number 1

DS61113C-page 2-34 Preliminary © 2008 Microchip Technology Inc.

Section 2. MCU

Register 2-8: SRSMAP: Register; CPO Register 12, Select 3 (Continued)
bit 3-0 SSV0<3:0>: Shadow Set Vector 0 bit
Shadow register set number for Vector Number 0

© 2008 Microchip Technology Inc. Preliminary DS61113C-page 2-35

PIC32MX Family Reference Manual

2.12.9 CAUSE Register (CP0O Register 13, Select 0)

The CAUSE register primarily describes the cause of the most recent exception. In addition,
fields also control software interrupt requests and the vector through which interrupts are
dispatched. With the exception of the IP1 g, DC, IV and WP fields, all fields in the CAUSE register
are read-only. IP;_, are interpreted as the Requested Interrupt Priority Level (RIPL).

Table 2-11: Cause Register ExcCode Field

Exception Code Value
Mnemonic Description

Decimal Hex
0 16#00 Int Interrupt
4 16#04 AdEL Address error exception (load or instruction fetch)
5 16#05 AdES Address error exception (store)
6 16#06 IBE Bus error exception (instruction fetch)
7 16#07 DBE Bus error exception (data reference: load or store)
8 16#08 Sys Syscall exception
9 16#09 Bp Breakpoint exception
10 16#0a RI Reserved instruction exception
11 16#0b CPU Coprocessor Unusable exception
12 16#0c Ov Arithmetic Overflow exception
13 16#0d Tr Trap exception

14-18 16#0e-16#12 - Reserved
DS61113C-page 2-36 Preliminary © 2008 Microchip Technology Inc.

Section 2. MCU

Register 2-9: CAUSE: Register; CPO Register 13, Select 0
R-x R-x R-x R-x R/W-0 R-0 r-x r-x
BD TI CE<29:28> DC R 0<25:24>
bit 31 bit 24
R/W-x R/W-0 r-x r-x r-x r-x r-x r-x
\ R 0<21:16>
bit 23 bit 16
R-x R-x R-x R-x R-x R-x R/W-x R/W-x
RIPL<15:10> IP1..IP0<9:8>
bit 15 bit 8
r-x R-x R-x R-x R-x R-x r-x r-x
0 EXCCODE<6:2> 0<1:0>
bit 7 bit 0
Legend:
R = Readable hit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit n = Bit Value at POR: (‘0’, ‘1", x = Unknown)

bit 31 BD: Branch Delay bit

Indicates whether the last exception taken occurred in a branch delay slot:
0 = Not in delay slot

1 = In delay slot

The processor updates BD only if Statusgy, was ‘0’ when the exception occurred.

bit 30 TI: Timer Interrupt bit

Timer Interrupt. This bit denotes whether a timer interrupt is pending (analogous to the IP bits for other
interrupt types):

0 = No timer interrupt is pending

1 = Timer interrupt is pending
bit 29-28 CE<29:28>: Coprocessor Exception bits

Coprocessor unit number referenced when a Coprocessor Unusable exception is taken. This field is
loaded by hardware on every exception, but is unpredictable for all exceptions except for Coprocessor
Unusable.

bit 27 DC: Disable Count bit

Disable Count register. In some power-sensitive applications, the COUNT register is not used and can
be stopped to avoid unnecessary toggling
0 = Enable counting of COUNT register
1 = Disable counting of COUNT register
bit 26 R: bit
bit 25-24 Reserved: Write ‘0’; ignore read

Must be written as ‘0’; returns ‘0’ on read.

© 2008 Microchip Technology Inc. Preliminary DS61113C-page 2-37

PIC32MX Family Reference Manual

Register 2-9:
bit 23

bit 22
bit 21-16

bit 15-10

bit 9-8

bit 7

bit 6-2

bit 1-0

CAUSE: Register; CP0O Register 13, Select 0 (Continued)
IV: Interrupt Vector bit
Indicates whether an interrupt exception uses the general exception vector or a special interrupt
vector
0 = Use the general exception vector (16#180)
1 = Use the special interrupt vector (16#200)
If the Cause)y is 1 and Statusggy, is 0, the special interrupt vector represents the base of the vectored
interrupt table.
R: bit
Reserved: Write ‘0’; ignore read
Must be written as ‘0’; returns ‘0’ on read.

RIPL<15:10>: Requested Interrupt Priority Level bits

Requested Interrupt Priority Level.\

This field is the encoded (0..63) value of the requested interrupt. A value of ‘0’ indicates that no inter-
rupt is requested.

IP1..1P0<9:8>:

Controls the request for software interrupts:

0 = No interrupt requested

1 = Request software interrupt

These bits are exported to the system interrupt controller for prioritization in EIC interrupt mode with
other interrupt sources

Reserved: Write ‘0’; ignore read

Must be written as ‘0’; returns ‘0’ on read.

EXCCODE<6:2>: Exception Code bits

Exception code - see Table 2-11

Reserved: Write ‘0’; ignore read
Must be written as ‘0’; returns ‘0’ on read.

DS61113C-page 2-38 Preliminary © 2008 Microchip Technology Inc.

Section 2. MCU

Register 2-10:

2.12.10 EPC Register (CPO Register 14, Select 0)

The Exception Program Counter (EPC) is a read/write register that contains the address at which
processing resumes after an exception has been serviced. All bits of the EPC register are signif-
icant and are writable.

For synchronous (precise) exceptions, the EPC contains one of the following:

» The virtual address of the instruction that was the direct cause of the exception.

» The virtual address of the immediately preceding BRANCH or JUVP instruction, when the
exception causing instruction is in a branch delay slot and the Branch Delay bit in the
CAUSE register is set.

On new exceptions, the processor does not write to the EPC register when the EXL bit in the
STATUS register is set, however, the register can still be written via the MIC0 instruction.

Since the PIC32 family implements MIPS16e ASE, a read of the EPC register (via MFCO) returns
the following value in the destination GPR:

GPR[rt] <« ExceptionPCz; 1 || | SAMWbdeq

That is, the upper 31 bits of the exception PC are combined with the lower bit of the ISAMode
field and written to the GPR.

Similarly, a write to the EPC register (via MTCO) takes the value from the GPR and distributes
that value to the exception PC and the ISAMode field, as follows

Excepti onPC « GPR[rt]3; 1 || O
| SAMbde « 2#0 || GPR{rt]g

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the exception PC, and the
lower bit of the exception PC is cleared. The upper bit of the ISAMode field is cleared and the
lower bit is loaded from the lower bit of the GPR.

EPC: Register; CP0 Register 14, Select 0

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
EPC<31:24>
bit 31 bit 24
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
EPC<23:16>
bit 23 bit 16
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
EPC<15:8>
bit 15 bit 8
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
EPC<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit n = Bit Value at POR: (‘0’, ‘1", x = Unknown)

bit 31-0

EPC<31:0>: Exception Program Counter bits

© 2008 Microchip Technology Inc. Preliminary DS61113C-page 2-39

PIC32MX Family Reference Manual

Register 2-11:

2.12.11 PRID Register (CPO Register 15, Select 0)

The Processor Identification (PRID) register is a 32 bit read-only register that contains informa-
tion identifying the manufacturer, manufacturer options, processor identification, and revision
level of the processor.

PRID: Register; CPO Register 15, Select 0

R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
R<31:24>
bit 31 bit 24
R-1 R-1 R-1 R-1 R-1 R-1 R-1 R-1
COMPANY ID<23:16>
bit 23 bit 16
R-0x87 R-0x87 R-0x87 R-0x87 R-0x87 R-0x87 R-0x87 R-0x87
PROCESSOR ID<15:8>
bit 15 bit 8
R-Preset R-Preset R-Preset R-Preset R-Preset R-Preset R-Preset R-Preset
REVISION<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit n = Bit Value at POR: (‘0’, ‘1", x = Unknown)
bit 31-24 R<31:24>: Reserved
Must be ignored on write and read as ‘0’
bit 23-16 COMPANY ID<23:16>:
Identifies the company that designed or manufactured the processor. In the PIC32MX this field
contains a value of 1 to indicate MIPS Technologies, Inc.
bit 15-8 PROCESSOR ID<15:8>:
Identifies the type of processor. This field allows software to distinguish between the various types of
MIPS Technologies processors.
bit 7-0 REVISION<7:0>:
Specifies the revision number of the processor. This field allows software to distinguish between one
revision and another of the same processor type.
This field is broken up into the following three subfields.
bit 7-5 MAJOR REVISION<7:5>:
This number is increased on major revisions of the processor core.
bit 4-2 MINOR REVISION<4.2>:
This number is increased on each incremental revision of the processor and reset on each new major
revision.
bit 1-0 PATCH LEVEL<1:0>:

If a patch is made to modify an older revision of the processor, this field will be incremented.

DS61113C-page 2-40 Preliminary © 2008 Microchip Technology Inc.

Section 2. MCU

2.12.12 EBASE Register (CPO Register 15, Select 1)

The EBASE register is a read/write register containing the base address of the exception vectors
used when Statusggy,, equals ‘0’, and a read-only CPU number value that may be used by
software to distinguish different processors in a multi-processor system.

The EBASE register provides the ability for software to identify the specific processor within a
multi-processor system, and allows the exception vectors for each processor to be different,
especially in systems composed of heterogeneous processors. Bits 31..12 of the EBASE register
are concatenated with zeros to form the base of the exception vectors when Statusggy is ‘0’. The
exception vector base address comes from the fixed defaults when Statusggy is ‘1’, or for any
EJTAG Debug exception. The Reset state of bits 31..12 of the EBASE register initialize the
exception base register to 16#8000.0000.

Bits 31..30 of the EBASE Register are fixed with the value 2#10 to force the exception base
address to be in the ksegO or ksegl unmapped virtual address segments.

If the value of the exception base register is to be changed, this must be done with Statusggy
equal ‘1'. The operation of the processor is undefined if the Exception Base field is written with
a different value when Statusggy is ‘0’

Combining bits 31..20 with the Exception Base field allows the base address of the exception
vectors to be placed at any 4 KBbyte page boundary.

Register 2-12: EBASE: Register; CPO Register 15, Select 1

R-1 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
1 0 EXCEPTION BASE<29:24>
bit 31 bit 24
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
EXCEPTION BASE<23:16>
bit 23 bit 16
R/W-0 R/W-0 R/W-0 R/W-0 r-0 r-0 R-0 R-0
EXCEPTION BASE<15:12> r CPUNUM<9:8>
bit 15 bit 8
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
CPUNUM<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit n = Bit Value at POR: (‘0’, ‘1", x = Unknown)
bit 31 1: One bit
This bit is ignored on write and returns one on read.
bit 30 0: Zero bit
This bit is ignored on write and returns ‘0’ on read.
bit 29-12 EXCEPTION BASE<29:12>:

In conjunction with bits 31..30, this field specifies the base address of the exception vectors when
Statusggy is ‘0.

bit 11-10 Reserved:
Must be written as ‘0’; returns ‘0’ on read.

© 2008 Microchip Technology Inc. Preliminary DS61113C-page 2-41

PIC32MX Family Reference Manual

Register 2-12: EBASE: Register; CP0 Register 15, Select 1 (Continued)
bit 9-0 CPUNUM<9:0>:
This field specifies the number of the CPU in a multi-processor system and can be used by software

to distinguish a particular processor from the others. In a single processor system, this value is set to
‘0.

DS61113C-page 2-42 Preliminary © 2008 Microchip Technology Inc.

Section 2. MCU

2.12.13 CONFIG Register (CPO Register 16, Select 0)

The CONFIG register specifies various configuration and capabilities information. Most of the
fields in the CONFIG register are initialized by hardware during the Reset exception process, or
are constant.

Table 2-12: Cache Coherency Attributes

C(2:0) Value Cache Coherency Attribute
2 Uncached
3 Cacheable
Register 2-13: CONFIG: Register; CP0O Register 16, Select 0
R-1 R-0 R-1 R-0 R/W-0 R/W-1 R/W-0 r-0
M K23<30:28> KU<27:25> 0
bit 31 bit 24
r-x R-0 R-0 R-0 r-x r-x r-x R-1
0 uDI SB MDU DS
bit 23 bit 16
R-0 R-0 R-0 R-0 R-0 R-1 R-0 R-1
BE AT<14:13> AR<12:10> MT<9:8>
bit 15 bit 8
R-1 r-x r-x r-x r-x R/W-0 R/W-1 R/W-0
MT K0<2:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit n = Bit Value at POR: (‘0’, ‘1", x = Unknown)
bit 31 M:
This bit is hardwired to ‘1’ to indicate the presence of the CONFIGL1 register.
bit 30-28 K23<30:28>: kseg2 and kseg3 bits
This field controls the cacheability of the kseg2 and kseg3 address segments.
Refer to Table 2-12 for the field encoding.
bit 27-25 KU<27:25>: kuseg and useg bits
This field controls the cacheability of the kuseg and useg address segments.
Refer to Table 2-12 for the field encoding.
bit 24-23 Reserved: Write ‘0’; ignore read
Must be written as ‘0’. Returns ‘0’ on reads.
bit 22 UDI: User Defined bit

This bit indicates that CorExtend User Defined Instructions have been implemented.
0 = No User Defined Instructions are implemented
1 = User Defined Instructions are implemented

© 2008 Microchip Technology Inc. Preliminary DS61113C-page 2-43

PIC32MX Family Reference Manual

Register 2-13: CONFIG: Register; CPO Register 16, Select 0 (Continued)
bit 21 SB: SimpleBE bit

Indicates whether SimpleBE Bus mode is enabled.
0 = No reserved byte enables on internal bus interface
1 = Only simple byte enables allowed on internal bus interface

bit 20 MDU: Multiply/Divide Unit bit

This bit indicates the type of Multiply/Divide Unit present
0 = Fast, high-performance MDU

bit 19-17 Reserved: Write ‘0’; ignore read
Must be written as 0. Returns ‘0’ on reads.
bit 16 DS: Dual SRAM bit

0 = Unified instruction/data SRAM internal bus interface
1 = Dual instruction/data SRAM internal bus interfaces

Note: The PIC32MX family currently uses Dual SRAM-style interfaces internally.
bit 15 BE: Big Endian bit
Indicates the Endian mode in which the processor is running, PIC32MX is always little endian.
0 = Little endian
1 = Big enidan
bit 14-13 AT<14:13>: Architecture Type bits

Architecture type implemented by the processor. This field is always ‘00’ to indicate the MIPS32
architecture.

bit 12-10 AR<12:10>: Architecture Revision Level bits

Architecture revision level. This field is always ‘001’ to indicate MIPS32 Release 2.
0: Release 1

1: Release 2

2-7: Reserved

bit 9-7 MT<9:7>: MMU Type bits
3: Fixed mapping
0-2, 4-7: Reserved

bit 6-3 Reserved: Write ‘0’; ignore read
Must be written as zeros; returns zeros on reads
bit 2-0 K0<2:0>: KsegO bits

KsegO0 coherency algorithm. Refer to XREF Table 2-12 for the field encoding.

DS61113C-page 2-44 Preliminary © 2008 Microchip Technology Inc.

Section 2. MCU

2.12.14 CONFIG1 Register (CPO Register 16, Select 1)

The CONFIG1 register is an adjunct to the CONFIG register and encodes additional information
about capabilities present on the core. All fields in the CONFIG1 register are read-only.

Register 2-14: CONFIG1: CONFIG1 Register; CP0 Register 16, Select 1

R-1 R-x R-x R-x R-x R-x R-x R-x
M MMU Size<30:25> IS
bit 31 bit 24
R-x R-x R-x R-x R-x R-x R-x R-x
1S<23:22> IL<21:19> 1A<18:16>
bit 23 bit 16
R-x R-x R-x R-x R-x R-x R-x R-x
DS<15:13> DL<12:10> DA<9:8>
bit 15 bit 8
R-x R-0 R-0 R-0 R-0 R-1 R-x R-0
DA Cc2 MD PC WR CA EP FP
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit n = Bit Value at POR: (‘0’, ‘1", x = Unknown)
bit 31 M: bit
This bit is hardwired to ‘1’ to indicate the presence of the CONFIG2 register.
bit 30-25 MMU Size: bits
This field contains the number of entries in the TLB minus one; since the PIC32MX has no TLB, this
field is ‘0’.
bit 24-22 IS: Instruction Cache Sets bits

This field contains the number of instruction cache sets per way; since the M4K core does not include
caches, this field is always read as ‘0’.

bit 21-19 IL: Instruction-Cache Line bits
This field contains the instruction cache line size; since the M4K core does not include caches, this
field is always read as ‘0.

bit 18-16 IA: Instruction-Cache Associativity bits
This field contains the level of instruction cache associativity; since the M4K core does not include
caches, this field is always read as ‘0’.

bit 15-13 DS: Data-Cache Sets bits
This field contains the number of data cache sets per way; since the M4K core does not include
caches, this field is always read as ‘0.

bit 12-10 DL: Data-Cache Line bits
This field contains the data cache line size; since the M4K core does not include caches, this field is
always read as ‘0’.

bit 9-7 DA: Data-Cache Associativity bits

This field contains the type of set associativity for the data cache; since the M4K core does not include
caches, this field is always read as ‘0.

© 2008 Microchip Technology Inc. Preliminary DS61113C-page 2-45

PIC32MX Family Reference Manual

Register 2-14: CONFIG1: CONFIG1 Register; CPO Register 16, Select 1 (Continued)
bit 6 C2: Coprocessor 2 bit
Coprocessor 2 present.
0 = No coprocessor is attached to the COP2 interface
1 = A coprocessor is attached to the COP2 interface
Since coprocessor 2 is not implemented in the PIC32MX family of microcontrollers, this bit will read ‘0’.
bit 5 MD: MDMX bit
MDMX implemented.
This bit always reads as ‘0‘ because MDMX is not supported.
bit 4 PC: Performance Counter bit
Performance Counter registers implemented.
Always a ‘0‘ since the PIC32MX core does not contain Performance Counters.
bit 3 WR: Watch Register bit
Watch registers implemented.
0 = No Watch registers are present
1 = One or more Watch registers are present
Note: The PIC32MX does not implement watch registers, therefore this bit always reads ‘0’

bit 2 CA: Code Compression Implemented bit

0 = No MIPS16e present
1 = MIPS16e is implemented

bit 1 EP: EJTAG Present bit
This bit is always set to indicate that the core implements EJTAG.
bit 0 FP: FPU Implemented bit

This bit is always ‘0’ since the core does not contain a floating point unit.

DS61113C-page 2-46 Preliminary © 2008 Microchip Technology Inc.

Section 2. MCU

2.12.15 CONFIG2 (CPO Register 16, Select 2)

The CONFIG2 register is an adjunct to the CONFIG register and is reserved to encode additional
capabilities information. CONFIG2 is allocated for showing the configuration of level 2/3 caches.
These fields are reset to ‘0’ because L2/L3 caches are not supported by the PIC32MX core. All
fields in the CONFIG2 register are read-only.

Register 2-15: CONFIG2: CONFIG2 Register; CP0O Register 16, Select 2

R-1 r-0 r-0 r-0 r-0 r-0 r-0 r-0
M 0 0 0 0 0 0 0
bit 31 bit 24
r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0
0 0 0 0 0 0 0 0
bit 23 bit 16
r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0
0 0 0 0 0 0 0 0
bit 15 bit 8
r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0
0 0 0 0 0 0 0 0
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit n = Bit Value at POR: (‘0’, ‘1", x = Unknown)

bit 31 M: bit

This bit is hardwired to ‘1’ to indicate the presence of the CONFIG3 register.

bit 30-0 Reserved

© 2008 Microchip Technology Inc.

Preliminary

DS61113C-page 2-47

PIC32MX Family Reference Manual

Register 2-16:

2.12.16 CONFIG3 Register (CP0O Register 16, Select 3)

The CONFIG3 register encodes additional capabilities. All fields in the CONFIG3 register are
read-only.

CONFIG3: CONFIG3 Register; CP0O Register 16, Select 3

R-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0
M 0 0 0 0 0 0 0
bit 31 bit 24
r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0
0 0 0 0 0 0 0 0
bit 23 bit 16
r-0 r-0 r-0 r-0 r-0 r-0 r-0 r-0
0 0 0 0 0 0 0 0
bit 15 bit 8
r-0 R-1 R-1 R-0 r-0 r-0 R-0 R-0
0 VEIC Vint SP 0 0 SM TL
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit n = Bit Value at POR: (‘0’, ‘1", x = Unknown)
bit 31 M: Reserved
This bit is reserved to indicate that a CONFIG4 register is present. With the current architectural
definition, this bit should always read as a ‘0’
bit 30-7 Reserved: Write ‘0’; ignore read
Must be written as zeros; returns zeros on read.
bit 6 VEIC:
Support for an external interrupt controller is implemented.
0 = Support for EIC Interrupt mode is not implemented
1 = Support for EIC Interrupt mode is implemented
Note: PIC32MX internally implements a MIPS “external interrupt controller”, therefore this bit
reads ‘1.
bit 5 VINT: Vector Interrupt bit
Vectored interrupts implemented. This bit indicates whether vectored interrupts are implemented.
0 = Vector interrupts are not implemented
1 = Vector interrupts are implemented
On the PIC32MX core, this bit is always a ‘1’ since vectored interrupts are implemented.
bit 4 SP: Support Page bit
Small (1 KByte) page support is implemented, and the PAGEGRAIN register exists.
0 = Small page support is not implemented
1 = Small page support is implemented
Note: PIC32MX always reads ‘0’ since PIC32MX does not implement small page support.
bit 3-2 0:

Must be written as zeros; returns zeros on read.

DS61113C-page 2-48 Preliminary © 2008 Microchip Technology Inc.

Section 2. MCU

Register 2-16: CONFIG3: CONFIG3 Register; CP0 Register 16, Select 3 (Continued)
bit 1 SM: SmartMIPS™ bit

SmartMIPS™ ASE implemented. This bit indicates whether the SmartMIPS ASE is implemented.
Since SmartMIPS is present on the PIC32MX core, this bit will always be ‘0’

0 = SmartMIPS ASE is not implemented

1 = SmartMIPS ASE is implemented

bit 0 TL: Trace Logic bit
Trace Logic implemented. This bit indicates whether PC or data trace is implemented.

0 = On-chip trace logic (PDTrace™) is not implemented
1 = On-chip trace logic (PDTrace™) is implemented

Note: PIC32MX does not implement PDTrace™ on-chip trace logic, therefore this bit always
reads ‘0’

© 2008 Microchip Technology Inc. Preliminary DS61113C-page 2-49

PIC32MX Family Reference Manual

2.12.17 DEBUG Register (CP0O Register 23, Select 0)

The DEBUG register is used to control the debug exception and provide information about the
cause of the debug exception and when re-entering at the debug exception vector due to a nor-
mal exception in DEBUG mode. The read-only information bits are updated every time the debug
exception is taken or when a normal exception is taken when already in DEBUG mode.

Only the DM bit and the EJTAGuver field are valid when read from Non-DEBUG mode; the values
of all other bits and fields are unpredictable. Operation of the processor is undefined if the
DEBUG register is written from Non-DEBUG mode.

Some of the bits and fields are only updated on debug exceptions and/or exceptions in DEBUG
mode, as shown below:

- DSS, DBp, DDBL, DDBS, DIB, DINT are updated on both debug exceptions and on
exceptions in Debug modes

« DExcCode is updated on exceptions in DEBUG mode, and is undefined after a debug
exception

« Halt and Doze are updated on a debug exception, and are undefined after an exception in
DEBUG mode

- DBD is updated on both debug and on exceptions in Debug modes
All bits and fields are undefined when read from normal mode, except EJTAGver and DM.

DS61113C-page 2-50 Preliminary © 2008 Microchip Technology Inc.

Section 2. MCU

Register 2-17:

DEBUG: Register; CPO Register 23, Select 0

R-U R-0 R-0 R/W-0 R-U R-U R/W-1 R/W-0
DBD DM NODCR LSNM DOZE HALT COUNTDM IBUSEP
bit 31 bit 24
R-0 R-0 R/W-0 R/W-0 R-0 R-0 R-0 R-1
MCHECKP CACHEEP DBUSEP IEXI DDBSIMPR | DDBLIMPR VER<7:6>
bit 23 bit 16
R-0 R-U R-U R-U R-U R-U R-0 R/W-0
VER DEXCCODE<14:10 NOSST SST
bit 15 bit 8
R-0 R-0 R-U R-U R-U R-U R-U R-U
R<7:6> DINT DiB DDBS DDBL DBP DSS
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit n = Bit Value at POR: (‘0’, ‘1", x = Unknown)
bit 31 DBD:
Indicates whether the last debug exception or exception in DEBUG mode, occurred in a branch delay
slot:
0 = Not in delay slot
1 =In delay slot
bit 30 DM:
Indicates that the processor is operating in DEBUG mode:
0 = Processor is operating in Non-DEBUG mode
1 = Processor is operating in DEBUG mode
bit 29 NODCR:
Indicates whether the dseg memory segment is present and the Debug Control Register is accessible:
0 =dseg is present
1 = No dseg present
bit 28 LSNM:
Controls access of load/store between dseg and main memory:
0 = Load/stores in dseg address range goes to dseg
1 = Load/stores in dseg address range goes to main memory
bit 27 DOZE:
Indicates that the processor was in any kind of Low-Power mode when a debug exception occurred:
0 = Processor not in Low-Power mode when debug exception occurred
1 = Processor in Low-Power mode when debug exception occurred
bit 26 HALT:

Indicates that the internal system bus clock was stopped when the debug exception occurred:
0 = Internal system bus clock stopped
1 = Internal system bus clock running

© 2008 Microchip Technology Inc. Preliminary DS61113C-page 2-51

PIC32MX Family Reference Manual

Register 2-17:
bit 25

bit 24

bit 23

bit 22

bit 21

bit 20

bit 19

bit 18

bit 17-15

bit 14-10

bit 9

bit 8

bit 7-6

bit 5

DEBUG: Register; CP0O Register 23, Select 0 (Continued)
COUNTDM:
Indicates the Count register behavior in DEBUG mode.
0 = Count register stopped in DEBUG mode
1 = Count register is running in DEBUG mode
IBUSEP:
Instruction fetch Bus Error exception Pending. Set when an instruction fetch bus error event occurs
or if a 1’ is written to the bit by software. Cleared when a Bus Error exception on instruction fetch is
taken by the processor, and by Reset. If IBUSEP is set when IEXI is cleared, a Bus Error exception
on instruction fetch is taken by the processor, and IBUSEP is cleared.
MCHECKP:
Indicates that an imprecise Machine Check exception is pending. All Machine Check exceptions are
precise on the PIC32MX processor so this bit will always read as ‘0’.
CACHEEP:
Indicates that an imprecise Cache Error is pending. Cache Errors cannot be taken by the PIC32MX
core so this bit will always read as ‘0.
DBUSEP:
Data access Bus Error exception Pending. Covers imprecise bus errors on data access, similar to
behavior of IBUSEP for imprecise bus errors on an instruction fetch.
IEXI:
Imprecise Error eXception Inhibit controls exceptions taken due to imprecise error indications. Set
when the processor takes a debug exception or exception in DEBUG mode. Cleared by execution of
the DERET instruction; otherwise modifiable by DEBUG mode software. When IEXI is set, the impre-
cise error exception from a bus error on an instruction fetch or data access, cache error, or machine
check is inhibited and deferred until the bit is cleared.
DDBSIMPR:
Indicates that an imprecise Debug Data Break Store exception was taken. All data breaks are precise
on the PIC32MX core, so this bit will always read as ‘0’
DDBLIMPR:
Indicates that an imprecise Debug Data Break Load exception was taken. All data breaks are precise
on the PIC32MX core, so this bit will always read as ‘0’.
VER:
EJTAG version

DEXCCODE:

Indicates the cause of the latest exception in DEBUG mode. The field is encoded as the ExcCode field
in the CAUSE register for those normal exceptions that may occur in DEBUG mode.
Value is undefined after a debug exception.

NOSST:

Indicates whether the single-step feature controllable by the SST bit is available in this implementa-
tion:

0 = Single-step feature available

1 = No single-step feature available

SST:

Controls if debug single step exception is enabled:
0 = No debug single-step exception enabled

1 = Debug single step exception enabled
Reserved:

Must be written as zeros; returns zeros on reads.

DINT:

Indicates that a debug interrupt exception occurred. Cleared on exception in DEBUG mode.
0 = No debug interrupt exception
1 = Debug interrupt exception

DS61113C-page 2-52 Preliminary © 2008 Microchip Technology Inc.

Section 2. MCU

Register 2-17:

bit 4

bit 3

bit 2

bit 1

bit 0

DEBUG: Register; CP0O Register 23, Select 0 (Continued)
DIB:
Indicates that a debug instruction break exception occurred. Cleared on exception in DEBUG mode.
0 = No debug instruction exception
1 = Debug instruction exception

DDBS:

Indicates that a debug data break exception occurred on a store. Cleared on exception in DEBUG
mode.

0 = No debug data exception on a store

1 = Debug instruction exception on a store

Indicates that a debug data break exception occurred on a load. Cleared on exception in DEBUG
mode.

0 = No debug data exception on a load

1 = Debug instruction exception on a load

DBP:

Indicates that a debug software breakpoint exception occurred. Cleared on exception in DEBUG
mode.

0 = No debug software breakpoint exception

1 = Debug software breakpoint exception

DSS:

Indicates that a debug single-step exception occurred. Cleared on exception in DEBUG mode.
0 = No debug single-step exception

1 = Debug single-step exception

© 2008 Microchip Technology Inc. Preliminary DS61113C-page 2-53

PIC32MX Family Reference Manual

2.12.18 DEPC Register (CPO Register 24, Select 0)

The Debug Exception Program Counter (DEPC) register is a read/write register that contains the
address at which processing resumes after a debug exception or DEBUG mode exception has
been serviced.

For synchronous (precise) debug and DEBUG mode exceptions, the DEPC contains either:

» The virtual address of the instruction that was the direct cause of the debug exception, or

» The virtual address of the immediately preceding branch or jump instruction, when the
debug exception causing instruction is in a branch delay slot, and the Debug Branch Delay
(DBD) bit in the Debug register is set.

For asynchronous debug exceptions (debug interrupt), the DEPC contains the virtual address of
the instruction where execution should resume after the debug handler code is executed.

Since the PIC32 family implements the MIPS16e ASE, a read of the DEPC register (via MFCO)
returns the following value in the destination GPR:

GPR[rt] = DebugExceptionPCgz; 1 || | SAMbdeg

That is, the upper 31 bits of the debug exception PC are combined with the lower bit of the
ISAMode field and written to the GPR.

Similarly, a write to the DEPC register (via MTCO) takes the value from the GPR and distributes
that value to the debug exception PC and the ISAMode field, as follows:

DebugExcepti onPC = GPR[rt]3;.1 || O
| SAMbde = 2#0 || GPRrt]g

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the debug exception PC,
and the lower bit of the debug exception PC is cleared. The upper bit of the ISAMode field is
cleared and the lower bit is loaded from the lower bit of the GPR.

DS61113C-page 2-54

Prelimin ary © 2008 Microchip Technology Inc.

Section 2. MCU

Register 2-18: DEPC: Debug Exception Program Counter Register; CPO Register 24, Select 0

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
DEPC<31:24>
bit 31 bit 24
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
DEPC<23:16>
bit 23 bit 16
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
DEPC<15:8>
bit 15 bit 8
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
DEPC<7:0>
bit 7 bit 0
Legend:
R = Readable hit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit n = Bit Value at POR: (‘0’, ‘1", x = Unknown)
bit 31-0 DEPC<31:0>: Debug Exception Program Counter bits

The DEPC register is updated with the virtual address of the instruction that caused the debug excep-
tion. If the instruction is in the branch delay slot, then the virtual address of the immediately preceding
branch or jump instruction is placed in this register.

Execution of the DERET instruction causes a jump to the address in the DEPC.

© 2008 Microchip Technology Inc. Preliminary DS61113C-page 2-55

PIC32MX Family Reference Manual

Register 2-19:

2.12.19 ErrorEPC (CPO Register 30, Select 0)

The ErrorEPC register is a read/write register, similar to the EPC register, except that ErrorEPC
is used on error exceptions. All bits of the ErrorEPC register are significant and must be writable.
It is also used to store the program counter on Reset, Soft Reset, and nonmaskable interrupt
(NMI) exceptions.

The ErrorEPC register contains the virtual address at which instruction processing can resume

after servicing an error. This address can be:

« The virtual address of the instruction that caused the exception

» The virtual address of the immediately preceding branch or jump instruction when the error
causing instruction is in a branch delay slot

Unlike the EPC register, there is no corresponding branch delay slot indication for the ErrorEPC
register.

Since the PIC32 family implements the MIPS16e ASE, a read of the ErrorEPC register (via
MFCO) returns the following value in the destination GPR:

GPR[rt] = Error ExceptionPC;; ; || | SAMbdeq

That is, the upper 31 bits of the error exception PC are combined with the lower bit of the
ISAMode field and written to the GPR.

Similarly, a write to the ErrorEPC register (via MTCO) takes the value from the GPR and distrib-
utes that value to the error exception PC and the ISAMode field, as follows:

Errpr EXCeptionPC = GPR[rt]3; 1 || O
| SAMbde = 2#0 || GPRrt],

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the error exception PC,
and the lower bit of the error exception PC is cleared. The upper bit of the ISAMode field is
cleared and the lower bit is loaded from the lower bit of the GPR.

ErrorEPC: Error Exception Program Counter Register; CP0O Register 30, Select 0

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
ErrorEPC<31:24>
bit 31 bit 24
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
ErrorEPC<23:16>
bit 23 bit 16
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
ErrorEPC<15:8>
bit 15 bit 8
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
ErrorEPC<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit n = Bit Value at POR: (‘0’, ‘1", x = Unknown)

bit 31-0

ErrorEPC<31:0>: Error Exception Program Counter bits

DS61113C-page 2-56

Prelimin ary © 2008 Microchip Technology Inc.

Section 2. MCU

Register 2-20:

2.12.20 DeSave Register (CPO Register 31, Select 0)

The Debug Exception Save (DeSave) register is a read/write register that functions as a simple
memory location. This register is used by the debug exception handler to save one of the GPRs
that is then used to save the rest of the context to a pre-determined memory area (such as in the
EJTAG Probe). This register allows the safe debugging of exception handlers and other types of
code where the existence of a valid stack for context saving cannot be assumed.

DeSave: Debug Exception Save Register; CPO Register 31, Select 0

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
DESAVE<31:24>
bit 31 bit 24
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
DESAVE<23:16>
bit 23 bit 16
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
DESAVE<15:8>
bit 15 bit 8
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
DESAVE<7:0>
bit 7 bit 0
Legend:
R = Readable hit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit n = Bit Value at POR: (‘0’, ‘1", x = Unknown)
bit 31-0 DESAVE<31:0>: Debug Exception Save bits

Scratch Pad register used by Debug Exception code.

© 2008 Microchip Technology Inc. Preliminary DS61113C-page 2-57

PIC32MX Family Reference Manual

2.13 MIPS16e™ EXECUTION

When the core is operating in MIPS16e mode, instruction fetches only require 16-bits of data to
be returned. For improved efficiency, however, the core will fetch 32-bits of instruction data when-
ever the address is word-aligned. Thus for sequential MIPS16e code, fetches only occur for
every other instruction, resulting in better performance and reduced system power.

2.14 MEMORY MODEL

Virtual addresses used by software are converted to physical addresses by the memory man-
agement unit (MMU) before being sent to the CPU busses. The PIC32MX CPU uses a fixed map-
ping for this conversion. For more information regarding the system memory model, see Section
3. “Memory Organization”.

Figure 2-13: Address Translation During SRAM Access

. Virtual Physical
Instruction Address Address
Address > .| Instn
Calculator "I SRAM
SRAM
FMT Interface
Data .| Data
Address > > "| SRAM
Calculator | Virtual Physical
Address Address

2.14.1 Cacheability

The CPU uses the virtual address of an instruction fetch, load or store to determine whether to
access the cache or not. Memory accesses within kseg0, or useg/kuseg can be cached, while
accesses within ksegl are non-cacheable. The CPU uses the CCA bits in the CONFIG register
to determine the cacheability of a memory segment. A memory access is cacheable if its corre-
sponding CCA = 011,.

For more information on cache operation, see Section 4. “Prefetch Cache Module”.
2.14.1.1 Little Endian Byte Ordering

On CPUs that address memory with byte resolution, there is a convention for multi-byte data
items that specify the order of high-order to low-order bytes. Big-endian byte-ordering is where
the lowest address has the Most Significant Byte. Little-endian ordering is where the lowest
address has the Least Significant Byte of a multi-byte datum. The PIC32MX CPU family supports
little-endian byte ordering.

DS61113C-page 2-58 Preliminary © 2008 Microchip Technology Inc.

Section 2. MCU

Figure 2-14: Big Endian Byte Ordering
. Bit #
Higher Word |
Address Address [31 2423 1615 8 7 0
12 [12 || 13 | 14 | 15 |
8 [8 | 10 || 1 |
a4 [4 | 5 e || 7 |
Lower 0 | 0 " || 2 || 3 |} 1 word = 4 bytes
Address
Figure 2-15: Little Endian Byte Ordering
. Bit #
Higher Word |
Address Address [31 2423 1615 87 0]
12 | 15 || 14 | 13 | 12 |
8 [m [10 | 9 | 8 |
a 7 J e | 5 | |
Lower 0 [3 | 2 |1 [o |
Address
Preliminary DS61113C-page 2-59

© 2008 Microchip Technology Inc.

PIC32MX Family Reference Manual

2.15 CPU INSTRUCTIONS, GROUPED BY FUNCTION

CPU instructions are organized into the following functional groups:
» Load and store

» Computational

e Jump and branch

» Miscellaneous

¢ Coprocessor

Each instruction is 32 bits long.

2.15.1 CPU Load and Store Instructions

MIPS processors use a load/store architecture; all operations are performed on operands held
in processor registers and main memory is accessed only through load and store instructions.

2.15.1.1 Types of Loads and Stores

There are several different types of load and store instructions, each designed for a different
purpose:

 Transferring variously-sized fields (for example, LB, SW)

» Trading transferred data as signed or unsigned integers (for example, LHU)

» Accessing unaligned fields (for example, LWR, SWL)

» Atomic memory update (read-modify-write: for instance, LL/SC)

2.15.1.2 List of CPU Load and Store Instructions

The following data sizes (as defined in the AccessLength field) are transferred by CPU load and
store instructions:

* Byte
» Halfword
* Word

Signed and unsigned integers of different sizes are supported by loads that either sign-extend or
zero-extend the data loaded into the register.

Unaligned words and doublewords can be loaded or stored in just two instructions by using a pair
of special instructions. For loads a LWL instruction is paired with a LWR instruction. The load
instructions read the left-side or right-side bytes (left or right side of register) from an aligned word
and merge them into the correct bytes of the destination register.

2.15.1.3 Loads and Stores Used for Atomic Updates

The paired instructions, Load Linked and Store Conditional, can be used to perform an atomic
read-modify-write of word or doubleword cached memory locations. These instructions are used
in carefully coded sequences to provide one of several synchronization primitives, including
test-and-set, bit-level locks, semaphores, and sequencers and event counts.

2.15.1.4 Coprocessor Loads and Stores

If a particular coprocessor is not enabled, loads and stores to that processor cannot execute and
the attempted load or store causes a Coprocessor Unusable exception. Enabling a coprocessor
is a privileged operation provided by the System Control Coprocessor, CPO.

DS61113C-page 2-60

Prelimin ary © 2008 Microchip Technology Inc.

Section 2. MCU

2.15.2 Computational Instructions

Two’s complement arithmetic is performed on integers represented in 2s complement notation.
These are signed versions of the following operations:

« Add

* Subtract

e Multiply

« Divide

The add and subtract operations labelled “unsigned” are actually modulo arithmetic without over-
flow detection.

There are also unsigned versions of multiply and divide, as well as a full complement of shift and
logical operations. Logical operations are not sensitive to the width of the register.

MIPS32 provided 32-bit integers and 32-bit arithmetic.
2.15.2.1 Shift Instructions

The ISA defines two types of shift instructions:

« Those that take a fixed shift amount from a 5-bit field in the instruction word (for instance,
SLL, SRL)

» Those that take a shift amount from the low-order bits of a general register (for instance,
SRAV, SRLV)

2.15.2.2 Multiply and Divide Instructions

The multiply instruction performs 32-bit by 32-bit multiplication and creates either 64-bit or 32-bit
results. Divide instructions divide a 64-bit value by a 32-bit value and create 32-bit results. With
one exception, they deliver their results into the HI and LO special registers. The MUL instruction
delivers the lower half of the result directly to a GPR.

» Multiply produces a full-width product twice the width of the input operands; the low half is
loaded into LO and the high half is loaded into HI.

* Multiply-Add and Multiply-Subtract produce a full-width product twice the width of the input
operations and adds or subtracts the product from the concatenated value of HI and LO.
The low half of the addition is loaded into LO and the high half is loaded into HI.

« Divide produces a quotient that is loaded into LO and a remainder that is loaded into HI.

The results are accessed by instructions that transfer data between HI/LO and the general
registers.

© 2008 Microchip Technology Inc. Preliminary DS61113C-page 2-61

PIC32MX Family Reference Manual

2.15.3 Jump and Branch Instructions
2.15.3.1 Types of Jump and Branch Instructions Defined by the ISA

The architecture defines the following jump and branch instructions:

» PC-relative conditional branch

» PC-region unconditional jump

» Absolute (register) unconditional jump

» A set of procedure calls that record a return link address in a general register.

2.15.3.2 Branch Delays and the Branch Delay Slot

All branches have an architectural delay of one instruction. The instruction immediately following
a branch is said to be in the branch delay slot. If a branch or jump instruction is placed in the
branch delay slot, the operation of both instructions is undefined.

By convention, if an exception or interrupt prevents the completion of an instruction in the branch
delay slot, the instruction stream is continued by re-executing the branch instruction. To permit
this, branches must be restartable; procedure calls may not use the register in which the return
link is stored (usually GPR 31) to determine the branch target address.

2.15.3.3 Branch and Branch Likely
There are two versions of conditional branches; they differ in the manner in which they handle
the instruction in the delay slot when the branch is not taken and execution falls through.

« Branch instructions execute the instruction in the delay slot.

» Branch likely instructions do not execute the instruction in the delay slot if the branch is not
taken (they are said to nullify the instruction in the delay slot).

Although the Branch Likely instructions are included in this specification, software is strongly
encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS Architecture.

2.15.4 Miscellaneous Instructions
2.15.4.1 Instruction Serialization (SYNC and SYNCI)

In normal operation, the order in which load and store memory accesses appear to a viewer out-
side the executing processor (for instance, in a multiprocessor system) is not specified by the
architecture.

The SYNC instruction can be used to create a point in the executing instruction stream at which
the relative order of some loads and stores can be determined: loads and stores executed before
the SYNC are completed before loads and stores after the SYNC can start.

The SYNCI instruction synchronizes the processor caches with previous writes or other modifi-
cations to the instruction stream.

2.15.4.2 Exception Instructions

Exception instructions transfer control to a software exception handler in the kernel. There are
two types of exceptions, conditional and unconditional. These are caused by the following
instructions: syscall, trap, and break.

Trap instructions, which cause conditional exceptions based upon the result of a comparison
System call and breakpoint instructions, which cause unconditional exceptions

2.15.4.3 Conditional Move Instructions

MIPS32 includes instructions to conditionally move one CPU general register to another, based
on the value in a third general register.

DS61113C-page 2-62

Prelimin ary © 2008 Microchip Technology Inc.

Section 2. MCU

2.15.4.4 NOP Instructions

The NOP instruction is actually encoded as an all-zero instruction. MIPS processors special-case
this encoding as performing no operation, and optimize execution of the instruction. In addition,
SSNOP instruction, takes up one issue cycle on any processor, including super-scalar implemen-
tations of the architecture.

2.15.5 Coprocessor Instructions
2.155.1 What Coprocessors Do

Coprocessors are alternate execution units, with register files separate from the CPU. In abstrac-
tion, the MIPS architecture provides for up to four coprocessor units, numbered 0 to 3. Each level
of the ISA defines a number of these coprocessors. Coprocessor 0 is always used for system
control and coprocessor 1 and 3 are used for the floating point unit. Coprocessor 2 is reserved
for implementation-specific use.

A coprocessor may have two different register sets:

» Coprocessor general registers
» Coprocessor control registers

Each set contains up to 32 registers. Coprocessor computational instructions may use the
registers in either set.

2.155.2 System Control Coprocessor 0 (CPO)

The system controller for all MIPS processors is implemented as coprocessor 0 (CPO0), the
System Control Coprocessor. It provides the processor control, memory management, and
exception handling functions.

2.15.5.3 Coprocessor Load and Store Instructions

Explicit load and store instructions are not defined for CPO; for CPO only, the move to and from
coprocessor instructions must be used to write and read the CPO registers. The loads and stores
for the remaining coprocessors are summarized in “Coprocessor Loads and Stores” on page 60.

© 2008 Microchip Technology Inc. Preliminary DS61113C-page 2-63

PIC32MX Family Reference Manual

2.16 CPU INITIALIZATION

Software is required to initialize the following parts of the device after a Reset event.

2.16.1 General Purpose Registers

The CPU register file powers up in an unknown state with the exception of r0 which is always ‘0.
Initializing the rest of the register file is not required for proper operation in hardware. Depending
on the software environment however, several registers may need to be initialized. Some of
these are:

* sp — stack pointer

* gp - global pointer

 fp —frame pointer

2.16.2 Coprocessor 0 State

Miscellaneous CPO states need to be initialized prior to leaving the boot code. There are various
exceptions which are blocked by ERL = 1 or EXL = 1 and which are not cleared by Reset. These
can be cleared to avoid taking spurious exceptions when leaving the boot code.

Table 2-13: CPO Initialization

CPO Register

Action

CAUSE WP (Watch Pending), SWO0/1 (Software Interrupts) should be cleared.

CONFIG Typically, the KO, KU and K23 fields should be set to the desired Cache Coherency Algorithm
(CCA) value prior to accessing the corresponding memory regions.

COUNT® Should be set to a known value if Timer Interrupts are used.

COMPARE® Should be set to a known value if Timer Interrupts are used. The write to compare will also
clear any pending Timer Interrupts (Thus, Count should be set before Compare to avoid any
unexpected interrupts).

STATUS Desired state of the device should be set.

Other CPO state

Other registers should be written before they are read. Some registers are not explicitly writ-
able, and are only updated as a by-product of instruction execution or a taken exception.
Uninitialized bits should be masked off after reading these registers.

Note 1: When the Count register is equal to the Compare register a timer interrupt is signaled. There is a mask bit
in the interrupt controller to disable passing this interrupt to the CPU if desired.

2.16.3 Bus Matrix

The BMX should be initialized before switching to User mode or before executing from DRM. The
values written to the bus matrix are based on the memory layout of the application to be run.

DS61113C-page 2-64

Prelimin ary © 2008 Microchip Technology Inc.

Section 2. MCU

2.17 EFFECTS OF A RESET

2.17.1 MCLR Reset

The PIC32MX core is not fully initialized by hardware Reset. Only a minimal subset of the pro-
cessor state is cleared. This is enough to bring the core up while running in unmapped and
uncached code space. All other processor state can then be initialized by software. Power-up
Reset brings the device into a known state. Soft Reset can be forced by asserting the MCLR pin.
This distinction is made for compatibility with other MIPS processors. In practice, both Resets are
handled identically with the exception of the setting of StatusSR.

2.17.1.1 Coprocessor 0 State

Much of the hardware initialization occurs in Coprocessor O.
Table 2-14: Bits Cleared or Set by Reset

. Cleared Cleared
Bit Name or Set Value By or Set Value By
StatusBEV Cleared 1 Reset or

Soft Reset
StatusTS Cleared 0 Reset or
Soft Reset
StatusSR Cleared 0 Reset Set 1 Soft
Reset
StatusNMI Cleared 0 Reset or
Soft Reset
StatusERL Set 1 Reset or
Soft Reset
StatusRP Cleared 0 Reset or
Soft Reset
Configuration fields related to static inputs Set input value Reset or
Soft Reset
Configk0 Set 010 Reset or
(uncached) | Soft Reset
ConfigkuU Set 010 Reset or
(uncached) | Soft Reset
ConfigK23 Set 010 Reset or
(uncached) | Soft Reset
DebugDM Cleared 0 Reset or
Soft Reset™®
DebugLSNM Cleared 0 Reset or
Soft Reset
DebugIBusgP Cleared 0 Reset or
Soft Reset
DebugIEXI Cleared 0 Reset or
Soft Reset
DebugSSt Cleared 0 Reset or
Soft Reset

Note 1: Unless EJTAGBOOT option is used to boot into DEBUG mode.

© 2008 Microchip Technology Inc. Preliminary DS61113C-page 2-65

PIC32MX Family Reference Manual

2.17.1.2 Bus State Machines

All pending bus transactions are aborted and the state machines in the SRAM interface unit are
reset when a Reset or Soft Reset exception is taken.

2.17.2 Fetch Address

Upon Reset/SoftReset, unless the EJTAGBOOT option is used, the fetch is directed to VA
0xBFC00000 (PA 0x1FC00000). This address is in KSegl, which is unmapped and uncached.

2.17.3 WDT Reset

The status of the CPU registers after a WDT event depends on the operational mode of the CPU
prior to the WDT event.

If the device was not in Sleep a WDT event will force registers to a Reset value.

DS61113C-page 2-66

Prelimin ary © 2008 Microchip Technology Inc.

Section 2. MCU

2.18 RELATED APPLICATION NOTES

This section lists application notes that are related to this section of the manual. These applica-
tion notes may not be written specifically for the PIC32MX device family, but the concepts are
pertinent and could be used with modification and possible limitations. The current application
notes related to the CPU of the PIC32MX family include the following:

Title Application Note #
No related application notes at this time. N/A

Note: Please visit the Microchip web site (www.microchip.com) for additional application
notes and code examples for the PIC32MX family of devices.

© 2008 Microchip Technology Inc. Preliminary DS61113C-page 2-67

http://www.microchip.com
http://www.microchip.com
http://www.microchip.com
http://www.microchip.com

PIC32MX Family Reference Manual

2.19 REVISION HISTORY
Revision A (October 2007)
This is the initial released version of this document.
Revision B (April 2008)

Revised status to Preliminary; Revised Section 2.1 (Key Features); Revised Figure 2-1; Revised
U-0 to r-x.

Revision C (May 2008)

Revise Figure 2-1; Added Section 2.2.3, Core Timer; Change Reserved bits from “Maintain as”
to “Write”.

DS61113C-page 2-68 Preliminary © 2008 Microchip Technology Inc.

MICROCHIP

Section 3. Memory Organization

HIGHLIGHTS

This section of the manual contains the following topics:

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
311

INEFOAUCTION ... ettt 3-2
(000] 0o I 2J=To 11 1=] £ PSP PPPSOOPPPRN 3-3
PIC32MX MEMOIY LAYOULcoiiiiiiiiiiiiiiiiiir ittt reee e e e e e e e e e e e e s e s e sssssssnenenannannaees 3-19
PIC32MX AAArESS MaP ...ttt e e 3-22
BUS IMIIIXttt ettt e ettt e e e e ettt e e e e e s te et e e e e e nneeeeeeeaneeeeeeeeannee 3-35
7L I T W @0 o] { o] PP URR 3-39
Operation in Power-Saving and DEBUG MOUEScoccuvviiiiieiiiiieeniiee e 3-39
€00 EXAMPIES ..ottt ettt 3-40
[DLCES o T I PR RRRRPTPI 3-41
Related APPlICAtioN NOESooiiiiiiiiiie et 3-42
REVISION HISTOMYcoiiieiiiie ettt 3-43

© 2008 Microchip Technology Inc.

Preliminary DS61115D-page 3-1

w

@)
=
«Q
&y
=
N
jab)
=
o
S5

<
@
3
o
<

PIC32MX Family Reference Manual

3.1 INTRODUCTION

The PIC32MX microcontrollers provide 4 GB of unified virtual memory address space. All mem-
ory regions, including program memory, data memory, SFRs, and Configuration registers reside
in this address space at their respective unique addresses. The program and data memories can
be optionally partitioned into user and kernel memories. In addition, the data memory can be
made executable, allowing the PIC32MX to execute from data memory.

Key features of PIC32MX memory organization include the following:

« 32-bit native data width

» Separate User and Kernel mode address spaces

* Flexible program Flash memory partitioning

 Flexible data RAM partitioning for data and program space

» Separate boot Flash memory for protected code

* Robust bus-exception handling to intercept runaway code

» Simple memory mapping with Fixed Mapping Translation (FMT) unit
« Cacheable and non-cacheable address regions

DS61115D-page 3-2

Prelimin ary © 2008 Microchip Technology Inc.

Section 3. Memory Organization

3.2 CONTROL REGISTERS
This section lists the Special Function Registers (SFRs) registers used for setting the RAM and
Flash memory partitions for data and code (for both User and Kernel mode).
The following is a list of available SFRs:
* BMXCON: Configuration Register

BMXCONCLR, BMXCONSET, BMXCONINV: Atomic Bit Manipulation Registers for
BMXCON

* BMXxxxBA: Memory Partition Base Address Registers
BMXxxxBACLR, BMXxxxBASET, BMXxxxBAINV: Atomic Bit Manipulation Registers for
BMXxxxBA

« BMXDRMSZ: Data RAM Size Register

 BMXPFMSZ: Program Flash Size Register

« BMXBOOTSZ: Boot Flash Size Register

Table 3-1 provides a brief summary of all Memory Organization-related registers. Corresponding
registers appear after the summary, followed by a detailed description of each register.

Table 3-1: Memory Organization SFR Summary
Name Bit Bit Bit Bit Bit Bit Bit Bit
31/23/15/7 | 30/22/14/6 | 29/21/13/5 | 28/20/12/4 | 27/19/11/3 | 26/18/10/2 | 25/17/9/1 | 24/16/8/0
BMXCON 31:24 — — — — — BMX- — —
CHEDMA 3
23:16 — — — BMXER- BMXER- BMXER- BMXER- |BMXERRIS
RIXI RICD RDMA RDS
15:8 — — — — — — — — Q
7:0 — BMXWS- — — — BMXARB QZ
DRM Lo
BMXCONCLR 31:.0 Write clears selected bits in BMXCON, read yields undefined value ~N g
BMXCONSET 31:.0 Write sets selected bits in BMXCON, read yields undefined value a -
BMXCONINV 310 Write inverts selected bits in BMXCON, read yields undefined value 5<
BMXDKPBA 31:24 — — — — — — — — S
23:16 — — — — — — — —
15:8 BMXDKPBA<15:8>
7:0 BMXDKPBA<7:0>
BMXDKPBACLR | 31:0 Write clears selected bits in BMXDKPBA, read yields undefined value
BMXDKPBASET | 31:0 Write sets selected bits in BMXDKPBA, read yields undefined value
BMXDKPBAINV | 31:0 Write inverts selected bits in BMXDKPBA, read yields undefined value
BMXDUDBA 31:24 — — — — — — — —
23:16 — — — — — — — —
15:8 BMXDUDBA<15:8>
7:0 BMXDUDBA<7:0>
BMXDUDBACLR | 31:0 Write clears selected bits in BMXDUDBA, read yields undefined value
BMXDUDBASET | 31:0 Write sets selected bits in BMXDUDBA, read yields undefined value
BMXDUDBAINV | 31:0 Write inverts selected bits in BMXDUDBA, read yields undefined value
BMXDUPBA 31:24 — — — — — — — —
23:16 — — — — — — — —
15:8 BMXDUPBA<15:8>
7:0 BMXDUPBA<7:0>
BMXDUPBACLR | 31:0 Write clears selected bits in BMXDUPBA, read yields undefined value
BMXDUPBASET | 31:0 Write sets selected bits in BMXDUPBA, read yields undefined value
BMXDUPBAINV | 31:0 Write inverts selected bits in BMXDUPBA, read yields undefined value

© 2008 Microchip Technology Inc. Prelimin ary DS61115D-page 3-3

PIC32MX Family Reference Manual

Table 3-1: Memory Organization SFR Summary (Continued)
Name Bit Bit Bit Bit Bit Bit Bit Bit
31/23/15/7 | 30/22/14/6 | 29/21/13/5 | 28/20/12/4 | 27/19/11/3 | 26/18/10/2 | 25/17/9/1 | 24/16/8/0
BMXDRMSZ 31:24 BMXDRMSZ<31:24>
23:16 BMXDRMSZ<23:16>
15:8 BMXDRMSZ<15:8>
7:0 BMXDRMSZ<7:0>
BMXPUPBA 31:24 — — — — — — — —
23:16 — — — — BMXPUPBA<19:16>
15:8 BMXPUPBA<15:8>
7:0 BMXPUPBA<7:0>

BMXPUPBACLR | 31:0

Write clears selected bits in BMXPUPBA, read yields undefined value

BMXPUPBASET | 31:.0

Write sets selected bits in BMXPUPBA, read yields undefined value

BMXPUPBAINV | 31:0

Write inverts selected bits in BMXPUPBA, read yields undefined value

BMXPFMSZ 31:24 BMXPFMSZ<31:24>
23:16 BMXPFMSZ<23:16>

15:8 BMXPFMSZ<15:8>

7:0 BMXPFMSZ<7:0>
BMXBOOTSZ 31:24 BMXBOOTSZ<31:24>
23:16 BMXBOOTSZ<23:16>

15:8 BMXBOOTSZ<15:8>

7:0 BMXBOOTSZ<7:0>

DS61115D-page 3-4

Prelimin ary © 2008 Microchip Technology Inc.

Section 3. Memory Organization

Register 3-1: BMXCON: Bus Matrix Configuration Register
r-x r-x r-x r-x r-x R/W-0 r-x r-x
— — = — — BMX- — =
CHEDMA
bit 31 bit 24
r-x r-x r-x R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
— — = BMXERRIXI | BMXER- BMXER- BMXER- | BMXERRIS
RICD RDMA RDS
bit 23 bit 16
r-x r-x r-x r-x r-x r-x r-x r-x
bit 15 bit 8
r-x R/W-1 r-x r-x r-x R/W-0 R/W-0 R/W-0
— BMXWS- — — — BMXARB<2:0>
DRM
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit n = Bit Value at POR: (‘0’, ‘1", x = Unknown)
bit 31-27 Reserved: Write ‘0’; ignore read
bit 26 BMXCHEDMA: BMX PFM Cacheability for DMA Accesses bit
1 = Enable program Flash memory (data) cacheability for DMA accesses
(requires cache to have data caching enabled)
0 = Disable program Flash memory (data) cacheability for DMA accesses
(hits are still read from the cache, but misses do not update the cache)
bit 25 - 21 Reserved: Write ‘0’; ignore read
bit 20 BMXERRIXI: Enable Bus Error from IXI bit
1 = Enable bus error exceptions for unmapped address accesses initiated from IXI shared bus
0 = Disable bus error exceptions for unmapped address accesses initiated from IXI shared bus
bit 19 BMXERRICD: Enable Bus Error from ICD Debug Unit bit
1 = Enable bus error exceptions for unmapped address accesses initiated from ICD
0 = Disable bus error exceptions for unmapped address accesses initiated from ICD
bit 18 BMXERRDMA: Bus Error from DMA bit
1 = Enable bus error exceptions for unmapped address accesses initiated from DMA
0 = Disable bus error exceptions for unmapped address accesses initiated from DMA
bit 17 BMXERRDS: Bus Error from CPU Data Access bit (disabled in DEBUG mode)
1 = Enable bus error exceptions for unmapped address accesses initiated from CPU data access
0 = Disable bus error exceptions for unmapped address accesses initiated from CPU data access
bit 16 BMXERRIS: Bus error from CPU Instruction Access bit (disabled in DEBUG mode)
1 = Enable bus error exceptions for unmapped address accesses initiated from CPU instruction
access
0 = Disable bus error exceptions for unmapped address accesses initiated from CPU instruction
access
bit 15 -7 Reserved: Write ‘0’; ignore read

© 2008 Microchip Technology Inc. Prelimin ary DS61115D-page 3-5

w

@)
=
«Q
&y
=
N
jab)
=
o
S5

<
@
3
o
<

PIC32MX Family Reference Manual

Register 3-1: BMXCON: Bus Matrix Configuration Register (Continued)
bit 6 BMXWSDRM: CPU Instruction or Data Access from Data RAM Wait State bit
1 = Data RAM accesses from CPU have one wait state for address setup
0 = Data RAM accesses from CPU have zero wait states for address setup
bit 5-3 Reserved: Write ‘0’; ignore read
bit 2-0 BMXARB<2:0>: Bus Matrix Arbitration Mode bits
111. .. 011 = Reserved (using these Configuration modes will produce undefined behavior)
010 = Arbitration Mode 2
001 = Arbitration Mode 1
000 = Arbitration Mode 0

DS61115D-page 3-6 Prelimin ary © 2008 Microchip Technology Inc.

Section 3. Memory Organization

Register 3-2: BMXCONCLR: BMXCON Clear Register
Write clears selected bits in BMXCON, read yields undefined value
bit 31 bit 0
bit 31-0 Clears selected bits in BMXCON
A write of ‘1’ in one or more bit positions clears the corresponding bit(s) in BMXCON register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.
Example: BUXCONCLR = 0x00000101 will clear bits 15 and 0 in BMXCON register.
Register 3-3: BMXCONSET: BMXCON Set Register
Write sets selected bits in BMXCON, read yields undefined value
bit 31 bit 0
bit 31-0 Sets selected bits in BMXCON
A write of ‘1’ in one or more bit positions sets the corresponding bit(s) in BMXCON register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.
Example: BMXCONSET = 0x00000101 will set bits 15 and 0 in BMXCON register.
Register 3-4: BMXCONINV: BMXCON Invert Register
Write inverts selected bits in BMXCON, read yields undefined value
bit 31 bit 0
bit 31-0 Inverts selected bits in BMXCON

A write of ‘1’ in one or more bit positions inverts the corresponding bit(s) in BMXCON register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.

Example: BMXCONI NV = 0x00000101 will invert bits 15 and 0 in BMXCON register.

© 2008 Microchip Technology Inc. Prelimin ary DS61115D-page 3-7

w

@)
=
«Q
&y
=
N
jab)
=
o
S5

<
@
3
o
<

PIC32MX Family Reference Manual

Register 3-5: BMXDKPBA: Data RAM Kernel Program Base Address Register

r-x r-x r-x r-x r-x r-x r-x r-x
bit 31 bit 24
r-x r-x r-x r-x r-x r-x r-x r-x
bit 23 bit 16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0 R-0 R-0
BMXDKPBA<15:8>
bit 15 bit 8
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
BMXDKPBA<7:0>
bit 7 bit 0
Legend:
R = Readable hit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)
bit 31-16 Reserved: Write ‘0’; ignore read
bit 15-11 BMXDKPBA<15:11>: DRM Kernel Program Base Address bits
When non-zero, this value selects the relative base address for kernel program space in RAM
bit 10-0 BMXDKPBA<10:0>: Read-Only bits

Value is always ‘0’, which forces 2 KB increments

DS61115D-page 3-8 Prelimin ary © 2008 Microchip Technology Inc.

Section 3. Memory Organization

Register 3-6: BMXDKPBACLR: BMXDKPBA Clear Register
Write clears selected bits in BMXDKPBA, read yields undefined value
bit 31 bit 0
bit 31-0 Clears selected bits in BMXDKPBA
A write of ‘1’ in one or more bit positions clears the corresponding bit(s) in BMXDKPBA register and
does not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.
Example: BUXDKPBACLR = 0x00000101 will clear bits 15 and 0 in BMXDKPBA register.
Register 3-7: BMXDKPBASET: BMXDKPBA Set Register
Write sets selected bits in BMXDKPBA, read yields undefined value
bit 31 bit 0
bit 31-0 Sets selected bits in BMXDKPBA
A write of ‘1’ in one or more bit positions sets the corresponding bit(s) in BMXDKPBA register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.
Example: BMXDKPBASET = 0x00000101 will set bits 15 and 0 in BMXDKPBA register.
Register 3-8: BMXDKPBAINV: BMXDKPBA Invert Register
Write inverts selected bits in BMXDKPBA, read yields undefined value
bit 31 bit 0
bit 31-0 Inverts selected bits in BMXDKPBA

A write of ‘1’ in one or more bit positions inverts the corresponding bit(s) in BMXDKPBA register and
does not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.

Example: BMXDKPBAI NV = 0x00000101 will invert bits 15 and 0 in BMXDKPBA register.

© 2008 Microchip Technology Inc. Prelimin ary DS61115D-page 3-9

w

@)
=
«Q
&y
=
N
jab)
=
o
S5

<
@
3
o
<

PIC32MX Family Reference Manual

Register 3-9: BMXDUDBA: Data RAM User Data Base Address Register

r-x r-x r-x r-x r-x r-x r-x r-x
bit 31 bit 24
r-X r-X r-x r-X r-x r-x r-X r-x
bit 23 bit 16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0 R-0 R-0
BMXDUDBA<15:8>
bit 15 bit 8
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
BMXDUDBA<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)
bit 31-16 Reserved: Write ‘0’; ignore read
bit 15-11 BMXDUDBA<15:11>: DRM User Data Base Address bits

When non-zero, the value selects the relative base address for User mode data space in RAM
Note: If non-zero, the value must be greater than BMXDKPBA.

bit 10-0 BMXDUDBA<10:0>: Read-Only bits
Value is always ‘0’, which forces 2 KB increments

DS61115D-page 3-10 Preliminary © 2008 Microchip Technology Inc.

Section 3. Memory Organization

Register 3-10:

BMXDUDBACLR: BMXDUDBA Clear Register

Write clears selected bits in BMXDUDBA, read yields undefined value

bit 31

bit 0

bit 31-0

Register 3-11:

Clears selected bits in BMXDUDBA

A write of ‘1’ in one or more bit positions clears the corresponding bit(s) in BMXDUDBA register and
does not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.

Example: BUXDUDBACLR = 0x00000101 will clear bits 15 and 0 in BMXDUDBA register.

BMXDUDBASET: BMXDUDBA Set Register

Write sets selected bits in BMXDUDBA, read yields undefined value

bit 31

bit 0

bit 31-0

Register 3-12:

Sets selected bits in BMXDUDBA
A write of ‘1’ in one or more bit positions sets the corresponding bit(s) in BMXDUDBA register and
does not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.

Example: BMXDUDBASET = 0x00000101 will set bits 15 and 0 in BMXDUDBA register.

BMXDUDBAINV: BMXDUDBA Invert Register

Write inverts selected bits in BMXDUDBA, read yields undefined value

bit 31

bit 0

bit 31-0

Inverts selected bits in BMXDUDBA

A write of ‘1’ in one or more bit positions inverts the corresponding bit(s) in BMXDUDBA register and
does not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.

Example: BMXDUDBAI NV = 0x00000101 will invert bits 15 and 0 in BMXDUDBA register.

© 2008 Microchip Technology Inc. Preliminary DS61115D-page 3-11

w

@)
=
«Q
&y
=
N
jab)
=
o
S5

<
@
3
o
<

PIC32MX Family Reference Manual

Register 3-13: BMXDUPBA: Data RAM User Program Base Address Register

r-x r-x r-x r-x r-x r-x r-x r-x
bit 31 bit 24
r-x r-x r-x r-x r-x r-x r-x r-x
bit 23 bit 16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0 R-0 R-0
BMXDUPBA<15:8>
bit 15 bit 8
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
BMXDUPBA<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)
bit 31-16 Reserved: Write ‘0’; ignore read
bit 15-11 BMXDUPBA<15:11>: DRM User Program Base Address bits

When non-zero, the value selects the relative base address for User mode program space in RAM
Note: If non-zero, BMXDUPBA must be greater than BMXDUDBA.

bit 10-0 BMXDUPBA<10:0>: Read-Only bits
Value is always ‘0’, which forces 2 KB increments

DS61115D-page 3-12 Preliminary © 2008 Microchip Technology Inc.

Section 3. Memory Organization

Register 3-14:

BMXDUPBACLR: BMXDUPBA Clear Register

Write clears selected bits in BMXDUPBA, read yields undefined value

bit 31

bit 0

bit 31-0

Register 3-15:

Clears selected bits in BMXDUPBA

A write of ‘1’ in one or more bit positions clears the corresponding bit(s) in BMXDUPBA register and
does not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.

Example: BUXDUPBACLR = 0x00000101 will clear bits 15 and 0 in BMXDUPBA register.

BMXDUPBASET: BMXDUPBA Set Register

Write sets selected bits in BMXDUPBA, read yields undefined value

bit 31

bit 0

bit 31-0

Register 3-16:

Sets selected bits in BMXDUPBA

A write of ‘1’ in one or more bit positions sets the corresponding bit(s) in BMXDUPBA register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.

Example: BMXDUPBASET = 0x00000101 will set bits 15 and 0 in BMXDUPBA register.

BMXDUPBAINV: BMXDUPBA Invert Register

Write inverts selected bits in BMXDUPBA, read yields undefined value

bit 31

bit 0

bit 31-0

Inverts selected bits in BMXDUPBA
A write of ‘1’ in one or more bit positions inverts the corresponding bit(s) in BMXDUPBA register and
does not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.

Example: BMXDUPBAI NV = 0x00000101 will invert bits 15 and 0 in BMXDUPBA register.

© 2008 Microchip Technology Inc. Preliminary DS61115D-page 3-13

w

@)
=
«Q
&y
=
N
jab)
=
o
S5

<
@
3
o
<

PIC32MX Family Reference Manual

Register 3-17:

BMXDRMSZ: Data RAM Size Register

R = Readable hit
U = Unimplemented bit

W = Writable bit P = Programmable bit
-n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

R R R R R R R R
BMXDRMSZ<31:24>
bit 31 bit 24
R R R R R R R R
BMXDRMSZ<23:16>
bit 23 bit 16
R R R R R R R R
BMXDRMSZ<15:8>
bit 15 bit 8
R R R R R R R R
BMXDRMSZ<7:0>
bit 7 bit 0
Legend:

r = Reserved bit

bit 31-0

BMXDRMSZ: Data RAM Memory (DRM) Size bits

Static value that indicates the size of the Data RAM in bytes:
....... 0x00002000 = device has 8 KB RAM

0x00004000 = device has 16 KB RAM

0x00008000 = device has 32 KB RAM

DS61115D-page 3-14

Preliminary

© 2008 Microchip Technology Inc.

Section 3. Memory Organization

Register 3-18: BMXPUPBA: Program Flash (PFM) User Program Base Address Register

r-x r-x r-x r-x r-x r-x r-x r-x
bit 31 bit 24
r-X r-X r-x r-X R/W-0 R/W-0 R/W-0 R/W-0
— — — — BMXPUPBA<19:16>
bit 23 bit 16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0 R-0 R-0
BMXPUPBA<15:8>
bit 15 bit 8
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
BMXPUPBA<7:0>
bit 7 bit 0
Legend:
R = Readable hit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown) 3
bit 31-20 Unimplemented: Read as ‘0’
bit 19-11 BMXPUPBA<19:11>: Program Flash (PFM) User Program Base Address bits
bit 10-0 BMXPUPBA<10:0>: Read-Only bits

Value is always ‘0’, which forces 2 KB increments

o
(@]

55
2.3
N o
D 3
o<
o

>

© 2008 Microchip Technology Inc. Preliminary DS61115D-page 3-15

PIC32MX Family Reference Manual

Register 3-19:

BMXPUPBACLR: BMXPUPBA Clear Register

Write clears selected bits in BMXPUPBA, read yields undefined value

bit 31

bit 0

bit 31-0

Register 3-20:

Clears selected bits in BMXPUPBA

A write of ‘1’ in one or more bit positions clears the corresponding bit(s) in BMXPUPBA register and
does not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.

Example: BUXPUPBACLR = 0x00000101 will clear bits 15 and 0 in BMXPUPBA register.

BMXPUPBASET: BMXPUPBA Set Register

Write sets selected bits in BMXPUPBA, read yields undefined value

bit 31

bit 0

bit 31-0

Register 3-21:

Sets selected bits in BMXPUPBA

A write of ‘1’ in one or more bit positions sets the corresponding bit(s) in BMXPUPBA register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.

Example: BMXPUPBASET = 0x00000101 will set bits 15 and 0 in BMXPUPBA register.

BMXPUPBAINV: BMXPUPBA Invert Register

Write inverts selected bits in BMXPUPBA, read yields undefined value

bit 31

bit 0

bit 31-0

Inverts selected bits in BMXPUPBA

A write of ‘1’ in one or more bit positions inverts the corresponding bit(s) in BMXPUPBA register and
does not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.

Example: BMXPUPBAI NV = 0x00000101 will invert bits 15 and 0 in BMXPUPBA register.

DS61115D-page 3-16 Preliminary © 2008 Microchip Technology Inc.

Section 3. Memory Organization

Register 3-22: BMXPFMSZ: Program Flash (PFM) Size Register

R R R R R R R R
BMXPFMSZ<31:24>
bit 31 bit 24
R R R R R R R R
BMXPFMSZ<23:16>
bit 23 bit 16
R R R R R R R R
BMXPFMSZ<15:8>
bit 15 bit 8
R R R R R R R R
BMXPFMSZ<7:0>
bit 7 bit 0
Legend:
R = Readable hit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown) 3
bit 31-0 BMXPFMSZ: Program Flash Memory (PFM) Size bits

Static value that indicates the size of the PFM in bytes:
0x00008000 = device has 32 KB Flash

....... 0x00010000 = device has 64 KB Flash
0x00020000 = device has 128 KB Flash
0x00040000 = device has 256 KB Flash
0x00080000 = device has 512 KB Flash

o
(@]

55
2.3
N o
D 3
o<
o

>

© 2008 Microchip Technology Inc. Preliminary DS61115D-page 3-17

PIC32MX Family Reference Manual

Register 3-23:

BMXBOOTSZ: Boot Flash (IFM) Size Register

R = Readable hit
U = Unimplemented bit

W = Writable bit P = Programmable bit
-n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

R R R R R R R R
BMXBOOTSZ<31:24>
bit 31 bit 24
R R R R R R R R
BMXBOOTSZ<23:16>
bit 23 bit 16
R R R R R R R R
BMXBOOTSZ<15:8>
bit 15 bit 8
R R R R R R R R
BMXBOOTSZ<7:0>
bit 7 bit 0
Legend:

r = Reserved bit

bit 31-0

BMXBOOTSZ: Boot Flash Memory (BFM) Size bits

Static value that indicates the size of the Boot PFM in bytes:
0x00003000 = device has 12 KB boot Flash

DS61115D-page 3-18

Preliminary

© 2008 Microchip Technology Inc.

Section 3. Memory Organization

3.3 PIC32MX MEMORY LAYOUT

The PIC32MX microcontrollers implement two address spaces: virtual and physical. All hardware
resources, such as program memory, data memory and peripherals, are located at their respec-
tive physical addresses. Virtual addresses are exclusively used by the CPU to fetch and execute
instructions. Physical addresses are used by peripherals, such as DMA and Flash controllers,
that access memory independently of the CPU.

Figure 3-1: Virtual to Physical Fixed Memory Mapping
Virtual Memory Map Physical Memory Map
OXFFFFFFFF 7 OXFFFFFFFF
) 0xC0000000 4
) I iti . 0xBF000000
W////////////////////////% Internal Flash OXBDO00000 3
OXBEBO0000 Internal Peripherals (User Partition) N I':MXPUPBA o
o 7 =
é 0xBD000000 Internal Program Flash ////////////% S % %
X 2.3
OXAFFFFFFF Reserved Reserved D ©
0x40000000 o
0xA0000000 Internal RAM g
0x9FC00000 | Internal Boot Flash
.
& 0x9D000000
Ox8FFFFFFF Reserved
T Internal RAM Internal Boot Flash OXLFC00000
nternal ser Internal Peripherals
© 0x7F000000 . Partition) W////////////////////////A 0x1F800000
Lg Internal Program Fla 0x1D000000
© ox7boooooo L Partition) 777777
VERT [T 2
Reserved Internal RAM
0x00000000 0x00000000

© 2008 Microchip Technology Inc.

Preliminary

DS61115D-page 3-19

PIC32MX Family Reference Manual

The entire 4 GB virtual address space is divided into two primary regions: user and kernel space.
The lower 2 GB of space from the User mode segment is called useg/kuseg. A User mode appli-
cation must reside and execute in the useg segment. The useg segment is also available to all
Kernel mode applications, which is why it is also named kuseg — to indicate that it is available to
both User and Kernel modes. When operating in User mode, the bus matrix must be configured
to make part of the Flash and data memory available in the useg/kuseg segment. See
Section 3.4 for more information.

Figure 3-2: User/Kernel Address Segments

OXFFFFFFFF
KERNEL
SEGMENTS
(KSEG 0,1,2,3)
0x80000000
OX7FFFFFFF
USER / KERNEL
SEGMENT
(USEG / KUSEG)
0x00000000

The upper 2 GB of virtual address space forms the kernel only space. The kernel space is divided
into four segments of 512 MB each: kseg 0, kseg 1, kseg 2 and kseg 3. Only Kernel mode appli-
cations can access kernel space memory. The kernel space includes all peripheral registers.
Consequently, only Kernel mode applications can monitor and manipulate peripherals. Only kseg
0 and kseg 1 segments point to real memory resources. Segment kseg 2 is available to the
EJTAG probe debugger, as explained in the MIPS documentation (refer to the EJTAG specifica-
tion). The PIC32MX only uses kseg 0 and kseg 1 segments. The Boot Flash Memory (BFM), Pro-
gram Flash Memory (PFM), Data RAM Memory (DRM), and peripheral SFRs are accessible from
either kseg O or kseg 1.

The Fixed Mapping Translation (FMT) unit translates the memory segments into corresponding
physical address regions. Figure 3-1 shows the fixed mapping scheme implemented by the
PIC32MX core between the virtual and physical address space. A virtual memory segment may
also be cached, provided the cache module is available on the device. Please note that the
kseg-1 memory segment is not cacheable, while kseg-0 and useg/kuseg are cacheable.

The mapping of the memory segments depend on the CPU error level (set by the ERL bit in the
CPU Status register). Error Level is set (ERL = 1) by the CPU on a Reset, Soft Reset, or NMI. In
this mode, the processor runs in Kernel mode and useg/kuseg are treated as unmapped and
uncached regions, and the mapping in Figure 3-1 does not apply. This mode is provided for
compatibility with other MIPS processor cores that use a TLB-based MMU. The C start-up code
clears the ERL bit to zero, so that when application software starts up, it sees the proper virtual
to physical memory mapping as depicted in Figure 3-1.

DS61115D-page 3-20

Prelimin ary © 2008 Microchip Technology Inc.

Section 3. Memory Organization

Segments kseg 0 and kseg 1 are always translated to physical address 0x0. This translation
arrangement allows the CPU to access identical physical addresses from two separate virtual
addresses: one from kseg 0 and the other from kseg 1. As a result, the application can choose
to execute the same piece of code as either cached or uncached. See Section 4. “Prefetch
Cache Module” for more information. The on-chip peripherals are visible through kseg 1
segment only (uncached access).

w

o
(@]

55
2.3
N o
D 3
o<
o

>

© 2008 Microchip Technology Inc. Preliminary DS61115D-page 3-21

PIC32MX Family Reference Manual

3.4 PIC32MX ADDRESS MAP

The Program Flash Memory is divided into kernel and user partitions. The kernel program Flash
space starts at physical address 0x1D000000, whereas the user program Flash space starts at
physical address 0xBD0O00000 + BMXPUDBA register value. Similarly, the internal RAM is also
divided into kernel and user partitions. The kernel RAM space starts at physical address
0x00000000, whereas the user RAM space starts at physical address 0xBFO00000 +
BMXDUDBA register value. By default, the full Flash memory and RAM are mapped to Kernel
mode application only.

Please note that the BMXxxxBA register settings must match the memory model of the target
software application. If the linked code does not match the register values, the program may not
run and may generate bus error exceptions on start-up.

Note: The Program Flash Memory is not writable through its address map. A write to the
PFM address range causes a bus error exception.

34.1 Virtual to Physical Address Calculation (and Vice-Versa)

To translate the kernel address (KSEGO or KSEG1) to a physical address, perform a “Bitwise
AND” operation of the virtual address with OX1FFFFFFF:

Physical Address = Virtual Address and Ox1FFFFFFF

For physical address to KSEGO virtual address translation, perform a “Bitewise OR” operation of
the physical address with 0x80000000:

KSEGO Virtual Address = Physical Address | 0x80000000

For physical address to KSEG1 virtual address translation, perform a “Bitewise OR” operation of
the physical address with 0XxA0000000:

KSEG1 Virtual Address = Physical Address | 0xA0000000

To translate from KSEGO to KSEGL1 virtual address, perform a “Bitewise OR” operation of the
KSEGO virtual address with 0x20000000:

KSEGL1 Virtual Address = KSEGO Virtual Address | 0x20000000

DS61115D-page 3-22

Prelimin ary © 2008 Microchip Technology Inc.

Section 3. Memory Organization

Table 3-2: PIC32MX Address Map
Virtual Addresses Physical Addresses Size in Bytes
Memory Type | Begin Address | End Address Begin Address End Address calculation
Boot Flash 0xBFC00000 OxBFCO2FFF Ox1FC00000 Ox1FCO2FFF 12 KB
o Program 0xBD000000 0xBD000000 + 0x1D000000 0x1D00000 + BMXPUPBA
S Flash® BMXPUPBA - 1 BMXPUPBA - 1
ﬁ Program 0x9D000000 0x9D000000 + 0x1D000000 0x1D000000 + BMXPUPBA
& Flash(® BMXPUPBA - 1 BMXPUPBA - 1
3 RAM (Data) 0x80000000 0x80000000 + 0x00000000 BMXDKPBA - 1 BMXDKPBA
% BMXDKPBA - 1
% RAM (Prog) 0x80000000 + 0x80000000 + BMXDKPBA BMXDUDBA -1 BMXDUDBA -
X BMXDKPBA BMXDUDBA -1 BMXDKPBA
Peripheral OxBF800000 OxBF8FFFFF Ox1F800000 Ox1F8FFFFF 1 MB
& Program 0x7D000000 + | 0x7D000000 + 0xBD000000 + 0xBDO000000 + PFM Size -
(% Flash BMXPUPBA PFM Size - 1 BMXPUPBA PFM Size - 1 BMXPUPBA
@ RAM (Data) | Ox7F000000 + | Ox7F000000 + 0xBF000000 + 0xBF000000 + BMXDUPBA -
o BMXDUDBA BMXDUPBA - 1 BMXDUDBA BMXDUPBA - 1 BMXDUDBA
©
2 RAM (Prog) | 0x7F000000 + | 0x7F000000 + 0xBF000000 + 0xBF000000 + DRM Size -
5 BMXDUPBA | RAM Size® -1 BMXDUPBA RAM Size®) - 1 BMXDUPBA
> 3
Note 1: Program Flash virtual addresses in the non-cacheable range (KSEG1).
2: Program Flash virtual addresses in the cacheable and prefetchable range (KSEGO). e
3: The RAM size varies between PIC32MX device variants. 6 =
e 2o
3.4.2 Program Flash Memory Partitioning 2.3
N
The Program Flash Memory can be partitioned for User and Kernel mode programs as shown in Q 2
Figure 3-1. 5<
At Reset, the User mode partition does not exist (BMXPUPBA is initialized to 0). The entire)

Program Flash Memory is mapped to Kernel mode program space starting at virtual address
KSEG1: 0xBD0O0000O (or KSEGO: 0x9D000000). To set up a partition for the User mode
program, initialize BMXPUPBA as follows:

BMXPUPBA = BMXPFMSZ — USER_FLASH_PGM_SZ

The USER_FLASH_PGM_SZ is the partition size of the User mode program. BMXPFMSZ is the
bus matrix register that holds the total size of Program Flash Memory.

Example:

Assuming the PIC32MX device has 512 Kbytes of Flash memory, the BMXPFMSZ will
contain 0x00080000.

To create a user Flash program partition of 20 Kbytes (0x5000):
BMXPUPBA = 0x80000 — 0x5000 = 0x7B000

The size of the user Flash will be 20K and the size left for the Kernel Flash will be
512k — 20k = 492K.

The user Flash partition will extend from 0x7D07B000 to 0x7D07FFFF (virtual addresses).

The Kernel mode partition always starts from KSEG1: 0OxBD000000 or KSEGO0: 0x9D000000. In
the above example, the Kernel partition will extend from 0xBD000000 to OxBDO7AFFF
(492 Kbytes in size).

© 2008 Microchip Technology Inc. Preliminary DS61115D-page 3-23

PIC32MX Family Reference Manual

Figure 3-3: Flash Partitioning

Virtual Address Physical Address
KSEGO: 0x9D000000
+BMXPUPBA =
KSEG1: 0xBD000000 43
+BMXPUPBA Flash Partition for %
Kernel Program >
(KSEG 0/1) =
2]
KSEGO: 0x9D000000 0x1D000000 v >
KSEG1: 0xBD0O00000 =
A G
) (]
Optional it
Flash Partition for oy
User Program s
(USEG/KUSEG) %
0x7D000000+ 0xBDO000000+ v @
BMXPUPBA BMXPUPBA =
0x00000000

Note 1: Kernel Flash Size = BMXPUPBA
2: User Flash Size = BMXPFMSZ-BMXPUPBA

3: IfBMXPUPBAis ‘0’, then:
K Flash Size = BMXPFMSZ (i.e., all the Flash)
Usr Flash Size =0

3.4.3 RAM Partitioning

The RAM memory can be divided into 4 partitions. These are:

1.
2.
3.
4.,

Kernel Data
Kernel Program
User Data
User Program

In order to execute from data RAM, a kernel or user program partition must be defined. At
Power-on Reset, the entire data RAM is assigned to the kernel data partition. This partition
always starts from the base of the data RAM. See Figure 3-4 for details.

Note 1: To properly partition the RAM, you have to program all of the following registers:

BMXDKPBA, BMXDUDBA and BMXDUPBA.
2: The size of the available RAM is given by the BMXDRMSZ register.

DS61115D-page 3-24

Prelimin ary © 2008 Microchip Technology Inc.

Section 3. Memory Organization

Figure 3-4: RAM Partitioning

Virtual Address Physical Address
KSEGO: 0x80000000
+BMXDUDBA 0x00000000
KSEG1: 0xA0000000 +BMXDUDBA 4 - A
+BMXDUDBA Optional >3
Kernel Program Partition <o
KSEG 0/1 o g
KSEGO: 0x80000000 %%
+BMXDKPBA 0x00000000 v 3
KSEG1: 0xA0000000 +BMXDKPBA A o =
> o
+*BMXDKPBA Kernel Data Partition <5
KSEG 0/1 0n e
N O
%R
ES
KSEGO0: 0x80000000 0x00000000 v
KSEG1: 0xA0000000
A -
Optional)§> e
User Program RAM Partition nd
(USEG/KUSEG) N 8 3
=9
0x7F000000 0xBF000000 v 3
A
+BMXDUPBA +BMXDUPBA g c O
. [72]
Optional 20 =
User RAM Partition 0o QZ
(USEG/KUSEG) 52 % o)
>
0x7F000000 0xBFO00000 w N g
+BMXDUDBA +BMXDUDBA Q=
o<
0x00000000 g

Note 1: Kernel Data RAM Size = BMXDKPBA

Kernel Program RAM Size = BMXDUDBA — BMXDKPBA
User Data RAM Size = BMXDUPBA — BMXDUDBA
User Program RAM Size = DRM Size - BMXDUPBA

If BMXDKPBA, BMXDUDBA or BMXDUPBA is ‘0’, then:
Kernel Data RAM Size = BMXDRMSZ (i.e., all RAM)
Kernel Program RAM Size =0

User Data RAM Size =0

User Program RAM Size =0

© 2008 Microchip Technology Inc. Preliminary DS61115D-page 3-25

PIC32MX Family Reference Manual

3.4.3.1 Kernel Data RAM Partition

The kernel data RAM partition is located at virtual address KSEGO0:0x80000000,
KSEG1:0xA0000000. It is always active and cannot be disabled.

Please note that if any of the BMXDKPBA, BMXDUDBA or BMXDUPBA register is ‘0’, then the
whole RAM is assigned to kernel data RAM (i.e., the size of the kernel data RAM partition is given
by the BMXDRMSZ register value; see Figure 3-5). Otherwise, the size of the kernel data RAM
partition is given by the value of the BMXDKPBA register. See Figure 3-6.

The kernel data RAM partition exists on Reset and takes up all the available RAM, as the BMXD-
KPBA, BMXDUDBA and BMXDUPBA registers default to zero at any Reset.

Figure 3-5: RAM Partitioning When BMXDKPBA, BMXDUDBA or BMXDUPBA =0

Virtual Address Physical Address

BMXDRMSZ

Kernel Data RAM Partition
KSEG 0/1

9715 NV Breq [auIad

KSEGO: 0x80000000
KSEG1: 0xA0000000

Note: Kernel Data RAM Size = BMXDRMSZ

DS61115D-page 3-26 Preliminary © 2008 Microchip Technology Inc.

Section 3. Memory Organization

Figure 3-6: Kernel Data RAM Partitioning

Virtual Address Physical Address

BMXDRMSZ

Other Data RAM Partitions

KSEGO0: 0x80000000

+BMXDKPBA
KSEG1: 0xA0000000 4
+BMXDKPBA P
5
@
Kernel Data RAM Partition 8 3
KSEG 0/1 o
p3)
>
<
(2]
N
[¢]
KSEGO0: 0x80000000 v

KSEG1: 0xA0000000

o
(@]

55
2.3
N o
D 3
o<
o

>

Note 1: Kernel Data RAM Size = BMXDKPBA.
2: None of the registers BMXDKPBA, BMXDUDBA or BMXDUPBA = 0.

© 2008 Microchip Technology Inc. Preliminary DS61115D-page 3-27

PIC32MX Family Reference Manual

3.4.3.2 Kernel Program RAM Partition

The kernel program RAM partition is required if code needs to be executed from data RAM in
Kernel mode.

This partition starts at KSEG0:0x80000000 + BMXDKPBA (KSEG1:0xA0000000 +
BMXDKPBA), and its size is given by BMXDUDBA — BMXDKPBA. See Figure 3-7.

The kernel program RAM partition does not exist on Reset, as the BMXDKPBA and BMXDUDBA
registers default to zero at Reset.

Figure 3-7: Kernel Program RAM Partitioning
Virtual Address Physical Address
BMXDRMSZ
User Data RAM Partitions
KSEGO: 0x80000000
+BMXDUDBA
KSEG1: 0xA0000000 4 z
+BMXDUDBA E
o
o
5]
Kernel Program RAM Partition g
KSEG 0/1 3
D
>
<
KSEGO0: 0x80000000 (%)
+BMXDKPBA v o
KSEG1: 0xA0000000 4
+BMXDKPBA =
[¢]
5
o2
” o
Kernel Data RAM Partition)
KSEG 0/1 2
D
>
<
%}
N
]
KSEGO: 0x80000000 v
KSEG1: 0xA0000000
Note 1: Kernel Program RAM Size = BMXDUDBA - BMXDKPBA
2: None of BMXDKPBA, BMXDUDBA, BMXDUPBA =0

DS61115D-page 3-28

Prelimin ary © 2008 Microchip Technology Inc.

Section 3. Memory Organization

3.4.3.3 User Data RAM Partition

For User mode applications, a User mode data partition in RAM is required. This partition starts
at address 0x7F000000 + BMXDUDBA, and its size is given by BMXDUPBA — BMXDUDBA. See
Figure 3-8.

The user data RAM partition does not exist on Reset, as the BMXDUDBA and BMXDUPBA
registers default to zero at Reset.

Figure 3-8: User Data RAM Partitioning

Virtual Address Physical Address

BMXDRMSZ

User Program RAM Partitions

0x7F000000
+BMXDUPBA A
C
[%2]
ol
o
2
User Data RAM Partitions o
2 3
<
%2}
N
@
0x7F000000 v
+BMXDUDBA A

o
(@]

55
2.3
N o
D 3
o<
o

>

Note 1: User Data RAM Size = BMXDUPBA — BMXDUDBA.
2: None of the registers BMXDKPBA, BMXDUDBA, or BMXDUPBA = 0.

© 2008 Microchip Technology Inc. Preliminary DS61115D-page 3-29

PIC32MX Family Reference Manual

3.4.34 User Program RAM Partition

The user program partition in data RAM is required if code needs to be executed from data RAM
in User mode. This partition starts at address 0x7F000000 + BMXDUPBA, and its size is given
by BMXDRMSZ — BMXDUPBA. See Figure 3-9.

The User Program RAM patrtition does not exist on Reset, as the BMXDUPBA register defaults
to zero at Reset.

Figure 3-9: User Program RAM Partitioning

Virtual Address Physical Address
BMXDRMSZ
A C
w
@
T
o
Q
User Program RAM Partition g
T
>
<
%2}
0x7F000000 v o
+BMXDUPBA

User Data RAM Partition

0x7F000000
+BMXDUDBA

Note 1: User Program RAM Size = BMXDRMSZ — BMXDUPBA.
2: None of the registers BMXDKPBA, BMXDUDBA, or BMXDUPBA = 0.

3.4.35 RAM Partitioning Examples

This section provides the following practical examples of RAM partitioning.

RAM Partitioned as Kernel Data

RAM Partitioned as Kernel Data and Kernel Program

RAM Partitioned as Kernel Data and User Data

RAM Partitioned as Kernel Data, Kernel Program and User Data

RAM Partitioned as Kernel Data, Kernel Program, User Data and User Program

o~ wbhPE

Example 1. RAM Partitioned as Kernel Data

The entire RAM is partitioned as kernel data RAM after a Reset. No other programming is
required. Setting the BMXDKPBA, BMXDUDBA, or BMXDUPBA register to ‘0’ will partition the
entire RAM space to a kernel data partition. See Figure 3-5.

DS61115D-page 3-30 Preliminary © 2008 Microchip Technology Inc.

Section 3. Memory Organization

Example 2. RAM Partitioned as Kernel Data and Kernel Program

For this example, assume that the available RAM on the PIC32MX device is 32 KB, of which
8 KB kernel data RAM and 24 KB of kernel program RAM are needed. In this example, the user
data RAM and user program RAM will have their sizes set to ‘0’.

Please note that a kernel data RAM partition is always required. See Figure 3-10 for details.
The values of the registers are as follows:

BMXDRMSZ = 0x00008000 (read-only value)

BMXDKPBA = 0x00002000 (i.e., 8 KB kernel data)

BMXDUDBA = 0x00008000 (i.e., 0x6000 kernel program)

BMXDUPBA = 0x00008000 (i.e., user data size = 0, and user program size = 0)

Figure 3-10: RAM Partitioning for 8 KB Kernel Data and 16 KB Kernel Program

Virtual Address Physical Address
KSEGO: 0x80008000 BMXDRMSZ
= 0x80000000 = 0x00008000 A
+BMXDUDBA 3
)
>
o
: O
S «
Kernel Program RAM Partition % Q %
KSEG 0/1 3 5 =
24 KB D ~N
> o
E< a =
N o=
5 o
-]
KSEGO: 0x80002000 v
= 0x80000000)
+BMXDKPBA a
Kernel Data RAM Partition o)
KSEG 0/1 %
8 KB D
>
KSEGO: 0x80000000 <
(]
&
@

BMXDKPBA = 0x2000
BMXDUDBA = 0x8000
BMXDUPBA = 0x8000

Note: Only KSEGO addresses are shown. For KSEG1 addresses, start at 0xA000000.

© 2008 Microchip Technology Inc. Preliminary DS61115D-page 3-31

PIC32MX Family Reference Manual

Example 3. RAM Partitioned as Kernel Data and User Data

For this example, assume that the available RAM on the PIC32MX device is 32 KB, of which
16 KB of kernel data RAM and 16 KB of user data RAM are needed. In this example, the kernel
program RAM and user program RAM will have their sizes set to ‘0’. See Figure 3-11 for details.

The values of the registers are as follows:
BMXDRMSZ = 0x00008000 (read-only value)
BMXDKPBA = 0x00004000 (i.e., 16 KB kernel data)
BMXDUDBA = 0x00004000 (i.e., 0 kernel program)
BMXDUPBA = 0x00008000 (i.e., user data size = 16 KB, and user program size = 0)

Figure 3-11: RAM Partitioning for 16 KB Kernel Data and 16 KB User Data

Virtual Address Physical Address

KSEGO: 0x80004000

= 0x80000000 =

+BMXDKPBA g

o

Kernel Data RAM g

16 KB &

s

>

z

KSEGO: 0x80000000 g

0x7F008000 c

= 0x7F000000 @

+BMXDUPBA 2

5

User Data RAM 5]

16 KB 3

0x7F004000 <

= 0x7F000000 o

+BMXDUDBA o
0x00000000

BMXDKPBA = 0x4000
BMXDUDBA = 0x4000
BMXDUPBA = 0x8000

Note: Only KSEGO addresses are shown. For KSEG1 addresses, start at 0xA0000000.

DS61115D-page 3-32 Preliminary © 2008 Microchip Technology Inc.

Section 3. Memory Organization

Example 4. RAM Partitioned as Kernel Data, Kernel Program and User Data

For this example, assume that the available RAM on the PIC32MX device is 32 KB, and 4 KB of
kernel data RAM, 6 KB of kernel program and 22 KB of user data RAM are needed. In this exam-
ple, the user program RAM will have its size set to ‘0’. See Figure 3-12 for details.

The values of the registers are as follows:
BMXDRMSZ = 0x00008000 (read-only value)
BMXDKPBA = 0x00001000 (i.e., 4 KB kernel data)
BMXDUDBA = 0x00002800 (i.e., 6 KB kernel program)
BMXDUPBA = 0x00008000 (i.e., user data size = 22 KB, and user program size = 0)

Figure 3-12: RAM Partitioning for 4 KB K-Data, 6 KB K-Program and 22 KB U-Data

Virtual Address Physical Address
KSEGO: 0x80002800
= 0x80000000 a
+BMXDUDBA §
o3
>3
Kernel Program RAM 5) 3
6 KB NS
® g
7 3
KSEGO: 0x80001000 v
= 0x80000000 A
+BMXDKPBA o g
=3 o
Kernel Data RAM <o =
4 KB Lo QI
5 [S)
®)
KSEGO: 0x80000000 Y ~i g
=
o
=)
0x7F008000 c
= 0x7F000000 r R
+BMXDUPBA 5
QD
User Data RAM %
22 KB ;§>
0x7F002800 v 0
= 0x7F000000 g'
+BMXDUDBA
0x00000000

BMXDKPBA = 0x1000
BMXDUDBA = 0x2800
BMXDUPBA = 0x8000

Note: Only KSEGO addresses are shown. For KSEG1 addresses, start at 0xA0000000.

© 2008 Microchip Technology Inc. Preliminary DS61115D-page 3-33

PIC32MX Family Reference Manual

Example 5. RAM Partitioned as Kernel Data, Kernel Program, User Data and User Program

For this example, assume that the available RAM on the PIC32MX device is 32 KB, and 6 KB of
kernel data RAM, 5 KB of kernel program RAM, 12 KB of user data RAM and 9 KB of user
program RAM are needed. See Figure 3-13 for details.

The values of the registers are as follows:
BMXDRMSZ = 0x00008000 (read-only value)
BMXDKPBA = 0x00001800 (i.e., 6 KB kernel data)
BMXDUDBA = 0x00002CQ0 (i.e., 5 KB kernel program)
BMXDUPBA = 0x00005CO00 (i.e., user data size = 12 KB, and user program size = 9 KB)

Figure 3-13: RAM Partitioning for 6 KB K-Data, 5 KB K-Program, 12 KB U-Data and
9 KB U-Program

Virtual Address Physical Address
KSEGO: 0x80002C00
= 0x80000000
+BMXDUDBA g
>3
Kernel Program RAM 5) R
5KB N&
® g
3
KSEGO0: 0x80001800
= 0x80000000 A
+BMXDKPBA x
23
Kernel Data RAM z3
6 KB g
53
KSEGO: 0x80000000 v
0x7F008000 c
= 0x7F000000 2 D 8
+BMXDRMSZ =3
User Program RAM =3
9 KB (F,‘).g
0x7F005C00] %
= 0x7F000000 v
+BMXDUPBA § g
User Data RAM zQ
0x7F002C00 12 KB Qg
= 0x7F000000 © o
+BMXDUDBA
0x00000000
BMXDKPBA = 0x1800
BMXDUDBA = 0x2c00
BMXDUPBA = 0x5c00
Note: Only KSEGO addresses are shown. For KSEG1 addresses, start at 0xA0000000.

DS61115D-page 3-34

Prelimin ary © 2008 Microchip Technology Inc.

Section 3. Memory Organization

3.5 BUS MATRIX

The processor supports two modes of operation, Kernel mode and User mode. The Bus Matrix
controls the allocation of memory for each of these modes. It also controls the type of access,
program or data, for a given region of address space.

The Bus Matrix connects master devices, generically called initiators, to slave devices, generi-
cally called targets. The PIC32MX product family can have up to five initiators and three targets
(e.g., Flash, RAM, ...) on the main bus structure.

Of the five possible initiators, the CPU Instruction Bus (CPU IS), CPU Data Bus (CPU DS), In-Cir-
cuit Debug (ICD) and DMA Controller (DMA) are the default set of initiators and are always pres-
ent. The PIC32MX also includes an Initiator Expansion Interface (IXI) to support additional
initiators for future expansion.

The Bus Matrix decodes a general range of addresses that map to a target. The target (memory
or peripherals) may provide additional addresses depending on its functionality.

Table 3-3 shows which initiators can access which targets.

Table 3-3: Initiator Access Map
Target
Flash RAM Peripheral Bus
CPUIS Y Y N
§ CPU DS Y Y Y 3
= DMA Y Y Y
£ IXI Y Y N @)
ICD Y Y Y © =
Lo
Figure 3-14: Bus Matrix Initiators and Targets ~i 3
o
Initiators aQ
O
CPU IS CPU DS DMA Initiator Debug S
Expansion Module
PFM
DRM
Peripherals
Program Data RAM Peripheral
Flash Memory Bus
Memory (PBM)
Targets

© 2008 Microchip Technology Inc. Preliminary DS61115D-page 3-35

PIC32MX Family Reference Manual

3.5.1 Initiator Arbitration Modes

Since there can be more than one initiator attempting to access the same target, an arbitration
scheme must be used to control access to the target. The arbitration modes assign priority levels
to all the initiators. The initiator with the higher priority level will always win target access over a
lower priority initiator.

3.5.1.1 Arbitration Mode 0

The fixed priority scheme in Arbitrition Mode 0 is shown in Figure 3-15. The CPU data and
instruction access are given higher priority than DMA access. This mode can starve the DMA, so
chose this mode when DMA is not being used.

As shown in Figure 3-15, each initiator is assigned a fixed priority level. Programming the register
field BMXARB (BMXCON<2:0>) to ‘0’ selects Mode 0 operation.

Figure 3-15: Priority Assignment in Arbitration Mode 0

A ICD/Debug

CPU Data
Access

CPU
Instruction
Access

Higher Priority

DMA

Initiator
Expansion

DS61115D-page 3-36 Preliminary © 2008 Microchip Technology Inc.

Section 3. Memory Organization

3.5.1.2 Arbitration Mode 1

Arbitrition Mode 1 is a fixed priority scheme like Mode 0; however, the CPU IS is always the
lowest priority. Figure 3-16 shows the priority scheme in Mode 1. Mode 1 arbitration is the default

mode.

Programming the register field BMXARB (BMXCON<2:0>) to ‘1’ selects Mode 1 operation.

Figure 3-16: Priority Assignment in Arbitration Mode 1
A ICD/Debug
CPU Data
P Access
S
o
— DMA
)
e
D
T Initiator
Expansion
CPU
Instruction
] Access
© 2008 Microchip Technology Inc. Preliminary DS61115D-page 3-37

w

@)
=
«Q
&y
=
N
jab)
=
o
S5

<
@
3
o
<

PIC32MX Family Reference Manual

3.5.1.3 Arbitration Mode 2

Mode 2 arbitration supports rotating priority assignments to all initiators. Instead of a fixed prior-

ity assignment, each initiator is assigned the highest priority in a rotating fashion. In this mode,

the rotating priority is applied with the following exceptions:

1. CPU data is always selected over CPU instruction.

2. ICD is always the highest priority.

3. When the CPU is processing an exception (EXL = 1) or an error (ERL = 1), the arbiter
temporarily reverts to Mode O.

Figure 3-17: Priority Assignments in Arbitration Mode 2
PrSeq#1 | PrSeq#2 | PrSeq#3 | PrSeq#4
A ICD/Debug | ICD/Debug | ICD/Debug | ICD/Debug
CPU Data CPU. Initiator
Instruction DMA .
> Access Expansion
£ Access
o
= CPU "
o Instruction DMA Inltlatqr CEL Peit
) Expansion Access
< Access
=2
I Initiator CPU Data CPU,
DMA . Instruction
Expansion Access
Access
Initiator CPU Data CPU.
. Instruction DMA
Expansion Access
| Access
L
< Rotating Priority Sequence >
-

Note that priority sequence #2 is not selected in the rotating priority scheme if there is a pending
CPU data access. In this case, once the data access is complete, sequence #2 is selected.

Programming the register field BMXARB (BMXCON<2:0>) to ‘2’ selects Mode 2 operation.

3.5.2

The Bus Matrix generates a bus error exception on:

Bus Error Exceptions

- Any attempt to access unimplemented memory
- Any attempt to access an illegal target
- Any attempt to write to program Flash memory

Bus Error Exceptions may be temporarily disabled by clearing the BMXERRxxx bits in the BMX-
CON register. This is not recommended.

The Bus Matrix disables bus error exceptions for accesses from CPU IS and CPU DS while in
DEBUG mode.

3.5.3

The PIC32MX supports break exact breakpoints by inserting one Wait state to data RAM access.
This method allows the CPU to stop execution just before the breakpoint address instruction.
This is useful in case of breakpointed store instructions. When the Wait state is not used, the
break will still occur at the store instruction, however, the DRM location is updated with the store
value. If the Wait state is enabled the DRM is not updated with the store value.

Break Exact Breakpoint Support

DS61115D-page 3-38

Prelimin ary © 2008 Microchip Technology Inc.

Section 3. Memory Organization

3.6 I/0 PIN CONTROL

There are no pins associated with this module.

3.7 OPERATION IN POWER-SAVING AND DEBUG MODES

Note: In this manual, a distinction is made between a power mode as it is used in a specific
module, and a power mode as it is used by the device, e.g., Sleep mode of the Com-
parator and SLEEP mode of the CPU. To indicate which type of power mode is
intended, uppercase and lowercase letters (Sleep, Idle, Debug) signify a module
power mode, and all uppercase letters (SLEEP, IDLE, DEBUG) signify a device
power mode.

3.7.1 Memory Operation on Power-up or Brown-out Reset:

* The contents of data RAM are undefined.
* The BMXxxxBA registers are reset to ‘0’.
* CPU is switched to Kernel mode.

3.7.2 Memory Operation on Reset:

» The data RAM contents are retained. If the device is code-protected, the RAM contents are
cleared.

« The BMX base address registers (BMXxxxBA) are setto ‘0.

» CPU is switched to Kernel mode.

w

3.7.3 Memory Operation on Wake-up from SLEEP or IDLE Mode:

* The RAM contents are retained.
« The BMX base address register (BMXxxxBA) contents are not changed.
« CPU mode is unchanged.

o
(@]

55
2.3
N o
D 3
o<
o

>

© 2008 Microchip Technology Inc. Preliminary DS61115D-page 3-39

PIC32MX Family Reference Manual

3.8 CODE EXAMPLES

Example 3-1: Create a User Mode Partition of 12K in Program Flash

BWXPUPBA = BMXPFMSZ - (12*1024); // User Mdde Flash 12K,

/1 Kernel Mde Flash 500K (512K- 12K)

Example 3-2: Create a Kernel Mode Data RAM Partition of 16K; Rest of RAM for Kernel Program

BMXDKPBA = 16*1024;
BMXDUDBA = BMXDRMSZ,
BMXDUPBA = BNMXDRMSZ,

Example 3-3 can be used to create the following partitions in RAM:
Kernel mode data = 12K
Kernel mode program = 6K
User mode data = 8K
User mode program = 6K

Example 3-3: Create RAM Partitions

BMXDKPBA = 12*1024; // Kernel Data Partition of 12K
BMXDUDBA = BMXDKPBA + (6*1024); /1 Kernel Program Partition of 6K

BMXDUPBA = BMXDUDBA + (8*1024); /] User Data Partition of 8K

/1 Start offset of Kernel Program Partition
I/ Start offset of User Data Partition

// Start offset of User Program Partition.
/1 This partition will go up to the size of
/1 RAM (32K). So the partition size will be
/1 6K (32K - 8K - 6K - 12K)

DS61115D-page 3-40

Prelimin ary © 2008 Microchip Technology Inc.

Section 3. Memory Organization

3.9 DESIGN TIPS

Question 1: At Reset, which mode is the CPU running in?

Answer: The CPU starts in Kernel mode. The entire RAM is mapped to kernel data segments in
KSEGO and KSEG1. Flash memory is mapped to kernel program segments in KSEGO and
KSEGL1. Also ERL =1, which should be reset to zero (normally in the C start-up code).

Question 2 Do | need to initialize the BMX registers?

Answer: Generally, no. You can leave the BMX registers at their default values, which allows
maximum RAM and Flash memories for Kernel mode applications. If you want to run code from
RAM or set up User mode partitions, you will need to configure the BMX registers.

Question 3 What is the CPU Reset vector address?
Answer: The CPU Reset address is 0xXBFC00000.

Question 4 What is a Bus-Error Exception?

Answer: The bus-error exceptions are generated when the CPU tries to access unimplemented
addresses. Also, when the CPU tries to execute a program from RAM without defining a RAM
program partition, a bus-error exception is generated.

w

o
(@]

55
2.3
N o
D 3
o<
o

>

© 2008 Microchip Technology Inc. Preliminary DS61115D-page 3-41

PIC32MX Family Reference Manual

3.10 RELATED APPLICATION NOTES

This section lists application notes that are related to this section of the manual. These applica-
tion notes may not be written specifically for the PIC32MX device family, but the concepts are
pertinent and could be used with modification and possible limitations. The current application
notes related to the Memory Organization of the PIC32MX family include the following:

Title Application Note #
No related application notes at this time. N/A

Note: Please visit the Microchip web site (www.microchip.com) for additional application
notes and code examples for the PIC32MX family of devices.

DS61115D-page 3-42

Prelimin ary © 2008 Microchip Technology Inc.

http://www.microchip.com
http://www.microchip.com
http://www.microchip.com
http://www.microchip.com

Section 3. Memory Organization

3.11 REVISION HISTORY
Revision A (August 2007)
This is the initial released version of this document.
Revision B (October 2007)
Updated document to remove Confidential status.
Revision C (April 2008)
Revised status to Preliminary; Revised U-0 to r-x.

Revision D (June 2008)

Change Reserved bits from “Maintain as” to “Write”.

w

o
(@]

55
2.3
N o
D 3
o<
o

>

© 2008 Microchip Technology Inc. Preliminary DS61115D-page 3-43

PIC32MX Family Reference Manual

NOTES:

DS61115D-page 3-44 Preliminary © 2008 Microchip Technology Inc.

MICROCHIP
Section 4. Prefetch Cache M odule

HIGHLIGHTS

This section of the manual contains the following topics:

R | 11 (o Yo [0 ox 1o o B T T PP P PSP TPPUPOPROTN 4-2
4.2 CACNE OVEIVIEW.eiiiiiiii ittt ettt e et e et e s e s e e e s e e e s ann e e e nneees 4-3
4.3 CONIOI REGISIETS ...eiiitiieiiie ettt e e e are e ane e e 4-7
4.4 CAChE OPEIALIONeiiiitiii ittt ettt ettt et s e e anre e e nes 4-27
45 Cache ConfIQUIAtIONSccoiiiuiiiiie e e e eb e e e s e s ere e e e e s sataeeeas 4-27
4.6 CONEIENCY SUPPOTLtiiiiitiiiiitie ettt sttt rt ettt e st e et e et b e e anbb e e s atee s snbeeeanbeeeeeee 4-30
A7 EffECES OF RESEL....couiiiiiiieieie et e 4-31
S B B 1= o B T oL TP PP PP 4-31
4.9 Operation In POWEr-Saving MOAESccooiiiiiiiiiiieee et 4-32
4.10 Related APPlICAtION NOLES.........viiiiiiie ettt e e 4-33
4,11 REVISION HISTOIY ...eiiiiiiiiii ettt e et e e e e st e e e e e sat e e e e e s abbaeee e s e eraneeeas 4-34

o2
o @
oo
3 0o
(D:T

© 2008 Microchip Technology Inc. Prelimin ary DS61119D-page 4-1

PIC32MX Family Reference Manual

4.1 INTRODUCTION

Note: Prefetch cache is available in select devices only. Refer to the appropriate data
sheet for the availability of a prefetch cache module on specific devices.

This section describes the features and operation of the prefetch cache module in the PIC32MX
device family. Prefetch cache features increase system performance for most applications.

PFM cache and prefetch cache modules increase performance for applications that execute out
of the cacheable Program Flash Memory (PFM) region by implementing the following features:
« Instruction Caching

The 16-line cache supplies an instruction every clock, for loops up to 256 bytes long.
» Data Caching

Prefetch cache also allows the allocation of up to 4 cache lines for data storage to provide
improved access for Flash-stored constant data.

 Predictive Prefetching

The prefetch cache module provides instructions once per clock for linear code even with-
out caching by prefetching ahead of the current program counter, hiding the access time of
the Flash memory.

41.1 Additional Prefetch Cache Module Features

The prefetch cache module also include the following features:

« 16 Fully Associative Lockable Cache Lines

» 16-Byte Cache Lines

* Upto 4 Cache Lines Allocated to Data

» 2 Cache Lines with Address Mask to Hold Repeated Instructions
» Pseudo Least-Recently-Used (LRU) Replacement Policy

» All Cache Lines are Software Writable

« 16-Byte Parallel Memory Fetch

 Predictive Instruction Prefetch Cache

DS61119D-page 4-2

Prelimin ary © 2008 Microchip Technology Inc.

Section 4. Prefetch Cache

4.2 CACHE OVERVIEW

The prefetch cache module is a performance enhancing module included in some processors of
the PIC32MX. When running at high clock rates, Wait states must be inserted into PFM Read
transactions to meet the access time of the PFM. Wait states can be hidden to the core by
prefetching and storing instructions in a temporary holding area that the CPU can access quickly.
Although the data path to the CPU is 32-bits wide, the data path to the Program Memory Flash
is 128-bits wide. This wide data path provides the same bandwidth to the CPU as a 32-bit path
running at four times the frequency.

There are two main functions that the prefetch cache module performs: caching instructions
when they are accessed, and prefetching instructions from the PFM before they are needed.

The cache holds a subset of the cacheable memory in temporary holding spaces known as
cache lines. Each cache line has a tag describing what it is currently holding, and the address
where it is mapped. Normally, the cache lines just hold a copy of what is currently in memory to
make data available to the CPU without Wait states.

CPU requested data may or may not be in the cache. A cache-miss occurs if the CPU requests
cacheable data that is not in the cache. In this case, a read is performed to the PFM at the correct
address, the data is supplied to the cache and to the CPU. A cache-hit occurs if the cache
contains the data that the CPU requests. In the case of a cache-hit, data is supplied to the CPU
without Wait states.

The second main function of the prefetch cache module is to prefetch cache instructions. The
module calculates the address of the next cache line and performs a read of the PFM to get the
next 16-byte cache line. This line is placed into a 16-byte-wide prefetch cache buffer in
anticipation of executing straight-line code.

Figure 4-1 shows a block diagram of the prefetch cache module. Logically, the prefetch cache
module fits between the Bus Matrix (BMX) module and the PFM module.

Figure 4-1: Prefetch Cache Block Diagram

FSM ‘
CTRL >
Tag Logic Cache Line
o)
% CTRL; Bus Ctrl
> L
§ —>|
i D
Cache Ctrl [Cache 2
Line L, S
Address %
Prefetch Ctrl Encode
_’ _}
RDATA
>
Hit LRU —
A
Miss LRU ¢
Hit Logic
Prefetch
Prefetch
> Tag — efetc N
A
<
E i
& a
° 14

Program Flash Memory

© 2008 Microchip Technology Inc. Preliminary DS61119D-page 4-3

o2
o @
oo
3 0o
(D:T

PIC32MX Family Reference Manual

To illustrate the basic operation of the prefetch cache, Figure 4-2 shows an example of the CPU
requesting data from physical address 0x1FC01234. The prefetch cache simultaneously
compares this address to all of the tags marked “valid”. Since the shaded entry below has this
address, and is marked as valid, this is a cache hit. The proper data word from the data array is
then directed to the CPU in a single clock period.

Figure 4-2: Cache Look-up Example®

Cache TagsH Cache Data

QX

or

N I |

0x1fc01234

> 0x00001000(1(0|11----> WORD 3 WORD 2 WORD 1 WORD 0
> 0x00001300(1(0|11----> WORD3 WORD 2 WORD 1 WORD 0
> 0x00002200(1(0(11----* WORD 3 WORD 2 WORD 1 WORD 0
> 0x0000a030(1(0(11----*» WORD 3 WORD 2 WORD 1 WORD 0
> 0x80001230(1(0|11----> WORD3 WORD 2 WORD 1 WORD 0
> 0x00002210(1|0|11----> WORD 3 WORD 2 WORD 1 WORD 0
> 0x00002230(1(0(1f----* WORD 3 WORD 2 WORD 1 WORD 0
> 0x00002220(1(0(11----*» WORD 3 WORD 2 WORD 1 WORD 0
> 0x00001200(1|0|11----> WORD 3 WORD 2 WORD 1 WORD 0
> 0x00001230(0(0|11----> WORD 3 WORD 2 WORD 1 WORD 0
HIT > 0x00001230(1(0(1 > WORD 3 WORD 2 WORD 1 WORD 0
> 0x00001320(1(0(11----*» WORD 3 WORD 2 WORD 1 WORD 0
> 0x00001330(1(0|01----> WORD 3 WORD 2 WORD 1 WORD 0
> 0x00001310(1|0|01----> WORD 3 WORD 2 WORD 1 WORD 0
> 0x00001340(1(0(01----*» WORD 3 WORD 2 WORD 1 WORD 0
> 0x00001350({1(0(01---->» WORD 3 WORD 2 WORD 1 WORD 0

Note 1: Bits 0-3 of the address in the Cache Tags register are always implied ‘0’.
2. Mask Fields are not shown and are assumed to be ‘0’.

4.2.1 Cache Organization

The cache consists of two arrays: tag and data. A data array could consist of program instruc-
tions or program data. The cache is physically tagged and address matches are based on the
physical address not the virtual address.

Each line in the tag array contains the following information:
e Mask — address mask value

» Tag — tag address to match against

 Valid hit

 Lock bit

« Type — an instruction and/or data type-indicator bit

DS61119D-page 4-4 Prelimin ary © 2008 Microchip Technology Inc.

Section 4. Prefetch Cache

Each line in the data array contains 16-bytes of program instruction, or program data, depend-
ing on the value of the type-indicator bit.

Figure 4-3 shows the organization of a line. Note that the LMASK (CHEMSK<15:5>) and
LTYPE (CHETAG<1>) fields are not programmable for every line. The LTAG (CHETAG<23:4>)
field only implements the number of bits needed to fully map to the size of the PFM, e.g., if the
Flash size is 512 KB, the LTAG (CHETAG<23:4>) field only implements bits 18 through 4.

Figure 4-3: Mask Line

31 16 15 5 4 0
RSVD | LMASK<15:5> RSVD

Figure 4-4: Tag Line

31 24 23 4 3 210

5 RSVD LTAG<23:4>

8 QX |w

2 218|513

n

i Z13|5 e

Figure 4-5: Data Line

31 0

| WORD 3 |

31 0

| WORD 2 |

31 0

| WORD 1 |

31 0

| WORD 0 |

© 2008 Microchip Technology Inc. Preliminary DS61119D-page 4-5

0
)
)
>
D

o
—_
D
—
D
—
O
>

PIC32MX Family Reference Manual

Cache arrays are shown in Table 4-1. Software can modify values in both the Tag Line and the
Data Line of the cache. Configuration register field CHEIDX (CHEACC<3:0>) selects a line for
access. That line can then be modified via the CHETAG, CHEMSK, CHEWO0, CHEW1, CHEW?2,
and CHEWS3 registers.

Table 4-1: Cache Arrays
Line # Tag Array Data Array(®
0 000ht TAG Y; L T®) Word 3 Word 2 Word 1 Word 0
1 00oh® TAG vV | L TG Word 3 Word 2 Word 1 Word 0
2 oooh® TAG v L TG Word 3 Word 2 Word 1 Word 0
3 0ooh® TAG vV | L TG Word 3 Word 2 Word 1 Word 0
4 oooh® TAG v L TG Word 3 Word 2 Word 1 Word 0
5 0ooh® TAG vV | L TG Word 3 Word 2 Word 1 Word 0
6 oooh® TAG V | L TG Word 3 Word 2 Word 1 Word 0
7 0ooh® TAG vV | L TG Word 3 Word 2 Word 1 Word 0
8 0ooh® TAG V | L TG Word 3 Word 2 Word 1 Word 0
9 0ooh® TAG vV | L TG Word 3 Word 2 Word 1 Word 0
A MASK TAG v L TG Word 3 Word 2 Word 1 Word 0
B MASK TAG v L TG Word 3 Word 2 Word 1 Word 0
C 0ooh® TAG V | L T Word 3 Word 2 Word 1 Word 0
D 0ooh® TAG vV | L T Word 3 Word 2 Word 1 Word 0
E 0ooh® TAG v L T Word 3 Word 2 Word 1 Word 0
F 0ooh® TAG vV | L T Word 3 Word 2 Word 1 Word 0

Note 1: Read-only field.
2: Read zeros when device is code-protected. Read/write otherwise.
3: Type is fixed as instruction.

It is recommended that cache lines be modified while executing from non-cacheable addresses,
since the cache controller does not protect against modifying the cache while executing from
cacheable address.

Not all fields are writable. The LMASK (CHEMSK<15:5>) field is only writable for lines 10 and
11, and the LTYPE (CHETAG<1>) field is fixed to the “Instruction” setting for lines 0 through 11.

Note that lines allocated for Lock and Data affect the selection of the line to replace on a miss.
However, they do not affect the usage order or pseudo LRU value.

DS61119D-page 4-6 Prelimin ary © 2008 Microchip Technology Inc.

Section 4. Prefetch Cache

4.3 CONTROL REGISTERS

Note: Some devices in the PIC32MX family do not contain a prefetch cache module. For
these devices, all prefetch cache register locations are reserved and should not be
accessed.

The prefetch cache module contains the following Special Functions Registers (SFRs):
« CHECON: Prefetch Cache Control Register
Manages configuration of the Prefetch Cache and controls Wait states.

¢ CHECONCLR, CHECONSET, CHECONINV: Atomic Bit Manipulation Write-only Registers
for CHECON

* CHEACC: Prefetch Cache Access Register

Points to one of the 16 cache lines to access using the CHETAG, CHEMSK, CHEWO,
CHEW1, CHEW2, and CHEW3 registers.

* CHEACCCLR, CHEACCSET, CHEACCINV: Atomic Bit Manipulation Write-only Registers
for CHEACC

» CHETAG: Prefetch Cache TAG Register
Contains the address and type of information stored in a cache line.

* CHETAGCLR, CHETAGSET, CHETAGINV: Atomic Bit Manipulation Write-only Registers
for CHETAG

* CHEMSK: Prefetch Cache TAG Mask Register
Provides a mechanism to ignore TAG bits in CHETAG.

* CHEMSKCLR, CHEMSKSET, CHEMSKINV: Atomic Bit Manipulation Write-only Registers
for CHEMSK

« CHEWO: Cache Word 0 Register
Provides Access to the Prefetch Cache Data Array
* CHEWL1: Cache Word 1 Register
Provides Access to the Prefetch Cache Data Array
* CHEW?2: Cache Word 2 Register
Provides Access to the Prefetch Cache Data Array
 CHEWS3: Cache Word 3 Register
Provides Access to the Prefetch Cache Data Array
* CHELRU: Cache LRU Register
* CHEHIT: Cache Hit Statistics Register
» CHEMIS: Cache Miss Statistics Register
* PFABT: Prefetch Cache Abort Statistics Register
A statistical register that contains the number of aborted Prefetch Cache operations.

The following table provides a brief summary of prefetch cache-related registers. Corresponding
registers appear after the summary, followed by a detailed description of each register.

o2
o @
oo
3 0o
(D:T

© 2008 Microchip Technology Inc. Preliminary DS61119D-page 4-7

PIC32MX Family Reference Manual

Table 4-2: Prefetch Cache SFRs Summary
Name Bit Bit Bit Bit Bit Bit Bit Bit
31/23/15/7 | 30/22/14/6 | 29/21/13/5 | 28/20/12/4 | 27/19/11/3 | 26/18/10/2 | 25/17/9/1 24/16/8/0
CHECON 31:24 — — — — — — — —
23:16 — — — — — — — CHECOH
15:8 — — — — — — DCSZ<1:0>
7:0 — — PREFEN<1:0> — PFMWS<2:0>
CHECONCLR| 31:0 Clears selected bits in CHECON, read yields undefined value
CHECONSET| 31:0 Sets selected bits in CHECON, read yields undefined value
CHECONINYV | 31:0 Inverts selected bits in CHECON, read yields undefined value
CHEACC 31:24| CHEWEN — — — — — — —
23:16 — — — — — — — —
15:8 — — — — — — — —
7:0 — — — — CHEIDX<3:0>
CHEACCCLR | 31:0 Clears selected bits in CHEACC, read yields undefined value
CHEACCSET | 31:0 Sets selected bits in CHEACC, read yields undefined value
CHEACCINV | 31:0 Inverts selected bits CHEACC, read yields undefined value
CHETAG 31:24] LTAGBOOT — — - | - 1 = 1 = 1 =
23:16 LTAG<23:16>
15:8 LTAG<15:8>
7.0 LTAG<7:4> | waup [uwock [vpe | —
CHETAGCLR | 31:0 Clears selected bits in CHETAG, read yields undefined value
CHETAGSET | 31:0 Sets selected bits in CHETAG, read yields undefined value
CHETAGINV | 31:0 Inverts selected bits CHETAG, read yields undefined value
CHEMSK 31:24 — — — — — — _ _
23:16 — — — — — — — —
15:8 LMASK<15:8>
7:0 LMASK<7:5> — — — — —
CHEMSKCLR| 31:0 Clears selected bits in CHEMSK, read yields undefined value
CHEMSKSET | 31:0 Sets selected bits in CHEMSK, read yields undefined value
CHEMSKINV | 31:0 Inverts selected bits CHEMSK, read yields undefined value
CHEWO 31:24 CHEWO0<31:24>
23:16 CHEWO0<23:16>
15:8 CHEWO0<15:8>
7:0 CHEWO0<7:0>
CHEW1 31:24 CHEW1<31:24>
23:16 CHEW1<23:16>
15:8 CHEW1<15:8>
7:0 CHEW1<7:0>
CHEW2 31:24 CHEW2<31:24>
23:16 CHEW2<23:16>
15:8 CHEW2<15:8>
7:0 CHEW2<7:0>
CHEW3 31:24 CHEW3<31:24>
23:16 CHEW3<23:16>
15:8 CHEW3<15:8>
7:0 CHEW3<7:0>

DS61119D-page 4-8

Preliminary

© 2008 Microchip Technology Inc.

Section 4. Prefetch Cache

Table 4-2: Prefetch Cache SFRs Summary
Name Bit Bit Bit Bit Bit Bit Bit Bit
31/23/15/7 | 30/22/14/6 | 29/21/13/5 | 28/20/12/4 | 27/19/11/3 | 26/18/10/2 | 25/17/9/1 24/16/8/0
CHELRU 31:24 — — — — — — — CHELRU<24>
23:16 CHELRU<23:16>
15:8 CHELRU<15:8>
7:0 CHELRU<7:0>>
CHEHIT 31:24 CHEHIT<31:24>
23:16 CHEHIT<23:16>
15:8 CHEHIT<15:8>
7:0 CHENIT<7:0>
CHEMIS 31:24 CHEMIS<31:24>
23:16 CHEMIS<23:16>
15:8 CHEMIS<15:8>
7:0 CHEMIS<7:0>
PFABT 31:24 PFABT<31:24>
23:16 PFABT<23:16>
15:8 PFABT<15:8>
7:0 PFABT<7:0>

o2
o @
oo
3 0o
(D:T

© 2008 Microchip Technology Inc. Preliminary DS61119D-page 4-9

PIC32MX Family Reference Manual

Register 4-1: CHECON: Cache Control Register

r-x r-x r-x r-x r-x r-x r-x r-x
bit 31 bit 24
r-x r-x r-x r-x r-x r-x r-x R/W-0
— — — — — — — CHECOH
bit 23 bit 16
r-x r-x r-0 r-0 r-x r-x R/W-0 R/W-0
— — — — — — DCSZ<1.0>
bit 15 bit 8
r-x r-x R/W-0 R/W-0 r-x R/W-1 R/W-1 R/W-1
— — PREFEN<1:0> — PFMWS<2:0>
bit 7 bit 0
Legend:
R = Readable hit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)
bit 31-17 Reserved: Write ‘0’; ignore read
bit 16 CHECOH: Cache Coherency setting on a PFM Program Cycle bit
1 = Invalidate all data and instruction lines
0 = Invalidate all data Ines and instruction lines that are not locked
bit 15-14 Reserved: Write ‘0’; ignore read
bit 13-12 Reserved: Must be written with zeros
bit 11-10 Reserved: Write ‘0’; ignore read
bit 9-8 DCSZ<1:0>: Data Cache Size in Lines bits
11 = Enable data caching with a size of 4 Lines
10 = Enable data caching with a size of 2 Lines
01 = Enable data caching with a size of 1 Line
00 = Disable data caching
Changing this field causes all lines to be re-initialized to the “invalid” state.
bit 7-6 Reserved: Write ‘0’; ignore read
bit 5-4 PREFEN<1:0>: Predictive Prefetch Cache Enable bits
11 = Enable predictive prefetch cache for both cacheable and non-cacheable regions
10 = Enable predictive prefetch cache for non-cacheable regions only
01 = Enable predictive prefetch cache for cacheable regions only
00 = Disable predictive prefetch cache
bit 3 Reserved: Write ‘0’; ignore read

DS61119D-page 4-10 Preliminary

© 2008 Microchip Technology Inc.

Section 4. Prefetch Cache

Register 4-1: CHECON: Cache Control Register (Continued)
bit 2-0 PFMWS<2:0>: PFM Access Time Defined in terms of SYSLK Wait states bits

111 = Seven Wait states
110 = Six Wait states
101 = Five Wait state
100 = Four Wait states
011 = Three Wait states
010 = Two Wait states
001 = One Wait state
000 = Zero Wait states

o2
o @
oo
3 0o
(D:T

© 2008 Microchip Technology Inc. Preliminary DS61119D-page 4-11

PIC32MX Family Reference Manual

Register 4-2: CHECONCLR: CHECON Clear Register
Write clears selected bits in CHECON, read yields undefined value
bit 31 bit 0
bit 31-0 Clears selected bits in CHECON
A write of ‘1’ in one or more bit positions clears the corresponding bit(s) in CHECON register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.
Example: CHECONCLR = 0x00010020 will clear bits 16 and 5 in CHECON register.
Register 4-3: CHECONSET: CHECON Set Register
Write sets selected bits in CHECON, read yields undefined value
bit 31 bit 0
bit 31-0 Sets selected bits in CHECON
A write of ‘1’ in one or more bit positions sets the corresponding bit(s) in CHECON register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.
Example: CHECONSET = 0x00010020 will set bits 16 and 5 in CHECON register.
Register 4-4: CHECONINV: CHECON Invert Register
Write inverts selected bits in CHECON, read yields undefined value
bit 31 bit 0
bit 31-0 Inverts selected bits in CHECON

A write of ‘1’ in one or more bit positions inverts the corresponding bit(s) in CHECON register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.

Example: CHECONI NV = 0x00010020 will invert bits 16 and 5 in CHECON register.

DS61119D-page 4-12 Preliminary © 2008 Microchip Technology Inc.

Section 4. Prefetch Cache

Register 4-5: CHEACC: Cache Access

R/W-0 r-x r-x r-X r-x r-x r-x r-x
CHEWEN — — — — — — —
bit 31 bit 24
r-x r-x r-x r-x r-x r-x r-x r-x
bit 23 bit 16
r-x r-x r-x r-x r-x r-x r-x r-x
bit 15 bit 8
r-x r-x r-x r-x R/W-0 R/W-0 R/W-0 R/W-0
— — — — CHEIDX<3:0>
bit 7 bit 0
Legend:
R = Readable hit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)
bit 31 CHEWEN: Cache Access Enable bits for registers CHETAG, CHEMSK, CHEWO0, CHEW1, CHEW?2,
and CHEW3

1 = The cache line selected by CHEIDX is writeable
0 = The cache line selected by CHEIDX is not writeable

bit 30-4 Reserved: Write ‘0’; ignore read

bit 3-0 CHEIDX<3:0>: Cache Line Index bits
The value selects the cache line for reading or writing.

o2
o @
oo
3 0o
(D:T

© 2008 Microchip Technology Inc. Preliminary DS61119D-page 4-13

PIC32MX Family Reference Manual

Register 4-6: CHEACCCLR: CHEACC Clear Register
Write clears selected bits in CHEACC, read yields undefined value
bit 31 bit 0
bit 31-0 Clears selected bits in CHEACC
A write of ‘1’ in one or more bit positions clears the corresponding bit(s) in CHEACC register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.
Example: CHEACCCLR = 0x80000000 will clear bit 31 in CHEACC register.
Register 4-7: CHEACCSET: CHEACC Set Register
Write sets selected bits in CHEACC, read yields undefined value
bit 31 bit 0
bit 31-0 Sets selected bits in CHEACC
A write of ‘1’ in one or more bit positions sets the corresponding bit(s) in CHEACC register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.
Example: CHEACCSET = 0x80000000 will clear bit 31 in CHEACC register.
Register 4-8: CHEACCINV: CHEACC Invert Register
Write inverts selected bits in CHEACC, read yields undefined value
bit 31 bit 0
bit 31-0 Inverts selected bits in CHEACC

A write of ‘1’ in one or more bit positions inverts the corresponding bit(s) in CHEACC register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.

Example: CHEACCI NV = 0x80000000 will invert bit 31 in CHEACC register.

DS61119D-page 4-14 Preliminary © 2008 Microchip Technology Inc.

Section 4. Prefetch Cache

Register 4-9: CHETAG®: Cache TAG Register

R/W-0 r-X r-x r-X r-x r-x r-x r-x
LTAGBOOT \ — | — \ — | — | — \ — \ —
bit 31 bit 24
RIW-x \ RIW-x | RIW-x \ R/W-X | RIW-x | R/IW-x \ RIW-x \ R/W-x
LTAG<23:16>
bit 23 bit 16
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
LTAG<15:8>
bit 15 bit 8
R/W-x R/W-x R/W-x R/W-x R/W-0 R/W-0 R/W-1 r-0
LTAG<7:4> LVALID LLOCK LTYPE —
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)
bit 31 LTAGBOOT: Line TAG Address Boot

1 = The line is in the 0x1D0O00000 (physical) area of memory
0 = The line is in the Ox1FC00000 (physical) area of memory

bit 30-24 Reserved: Write ‘0’; ignore read

bit 23-4 LTAG<23:4>: Line TAG Address bits
LTAG bits are compared against physical address <23:4> to determine a hit. Because its address
range and position of Flash in kernel space and user space, the LTAG Flash address is identical for
virtual addresses, (system) physical addresses, and Flash physical addresses.
bit 3 LVALID: Line Valid bit
1 = The line is valid and is compared to the physical address for hit detection
0 = The line is not valid and is not compared to the physical address for hit detection
bit 2 LLOCK: Line Lock bit
1 = The line is locked and will not be replaced
0 = The line is not locked and can be replaced
bit 1 LTYPE: Line Type bit

1 = The line caches instruction words
0 = The line caches data words

o2
o @
oo
3 0o
(D:T

bit O Reserved: Write ‘0’; ignore read
Note 1: The TAG and Status of the Line pointed to by CHEIDX (CHEACC<3:0>).

© 2008 Microchip Technology Inc. Preliminary DS61119D-page 4-15

PIC32MX Family Reference Manual

Register 4-10:

CHETAGCLR: CHETAG Clear Register

Write clears selected bits in CHETAG, read yields undefined value

bit 31

bit 0

bit 31-0

Register 4-11:

Clears selected bits in CHETAG

A write of ‘1’ in one or more bit positions clears the corresponding bit(s) in CHETAG register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.

Example: CHETAGCLR = 0x0000000C will clear bits 2 and 3 in CHETAG register.

CHETAGSET: CHETAG Set Register

Write sets selected bits in CHETAG, read yields undefined value

bit 31

bit 0

bit 31-0

Register 4-12:

Sets selected bits in CHETAG

A write of ‘1’ in one or more bit positions sets the corresponding bit(s) in CHETAG register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.

Example: CHETAGSET = 0x00000004 will set bit 2 in CHETAG register.

CHETAGINV: CHETAG Invert Register

Write inverts selected bits in CHETAG, read yields undefined value

bit 31

bit 0

bit 31-0

Inverts selected bits in CHETAG

A write of ‘1" in one or more bit positions inverts the corresponding bit(s) in CHETAG register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.

Example: CHETAG NV = 0x00000010 will invert bit 4 in CHETAG register.

DS61119D-page 4-16 Preliminary © 2008 Microchip Technology Inc.

Section 4. Prefetch Cache

Register 4-13: CHEMSK®): Cache TAG Mask Register

r-x r-X r-x r-x r-X r-x r-X r-x
bit 31 bit 24
r-X r-X r-x r-X r-x r-x r-x r-x
bit 23 bit 16
RW-0 | Rw-0 | RW0O | RW-0 | RW-0 | RWO | RW-O0 | RW-0
LMASK<15:8>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 r-x r-x r-x r-x r-x
LMASK<7:5> — — — — —
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)
bit 31-16 Reserved: Write ‘0’; ignore read
bit 15-5 LMASK<15:5>: Line Mask bits

1 = Enables mask logic to force a match on the corresponding bit position in LTAG (CHETAG<23:4>)
and the physical address.

0 = Only writeable for values of CHEIDX (CHEACC<3:0>) equal to OxOA and OxOB.
Disables mask logic.

bit 4-0 Reserved: Write ‘0’; ignore read
Note 1: The TAG Mask of the Line pointed to by CHEIDX (CHEACC<3:07>).

o2
o @
oo
3 0o
(D:T

© 2008 Microchip Technology Inc. Preliminary DS61119D-page 4-17

PIC32MX Family Reference Manual

Register 4-14:

CHEMSKCLR: CHEMSK Clear Register

Write clears selected bits in CHEMSK, read yields undefined value

bit 31

bit 0

bit 31-0

Register 4-15:

Clears selected bits in CHEMSK

A write of ‘1’ in one or more bit positions clears the corresponding bit(s) in CHEMSK register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.

Example: CHEMSKCLR = 0x00008020 will clear bits 15 and 5 in CHEMSK register.

CHEMSKSET: CHEMSK Set Register

Write sets selected bits in CHEMSK, read yields undefined value

bit 31

bit 0

bit 31-0

Register 4-16:

Sets selected bits in CHEMSK

A write of ‘1’ in one or more bit positions sets the corresponding bit(s) in CHEMSK register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.

Example: CHEMSKSET = 0x00008020 will set bits 15 and 5 in CHEMSK register.

CHEMSKINV: CHEMSK Invert Register

Write inverts selected bits in CHEMSK, read yields undefined value

bit 31

bit 0

bit 31-0

Inverts selected bits in CHEMSK

A write of ‘1’ in one or more bit positions inverts the corresponding bit(s) in CHEMSK register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.

Example: CHEMSKI NV = 0x00008020 will invert bits 15 and 5 in CHEMSK register.

DS61119D-page 4-18 Preliminary © 2008 Microchip Technology Inc.

Section 4. Prefetch Cache

Register 4-17: CHEWO: Cache Word 0

RIW-X RIW-X RIW-X RW-x | RWx | RWx [RWx | RMWx
CHEWO0<31:24>
bit 31 bit 24
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CHEWO0<23:16>
bit 23 bit 16
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CHEWO0<15:8>
bit 15 bit 8
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CHEWO0<7:0>
bit 7 bit 0
Legend:
R = Readable hit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)
bit 31-0 CHEWO0<31:0>: Word 0 of the cache line selected by CHEACC.CHEIDX

Readable only if the device is not code-protected.

o2
o @
oo
3 0o
(D:T

© 2008 Microchip Technology Inc. Preliminary DS61119D-page 4-19

PIC32MX Family Reference Manual

Register 4-18: CHEWL1: Cache Word 1

RW-x | RWx | RWx | RWx | RWx [RMWx RIW-X RIW-X
CHEW1<31:24>
bit 31 bit 24
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CHEW1<23:16>
bit 23 bit 16
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CHEW1<15:8>
bit 15 bit 8
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CHEW1<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)
bit 31-0 CHEW1<31:0>: Word 1 of the cache line selected by CHEACC.CHEIDX

Readable only if the device is not code-protected.

DS61119D-page 4-20 Preliminary © 2008 Microchip Technology Inc.

Section 4. Prefetch Cache

Register 4-19: CHEW?2 Cache Word 2

RIW-x RIW-x RIW-x RW-x | RWx | RWx [RWx | RMWx
CHEW2<31:24>
bit 31 bit 24
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CHEW2<23:16>
bit 23 bit 16
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CHEW2<15:8>
bit 15 bit 8
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CHEW2<7:0>
bit 7 bit 0
Legend:
R = Readable hit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)
bit 31-0 CHEW2<31:0>: Word 2 of the cache line selected by CHEACC.CHEIDX

Readable only if the device is not code-protected.

o2
o @
oo
3 0o
(D:T

© 2008 Microchip Technology Inc. Preliminary DS61119D-page 4-21

PIC32MX Family Reference Manual

Register 4-20:

CHEW3®: cache Word 3

RIW-x \ RIW-x | R/W-X \ R/W-X | RIW-x R/W-x RIW-x R/W-x
CHEW3<31:24>
bit 31 bit 24
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CHEW3<23:16>
bit 23 bit 16
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CHEW3<15:8>
bit 15 bit 8
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CHEW3<7:0>
bit 7 bit 0
Legend:

R = Readable bit

U = Unimplemented bit

W = Writable bit
-n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

P = Programmable bit

r = Reserved bit

bit 31-0

Readable only if the device is not code-protected.

Note 1:

CHEW3<31:0>: Word 3 of the cache line selected by CHEACC.CHEIDX

This register is a window into the cache data array and is readable only if the device is not code-protected.

DS61119D-page 4-22

Preliminary

© 2008 Microchip Technology Inc.

Section 4. Prefetch Cache

Register 4-21: CHELRU: Cache LRU Register

r-x r-x r-x r-x r-x r-x r-x R-0
— — — — — — — CHELRU<24>
bit 31 bit 24
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
CHELRU<23-16>
bit 23 bit 16
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
CHELRU<15-8>
bit 15 bit 8
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
CHELRU<7-0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)
bit 31-25 Reserved: Write ‘0"; ignore read
bit 24-0 CHELRU<24:0>: Cache Least Recently Used State Encoding bits

CHELRU indicates the Pseudo-LRU state of the cache.

o2
o @
oo
3 0o
(D:T

© 2008 Microchip Technology Inc. Preliminary DS61119D-page 4-23

PIC32MX Family Reference Manual

Register 4-22:

CHEHIT: Cache Hit Statistics Register

RIW-x \ RIW-x | R/W-x \ R/W-x | RIW-x R/IW-x RIW-x R/W-x
CHEHIT<31:24>
bit 31 bit 24
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CHEHIT<23:16>
bit 23 bit 16
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CHEHIT<15:8>
bit 15 bit 8
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CHEHIT<7:0>
bit 7 bit 0
Legend:

R = Readable bit

U = Unimplemented bit

W = Writable bit
-n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

P = Programmable bit

r = Reserved bit

bit 31-0

CHEHIT<31:0>: Cache Hit Count bits

Incremented each time the processor issues an instruction fetch or load that hits the prefetch cache
from a cacheable region. Non-cacheable accesses do not modify this value.

DS61119D-page 4-24

Preliminary

© 2008 Microchip Technology Inc.

Section 4. Prefetch Cache

Register 4-23: CHEMIS: Cache Miss Statistics Register

RIW-x RIW-x RIW-x R/W-X | RIW-x | R/W-x \ RIW-x \ R/W-x
CHEMIS<31:24>
bit 31 bit 24
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CHEMIS<23:16>
bit 23 bit 16
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CHEMIS<15:8>
bit 15 bit 8
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CHEMIS<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)
bit 31-0 CHEMIS<31:0>: Cache Miss Count bits

Incremented each time the processor issues an instruction fetch from a cacheable region that misses
the prefetch cache. Non-cacheable accesses do not modify this value.

o2
o @
oo
3 0o
(D:T

© 2008 Microchip Technology Inc. Preliminary DS61119D-page 4-25

PIC32MX Family Reference Manual

Register 4-24: PFABT: Prefetch Cache Abort Statistics Register

RIW-x \ RIW-x | R/W-x \ R/W-x | RIW-x R/IW-x RIW-x R/W-x
PFABT<31:24>
bit 31 bit 24
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
PFABT<23:16>
bit 23 bit 16
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
PFABT<15:8>
bit 15 bit 8
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
PFABT<7:0>
bit 7 bit 0
Legend:
R = Readable hit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-0 PFABT<31:0>: Prefab Abort Count bits

Incremented each time an automatic prefetch cache is aborted due to a non-sequential instruction
fetch, load or store.

DS61119D-page 4-26

Preliminary

© 2008 Microchip Technology Inc.

Section 4. Prefetch Cache

4.4 CACHE OPERATION

The cache and prefetch cache module implements a fully associative 16-line cache. Each line
consists of 128 bits (16 bytes). The cache and prefetch cache module only request 16-byte
aligned instruction data from the PFM. If the CPU requested address is not aligned to a 16-byte
boundary, the module will align the address by dropping address bits<3:0>. When configured
only as a cache, the module loads multiple instructions into a line on a miss. It uses the pseudo
LRU algorithm to select which line receives the new set of instructions. The cache controller uses
the Wait states state values from PFMWS (CHECON<2:0>) to determine how long it must wait
for a Flash access when it detects a miss. On a hit, the cache returns data in zero Wait states. If
the code is 100% linear, the Cache-Only mode will provide instructions back to the CPU with Wait
states only on the first instruction of a cache line. For 32-bit linear code, Wait states are seen
every four instructions. For 16-bit linear code, Wait states occur only once for every eight instruc-
tions executed.

4.5 CACHE CONFIGURATIONS

The CHECON register controls the configurations available for instruction and data caching of
PFM. Two parameters control the allocation of cache lines to specific features.

The DCSZ (CHECON<9:8>) field controls the number of lines allocated to program data
caching. Table 4-3 shows the cache line relationship for values of DCSZ (CHECON<9:8>). The
data caching capability is for read-only data, e.g., constants, parameters, table data, etc., that
are not modified.

Table 4-3: Program Data Cache
DCSZ<1:0> Lines Allocated to Program Data
00 None
01 Cache Line Number 15
10 Cache Lines Number 14 and 15
11 Cache Lines Number 12 through 15

The PREFEN (CHECON<5:4>) field controls predictive prefetching, which allows the cache
controller to speculatively fetch the next 16-byte aligned set of instructions.

45.1 Line Locking

Each line in the cache can be locked to hold its contents. A line is locked if both LVALID
(CHETAG<3>) =1 and LLOCK (CHETAG<2>) =1. If LVALID =0 and LLOCK =1, the cache
controller issues a preload request (see Section 4.5.3 “Preload Behavior”). Locking cache
lines may reduce the performance of general program flow. However, if one or two function calls
consume a significant percent of overall processing, locking their addresses can provide
improved performance.

Though any number of lines can be locked, the cache works more efficiently when locking either
1 or 4 lines. If locking 4 lines, choose those lines in which the line numbers, when divide by 4,
have the same quotient. This locks an entire LRU group which benefits the LRU algorithm. For
example, lines 8, 9, A, and B each have a quotient of 2 when divided by 4.

© 2008 Microchip Technology Inc. Preliminary DS61119D-page 4-27

o2
o @
oo
3 0o
(D:T

PIC32MX Family Reference Manual

45.2 Address Mask

Cache lines 10 and 11 allow masking of the CPU address, and the tag address, to force a match
on corresponding bits. The LMASK (CHEMSK<15:5>) field is set up to complement the interrupt
vector spacing field in the CPU. This feature allows boot code to lock the first four instructions of
a vector in the cache. If all vectors contain identical instructions in their first four locations, then
setting the LMASK (CHEMSK<15:5>) to match the vector spacing, and the LTAG
(CHETAG<23:4>) to match the vector base address, causes all the vector addresses to hit the
cache. The cache responds with zero Wait states and immediately initiates a fetch of the next
set of four instructions for the requesting vector if prefetch cache is enabled.

Using LMASK (CHEMSK<15:5>) is restricted to aligned address ranges. Its size allows for a
maximum range of 32 KB and a minimum spacing of 32 B. Using the two lines in conjunction
provides the ability to have different ranges and different spacing.

Setting up the address mask such that more than one line will match an address causes
undefined results. Therefore, it is highly recommended that masking is set up before entering
cacheable code.

45.3 Preload Behavior

Application code can direct the cache controller to preform a preload of a cache line and lock it
with instructions or data from the Flash. The preload function uses the CHEACC.CHEIDX
register field to select the cache line into which the load is directed. Setting CHEACC.CHEWEN
to ‘1’ enables writes to the CHETAG register.

Writing LVALID (CHETAG<3>) = 0 and LLOCK (CHETAG<2>) = 1 causes a preload request to
the cache controller. The controller acknowledges the request in the cycle after the write and, if
possible, stops any outstanding Flash access, and stalls any CPU load from the cache or Flash.

When the controller has finished or stalled the previous transaction, it initiates a Flash read to
fetch the instructions, or data, requested using the address in LTAG (CHETAG<23:4>). After the
programmed number of Wait states, as defined by PFMWS (CHECON<2:0>), the controller
updates the data array with the values read from Flash. On the update, it sets LVALID
(CHETAG<3>) = 1. The LRU state of the line is not affected.

Once the controller finishes updating the cache, it allows CPU requests to complete. If this
request misses the cache, the controller initiates a Flash read, which incurs the full Flash
access time.

4.5.4 Bypass Behavior

Processor accesses in which cache coherency attributes indicate uncacheable addresses
bypass the cache. In bypass, the module accesses the PFM for every instruction, incurring the
Flash access time as defined by PFMWS (CHECON<2:0>).

DS61119D-page 4-28

Prelimin ary © 2008 Microchip Technology Inc.

Section 4. Prefetch Cache

455 Predictive Prefetch Cache Behavior

When configured for predictive prefetch cache on cacheable addresses, the module predicts
the next line address and returns it into the pseudo LRU line of the cache. If enabled, the
prefetch cache function starts predicting based on the first CPU instruction fetch. When the first
line is placed in the cache, the module simply increments the address to the next 16-byte
aligned address and starts a Flash access. When running linear code (i.e. no jumps), the Flash
returns the next set of instructions into the prefetch cache buffer on or before all instructions can
be executed from the previous line.

If, at any time during a predicted Flash access, a new CPU address does not match the pre-
dicted one, the Flash access will be changed to the correct address. This behavior does not
cause the CPU access to take any longer than it does without prediction.

If an access that misses the cache hits the prefetch cache buffer, the instructions are placed in
the pseudo LRU line, along with its address tag. The pseudo LRU value is marked as the most
recently used line, and other lines are updated accordingly. If an access misses both the cache
and the prefetch cache buffer, the access passes to the Flash, and those returning instructions
are placed in the pseudo LRU line.

When configured for predictive prefetch cache on non-cacheable addresses, the controller only
uses the prefetch cache buffer. The LRU cache line is not updated for hits or fills, so the cache
remains intact. For linear code, enabling predictive prefetch cache for non-cacheable addresses
allows the CPU to fetch instructions in zero Wait states.

It is not useful to use non-cacheable predictive prefetching when accesses to the Flash are set
for zero Wait states. The controller holds prefetched instructions on the output of the Flash for
up to 3 clock cycles (while the CPU is fetching from the buffer). This consumes more power,
without any benefit, for zero-Wait-state Flash accesses.

Predictive data prefetching is not supported. However, a data access in the middle of a
predictive instruction fetch causes the cache controller to stop the Flash access for the
instruction fetch, and to start the data load from Flash. The predictive prefetch cache does not
resume, but instead, waits for another instruction fetch. At which time, it either fills the buffer
because of a miss, or starts a prefetch cache because of a hit.

4.5.6 Cache Replacement Policy

The cache controller uses a pseudo-LRU replacement policy for cache line fills that are caused
by a read miss. The policy allows any line in the last quarter of least recently used lines to be
replaced. Enabling locking and data caching affect the line to be replaced, but not the actual
value of the pseudo-LRU.

o2
o @
oo
3 0o
(D:T

© 2008 Microchip Technology Inc. Preliminary DS61119D-page 4-29

PIC32MX Family Reference Manual

4.6 COHERENCY SUPPORT

It is not possible to execute out of cache while programming the Flash memory. The Flash
controller stalls the cache during the programming sequence. Therefore, user code that initiates
a programming sequence should not be located in a cacheable address region.

During a programming operation, the prefetch cache is flushed by invalidating either all, or
some of the cache lines.

If CHECOH (CHECON<16>) is set, every cache line is invalidated and unlocked during a Flash
program memory write operation. The cache tags and masks are also cleared for all lines.

If CHECOH is not set, only lines that are not locked are forced invalid. Lines that are locked are
retained.

DS61119D-page 4-30

Prelimin ary © 2008 Microchip Technology Inc.

Section 4. Prefetch Cache

4.7 EFFECTS OF RESET
471 On Reset

« All cache lines are invalidated

« All cache lines revert to instruction

« All cache lines are unlocked

« The LRU order is sequential, with line 0 being the least recently used
« All mask bits are cleared

 All registers revert to their Reset state

4.7.2 After Reset

» The module operates as per the values in the CHECON register
« The cache obeys the core’s cache coherency attributes

4.8 DESIGN TIPS

Even while running at clock frequencies allowing for zero-Wait-state operation, the cache
function proves useful as a power-saving technique. Accesses to the Flash memory consume
more power than accesses to the cache.

o2
o @
oo
3 0o
(D:T

© 2008 Microchip Technology Inc. Preliminary DS61119D-page 4-31

PIC32MX Family Reference Manual

4.9 OPERATION IN POWER-SAVING MODES

Note: In this manual, a distinction is made between a power mode as it is used in a spe-
cific module, and a power mode as it is used by the device, e.g., Sleep mode of the
Comparator and SLEEP mode of the CPU. To indicate which type of power mode
is intended, uppercase and lowercase letters (Sleep, Idle, Debug) signify a module
power mode, and all uppercase letters (SLEEP, IDLE, DEBUG) signify a device

power mode.

49.1 SLEEP Mode

When the device enters SLEEP mode, the prefetch cache is disabled and placed into a
low-power state where no clocking occurs in the prefetch cache module.

4.9.2 IDLE Mode

When the device enters IDLE mode, the cache and prefetch cache clock source remains
functional and the CPU stops executing code. Any outstanding prefetch cache completes
before the module stops its clock via automatic clock gating.

4.9.3 DEBUG Mode

The behavior of the prefetch cache is unaltered by DEBUG mode. Care must be taken to make
sure the cache remains coherent during DEBUG mode execution when using software
breakpoints. If a debugger places a software break instruction in the cache, the line should be
locked before returning control to the application. When a locked software breakpoint is
removed, the line should be unlocked and invalidated, causing the original instructions to be
reloaded from the PFM upon execution.

DS61119D-page 4-32

Prelimin ary © 2008 Microchip Technology Inc.

Section 4. Prefetch Cache

4.10 RELATED APPLICATION NOTES

This section lists application notes that are related to this section of the manual. These
application notes may not be written specifically for the PIC32MX device family, but the concepts
are pertinent and could be used with modification and possible limitations. The current applica-
tion notes related to the prefetch cache module are:

Title Application Note #
No related application notes at this time. N/A

Note: Please visit the Microchip web site (www.microchip.com) for additional application
notes and code examples for the PIC32MX family of devices.

o2
o @
oo
3 0o
(D:T

© 2008 Microchip Technology Inc. Preliminary DS61119D-page 4-33

http://www.microchip.com
http://www.microchip.com
http://www.microchip.com

PIC32MX Family Reference Manual

411 REVISION HISTORY

Revision A (October 2007)

This is the initial released version of this document.

Revision B (October 2007)

Updated document to remove Confidential status.
Revision C (April 2008)

Revised status to Preliminary; Revise U-0 to r-x.
Revision D (June 2008)

Change Reserved bits from “Maintain as” to “Write”.

DS61119D-page 4-34

Preliminary

© 2008 Microchip Technology Inc.

MICROCHIP

Section 5. Flash Programming

HIGHLIGHTS

This section of the manual contains the following topics:

51
5.2
5.3
54
55
5.6
5.7
5.8
5.9
5.10
511
5.12
5.13

INEFOAUCTION ... ettt st 5-2
CONIOI REGISLEISeee ettt ettt s s snee s 5-3
RTSP OPEIALION ...eeuviiieiiee sttt e et e s snn e e e snneeenes 5-17
LOCK-OUL FATUIE ... ettt ettt et e e e e e e e e et be e e e eennneeas 5-18
Word Programming SEQUEINCEeeeiiiieiiiiieeiiiieeeiieesiteeesbaeessibeessaeeessneeeeseneeenns 5-20
ROW Programming SEQUENCE..........cocueieiiiie et sitee sttt et e e sreeeesraeeenes 5-21
Page EraSe SEOUENCE.......c..uiiiiieeitiee ettt e e e e e b 5-22
Program Flash Memory Erase SEQUENCEcceeeriviieiirieniiiee e sieeesneee e 5-23
Operation in Power-Saving and DEBUG MOUESccvviiiieiniiieniiee e 5-24
Effects Of VarioUS RESEIS.......c.uiiiiiie et eee e 5-24
101 C=T U o] OO OPPPPPRPI 5-25
Related APPlICAtION NOTESeiiiiiiiiiiie et 5-27
REVISION HISTOMY ... ueiiiiiiiiiii e e e s st ee e e s eabaaaeeeeaaes 5-28

© 2008 Microchip Technology Inc.

Preliminary DS61121D-page 5-1

i
o
Q
@
3
3.
S
Q

PIC32MX Family Reference Manual

5.1 INTRODUCTION

This section describes techniques for programming the Flash memory. PIC32MX devices contain
internal Flash memory for executing user code. There are three methods by which the user can
program this memory:

* Run-Time Self Programming (RTSP) — performed by the user’s software
* In-Circuit Serial Programming™ (ICSP™) — performed using a serial data connection to the
device, allows much faster programming than RTSP

» EJTAG Programming — performed by an EJTAG-capable programmer, using the EJTAG
port of the device

RTSP techniques are described in this chapter. The ICSP and EJTAG methods are described in
the PIC32MX Programming Specification document, which can be downloaded from the
Microchip web site at www.microchip.com.

DS61121D-page 5-2

Prelimin ary © 2008 Microchip Technology Inc.

Section 5. Flash Programming

5.2 CONTROL REGISTERS

Flash program and erase operations are controlled using the following Nonvolatile Memory
(NVM) control registers:

* NVMCON: Nonvolatile Memory Control Register

NVMCONCLR, NVMCONSET, NVMCONINV: Atomic Bit Manipulation, Write-only Registers
for NVMCON

* NVMKEY: Nonvolatile Memory Key Register
 NVMADDR: Nonvolatile Memory Address Register

NVMADDRCLR, NVMADDRSET, NVMADDRINV: Atomic Bit Manipulation, Write-only
Registers for NVMADDR

* NVMDATA: Nonvolatile Memory Data Register
* NVMSRCADDR: Nonvolatile Memory SRAM Source Address Register
» IFSx: Interrupt Flag Status Registers

IFSxCLR, IFSxSET, IFSxINV: Atomic Bit Manipulation, Write-only Registers for IFSx
« |ECx: Interrupt Enable Control Registers

IECXCLR, IECXSET, IECxINV: Atomic Bit Manipulation, Write-only Registers for IECx
« IPCx: Interrupt Priority Control Registers
» IPCxCLR, IPCxSET, IPCxINV: Atomic Bit Manipulation, Write-only Registers for IPCx

The following table provides a brief summary of all the Flash-programming-related registers.
Corresponding registers appear after the summary, followed by a detailed description of each

register.
Table 5-1: Flash Controller SFR Summary
Name Bit Bit Bit Bit Bit Bit Bit Bit
31/23/15/7 | 30/22/14/6 | 29/21/13/5 | 28/20/12/4 | 27/19/11/3 | 26/18/10/2 | 25/17/9/1 | 24/16/8/0
NVMCON 31:24 — — — — — — — —
23:16 — — — — — — — —
15:8 | NVMWR |[NVMWREN| NVMERR LVDERR LVDSTAT — — —
7:0 — — — — NVMOP<3:0>
NVMCONCLR 31:0 Write clears selected bits in NVMCON, read yields undefined value
NVMCONSET 31:.0 Write sets selected bits in NVMCON, read yields undefined value
NVMCONINV 31:.0 Write inverts selected bits in NVMCON, read yields undefined value
NVMKEY 31:24 NVMKEY<31:24>
23:16 NVMKEY<23:16>
15:8 NVMKEY<15:8>
7:0 NVMKEY<7:0>
NVMADDR 31:24 NVMADDR<31:24>
23:16 NVMADDR<23:16>
15:8 NVMADDR<15:8>
7:0 NVMADDR<7:0>
NVMADDRCLR | 31:0 Write clears selected bits in NVMADDR, read yields undefined value
NVMADDRSET | 31:0 Write sets selected bits in NVMADDR, read yields undefined value
NVMADDRINV | 31:0 Write inverts selected bits in NVMADDR, read yields undefined value

i
o
Q
@
3
3.
S
Q

© 2008 Microchip Technology Inc.

Preliminary DS61121D-page 5-3

PIC32MX Family Reference Manual

Table 5-1: Flash Controller SFR Summary (Continued)
Name Bit Bit Bit Bit Bit Bit Bit Bit
31/23/15/7 | 30/22/14/6 | 29/21/13/5 | 28/20/12/4 | 27/19/11/3 | 26/18/10/2 | 25/17/9/1 | 24/16/8/0
NVMDATA 31:24 NVMDATA<31:24>
23:16 NVMDATA<23:16>
15:8 NVMDATA<15:8>
7:0 NVMDATA<7:0>
NVMSRCADDR | 31:24 NVMSRCADDR<31:24>
23:16 NVMSRCADDR<23:16>
15:8 NVMSRCADDR<15:8>
7:0 NVMSRCADDR<7:0>
Table 5-2: Flash Controller Interrupt SFR Summary
IFS1 31:24 — — — — — — USBIF FCEIF
23:16 — — — — DMAS3IF DMAZ2IF DMAL1IF DMAOIF
15:8 RTCCIF FSCMIF 12C2MIF 12C2SIF 12C2BIF U2TXIF U2RXIF U2EIF
7:0 | SPI2RXIF | SPI2TXIF SPI2EIF CMP2IF CMP1IF PMPIF AD1IF CNIF
IFS1CLR 31:0 Write clears the selected bits in IFS1, read yields undefined value
IFS1SET 31:0 Write sets the selected bits in IFS1, read yields undefined value
IFS1INV 31:0 Write inverts the selected bits in IFS1, read yields undefined value
IEC1 31:24 — — — — — — USBIE FCEIE
23:16 — — — — DMASIE DMA2IE DMALIE DMAOIE
15:8 RTCCIE FSCMIE 12C2MIE 12C2SIE 12C2BIE U2TXIE U2RXIE U2EIE
7:0 | SPI2RXIE | SPI2TXIE SPI2EIE CMP2IE CMPL1IE PMPIE AD1IE CNIE
IEC1CLR 31:0 Write clears the selected bits in IEC1, read yields undefined value
IEC1ISET 31:0 Write sets the selected bits in IEC1, read yields undefined value
IEC1INV 31.0 Write inverts the selected bits in IEC1, read yields undefined value
IPC11 31:24 — — — — — — — —
23:16 — — — — — — — —
15:8 — — — — — — — —
7:0 — — — FCEIP<2:0> FCEIS<1:0>
IPC11CLR 31:.0 Write clears the selected bits in IPC11, read yields undefined value
IPC11SET 31:.0 Write sets the selected bits in IPC11, read yields undefined value
IPC11INV 31:0 Write inverts the selected bits in IPC11, read yields undefined value

DS61121D-page 5-4 Prelimin ary © 2008 Microchip Technology Inc.

Section 5. Flash Programming
Register 5-1: NVMCON: Programming Control Register
r-X r-X r-x r-X r-X r-x r-X r-x
bit 31 bit 24
r-X r-X r-x r-X r-x r-x r-x r-x
bit 23 bit 16
R/W-0 R/W-0 R-0 R-0 R-x r-X r-x r-X
NVMWR NVMWREN NVMERR LVDERR LVDSTAT — — —
bit 15 bit 8
r-x r-x r-x r-x R/W-0 R/W-0 R/W-0 R/W-0
— — — — NVMOP3 NVMOP2 NVMOP1 NVMOPO
bit 7 bit 0
Legend:
R = Readable hit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-16
bit 15

bit 14

bit 13

bit 12

bit 11

bit 10-4

Reserved: Write ‘0’; ignore read

NVMWR: Write Control bit

This bit is writable when NVMWREN = 1 and the unlock sequence is followed

1 = Initiate a Flash operation. Hardware clears this bit when the operation completes.
0 = Flash operation complete or inactive

NVMWREN: Write Enable bit

1 = Enable writes to NVMWR bit and enables LVD circuit

0 = Disable writes to NVMWR bit and disables LVD circuit

Note: This is the only bit in this register reset by a device Reset.

NVMERR: Write Error bit

This bit is read-only and is automatically set by hardware

1 = Program or erase sequence did not complete successfully

0 = Program or erase sequence completed normally

Note: Cleared by setting NVMOP==0000b, and initiating a Flash operation (i.e., N\VMWR).
LVDERR: Low Voltage Detect Error Bit (LVD circuit must be enabled)

This bit is read-only and is automatically set by hardware

1 = Low voltage detected (possible data corruption, if NMVERR is set)

0 = Voltage level is acceptable for programming

Note: Cleared by setting NVMOP==0000b, and initiating a Flash operation (i.e., N\VMWR).
LVDSTAT: Low-Voltage Detect Status bit (LVD circuit must be enabled)

This bit is read-only and is automatically set, and cleared, by hardware

1 = Low voltage event active
0 = Low voltage event NOT active
Note: Cleared by setting NVMOP==0000b, and initiating a Flash operation (i.e., N\VMWR).

Reserved: Write ‘0’; ignore read

i
o
Q
@
3
3.
S
Q

© 2008 Microchip Technology Inc.

Preliminary DS61121D-page 5-5

PIC32MX Family Reference Manual

Register 5-1: NVMCON: Programming Control Register (Continued)
bit 3-0 NVMOP<3:0>: NVM Operation bits
These bits are writeable when NVMWREN = 1 and the unlock sequence is followed

0111 = Reserved

0110 = No operation

0101 = Program Flash (PFM) erase operation: erases PFM, if all pages are not write-protected
0100 = Page erase operation: erases page selected by NVMADDR, if it is not write-protected
0011 = Row program operation: programs row selected by NVMADDR, if it is not write-protected
0010 = No operation

0001 = Word program operation: programs word selected by NVMADDR, if it is not write-protected
0000 = No operation

DS61121D-page 5-6 Prelimin ary © 2008 Microchip Technology Inc.

Section 5. Flash Programming

Register 5-2: NVMCONCLR: Programming Control Clear Register
Write clears selected bits in NVMCON, read yields undefined value
bit 31 bit 0
bit 31-0 Clears selected bits in NVMCON
A write of ‘1" in one or more bit positions clears the corresponding bit(s) in NVMCON register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.
Example: NVMCONCLR = 0x00008001 will clear bits 15 and 0 in NVMCON register.
Register 5-3: NVMCONSET: Programming Control Set Register
Write sets selected bits in NVMCON, read yields undefined value
bit 31 bit 0
bit 31-0 Sets selected bits in NVMCON
A write of ‘1’ in one or more bit positions sets the corresponding bit(s) in NVMCON register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.
Example: NVMCONSET = 0x00008001 will set bits 15 and 0 in NVMCON register.
Register 5-4: NVMCONINV: Programming Control Invert Register
Write inverts selected bits in NVMCON, read yields undefined value
bit 31 bit 0
bit 31-0 Inverts selected bits in NVMCON

A write of ‘1" in one or more bit positions inverts the corresponding bit(s) in NVMCON register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.

Example: NVMCONI NV = 0x00008001 will invert bits 15 and 0 in NVMCON register.

© 2008 Microchip Technology Inc. Prelimin ary DS61121D-page 5-7

i
o
Q
@
3
3.
S
Q

1
Q
7
>

PIC32MX Family Reference Manual

Register 5-5: NVMKEY: Programming Unlock Register

W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0
NVMKEY<31:24>
bit 31 bit 24
W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0
NVMKEY<23:16>
bit 23 bit 16
W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0
NVMKEY<15:8>
bit 15 bit 8
W-0 W-0 W-0 W-0 W-0 W-0 W-0 W-0
NVMKEY<7:0>
bit 7 bit 0
Legend:
R = Readable hit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘'0’, ‘1’, x = Unknown)
bit 31-0 NVMKEY<31:0>: Unlock Register bits

These bits are write-only, and read as ‘0’ on any read
Note: This register is used as part of the unlock sequence to prevent inadvertent writes to the PFM.

DS61121D-page 5-8 Prelimin ary © 2008 Microchip Technology Inc.

Section 5. Flash Programming

Register 5-6: NVMADDR: Flash Address Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
NVMADDR<31:24>
bit 31 bit 24
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
NVMADDR<23:16>
bit 23 bit 16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
NVMADDR<15:8>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 r-x r-x
NVMADDR<7:0>
bit 7 bit 0
Legend:
R = Readable hit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)
bit 31-3 NVMADDR<31:0>: Flash Address bits

Bulk/Chip/PFM Erase:

Address is ignored
Page Erase:

Address identifies the page to erase
Row Program:

Address identifies the row to program
Word Program:

Address identifies the word to program

bit 2-0 Reserved: Write ‘0’; ignore read

i
o
Q
@
3
3.
S
Q

© 2008 Microchip Technology Inc. Prelimin ary DS61121D-page 5-9

PIC32MX Family Reference Manual

Register 5-7: NVMADDRCLR: Flash Address Clear Register
Write clears selected bits in NVMADDR, read yields undefined value
bit 31 bit 0
bit 31-0 Clears selected bits in NVMADDR
A write of ‘1’ in one or more bit positions clears the corresponding bit(s) in NVMADDR register and
does not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.
Example: NVMADDRCLR = 0x00008001 will clear bits 15 and 0 in NVMADDR register.
Register 5-8: NVMADDRSET: Flash Address Set Register
Write sets selected bits in NVMADDR, read yields undefined value
bit 31 bit 0
bit 31-0 Sets selected bits in NVMADDR
A write of ‘1’ in one or more bit positions sets the corresponding bit(s) in NVMADDR register and does
not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.
Example: NVMADDRSET = 0x00008001 will set bits 15 and 0 in NVMADDR register.
Register 5-9: NVMADDRINV: Flash Address Invert Register
Write inverts selected bits in NVMADDR, read yields undefined value
bit 31 bit 0
bit 31-0 Inverts selected bits in NVMADDR

A write of ‘1’ in one or more bit positions inverts the corresponding bit(s) in NVMADDR register and
does not affect unimplemented or read-only bits. A write of ‘0’ will not affect the register.

Example: NVMADDRI NV = 0x00008001 will invert bits 15 and 0 in NVMADDR register.

DS61121D-page 5-10 Preliminary © 2008 Microchip Technology Inc.

Section 5. Flash Programming

Register 5-10: NVMDATA: Flash Program Data Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
NVMDATA<31:24>
bit 31 bit 24
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
NVMDATA<23:16>
bit 23 bit 16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
NVMDATA<15:8>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
NVMDATA<7:0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)
bit 31-0 NVMDATA<31:0>: Flash Programming Data bits

Note: These bits are only reset by a Power-on Reset (POR).

i
o
Q
@
3
3.
S
Q

© 2008 Microchip Technology Inc. Preliminary DS61121D-page 5-11

PIC32MX Family Reference Manual

Register 5-11: NVMSRCADDR: Source Data Address Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
NVMSRCADDR<31:24>
bit 31 bit 24
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
NVMSRCADDR<23:16>
bit 23 bit 16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
NVMSRCADDR<15:8>
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 r-x r-x
NVMSRCADDR<7:0>
bit 7 bit 0
Legend:
R = Readable hit W = Writable bit P = Programmable bit r = Reserved bit
U = Unimplemented bit -n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)
bit 31-3 NVMSRCADDR<31:0>: Source Data Address bits

The system physical address of the data to be programmed into the Flash when NVMCON.NVMOP
is set to perform row programming

bit 2-0 Reserved: Write ‘0’; ignore read

DS61121D-page 5-12 Preliminary © 2008 Microchip Technology Inc.

Section 5. Flash Programming

Register 5-12: IFS1: Interrupt Flag Status Register 1M

r-x r-x r-x r-x r-x r-x R/W-0 R/W-0
— — — — — — USBIF FCEIF
bit 31 bit 24
r-x r-x r-x r-x R/W-0 R/W-0 R/W-0 R/W-0
— — — — DMA3IF DMA2IF DMALIF DMAOIF
bit 23 bit 16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RTCCIF FSCMIF 12C2MIF 12C2SIF I2C2BIF U2TXIF U2RXIF U2EIF
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SPI2RXIF SPI2TXIF SPI2EIF CMP2IF CMPL1IF PMPIF ADL1IF CNIF
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
HC = Hardware clear HS = Hardware set C = Clearable by software
-n = Bit Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared X = Bit is unknown
bit 24 FCEIF: Flash Control Event Interrupt Flag bit

1 = Interrupt request has occurred
0 = No interrupt request has occurred

Note 1: Shaded bit names in this Interrupt register control other PIC32MX peripherals and are not related to the
NVM.

i
o
Q
@
3
3.
S
Q

© 2008 Microchip Technology Inc. Preliminary DS61121D-page 5-13

PIC32MX Family Reference Manual

Register 5-13:

IEC1: Interrupt Enable Control Register 1@

R = Readable bit
HC = Hardware clear
-n = Bit Value at POR

W = Writable bit
HS = Hardware set
‘1’ = Bit is set

r-x r-x r-X r-x r-x r-X R/W-0 R/W-0
— — — — — — USBIE FCEIE
bit 31 bit 24
r-x r-x r-x r-x R/W-0 R/W-0 R/W-0 R/W-0
— — — — DMASIE DMA2IE DMALIE DMAOIE
bit 23 bit 16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
RTCCIE FSCMIE 12C2MIE 12C2SIE 12C2BIE U2TXIE U2RXIE U2EIE
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
SPI2RXIE SPI2TXIE SPI2EIE CMP2IE CMP1IE PMPIE AD1IE CNIE
bit 7 bit 0
Legend:

U = Unimplemented bit, read as ‘0’

C = Clearable by software
‘0’ = Bit is cleared

X = Bit is unknown

bit 24
1 = Interrupt is enabled
0 = Interrupt is disabled

Note 1:
NVM.

FCEIE: Flash Control Event Interrupt Enable bit

Shaded bit names in this Interrupt register control other PIC32MX peripherals and are not related to the

DS61121D-page 5-14

Preliminary

© 2008 Microchip Technology Inc.

Section 5. Flash Programming

Register 5-14: IPC11: Interrupt Priority Control Register 114

r-x r-x r-x r-x r-x r-x r-x r-x
bit 31 bit 24
r-X r-X r-x r-X r-x r-x r-X r-x
bit 23 bit 16
r-X r-X r-x R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— — — USBIP<2:0> USBIS<1:0>
bit 15 bit 8
r-x r-x r-x R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
— — — FCEIP<2:0> FCEIS<1:.0>
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
HC = Hardware clear HS = Hardware set C = Clearable by software
-n = Bit Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared X = Bit is unknown
bit 4-2 FCEIP<2:0>: Flash Control Event INterrupt Priority bits

111 = Interrupt Priority is 7
110 = Interrupt Priority is 6
101 = Interrupt Priority is 5
100 = Interrupt Priority is 4
011 = Interrupt Priority is 3
010 = Interrupt Priority is 2
001 = Interrupt Priority is 1
000 = Interrupt is disabled
bit 1-0 FCEIS<1:0>: Flash Control Event Interrupt Subpriority bits
11 = Interrupt Subpriority is 3
10 = Interrupt Subpriority is 2
01 = Interrupt Subpriority is 1
00 = Interrupt Subpriority is 0
Note 1: Shaded bit names in this Interrupt register control other PIC32MX peripherals and are not related to the
NVM.

i
o
Q
@
3
3.
S
Q

© 2008 Microchip Technology Inc. Preliminary DS61121D-page 5-15

PIC32MX Family Reference Manual

521 NVMCON Register

The NVMCON register is the control register for Flash program/erase operations. This register
selects whether an erase or program operation can be performed and is used to start the
program or erase cycle.

The NVMCON register is shown in Register 5-1. The lower byte of NVMCON configures the type
of NVM operation that will be performed. A summary of the NVMCON setup values for various
program and erase operations is given in Table 5-3.

Table 5-3: NVMCON Register Values
Operation NVMCON Value
Page Erase 0x8004
Program Word 0x8001
Program Row 0x8003
NOP 0x8000

5.2.2 NVMADDR Register

The NVM Address register selects the row for Flash memory writes, the address location for word
writes, and the page address for Flash memory erase operations.

5.2.3 NVMKEY Register

NVMKEY is a write-only register that is used to prevent accidental writes/erasures of Flash or
EEPROM memory. To start a programming or an erase sequence, the following steps must be
taken in the exact order shown:

1. Write 0XAA996655 to NVMKEY.
2. Write 0x556699AA to NVMKEY.
After this sequence, only the next transaction on the peripheral bus is allowed to write the
NVMCON register. In most cases, the user will simply need to set the NVMWR bit in the

NVMCON register to start the program or erase cycle. Interrupts should be disabled during the
unlock sequence.

524 NVMSRCADDR Register

The NVM Source Address register selects the source data buffer address in SRAM for
performing row programming operations.

Note: The address must be word aligned.

DS61121D-page 5-16

Prelimin ary © 2008 Microchip Technology Inc.

Section 5. Flash Programming

5.3 RTSP OPERATION

RTSP allows the user code to modify Flash program memory contents. The device Flash mem-
ory is divided into two logical Flash partitions: the Program Flash Memory (PFM), and the Boot
Flash Memory (BFM). The last page in Boot Flash Memory contains the DEBUG Page, which is
reserved for use by the debugger tool while debugging.

The program Flash array for the PIC32MX device is built up of a series of rows. A row contains
128 32-bit instruction words or 512 bytes. A group of 8 rows compose a page; which, therefore,
contains 8 x 512 = 4096 bytes or 1024 instruction words. A page of Flash is the smallest unit of
memory that can be erased at a single time. The program Flash array can be programmed in one
of two ways:

* Row programming, with 128 instruction words at a time.
« Word programming, with 1 instruction word at a time.

The CPU stalls (waits) until the programming operation is finished. The CPU will not execute
any instruction, or respond to interrupts, during this time. If any interrupts occur during the
programming cycle, they remain pending until the cycle completes.

Note: A minimum VDD requirement for Flash erase and write operations is required. Refer
to the specific device data sheet for further details.

i
o
Q
@
3
3.
S
Q

© 2008 Microchip Technology Inc. Preliminary DS61121D-page 5-17

PIC32MX Family Reference Manual

5.4 LOCK-OUT FEATURE

54.1 NVMWREN

A number of mechanisms exist within the device to ensure that inadvertent writes to program
Flash do not occur. The NVMWREN (NVMCON<14>) bit should be zero, unless the software
intends to write to the program Flash. When NVMWREN = 1, the Flash write control bit N\VMWR
(NVMCON<15>) is writable and the Flash LVD circuit is enabled.

54.2 NVMKEY

In addition to the write protection provided by the NVMWREN bit, an unlock sequence needs to
be performed before the NVMCON.NVMWR bit can be set. If the NVMWR (NVMCON<15>) bit
is not set on the next peripheral bus transaction (read or write), NVMWR is locked and the unlock
sequence must be restarted.

5.4.3 Unlock Sequence

To unlock Flash operations, steps 3 through 8 below must be performed exactly in order. If the
sequence is not followed exactly, NVMWR is not set.

1. Suspend or disable all initiators that can access the Peripheral Bus and interrupt the
unlock sequence, e.g., DMA and interrupts.

2. Set NVMWREN (NVMCON<14>) to allow writes to NVMWR and set NVMOP<3:0>
(NVMCON<3:0>) to the desired operation with a single store instruction.

3. Load 0xAA996655 to CPU register X.

4. Load 0x556699AA to CPU register Y.

5. Load 0x00008000 to CPU register Z.

6. Store CPU register X to NVMKEY.

7. Store CPU register Y to NVMKEY.

8. Store CPU register Z to NVMCONSET.

9. Wait for N\VMWR (NVMCON<15>) bit to be clean.

10. Clear the NVMWREN (NVMCON<14>) bit.

11. Check the NVMERR (NVMCON<13>) and LVDERR (NVMCON<12>) bits to ensure that
the program/erase sequence completed successfully.

When the NVMWR bit is set, the program/erase sequence starts and the CPU is unable to
execute from Flash memory for the duration of the sequence.

DS61121D-page 5-18

Prelimin ary © 2008 Microchip Technology Inc.

Section 5. Flash Programming

Example 5-1: Unlock Example

unsi gned i nt NVMJnl ock (unsigned int nvnop)

{

unsi gned int status;

/1 Suspend or Disable all Interrupts
asmvolatile (“di %" : “=r" (status));

/1 Enable Flash Wite/Erase Operations and Sel ect
/'l Flash operation to perform
NVMCON = nvnop;

/1 Wite Keys
NVMKEY = 0xAA996655;
NVMKEY = 0x556699AA;

/] Start the operation using the Set Register
NVMCONSE