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Chapter 1

Quickstart

Microchip PIC32s are powerful microcontrollers that can be purchased for less than $10 in quantities of one.
The PIC32 combines, in a single chip, a 32-bit central processing unit (CPU), RAM data memory, flash
nonvolatile program memory, and many peripherals useful for embedded control, such as several channels for
analog-to-digital conversion, digital I/O, synchronous and asynchronous serial communication, pulse-width
modulated output, etc. The peripherals are what distinguish a microcontroller, like the PIC32, from a
microprocessor.

The “32” in PIC32 refers to the 32-bit CPU architecture: the CPU operates on 32-bit instructions and
registers, and the instruction and data buses are 32 bits wide. This means that 32 bits can be fetched from
RAM simultaneously, for example. While 8-bit and 16-bit microcontrollers continue to be popular, a primary
advantage of 32-bit microcontrollers is the greater computational horsepower they offer.

There are many different models of PIC32, currently arranged in four major families: the PIC32MX1xx/2xx
family, the PIC32MX3xx/4xx family, the PIC32MXb5xx/6xx/7xx family, and the most recent PIC32MZ
family. Representatives of the four families include the PIC32MX250F128D, the PIC32MX460F512L, the
PIC32MX795F512L, and the PIC32MZ2048ECM144. The three MX families all use the MIPS32 M4K
processor (up to 80 MHz) as the CPU while the MZ family uses the MIPS32 microAptiv microprocessor
unit (up to 200 MHz) as the CPU. “MIPS32” is a CPU architecture with an associated assembly language
instruction set licensed by Microchip from Imagination Technologies.

Each family consists of a number of different models, differing in the number of pins, the amount of RAM
and flash available, and the number and type of peripherals available. The chips come with anywhere from
28 to 144 pins, and while most models are available only in surface mount packages, some in the MX1xx/2xx
family come as “dual inline packages” (DIPs) that can be plugged directly into a solderless breadboard. The
MX3xx/4xx family is the original PIC32 family; the MX5xx/6xx/7xx family offers additional support for
CAN bus and ethernet communication; and the more recent MX1xx/2xx family, while generally having fewer
peripherals available, offers interfaces for connecting to audio devices and capacitive-based touch sensors. The
MX1xx/2xx family also offers the most flexible mapping of different pins to different functions (Peripheral
Pin Select). The MZ family is a significantly new design, incorporating the faster microAptiv CPU and many
of the best features of the MX families, including Peripheral Pin Select.

While the four families share many features, and most of this book applies to all families, where there are
differences we focus on the MX5xx/6xx/7xx family. Also, we will often find it convenient to cite specific
numbers, such as the amount of RAM and flash memory available, and in these cases we will use the
PIC32MX795F512L as our model. This is the PIC32 used on the NU32 development board as well as the
Microchip PIC32 USB Starter Kit IT and PIC32 Ethernet Starter Kit.

The PIC32MX795F512L features a max clock frequency of 80 MHz, 512 KB program memory (flash), and
128 KB data memory (RAM). It also features 16 10-bit analog-to-digital input lines (multiplexed to a single
analog-to-digital converter, or ADC), many digital I/O channels, USB 2.0, Ethernet, two CAN modules, five
I2C and four SPI synchronous serial communication modules, six UARTSs for RS-232 or RS-485 asynchronous
serial communication, five 16-bit counter/timers (configurable to give two 32-bit timers and one 16-bit timer),
five pulse-width modulation outputs, and a number of pins that can generate interrupts based on external
signals, among other features.
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this book
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programming
ability copying .- qsual
code .- trajectory
A ‘foundations
!/ /" quickstart
time

Figure 1.1: The trajectory of PIC32 programming ability vs. time for the usual “copy and modify” approach
vs. the foundational approach in this book. The crossover should occur at only a few weeks!

The purpose of this chapter is to make sure you have everything you need to run your first simple programs.
A deeper exploration of the hardware and software is left to the following chapters.

1.1 Philosophy

When starting out with the PIC32, the Microchip documentation can be confusing to navigate. A primary
goal of this book is to start you off in a more organized way that enables you to make effective use of the
Microchip documentation. The philosophy of this book is summed up in Figure 1.1. While most programmers
new to the PIC32 can achieve some basic functional ability quickly by modifying existing code, the lack of
foundational understanding encouraged by the “copy and modify” approach can lead to an early plateau
in the ability to use the PIC32, making it difficult to create and debug more complex projects. This book
delays some initial gratification in exchange for a more solid foundation for continued exploration of the
PIC32, even if you have no previous background in microcontrollers. Chapters 2-6 focus on example-driven
foundations, and with this as background, you can move more quickly through later chapters on peripherals.

1.2 Reference Reading

In this chapter we start quickly, so no need to read any other reference material now. But throughout the
book you will learn to rely on the Microchip documentation, so it a good idea to download it for later use.

e The relevant PIC32 Family Data Sheet. We will focus on the PIC32MX5xx/6xx/7xx Family
Data Sheet, but the other families share many common features.

e The individual sections of the PIC32 Reference Manual. Search for “Microchip Reference
Manual,” and on the Microchip page, search for the sections with “PIC32” in the title. As of this
writing, there are approximately 40 sections (with section numbers up to 52) totaling over 1600 pages.
These sections generally apply to all four families, so they can sometimes be confusing in their generality.
Some of the sections, particularly the later ones, focus on the PIC32MZ family and are not relevant to
the PIC32MX795F512L.

e (Optional) The Microchip MPLAB XC32 C Compiler User’s Guide and Assembler, Linker,
and Utilities User’s Guide. These come with your XC32 C compiler installation (Section 1.3), so
no need to download separately.

e (Optional) MPLAB Harmony Help. Harmony is a set of software libraries and drivers provided
by Microchip to simplify programming of the PIC32. Since its purpose is to abstract away from the

4 08:24 January 27, 2014
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Figure 1.2: Reference reading for the PIC32.

specifics of the particular PIC32 model, and since this book is heavily driven by understanding the
hardware, we will have limited use for Harmony.

e (Optional) MIPS32 Architecture for Programmers manuals and other MIPS32 documen-
tation. If you are curious about the MIPS32 CPU architectures and the assembly language instruction
set, you can find references online. These are not necessary, however.

The scope of the various reference readings is summarized in Figure 1.2. The MPLAB C compiler and
assembler/linker user’s guides are software reference manuals. The PIC32 Family Reference Manual is the
best resource for understanding how the PIC32 hardware works. However, since it is written to apply to
all PIC32s, some material is not relevant for all models. For instance, not all PIC32s have all the special
function registers (SFRs, covered beginning in Chapter 2) mentioned in each Reference Manual section.

The Data Sheets provide details specific to the PIC32 families. In addition, for each particular PIC32
model in a family, such as the PIC32MX795F512L in the MX5xx/6xx/7Txx series, the Memory Organization
section of the Data Sheet clarifies which SFRs are present on that model, and therefore which Reference
Manual functions are available for that model.

Flipping back and forth between sections of the Reference Manual, your particular Data Sheet, and the
software user’s guides is not a good way to get started programming the PIC32. But neither is simply copying
and modifying code. This book provides a more organized introduction to programming the PIC32 and
prepares you for future exploration using Microchip documentation.

In many places the material in this book is general to all PIC32s. At others the material is specific to the
MXb5xx/6xx/7xx family; at others it is specific to the PIC32MX795F512L; and at still others it is specific to
the PIC32MX795F512L as it is used on the NU32 development board. To prevent the presentation from
being hopelessly filled with caveats, exceptions, and generalities, in most of the book we assume you have a
PIC32MX795F512L on an NU32 development board.

1.3 What You Need

1.3.1 Hardware

In this chapter we start with the PIC32 by getting some simple code up and running quickly. To do this, you
need the following three things:

1. A host computer with a USB port. The host computer is used to create PIC32 programs. Any
operating system is fine.

) 08:24 January 27, 2014



CHAPTER 1. QUICKSTART

GND rail
“® 3.3 Vrail

Figure 1.3: A photo of the NU32 development board.

2. A PIC32 board (and possibly a separate programmer device). The PIC32 needs some external
electronics to function, and these are typically provided by a small printed circuit board on which the
PIC32 is mounted. These boards often have buttons and LEDs for simple input and output. Example
boards include:

(a)

Starter kits. Microchip’s various PIC32 Starter Kits, such as the PIC32 Starter Kit, PIC32 USB
Starter Kit II, PIC32 Ethernet Starter Kit, Microstick II, and PIC32MX1/MX2 Starter Kit consist
of boards with the PIC32, some I/O devices for user interface, and an onboard programmer that
programs the flash memory of the PIC32 using a USB connection to the host computer.

Development boards. A development board is similar to a starter kit, except that there is
no programmer onboard. The PIC32’s flash memory is programmed by a separate external
programmer device, such as Microchip’s ICD 3 or PICkit 3, which connects to a USB port of
the host computer. Examples of development boards include Microchip’s PIC32 plug-in modules
coupled with the Explorer 16 Development Board, as well as the NU32 and UBW32 development
boards.

Development boards with a PIC32 with an installed “bootloader.” If the PIC32 on
the development board already has a bootloader installed in program memory, the PIC32 can
be programmed without an external programmer device. When the PIC32 is powered on, the
bootloader runs, and (typically) depending on whether or not the user is pushing a button, it
either (1) jumps to a “user” program that has already been installed somewhere else in program
memory, or (2) receives a new user program from the host computer (e.g., via a USB connection)
and writes the new program to program memory. You can use the bootloader to change the
user program as often as you want. There is no need for an external programmer device, only a
“bootloader communication utility” on the host computer that talks to the bootloader. Examples
of development boards with preloaded bootloaders include the NU32 and the UBW32.

Most of the examples in this book use the NU32 development board with an installed bootloader
(Figure 1.3). Most code is easily adapted to most PIC32s, however.

1.3.2 Software

Regardless of the particular PIC32 development board, you need the following free Microchip software:

6 08:24 January 27, 2014
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e The Microchip XC32 compiler, which includes Microchip’s C software library. The XC32
compiler (also called the XC32++ compiler) is used to turn your C programs into executables that can
be installed directly into PIC32 program memory.

e The Microchip MPLAB X IDE. The MPLAB X Integrated Development Environment provides a
front end to the XC32 compiler.

For the examples in this book, you also need the following software:

e The FTDI Virtual COM Port (VCP) Driver. Download and install the driver appropriate to
your operating system from FTDI Chip’s website. This driver allows you to use a USB port as a
“virtual COM port” to talk to the NU32 board.

e PIC32 starter code. We have packaged together code you need for the examples in this chapter in a
single .zip file called PIC32quickstart.zip. After unzipping, you get the files

nu32utility-win.c, nu32utility-mac.c: Programs for your computer to communicate with the
PIC32 over a USB cable. Use the first one if you are using Windows, the second if you are using a
Mac.

makefile-win, makefile-mac: Instructions for building executables. Keep the one appropriate
for your OS and rename it simply as makefile. These makefiles are used to (1) compile all C files
in the directory to object files and (2) link the object files to make a single executable. There
should be only one C file with a main function.

simplePIC.c: The first program you will compile, to install using a bootloader.
NU32bootloaded.1d: A linker script for programs installed using a bootloader.

simplePIC_standalone.c: A version of simplePIC.c to be installed using a programmer, not a
bootloader.

talkingPIC.c: A program that allows the PIC32 to accept keyboard input from your computer
and to send characters back to your computer.

NU32.c: A library of convenient functions for the NU32 board.
NU32.h: A header file for the NU32 library.

e An RS-232 terminal emulator program. An RS-232 terminal emulator provides a simple I/O
interface to a virtual COM port on your computer. Characters you type on your keyboard can be sent
by the COM port to the PIC32, and output from the PIC32 can be received by the COM port and
displayed on your screen. Terminal emulators include CoolTerm, PuTTY (Windows), and the built-in
screen emulator for Linux and Unix (Mac OS). There are many others to choose from.

The following software is optional:

e MPLAB Harmony. Harmony is a collection of libraries and drivers that comes independent of the
X(C32 distribution. Using Harmony libraries simplifies the task of writing code that can operate on
many different PIC32 models, but we won’t use it much.

1.4 Building a Bootloaded Executable

If your NU32 already has a bootloader installed on it, you can install a new executable using a communication
utility to talk to the PIC32 using a USB cable. You do not need an external programmer device.
First you need to create the bootloader communication utility executable on your computer. In MinGW,

do

gcc nu3d2utility-win.c -o nu32utility -lwinmm

(where -1lwinmm is “minus ell winmm,” not “minus one winmm”), and in Mac OS, do
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gcc nu32utility-mac.c -o nu32utility

Then move the executable nu32utility to an appropriate directory on your computer where you can always
find it.

To determine which communication (COM) port you will use to program the PIC32, do the following at
the command line:

e Mac: Type 1s /dev/tty.*. Take note of the list of names of COM ports.
e Windows: Type mode. Take note of the list of names of COM ports.

Now provide power to the NU32 board, turn the power switch on, and verify that the red power LED
comes on. Connect the USB cable from the NU32’s mini B USB jack (next to the power jack) to a USB port
on the host computer. Now do the same steps as above, and note that there are now two new COM ports.
For the Mac, they may look something like

/dev/tty.usbserial-00001024A /dev/tty.usbserial-00001024B
while for Windows they may look like
coM4  COM5

For the Mac, the bootloader COM port is the one labeled B, while for Windows it is the one with the larger
number.

To put the NU32 into program receive mode, first locate the RESET button and the USER button on the
NU32 board (Figure 1.3). The RESET button is the one adjacent to the pins labeled B8, B9, B10, on the left
bottom side of the board if the power jack is at the top, and the USER button is at the bottom right of the
board, next to the pins labeled D5, D6, and D7. Press both buttons, then release the RESET button, then
the USER button. When the PIC32 wakes up after the RESET and sees that you are pressing the USER
button, the bootloader knows that you are planning to program the PIC32. You should see LED1 flashing a
“heartbeat” to show the bootloader is ready for your program.

Now you have two options for building the executable that will be loaded by nu32utility: (1) using the
command line or (2) using the MPLAB X IDE. The command line is simple and convenient, while the IDE
provides some helpful tools for understanding and debugging your code.

1.4.1 Using the Command Line

Create a new directory containing only the files
e simplePIC.c. The C source code.

e NU32bootloaded.ld. This is a custom “linker script” that specifies where the executable program
should be placed in the PIC32’s program memory. We will learn more about linker scripts in Chapter 3.

e makefile. This makefile is one of makefile-win or makefile-mac, depending on your operating system.
Make sure you rename it simply as makefile.

The makefile contains the rules for building your executable. This particular makefile compiles every
C file in the directory into an object file, then links all the object files corresponding to the C files into a
single executable. Therefore you should make sure that your directory has all the C files you need for your
project, but no C files that are not needed! (In future, all the header files you need for your project should
also be in the same directory.)

In the makefile, find the three lines

CC = /Applications/microchip/xc32/v1.30/bin/xc32-gcc
HX = /Applications/microchip/xc32/v1.30/bin/xc32-bin2hex
WRITE = ~/NU32/nu32utility
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They will look somewhat different in Windows. Notably, the directory separator character is \. Edit these
three lines so that they contain the proper paths to your xc32-gcc, xc32-bin2hex, and nu32utility. In
particular, you will need to change the v1.30 to fit your version of XC32.

You also need to edit the line defining the COM PORT. On the Mac, this line looks something like

PORT = /dev/tty.usbserial-00001024B
and on Windows it looks something like
PORT = \\\.\COM23

Make sure you replace these with the name of the appropriate port, as discovered above.
At the command line in this directory, type

make out.hex

You should now see out.hex, as well as simplePIC.o, in your directory. The file out.hex is the executable.
Assuming your NU32 is already in program receive mode with its “heartbeat” flashing, as described above,
you can now type

make write

and the nu32utility sends the program to the PIC32. After it has completed, the new program out.hex
runs. The two LEDs of the NU32 alternate on and off unless you press the USER button, which freezes
them. The program listing is given below in Code Sample 1.1. We will learn more about the operation of this
program in Chapter 3.

Code Sample 1.1. simplePIC.c. Blinking lights on the NU32, unless the USER button is pressed.

#include <plib.h>
void delay(void);

int main(void) {
DDPCONbits.JTAGEN = 0; // Disable JTAG, make pins 4 and 5 of Port A available.

TRISA = OxFFCF; // Pins 4 and 5 of Port A are LED1 and LED2. Clear
// bits 4/5 to zero, for output. Others are inputs.

LATAbits.LATA4 = 0; // Turn LED1 on and LED2 off. These pins sink ...
LATAbits.LATAS = 1; // ... current on NU32, so "high" = "off."
while(1) {

delayQ);

LATAINV = 0x0030; // toggle the two lights
}
return O;

}

void delay(void) {
int j;
for (j=0; j<1000000; j++) { // number is 1 million
while ('PORTDbits.RD13); // Pin D13 is the USER switch, low if pressed.
}
}

Now that this program has been loaded, every time you power on the NU32, or press the RESET button,
the bootloader will either (a) enter the program receive mode if you are pressing the USER button at RESET,
or, if you're not, (b) jump to this newly installed simplePIC program.
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Now that you can build and load the program, try changing simplePIC.c, saving, rebuilding, and
reloading. For example, you could change the number of cycles in the delay loop to 2 million. Remember
always to put the NU32 in receive mode (RESET while holding the USER button) before typing make write.
It suffices to do make write, which builds and loads the executable; it is not necessary to type make out.hex
first.

1.4.2 Using the MPLAB X IDE

For this project you need two files, simplePIC.c and NU32bootloaded.1ld. The MPLAB X IDE will create
its own makefile. You will use the MPLAB X IDE to create a “project” folder to hold these files as well as
other files, such as the final executable.

Step 1. Launch MPLAB and choose File > New Project... Select the Category Microchip Embedded
and the type of project as Standalone Project and click Next. (In this book we use the word “standalone”

to mean a program that is loaded using a programmer, not a bootloader, which is different than the usage in
MPLAB.)

New Project

Steps Choose Project
1. Choose Project Categories: Projects:
5 @ (=@ vicrochip Embedded (& Standalone Project
3 Other Embedded (& Existing MPLAB IDE v8 Project
» @ samples [ Prebuilt (Hex, Loadable Image) Project
[ User Makefile Project
& Library Project
Description:
Creates a new standalone application project. It uses an IDE-generated
makefile to build your project.

| Help | < Back | Next> | Finish | cancel |

Step 2. Choose the PIC32 family and the device PIC32MX795F512L.

MNew Project

Steps Select Device
1. Choose Project
2. Select Device ;
3. Select Header Family: 32-bit MCUs (PIC32) A
4. Select Toal
5. Select Plugin Board T
6. Select Compiler Device: PIC32MX795F512L %
7. Select Project Name

and Folder

| Help | | <Back | | Next> | Finish | Cancel |

Step 3. Since we will not use a programmer device, the Hardware Tool does not matter. Leave the default.
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New Project

Steps Select Tool

1. Choose Project
2. Select Device

B Hardware Tools
o[
@ PICkit2
20 PICKIt3
< PM3
o0 Real ICE
23 Simulator
¥ [l Microchip Starter Kits
@ MCHV
@ MICROSTICK
@ SKDE 33 AUDIO
@ SKDE Memory
@ SKDE PIC18F)

| Help | | <Back | | Next> | Finish Cancel |

Step 4. Choose the XC32 compiler. If you have multiple versions of the XC32 compiler, choose the most
recent one.

Mew Project

Steps Select Compiler
1. Choose Project
2. Select Device .
5, “seltat Header [l Compiler Toolchains
4. Select Teol v e
S. Select Plugin Board @ €32 (v2.02) [/Applications/microchip/mplabec32 jv2.02 /bin]
6. Select Compiler HI-TECH PICC32 (None found)
7. Select Project Name ¥ XC32
and Folder 2

=] > fApplications /microchip/
XC32 [/Applications/microchip/xc32 /w1.11/bin]
XC32 [/Applications/microchip/xc32 /v1.20/bin]

\_ Help \ \ < Back \ \ Next > \ Finish \ Cancel \

Step 5. Type simplePIC as the Project Name and choose a Project Location, a directory that will hold all
of your PIC32 projects. This automatically creates a Project Folder named simplePIC.X in your Project
Location. In this example, the Project Location is called MPLABX. You should also check the Set as main
project box. Click Finish.
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556

New Project

Steps

" select Project Name and Folder

. Choose Project

1

2. Select Device

3. Select Header

Select Tool

5. Select Plugin Board
6. Select Compiler
Select Project Name
and Folder

Project Name: |simpIeFIC ‘

Project Location: |stersfkevin,l‘MPI.ABX ‘ Browse...
Project Folder: /Users [kevin/MPLABX/simplePIC.X

["] Overwrite existing project.

[ ] Also delete sources.

[V Set as main project

[_] Use project location as the project folder
Encoding: [ 150-8859-1 B

[ Help | [ <Back | | MNext> | [ Finish | | Cancel |

Step 6. Copy the files simplePIC.c and NU32bootloaded.1d to your new simplePIC.X directory.

Step 7. If this is the first time you’ve used the IDE, your project simplePIC will be the only project in

the left column. If there

are other projects, make certain that simplePIC is selected as the main project

by right-clicking (or on a Mac, ctrl-clicking) on the project name simplePIC and selecting Set as Main
Project. (In future, when you have multiple projects in the left column, double-check that the one you are
working on is selected as the Main Project. Otherwise the project you build may be different from the one
you think you are building.)

1~ Search (3 +1) Q)

New

Add Existing Item...

New Logical Folder
Locate Headers.

Export Hex

Build

Clean and Build
Clean

Package

Set Configuration

Run
Debug
Step into

Make and Program Device

Set as Main Project
Open Required Projects
Close

Rename...
Move...
Copy...
Delete

Code Assistance

Find...

Share on Team Server...
Versioning

Local History

Properties

Add Existing Items from Folders...

Add Item to Important Files...

Description Location

‘ <no tasks> in all uﬁned iro'::ts

Step 8. Right-click on Source Files and choose Add Existing Item... Then choose simplePIC.c. Right-
click on Linker Files and choose Add Existing Item... Select NU32bootloaded.1d. If you ever want to
get rid of a file from a project, just right-click on it and choose Remove From Project.
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MPLAB X IDE ¥1.95 - simplePIC : default

T-B--%-Q - rcoo | " B (O Search (%+) ©)

» (@ Header Files

» [ mportant Files

» (@ Linker Files
Source F

New Logical Folder
Add Existing Item.
Add Existing Items from Folders...
Find...

Cut
Copy
Paste

Remove From Project
Rename...

Properties

Description Location

<No View Available>

zgdos

<no tasks> in all oﬁned iro'ecls —_—

Step 9. If you expand the Header Files, Important Files, Linker Files, Source Files, Libraries,
and Loadables categories, you should find them all empty except for NU32bootloaded.1d in Linker Files,
simplePIC.c in Source Files, and Makefile in Important Files. Makefile is a file generated by the IDE
that is used to build the project.

Double-click on simplePIC.c to open it in the IDE editor. You can use this editor to create and edit
your C files. (If you edit a file, remember to choose File > Save before building your project!)

You are now ready to build your project. Click on the hammer and broom icon, or equivalently, choose
Run > Clean and Build Main Project. (The “clean” part simply removes any previously generated files
by the compiler. It is not strictly necessary, but it is occasionally useful and it doesn’t cost anything.) You
should then see output similar to the figure below, indicating that the project has built successfully.
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* MPLAB X IDE v1.95 - simplePIC : default
dIF_‘-] % bﬁ': \‘;ﬂ default LI? 'Bﬁ%"' "ia ' Q- Search (#+1)
e e T T T aTE - I

v & simpleric BB-E- Q% SR f e n @6 e 54 a @

EE] Header Files

¥ [ Important Files
T Makefile
v Linker Files

Finclude <plib.h>
#include <plib.h n

void delay(void);

[ Nu32bootioaded.ld int main(void) {
¥ DDPCONbits.JTAGEN = 0;
¥ [ Source Files TRISA = DXFFCF; ;
SimplePIC.c
&2 Libraries 9 LATAbits.LATA4 = 0}
D_ Loadablas 10 LATAbits.LATAS = 1;
1
12 while(l) {
13 delay();
14 LATAINV = 0x0030;
15
16 return 0;
17 }
18 -
13|a void delay(void) {
20 int j:
21 for (j=0; j<l000000; j++) { // n
22 while( !PORTDbits.RD13); d
23 }
delay() - Navigator aal 2" )

© delayp

@ maing Output 60‘ Tasks

4@ plib.h =} | Configuration Loading Error ©@ | Trace/Profiling & m

CLEAN SUCCESSFUL (total time: 64ms)

make -f nbproject/Makefile-default.mk SUBPROJECTS= .build-conf

make[1]): Entering directory °/Users/kevin/MPLABX/simplePIC.X'

make -f nbproject/Makefile-default.mk dist/default/production/simplePIC.X.production.hex
make(2): Entering directory ~/Users/kevin/MPLABX/simplePIC.X'
"/Applications/microchip/xc32/v1.30/bin/xc32-gcc" -g -x ¢ -c -mprocessor=32MX795F512L -MMD -MF
"/Applications/microchip/xc32/v1.30/bin/xc32-gcc”  -mprocessor=32MX795F512L -o dist/default/p
"/hpplications/microchip/xc32/v1.30/bin" /xc32-binZhex dist/default/production/simplePIC.X.prodc
make(2): Leaving directory ~/Users/kevin/MPLABX/simplePIC.X'

make[1l): Leaving directory °/Users/kevin/MPLABX/simplePIC.X"

BUILD SUCCESSFUL (total time: 2s)

Loading code from /Users/kevin/MPLABX/simplePIC.X/dist/default/production/simplePIC.X.productic
Loading symbols from /Users/kevin/MPLABX/simplePIC.X/dist/default/production/simplePIC.X.produc
Loading completed

251 INS

Step 10. Now go to the directory MPLABX to see what the IDE has done. It has created a bunch of
subdirectories, and buried under one called dist you should find a file with a .hex extension. This is your
final executable.

To load the executable, put the NU32 in program receive mode by pressing and releasing RESET while
holding the USER button. To install the program, type

nu32utility PORTNAME filename.hex

where nu32utility includes its full path, PORTNAME is the port discovered above, and filename.hex includes
the full path.

1.5 Building a Standalone Executable

If you have an external programmer like the ICD 3 or PICkit 3, you can program the NU32 without a
bootloader (or, if there is a bootloader already loaded in the PIC32 flash memory, you can overwrite it). This
is called a standalone program. For this project you need only one file: simplePIC_standalone.c.

Start with an unpowered NU32 board with no cables connected to it. Next, connect five of the six pins of
the PICkit 3 to the NU32 as shown in Figure 1.4. The five holes closest to the triangle on the PICkit 3 have
header pins inserted, and these header pins lean against the five plated holes of the NU32. The triangle next
to the plated hole near the D4 pin is aligned with the triangle on the PICkit 3. Now plug the USB cable of
the PICkit 3 into your host computer, powering the PICkit 3. Do not connect any other USB cables to the
NU32. Plug the NU32 into the wall, turn the power switch on, and verify that the red power LED comes on.

Now follow the same steps as in Section 1.4.2, with the following exceptions. In Step 3, you should
choose the Hardware Tool PICkit 3 (specifically, the serial number of the PICkit 3). In Step 5, call
your project simplePIC_standalone. In Step 6, only copy the file simplePIC_standalone.c to your
new simplePIC_standalone.X directory. In Step 8, add only one item to the project, the Source File
simplePIC_standalone.c. You do not need a custom linker script, as the default linker script suffices for
a standalone program. In Step 10, you use the IDE to load the program onto the PIC32, not the NU32
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Figure 1.4: Attaching the PICkit 3 programmer to the NU32 board.

communication utility, which is only for bootloaded programs. To load the program from the IDE, click the
Make and Program Device Main Project icon, circled in the next image. You should see something
like the following indicating that the PIC32 has been successfully programmed:

¥ MPLAB X IDI g5 - simplePIC_standalone : default

—
Pr.. @@ | Files | Classes [ Services |simplePiC.. | ] SimplePIC_standalone.c
» [ simplePIC E E E
% - - | | > H |
¥ (& simplePIC_standalone g @ & Q% e - 6 8 = B
» (i) Header Files 1] #include <plib.h> "
» (& mportant Files 3 configuration bits are not set by
> Linker Files 4| #pragma config DEBUG = OFF
v [ Source Files 5| #pragma config FPLLMUL = MUL_20
. 6| #pragma config FPLLIDIV = DIV 2
'a 5'“_’"‘”[75“"""““‘" 7| #pragma config FPLLODIV = DIV 1
» [E Libraries 8 #pragma config FWDTEN = OFF
» [ Loadables 9| #pragma config POSCMOD = HS
10| #pragma config FNOSC = PRIPLL FLL
11| #pragma config FPBDIV = DIV 1
12| #pragma config BWE = OFF
13| #pragma config ICESEL = ICS_PGx2
14| #pragma config FSOSCEN = OFF /
15| #pragma config FSRSSEL = PRIORITY_7 7 N
16
17| #define SYS_FREQ 80000000
18
19| void delay(void);
20
21|m int mai id
main() - Navigator L) “T int main(vold) (
e
£ SY5_FREQ
— Output (x] Tasks
@ delay) i 80|
© main | Configuration Loading Error & | Trace/Profiling & ‘g simplePIC_standalone (Bujld, Load, ) & |
D plib.h
Connecting to MPLAB PICkit 3...
Firmware Suite Version..... 01.29.33
FirmWare LyPe.............. PICI2ZMX
Target detected
Device ID Revision = 50000000
The following memory area(s) will be programmed:
program memory: start address = 0x0, end address = 0x7ff
boot config memory
configuration memory
Programming. . .
Programming/Verify complete
361 INS

The LEDs should alternate on and off unless you press the USER button, which freezes them. This
program will always run after any reset of the PIC32 until it is overwritten.

The listing of simplePIC_standalone.c is given below. The differences between the standalone version
and the bootloaded version are discussed in Chapters 3 and 4.

Code Sample 1.2. simplePIC_standalone.c. Standalone version of bootloaded simplePIC.c.
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#include <plib.h>

// configuration bits are not set by a bootloader, so set here

#pragma config DEBUG = OFF // Background Debugger disabled

#pragma config FPLLMUL = MUL_20 // PLL Multiplier: Multiply by 20

#pragma config FPLLIDIV = DIV_2 // PLL Input Divider: Divide by 2

#pragma config FPLLODIV = DIV_1 // PLL Output Divider: Divide by 1

#pragma config FWDTEN = OFF // WD timer: OFF

#pragma config POSCMOD = HS // Primary Oscillator Mode: High Speed xtal
#pragma config FNOSC = PRIPLL // Oscillator Selection: Primary oscillator w/ PLL
#pragma config FPBDIV = DIV_1 // Peripheral Bus Clock: Divide by 1
#pragma config BWP = OFF // Boot write protect: OFF

#pragma config ICESEL = ICS_PGx2 // ICE pins configured on PGx2

#pragma config FSOSCEN = OFF // Disable second osc to get pins back

#pragma config FSRSSEL = PRIORITY_7 // Shadow Register Set for interrupt priority 7
#define SYS_FREQ 80000000 // 80 million Hz

void delay(void);

int main(void) {

SYSTEMConfig(SYS_FREQ, SYS_CFG_ALL); // cache on, PBCLK setup, min flash wait
DDPCONbits.JTAGEN = 0; // Disable JTAG, make pins 4 and 5 of Port A available.

TRISA = OxFFCF; // Pins 4 and 5 of Port A are LED1 and LED2. Clear
// bits 4/5 to zero, for output. Others are inputs.

LATAbits.LATA4 = 0; // Turn LED1 on and LED2 off. These pins sink ...
LATAbits.LATA5 = 1; // ... current on NU32, so "high" = "off."
while(1) {

delay();

LATAINV = 0x0030;  // toggle the two lights
}
return O;

}

void delay(void) {
int j;
for (j=0; j<1000000; j++) { // number is 1 million
while ('PORTDbits.RD13); // Pin D13 is the USER switch, low if pressed.
}
}

1.6 A Second Program: Communicating with the Host

You are now ready for a second program, talkingPIC.c, that provides keyboard input to the NU32 and prints
output to the host computer screen. These capabilities are quite useful for user interaction and debugging. To
gain access to these capabilities, we will compile talkingPIC.c with the NU32 library, NU32.c and NU32.h.
This library will be discussed in Chapter 4.

1.6.1 Bootloaded Version

This project uses the source files talkingPIC.c, NU32.c, and NU32.h, as well as the custom linker script
NU32bootloaded.1d. If you are using the MPLAB X IDE, create a project talkingPIC and add talkingPIC.c
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and NU32.c as Source Files, NU32.h as a Header File, and NU32bootloaded.1ld as a Linker File. Build and
load the executable as in Section 1.4.2. If you are building and loading at the command line, put the four
files in the same directory, along with the appropriate makefile, and type make write as in Section 1.4.1.

Once the program is running on the PIC32, to talk to the PIC32 you must connect through any RS-232
terminal emulator configured to communicate at 230,400 baud (bits per second), eight data bits, one stop
bit, no parity, and hardware flow control (CTS/Clear To Send and RTS/Request To Send). On Windows,
the COM port number for communication is one less than the COM port number used by the bootloader
communication utility. On a Mac, the port name ends in A instead of B.

Once connected, text you type will be sent to the PIC32 and then echoed back to you. For example, the
PIC32 prompts you with the question

Hello? What do you want to tell me?

and if you respond Nothing!, the PIC32 will receive it, write it back to the terminal emulator, and ask you
again for input.

Examples of terminal emulators include PuTTY (on Windows) or on Mac OS X or Linux you can use the
simple screen command from the command line (e.g., the Terminal application on the Mac). For example,
the command

screen /dev/tty.usbserial-00001024A 230400

connects to the COM port named tty.usbserial-00001024A at 230,400 bits per second. Eight data bits,
one stop bit, and no parity are assumed, or you can be explicit using

screen /dev/tty.usbserial-00001024A 230400,cs8,-cstopb,-parenb
Once connected using screen, the PIC32 will write to the terminal and accept keyboard input. Use ctrl-a

k to quit.
The talkingPIC.c program listing is given below.

Code Sample 1.3. talkingPIC.c. The PIC32 echoes any messages sent to it from the host keyboard back
to the host screen.

//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded
#include "NU32.h" // plib.h, config bits, constants, funcs for startup and UART
#define MAX_MESSAGE_LENGTH 200

int main(void) {
char message[MAX_MESSAGE_LENGTH];

NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init
sprintf (message, "Hello World!\r\n");
NU32_WriteUART1 (message) ;
while (1) {
sprintf (message, "Hello? What do you want to tell me? ");
NU32_WriteUART1(message) ;
NU32_ReadUART1 (message, MAX_MESSAGE_LENGTH) ;
NU32_WriteUART1 (message) ;
NU32_WriteUART1("\r\n");
NU32LED1 = !NU32LED1; // toggle the LEDs
NU32LED2 = !NU32LED2;
}

return O;
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1.6.2 Standalone Version

The standalone version of talkingPIC. c requires the same files as the bootloaded version in Section 1.6.1, with
the exception that the custom NU32bootloaded.1d linker script should not be used, since the default linker
script is appropriate for standalone programs. Also, you must uncomment the first line of talkingPIC.c, so
that it now reads

#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded

This tells NU32.h that the program is being compiled as a standalone version.

Create a project talkingPIC_standalone in the MPLAB X IDE with NU32.c and talkingPIC.c as
Source Files and NU32.h as a Header File. Build and load the executable as in Section 1.5. Once the program
is running, to talk to the PIC32 you must connect through an RS-232 terminal emulator. Once connected, the
NU32 echoes whatever you type back to your own computer screen, demonstrating two-way communication.

1.7 Chapter Summary

A microcontroller, like the PIC32, differs from a microprocessor in that it has peripherals for sensing,
communication, and control.

A PIC32 can be programmed using a separate programming device (standalone program) or by using a
bootloader. A bootloader is a program installed in the PIC32 flash memory that can communicate with
a host computer (via a USB cable, for example), accept a new user program, and write it to program
flash. Typically the bootloader knows to enter this “write new program” mode if a button is being
pressed when the PIC32 resets. Otherwise, the bootloader simply calls a program that has already been
installed in memory.

To program a PIC32, you need a PIC32 development board or starter kit and a host computer with
Microchip’s XC32 compiler and MPLAB X IDE. To use the NU32 development board, you also need
the FTDI virtual COM port driver, which allows your USB ports to talk to the PIC32 over a USB
cable. If you are bootloading your programs, you also need the bootloader communication utility.

PIC32 executables can be created at the command line or in the MPLAB X IDE.

Loading an executable on a PIC32 can be done with a bootloader communication utility (if the PIC32
has a bootloader program) or using an external programmer controlled by the MPLAB X IDE.

Bootloaded programs for the NU32 use the custom NU32bootloaded.1d linker script, while the default
linker script suffices for standalone projects.

1.8 Exercises

1.

Create the executables for simplePIC.c (or simplePIC_standalone.c) and talkingPIC.c, load them,
and verify that they work. Try modifying them and verify that you see the expected behavior.
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Chapter 2

Looking Under the Hood: Hardware

Now that we’ve got our first programs running, it’s time to take a look under the hood. We begin with the
PIC32 hardware, then move to the NU32 development board it sits on.

2.1 The PIC32

2.1.1 Pin Functions and Special Function Registers (SFRs)

The PIC32MX795F512L is powered by a supply voltage in the range 2.3 to 3.6 V and features a max clock
frequency of 80 MHz, 512 KB program memory (flash), and 128 KB data memory (RAM). It also features 16
10-bit analog-to-digital input lines (multiplexed to a single analog-to-digital converter, or ADC), many digital
I/O channels, USB 2.0, Ethernet, two CAN modules, five I?C and four SPI synchronous serial communication
modules, six UARTS for RS-232 or RS-485 asynchronous serial communication, five 16-bit counter/timers
(configurable to give two 32-bit timers and one 16-bit timer), five pulse-width modulation outputs, and a
number of pins that can generate interrupts based on external signals, among other features.

To cram so much functionality into 100 pins, many of the pins serve multiple functions. See the pinout
diagram for the PIC32MX795F512L (Figure 2.1). As an example, pin 21 can serve as an analog input, a
comparator input, a change notification input (which can generate an interrupt when an input changes state),
or a digital input or output.

Table 2.1 briefly summarizes some of the pin functions. Some of the most important functions for
embedded control are indicated in bold.

Which function a particular pin actually serves is determined by Special Function Registers (SFRs). Each
SFR is a 32-bit word that sits at some memory address. The values of the SFR bits, 0 or 1, control the
functions of the pins as well as other functions of the PIC32.

Pin 78 in Figure 2.1 can serve as OC4 (output compare 4) or RD3 (digital I/O number 3 on port D).
Let’s say we want to use it as a digital output. We can set the SFRs that control this pin to disable the
OC4 function and to choose the RD3 function as digital output instead of digital input. Looking at the
PIC32MX5xx/6xx/7xx Data Sheet section on Output Compare, we see that the 32-bit SFR named “OC4CON”
determines whether OC4 is enabled or not. Specifically, for bits numbered 0 ...31, we see that bit 15 is
responsible for enabling or disabling OC4. We refer to this bit as OC4CON(15). If it is a 0, OC4 is disabled,
and if it is a 1, OC4 is enabled. So we clear this bit to 0. (Bits can be “cleared to 0,” or simply “cleared” for
short, or “set to 1,” or simply “set” for short.) Now, referring to the I/O Ports section of the Data Sheet, we
see that the input/output direction of Port D is controlled by the SFR TRISD, and bits 0-15 correspond to
RDO0-15. Bit 3 of the SFR TRISD, i.e., TRISD(3), should be cleared to 0 to make RD3 (pin 78) a digital
output.

In fact, according to the Memory Organization section of the Data Sheet, OC4CON(15) is cleared to 0 by
default on reset of the PIC32, so this step was not necessary. On the other hand, TRISD(3) is set to 1 on
reset, making pin 78 a digital input by default. (This is for safety, to make sure the PIC32 does not impose
an unwanted voltage on anything it is connected to on startup.)

We will see SFRs again and again as we learn how to work with the PIC32.

21



CHAPTER 2. LOOKING UNDER THE HOOD: HARDWARE

5 5e ©

QL o € 9 oo

Lok s & z&g

gg: gf g2k

gL =2 508203

E2&a pp-E522

Y a o3 o

soae¥r-o.28489 g5z83ez93
wuwwooowwagg = - a Tz O oo =
a4 cerx e D cxto0s2e =880
SeasIrEsEesUUy SodzZ5agsEee
=Q= [ coxoc
28080005808 RE3R¥eEBRR385
SS23@rrer=2eCrraN=--o00FFZ2OFFOQOO
oo krFFFOOFFOOOO>>WwWa OwwOoOoo

AERXERR/RG15

~
o

Vss

AN3/C2IN+/CN5/RB3 22
AN2/C2IN-/CN4/RB2 23
PGEC1/AN1/CN3/RB1 24
PGED1/ANO/CN2/RBO 25

a
g

VBus
SCL3/SDO3/U1TX/RF8
SDAB/SDI3/UTRX/RF2
USBID/RF3

o o o
ARG

47
8
0

1
voo [] 2 74 SOSCO/T1CKICNO/RC14
PmDs/RES Il 3 73 SOSCICN1/RC13
PmD6/RES Il 4 72 SDO1/OC1/INTO/RDO
pmo7/RE7 Il 5 71 EMDC/AEMDC/IC4/PMCS1/PMA14/RD11
T2ckiRet Ml 6 70 SCK1/IC3/PMCS2/PMA15/RD10
TackiAc2TXRC2 Il 7 69 SS1/IC2/RDY
T4CKIAC2RX/RC3 Ml 8 68 RTCC/EMDIO/AEMDIO/IC/RDS
T5CK/SDI/RC4 Wl 9 67 AETXEN/SDA1/INT4/IRA15
ECOL/SCK2/UBTX/UBRTS/PMAS/CNE/RGE Il 10 66 AETXCLK/SCL1/INT3/RA14
ECRS/SDA4/SDI2/U3RX/PMA4/CNY/RG7 Il 11 PIC32MX775F256L 65 [ ] Vss
ERXDV/AERXDV/ECRSDV/AECRSDV/SCL4/SDO2/USTX/PMAICN10RGS Il 12 PIC32MX775F512L 64 % 0SC2/CLKOIRC15
MCLR Il 13 63 OSC1/CLKIRC12
ERXCLK/AERXCLK/EREFCLK/AEREFCLK/SS2/UBRX/USCTS/PMA2ICN11/RG [l 14 PIC32MX795F512L 62 [ voo
vss [] 15 61 TDO/RAS
voo [] 16 60 TDIRA4
T™MsiRAO Il 17 59 SDA2IRA3
AERXDO/INT1/RES [l 18 58 SCL2/IRA2
AERXD1/INT2/RES [l 19 . 57 D+RG2
AN5/C1IN+/VBUSON/CN7/RB5 20 B Shaded pins are 5V tolerant 56 % D-/RG3
AN4/C1IN-ICNB/RB4 [] 21 55 [] Vuss

vss [] 36
3 [ 42
4[] 43
5 [] 44
vss [] 45

Voo [] 37
8

ig

4

2 |4

AC1RX/SS4/USRX/U2CTS/RF
AN12/ERXDO/AECRS/PMA11
AN13/ERXD1/AECOL/PMA10/

AN14/ERXD2/AETXD3/PMALH/PMA1

AN15/ERXD3/AETXD2/OCFB/PMALL/PMAO/CN 12/

Avop [] 30
Avss [] 31

AN8/C10UT/RB8 [ | 32

Voo [] 46
4
49
5

AN9/C20UT/RB9 [ | 33
AN10/CVREFOUT/PMA13/RB10 [ | 34

PGED2/AN7/RB7 [ 27
AN11/ERXERR/AETXERR/PMA12/RB11 [ 35

VREF-/CVREF/AERXD2/PMA7/RA9 [ 28
VREF+/CVReF+/AERXD3/PMA6/RA10 | 29

PGEC2/AN6/OCFA/RB6 [ | 26
AETXD1/SCK3/U4TX/UTRTS/CN21/RD15

AC1TX/SCK4/USTX/U2RTS,
AETXD0/SS3/U4RX/U1CTS/CN20/RD14
SDA5/SD14/U2RX/PMAY/CN17/RF4
SCL5/SDO4/U2TX/PMA8B/CN18/RF5

Figure 2.1: The pinout of the PIC32MX795F512L used on the NU32.

2.1.2 PIC32 Architecture

Figure 2.2 is a block diagram of the architecture of the PIC32. Of course there is a CPU, program memory,
and data memory. Perhaps most interesting to us, though, is the plethora of peripherals, which are what
make microcontrollers useful for embedded control. From left to right, top to bottom, these peripherals
consist of PORTA ...PORTG, which are digital I/O ports; 22 change notification (CN) pins that generate
interrupts when input signals change; five 16-bit counters (which can be used as one 16-bit counter and two
32-bit counters by chaining) that can be used for a variety of counting operations, and timing operations by
counting clock ticks; five pins for output pulse-width modulation (PWM) pulse trains (or “output compare”
0C); five pins for “input capture” (IC) which are used to capture timer values or trigger interrupts on rising
or falling inputs; four SPI and five I?C synchronous serial communication modules; a “parallel master port”
(PMP) for parallel communication; an analog-to-digital converter (ADC) multiplexed to 16 input pins; six
UARTS for asynchronous serial communication (e.g., RS-232, RS-485); a real-time clock and calendar (RTCC)
that can maintain accurate year-month-day-time; and two comparators, each of which determines which of
two analog inputs has a higher voltage.

Note that the peripherals are on two different buses: one is clocked by the system clock SYSCLK,
and the other is clocked by the peripheral bus clock PBCLK. A third clock, USBCLK, is used for USB
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| Pin Label Function
ANx (x=0-15) analog-to-digital (ADC) inputs
AVDD, AVSS positive supply and ground reference for ADC
((j:iIiV ;) CxIN+, CxOUT comparator negative and positive input and output
CxRX, CxTx (x=1,2) CAN receive and transmit pins
CLKI, CLKO clock input and output (for particular clock modes)
CNx (x=0-21) change notification; voltage changes on these pins can generate interrupts
CVREF-, CVREF+, Lo
CVREFOUT comparator reference voltage low and high inputs, output
D+, D- USB communication lines

EMUCx, EMUDx (x=1,2)

used by an in-circuit emulator (ICE)

ENVREG

enable for on-chip voltage regulator that provides 1.8 V to internal core (on the
NU32 board it is set to VDD to enable the regulator)

ICx (x=1-5) input capture pins for measuring frequencies and pulse widths

INTx (x=0-4) voltage changes on these pins can generate interrupts

MCLR master clear reset pin, resets PIC when low

0Cx (x=1-5) 0}1tput compare pins, usually used to generate pulse trains (pulse-width modula-
tion) or individual pulses

OCFA, OCFB fault protection for out.put. compare pins; if a f:%ult occurs, they can be used to
make OC outputs be high impedance (neither high nor low)

OSC1, OSC2 crystal or resonator connections for different clock modes

PGCx, PGDx (x=1,2)

used with in-circuit debugger (ICD)

PMALL, PMALH

latch enable for parallel master port

PMAx (x=0-15)

parallel master port address

PMDx (x=0-15)

parallel master port data

PMENB, PMRD, PMWR

enable and read/write strobes for parallel master port

Rxy (x=A-G, y=0-15)

digital I/O pins

RTCC

real-time clock alarm output

SCLx, SDAx (x=1-5)

I2C serial clock and data input /output for I°C synchronous serial communication
modules

(SXC_I?Z) SDIx, SDOx serial clock, serial data in, out for SPI synchronous serial communication modules
SS1,SS2 slave select (active low) for SPI communication

TxCK (x=1-5)

input pins for counters when counting external pulses

TCK, TDI, TDO, TMS

used for JTAG debugging

TRCLK, TRDx (x=0-3)

used for instruction trace controller

UxCTS, UxRTS,
UxRX, UxTX (x=1-6)

UART clear to send, request to send, receive input, and transmit output for UART
modules

VDD

positive voltage supply for peripheral digital logic and I/O pins (3.3 V on NU32)

VDDCAP capacitor filter for internal 1.8 V regulator when ENVREG enabled
VDDCORE external 1.8 V supply when ENVREG disabled

VREF-, VREF+ can be used as negative and positive limit for ADC

VSS ground for logic and I/O

VBUS monitors USB bus power

VUSB power for USB transceiver

VBUSON output to control supply for VBUS

USBID USB on-the-go (OTG) detect

Table 2.1: Some of the pin functions on the PIC32. Commonly used functions for embedded control are in
bold. See Section 1 of the Data Sheet for more information.

communication. The timing generation block that creates these clock signals and other elements of the
architecture in Figure 2.2 are briefly described below.
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Figure 2.2: The PIC32MX5XX/6XX/7XX architecture.

CPU The central processing unit runs the whole show. It fetches program instructions over its “instruction
side” (IS) bus, reads in data over its “data side” (DS) bus, executes the instructions, and writes out the
results over the DS bus. The CPU can be clocked by SYSCLK at up to 80 MHz, meaning it can execute one
instruction every 12.5 nanoseconds. The CPU is capable of multiplying a 32-bit integer by a 16-bit integer
in one cycle, or a 32-bit integer by a 32-bit integer in two cycles. There is no floating point unit (FPU), so
floating point math is carried out in a series of steps in software, meaning floating point operations are much
slower than integer math.

The CPU also communicates with the interrupt controller, described below.

The CPU is based on the MIPS32® M4K® microprocessor core licensed from Imagination Technologies.
The CPU operates at 1.8 V (provided by a voltage regulator internal to the PIC32, as it’s used on the NU32
board).
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Bus Matrix The CPU communicates with other units through the 32-bit bus matrix. Depending on the
memory address specified by the CPU, the CPU can read data from, or write data to, program memory
(flash), data memory (RAM), or SFRs. The memory map is discussed in Section 2.1.3.

Interrupt Controller The job of the interrupt controller is to present “interrupt requests” to the CPU.
An interrupt request (IRQ) may be generated by a variety of sources, such as a changing input on a change
notification pin or by the elapsing of a specified time on one of the timers. If the CPU accepts the request, it
will suspend whatever it is doing and jump to an interrupt service routine (ISR), a function defined in the
program. After completing the ISR, program control returns to where it was suspended. Interrupts are an
extremely important concept in embedded control.

Memory: Program Flash and Data RAM The PIC32 has two types of memory: flash and RAM.
Flash is generally more plentiful on PIC32’s (e.g., 512 KB flash vs. 128 KB RAM on the PIC32MX795F512L),
nonvolatile (meaning that its contents are preserved when powered off, unlike RAM), but slower to read and
write than RAM. Your program is stored in flash memory and your temporary data is stored in RAM. When
you power cycle your PIC32, your program is still there but your data in RAM is lost.!

Because flash is slow, with a max speed of 30 MHz for the PIC32MX795F512L, reading a program
instruction from flash may take three CPU cycles when operating at 80 MHz (see Electrical Characteristics
in the Data Sheet). One job of the prefetch cache module (below) is to minimize or eliminate the need for
the CPU to wait around for program instructions to load.

Prefetch Cache Module You might be familiar with the term cache from your web browser. Your
browser’s cache stores recent documents or pages you have accessed over the web, so the next time you
request them, your browser can provide a local copy immediately, instead of waiting for the download.

The prefetch cache module operates similarly—it stores recently executed program instructions, which are
likely to be executed again soon (as in a program loop), and, in linear code with no branches, it can even run
ahead of the current instruction and predictively prefetch future instructions into the cache. In both cases,
the goal is to have the next instruction requested by the CPU already in the cache. When the CPU requests
an instruction, the cache is first checked. If the instruction at that memory address is in the cache (a cache
hit), the prefetch module provides the instruction to the CPU immediately. If there is a miss, the slower load
from flash memory begins.

In some cases, the prefetch module can provide the CPU with one instruction per cycle, hiding the delays
due to slow flash access. The module can cache all instructions in small program loops, so that flash memory
does not have to be accessed while executing the loop. For linear code, the 128-bit wide data path between
the prefetch module and flash memory allows the prefetch module to run ahead of execution despite the slow
flash load times.

The prefetch cache module can also store constant data.

Clocks and Timing Generation There are three clocks on the PIC32: SYSCLK, PBCLK, and USBCLK.
USBCLK is a 48 MHz clock used for USB communication. SYSCLK clocks the CPU at a maximum frequency
of 80 MHz, adjustable all the way down to 0 Hz. Higher frequency means more calculations per second but
higher power usage, approximately proportional to frequency. PBCLK is used by a number of the peripherals,
and its frequency is set to SYSCLK’s frequency divided by 1, 2, 4, or 8. You might want to set PBCLK’s
frequency lower than SYSCLK’s if you want to save power. If PBCLK’s frequency is less than SYSCLK’s,
then programs with back-to-back peripheral operations will cause the CPU to wait cycles before issuing the
second peripheral command to ensure that the first one has completed.

All clocks are derived either from an oscillator internal to the PIC32 or an external resonator or oscillator
provided by the user. High-speed operation requires an external circuit, so the NU32 provides an external
8 MHz resonator as a clock source. The NU32 software sets the PIC32’s configuration bits (see Section 2.1.4)
to use a phase-locked loop (PLL) on the PIC32 to multiply this frequency by a factor of 10, generating a
SYSCLK of 80 MHz. The PBCLK is set to the same frequency. The USBCLK is also derived from the
8 MHz resonator by a PLL multiplying the frequency by 6.

1t is also possible to store program instructions in RAM, and to store data in flash, but we set that aside for now.
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Digital Input and Output A digital I/O pin configured as an input can be used to detect whether the
input voltage is low or high. On the NU32, the PIC32 is powered by 3.3 V, so voltages close to 0 V are
considered low and those close to 3.3 V are considered high. Some input pins can tolerate up to 5.5 V, while
voltages over 3.3 V on other pins could damage the PIC32 (see Figure 2.1 for the pins that can tolerate
5.5 V).

A digital I/O pin configured as an output can produce a voltage of 0 or 3.3 V. An output pin can also
be configured as open drain. In this configuration, the pin is connected by an external pull-up resistor to a
voltage of up to 5.5 V. This allows the pin’s output transistor to either sink current (to pull the voltage down
to 0 V) or turn off (allowing the voltage to be pulled up as high as 5.5 V). This increases the range of output
voltages the pin can produce.

Counter/Timers The PIC32 has five 16-bit counters. Each can count from 0 up to 26 — 1, or any preset
value less than 2'® — 1 that we choose, before rolling over. Counters can be configured to count external
events, such as pulses on a TxCK pin, or internal events, like PBCLK ticks. In the latter case, we refer to the
counter as a timer. The counter can be configured to generate an interrupt when it rolls over. This allows
the execution of an ISR on exact timing intervals.

Two 16-bit counters can be configured to make a single 32-bit counter. This can be done with two different
pairs of counters, giving one 16-bit counter and two 32-bit counters.

Analog Input The PIC32 has a single analog-to-digital converter (ADC), but 16 different pins can be
connected to it, one at a time. This allows up to 16 analog voltage values (typically sensor inputs) to be
monitored. The ADC can be programmed to continuously read in data from a sequence of input pins, or to
read in a single value when requested. Input voltages must be between 0 and 3.3 V. The ADC has 10 bits of
resolution, allowing it to distinguish 1024 different voltage levels. Conversions are theoretically possible at a
maximum rate of 1 million samples per second on the PIC32MX795F512L.

Output Compare Output compare pins are used to generate a single pulse of specified duration, or a
continuous pulse train of specified duty cycle and frequency. They work with timers to generate the precise
timing. A common use of output compare pins is to generate PWM (pulse-width modulated) signals as
control signals for motors. Pulse trains can also be low-pass filtered to generate approximate analog outputs.
(There are no analog outputs on the PIC32.)

Input Capture A changing input on an input capture pin can be used to store the current time measured
by a timer. This allows precise measurements of input pulse widths and signal frequencies. Optionally, the
input capture pin can generate an interrupt.

Change Notification A change notification pin can be used to generate an interrupt when the input
voltage changes from low to high or vice-versa.

Comparators A comparator is used to compare which of two analog input voltages is larger. A comparator
can generate an interrupt when one of the inputs exceeds the other.

Real-Time Clock and Calendar The RTCC module is used to maintain accurate time, day, month, and
year over extended periods of time while using little power and requiring no attention from the CPU. It uses
a separate clock, allowing it to run even when the PIC32 is in sleep mode.

Parallel Master Port The PMP module is used to read data from and write data to external parallel
devices with 8-bit and 16-bit data buses.

DMA Controller The Direct Memory Access controller is useful for data transfer without involving the
CPU. For example, DMA can allow an external device to dump data through a UART directly into PIC32
RAM.
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SPI Serial Communication The Serial Peripheral Interface bus provides a simple method for serial
communication between a master device (typically a microcontroller) and one or more slave devices. Each
slave device has four communication pins: a Clock (set by the master), Data In (from the master), Data Out
(to the master), and Select. The slave is selected for communication if the master holds its Select pin low.
The master device controls the Clock, has a Data In and a Data Out line, and one Select line for each slave it
can talk to. Communication rates can be up to tens of megabits per second.

I?C Serial Communication The Inter-Integrated Circuit protocol I2C (pronounced “I squared C”) is a
somewhat more complicated serial communication standard that allows several devices to communicate over
only two shared lines. Any of the devices can be the master at any given time. The maximum data rate is
less than for SPI.

UART Serial Communication The Universal Asynchronous Receiver Transmitter module provides
another method for serial communication between two devices. There is no clock line, hence “asynchronous,’
but the two devices communicating must be set to the same communication rate. Each of the two devices
has a Receive Data line and a Transmit Data line, and typically a Request to Send line (to ask for permission
to send data) and a Clear to Send line (to indicate that the device is ready to receive data). Typical data
rates are 9600 bits per second (9600 baud) up to hundreds of thousands of bits per second.

)

USB The Universal Serial Bus is a popular asynchronous communication protocol. One master communi-
cates with one or more slaves over a four-line bus: +5 V, ground, D+ and D— (differential data signals).
The PIC32MX795F512L implements USB 2.0 full-speed and low-speed options, and can communicate at
theoretical data rates of up to several megabits per second.

CAN Controller Area Networks are heavily used in electrically noisy environments (particularly industrial
and automotive environments) to allow many devices to communicate over a single two-wire bus. Data rates
of up to 1 megabit per second are possible.

Ethernet The ethernet module uses an external PHY chip (physical layer protocol transceiver chip)
and direct memory access (DMA) to offload from the CPU the heavy processing requirements of ethernet
communication. The NU32 board does not include a PHY chip.

Watchdog Timer If the Watchdog Timer is used by your program, your program must periodically reset
the timer counter. Otherwise, when the counter reaches a specified value, the PIC32 will reset. This is a way
to have the PIC32 restart if your program has entered an unexpected state where it doesn’t pet the watchdog.

2.1.3 The Physical Memory Map

The CPU accesses the peripherals, data, and program instructions in the same way: by writing a memory
address to the bus. The PIC32’s memory addresses are 32-bits long, and each address refers to a byte in the
memory map. This means that the memory map of the PIC32 consists of 4 GB (four gigabytes, or 232 bytes).
Of course most of these addresses are meaningless; there are not nearly that many things to address.

The PIC32’s memory map consists of four main components: RAM, flash, peripheral SFRs that we write
to (to control the peripherals or send outputs) or read from (to get sensor input, for example), and boot flash.
Of these, we have not yet seen “boot flash.” This is extra flash memory, 12 KB on the PIC32MX795F512L,
that contains program instructions that are executed immediately upon reset of the PIC32.2 The boot flash
instructions typically perform PIC32 initialization and then call the program installed in program flash.

The following table illustrates the PIC32’s physical memory map. It consists of a block of “RAMsize” bytes
of RAM (128 KB for the PIC32MX795F512L), “Hashsize” bytes of flash (512 KB for the PIC32MX795F512L),
1 MB for the peripheral SFRs, and “bootsize” for the boot flash (12 KB for the PIC32MX795F512L):

2The last four 32-bit words of the boot flash memory region are Device Configuration Registers. See Section 2.1.4.
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Physical Memory

Start Address Size (bytes) Region
0x00000000 RAMsize (128 KB) Data RAM
0x1D000000 flashsize (512 KB) Program Flash
0x1F800000 1 MB Peripheral SFRs
0x1FC00000 bootsize (12 KB) Boot Flash

The memory regions are not contiguous. For example, the first address of program flash is 480 MB after
the first address of data RAM. An attempt to access an address between the data RAM segment and the
program flash segment would generate an error.

It is also possible to allocate a portion of RAM to hold program instructions.

In Chapter 3, when we discuss programming the PIC32, we will introduce the virtual memory map and
its relationship to the physical memory map.

2.1.4 Configuration Bits

The last four 32-bit words of the boot flash are the Device Configuration Registers, DEVCFGO0 to DEVCFGS3,
containing the configuration bits. These configuration bits set a number of important properties of how
the PIC32 will function. You can learn more about configuration bits in the Special Features section of
the Data Sheet. For example, DEVCFG1 and DEVCFG2 contain configuration bits that determine the
frequency multiplier converting the external resonator frequency to the SYSCLK frequency, as well as bits
that determine the ratio between the SYSCLK and PBCLK frequencies.

2.2 The NU32 Development Board

The NU32 development board is shown in Figure 2.3, and the pinout is given in Table 2.2. The main purpose
of the NU32 board is to provide easy breadboard access to 82 of the 100 PIC32MX795F512L pins. The NU32
acts like a big 84-pin DIP chip and plugs into two standard prototyping breadboards, straddling the long
rails used for power, as shown in Figure 2.3.

Beyond simply breaking out the pins, the NU32 provides a few other things that make it easy to get
started with the PIC32. For example, to power the PIC32, the NU32 provides a barrel jack that accepts a
2.1 mm inner diameter, 5.5 mm outer diameter “center positive” power plug. The plug should provide DC
6 V or more; the NU32 comes with a 6 V wall wart capable of providing 1 amp. The PIC32 requires a supply
voltage VDD between 2.3 and 3.6 V, and the NU32 provides a 3.3 V voltage regulator providing a stable
voltage source for the PIC32 and other electronics on board. Since it is often convenient to have a 5 V supply
available, the NU32 also has a 5 V regulator. The power plug’s raw input voltage and ground, as well as the
regulated 3.3 V and 5 V supplies, are made available to the user on the power rails running down the center
of the NU32, as illustrated in Figure 2.3. Since the power jack is directly connected to the 6 V and GND
rails, you could power the NU32 by putting 6 V and GND on these rails directly and not connecting to the
power jack.

The 3.3 V regulator is capable of providing up to 800 mA and the 5 V regulator is capable of providing
up to 1 amp. However, the wall wart can only provide 1 amp total, and in practice you should stay well
under each of these limits. For example, you should not plan to draw more than 200-300 mA or so from any
of the power rails. Even if you use a higher current power supply, such as a battery, you should respect these
limits, as the current has to flow through the relatively thin traces of the PCB. It is also not recommended to
use high voltage supplies greater than 9 V or so, as the regulators will heat up.

Since motors tend to draw lots of current (even small motors may draw hundreds of mA up to several
amps), do not try to power them using power from the NU32 rails. Use a separate battery or power supply
instead.

In addition to the voltage regulators, the NU32 provides an 8 MHz resonator as the source of the PIC32’s
80 MHz clock signal. It also has a mini B USB jack to connect to your computer’s USB port to a dual
USB-to-RS-232 FTDI chip that allows your PIC32 to speak RS-232 to your computer’s USB port. Two
RS-232 channels share the single USB cable—one dedicated to programming the PIC32 and the other allowing
communication with the host computer while a program is running on your PIC32.
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GND rail
3.3Vrail

6V input

Figure 2.3: The NU32 development board: photo and PCB silkscreen.

+33V +33V +3.3V

RD13 USER

button
LED1 LED2 ¢
N N 1 normally

RA4 RAS = open

Figure 2.4: The NU32 connection of pins RA4, RA5, and RD13 to LED1, LED2, and the USER button,
respectively.

A standard A USB jack is provided to allow the PIC32 to talk to another external device, like a smartphone.

The NU32 board also has a power switch which connects or disconnects the input power supply to the
voltage regulators, and two LEDs and two buttons (labeled USER and RESET) allowing very simple input
and output. The two LEDs, LED1 and LED2, are connected at one end by a resistor to 3.3 V and the other
end to digital outputs RA4 and RAS, respectively, so that they are off when those outputs are high and on
when they are low. The USER and RESET buttons are attached to the digital input RD13 and MCLR, pins,
respectively, and both buttons are configured to give 0 V to these inputs when pressed and 3.3 V otherwise.
See Figure 2.4.

While the NU32 comes with a bootloader installed in its flash memory, you have the option to use a
programmer to install a standalone program. The five plated through-holes near the USB jack align with the
pins of devices such as the PICkit 3 programmer (Figure 1.4).
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[ Function [ PIC32 H ” PIC32 [ Function
GND GND G4 9 T5CK/SDI1/C4
33V 3.3V C3 [ 8V T4CK/C3
SCK2/U6TX/U3RTS/CN8/G6 v/ 10 || G6/RTS3 c2 || 7v T3CK/C2
SDA4/SDI2/U3RX/CN9/G7 v/ 11 || G7/RX3 Cl [[ 6V T2CK/C1
SCL4/SD0O2/U3TX/CN10/G8 V12 || G8/TX3 E7 [[ 5/ PMD7/E7
MCLR 13 || MCLR E6 || 4 PMD6/E6
SS2/U6RX/U3CTS/CN11/G9 /14 || G9/CTS3 E5 || 3 PMD5/E5
A0 V17 || A0 E4 [[ 100 / PMD4/E4
INT1/E8 /18 || E8 E3 [[ 99 / PMD3/E3
INT2/E9 V19 || E9 E2 [[ 98/ PMD2/E2
VREF-/CVREF-/A9 28 || A9 El || 94/ PMDI/E1
VREF+4 /CVREF+/A10 29 || AlO EO0 [[ 93/ PMDO/EO
Al /38 || Al Gi5 |[ 1/ G15
SCK4/U5TX/U2RTS/F13 v 39 || F13 G13 || 97 v G13
SS4/U5RX/U2CTS/F12 v 40 || F12 G12 96 / G12
SDA5/SDI4/U2RX/CN17/F4 /49 || F4 Gl4 [[ 95 Gl4
SCL5/SD04/U2TX/CN18/F5 v/ 50 || F5 A7 [[ 92/ A7
USBID/F3 /51 || F3 A6 || 91 A6
SDA3/SDI3/UIRX/F2 V52 || F2/RX1 GO || 90 / C2RX/PMD8/G0
SCL3/SD03/U1TX/F8 V53 || F8/TX1 Gl || 89 v/ C2TX/PMD9/G1
D-/G3 56 || G3 Fl1 || 88/ C1TX/PMD10/F1
D+/G2 57 || G2 FO || 87 / C1IRX/PMDI11/F0
SCL2/A2 v/ 58 || A2 Cl4 || 74 T1CK/CNO0/C14
SDA2/A3 V59 || A3 C13 [[ 73 CN1/C13
Al /60 || A4/L1 Al5 [[ 67 SDA1/INT4/A15
A5 V61 || A5/L2 Al4 || 66 / SCL1/INT3/A14
PGED1/AN0/CN2/B0 25 || BO D15/RTS1 || 48 / SCK3/U4TX/U1RTS/CN21/D15
PGEC1/AN1/CN3/B1 24 || B1 D14/CTS1 || 47 SS3/U4RX/U1CTS/CN20/D14
AN2/C2IN-/CN4/B2 23 || B2 D13/USER || 80 / PMD13/CN19/D13
AN3/C2IN+/CN5/B3 22 || B3 D12 [[ 79 IC5/PMD12/D12
AN4/C1IN-/CN6/B4 21 || B4 DIl || 71 / 1C4/D11
AN5/C1INF/CN7/B5 20 || B5 D10 || 70 / SCK1/IC3/D10
PGEC2/AN6/OCFA/B6 26 || B6/PGC D9 || 69/ SS1/1C2/D9
PGED2/AN7/B7 27 || B7/PGD D8 || 68/ RTCC/IC1/D8
AN8/C10UT/BS8 32 || B8 D7 || 84/ PMD15/CN16/D7
AN9/C20UT/B9 33 || B9 D6 || 83/ PMD14/CN15/D6
AN10/CVREFOUT/B10 34 || B10 D5 || 82/ CN14/D5
AN11/B11 35 || Bll D4 || 81/ OC5/CN13/D4
AN12/B12 41 || B12 D3 || 78/ 0OC4/D3
AN13/B13 42 || B13 D2 [[ 77/ OC3/D2
AN14/B14 43 || B14 D1 || 76 / 0C2/D1
AN15/OCFB/CN12/B15 44 || B15 DO || 72V SDO1/0C1/INT0/D0

Table 2.2: The NU32 pinout (in green, with power jack at top) with PIC32MX795F512L pin numbers. Board
pins in bold should only be used with care, as they are used for other functions by the NU32. Pins marked

with

a 4/ are 5.5 V tolerant. Not all pin functions are listed; see Figure 2.1 or the PIC32 Data Sheet.

2.3 Chapter Summary

The PIC32 features a 32-bit data bus and a CPU capable of performing some 32-bit operations in a
single clock cycle.

In addition to nonvolatile flash program memory and RAM data memory, the PIC32 provides periph-
erals particularly useful for embedded control, including analog inputs, digital I/O, PWM outputs,
counter/timers, inputs that generate interrupts or measure pulse widths or frequencies, and pins for a
variety of communication protocols, including RS-232, USB, ethernet, CAN, I2C, and SPI.

The functions performed by the pins and peripherals are determined by Special Function Registers.
SFR settings also determine other aspects of the behavior of the PIC32.

The PIC32 has three main clocks: the SYSCLK that clocks the CPU, the PBCLK that clocks peripherals,
and the USBCLK that clocks USB communication.

Physical memory addresses are specified by 32 bits. The physical memory map contains four regions:
data RAM, program flash, SFRs, and boot flash. RAM can be accessed in one clock cycle, while flash
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access may be slower. The prefetch cache module can be used to minimize delays in accessing program
instructions.

e Four 32-bit configuration words, DEVCFGO0 to DEVCFG3, set behavior of the PIC32 that should not
be changed during execution. For example, these configuration bits determine how an external clock
frequency is multiplied or divided to create the PIC32 clocks.

e The NU32 development board provides voltage regulators for power, includes a resonator for clocking,
breaks out the PIC32 pins to a solderless breadboard, provides a couple of LEDs and buttons for simple
input and output, and makes USB/RS-232 communication and programming simple.

2.4 Exercises

You will need to refer to the PIC32MX5XX/6XX/7XX Data Sheet and PIC32 Reference Manual to answer
some questions.

1. Search for the “Microchip flash products parametric chart” or navigate to it from the Microchip
homepage. You should see a listing of all the PICs made by Microchip. Set the page to show all specs
and limit the display to 32-bit PICs.

(a) Find PIC32s that meets the following specs: at least 128 KB of flash, at least 32 KB of RAM, and
at least 80 MHz max CPU speed. (You can choose a range of settings within a single parameter by
shift-clicking or ctrl-clicking.) What is the cheapest PIC32 that meets these specs, and what is its
volume price? How many ADC, UART, SPI, and I?C channels does it have? How many timers?

(b) What is the cheapest PIC32 overall? How much flash and RAM does it have, and what is its
maximum clock speed?

(¢) Among all PIC32’s with 512 KB flash and 128 KB RAM, which is the cheapest? How does it
differ from the PIC32MX795F512L7

2. Based on C syntax for bitwise operators and bit-shifting, calculate the following and give your results
in hexadecimal.

0x37 | 0xA8

0x37 & 0xA8

~0x37

b

(¢
(d

(a)
(b)
)
)

3. Describe the four functions that pin 22 of the PIC32MX795F512L can have. Is it 5 V tolerant?

4. Referring to the Data Sheet section on I/O Ports, what is the name of the SFR you have to modify if
you want to change pins on PORTC from output to input?

5. The SFR, CM1CON controls comparator behavior. Referring to the Memory Organization section of
the Data Sheet, what is the reset value of CM1CON in hexadecimal?

6. In one sentence each, without going into detail, explain the basic function of the following items shown
in the PIC32 architecture block diagram Figure 2.2: SYSCLK, PBCLK, PORTA...G (and indicate
which of these can be used for analog input on the NU32’s PIC32), Timer 1-5, 10-bit ADC, PWM
OC1-5, Data RAM, Program Flash Memory, and Prefetch Cache Module.

7. List the peripherals that are not clocked by PBCLK.

8. If the ADC is measuring values between 0 and 3.3 V, what is the largest voltage difference that it may
not be able to detect? (It’s a 10-bit ADC.)
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9.

10.

11.

12.

13.

14.

15.

16.

Refer to the Reference Manual chapter on the Prefetch Cache. What is the maximum size of a program
loop, in bytes, that can be completely stored in the cache?

Explain why the path between flash memory and the prefetch cache module is 128 bits wide instead of
32, 64, or 256 bits.

Explain how a digital output could be configured to swing between 0 and 4 V, even though the PIC32
is powered by 3.3 V.

PIC32’s have increased their flash and RAM over the years. What is the maximum amount of flash
memory a PIC32 can have before the current choice of base addresses in the physical memory map (for
RAM, flash, peripherals, and boot flash) would have to be changed? What is the maximum amount of
RAM? Give your answers in bytes in hexadecimal.

Check out the Special Features section of the Data Sheet.

(a) If you want your PBCLK frequency to be half the frequency of SYSCLK, which bits of which
Device Configuration Register do you have to modify? What values do you give those bits?

(b) Which bit(s) of which SFR set the watchdog timer to be enabled? Which bit(s) set the postscale
that determines the time interval during which the watchdog must be reset to prevent it from
restarting the PIC327 What values would you give these bits to enable the watchdog and to set
the time interval to be the maximum?

(¢) The SYSCLK for a PIC32 can be generated in a number of ways. This is discussed in the Oscillator
chapter in the Reference Manual and the Oscillator Configuration section in the Data Sheet. The
PIC32 on the NU32 uses the (external) primary oscillator in HS mode with the phase-locked loop
(PLL) module. Which bits of which device configuration register enable the primary oscillator and
turn on the PLL module?

Your NU32 board provides four power rails: GND, regulated 3.3 V, regulated 5 V, and the unregulated
input voltage (e.g., 6 V). You plan to put a load from the 5 V output to ground. If the load is modeled
as a resistor, what is the smallest resistance that would be safe? An approximate answer is fine. In a
sentence, explain how you arrived at the answer.

The NU32 could be powered by different voltages. Give a reasonable range of voltages that could be
used, minimum to maximum, and explain the reason for the limits.

Two buttons and two LEDs are interfaced to the PIC32 on the NU32. Which pins are they connected
to? Give the actual pin numbers, 1-100, as well as the name of the pin function as it is used on the
NU32. For example, pin 57 on the PIC32MX795F512L could have the function D+ (USB data line) or
RG2 (Port G digital input/output), but only one of these functions could be active at a given time.
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Chapter 3

Looking Under The Hood: Software

In this chapter we explore how a simple C program interacts with the hardware described in the previous
chapter. We begin by introducing the virtual memory map and its relationship to the physical memory map.
We then use the simplePIC.c program from Chapter 1 to begin to explore the compilation process and the
X(C32 compiler installation.

3.1 The Virtual Memory Map

In the last chapter we learned about the PIC32 physical memory map. The physical memory map is relatively
easy to understand: the CPU can access any SFR, or any location in data RAM, program flash, or boot
flash, by a 32-bit address that it puts on the bus matrix. Since we don’t really have 232 bytes, or 4 GB, to
access, many choices of the 32 bits don’t address anything.

In this chapter we focus on the virtual memory map. This is because almost all software refers only to
virtual memory addresses. Virtual addresses (VAs) specified in software are translated to physical addresses
(PAs) by the fixed mapping translation (FMT) unit in the CPU, which is simply

PA = VA & 0x1FFFFFFF

This bitwise AND operation simply clears the first three bits, the three most significant bits of the most
significant hex digit.

If we’re just throwing away those three bits, what’s the point of them? Well, those first three bits are
used by the CPU and the prefetch module we learned about in the previous chapter. If the first three bits of
the virtual address of a program instruction are 100 (so the corresponding most significant hex digit of the
VA is an 8 or 9), then that instruction can be cached. If the first three bits are 101 (corresponding to an A or
B in the leftmost hex digit of the VA), then it cannot. Thus the segment of virtual memory 0x80000000 to
0x9FFFFFFF is cacheable, while the segment 0xA0000000 to 0OxBFFFFFFF is noncacheable. The cacheable
segment is called KSEGO (for “kernel segment”) and the noncacheable segment is called KSEG1.!

You don’t need to worry about the mysteries of cacheable vs. noncacheable instructions. Suffice to say
that your program instructions will be made cacheable, speeding up execution.

The relationship of the physical memory map to the virtual memory map is illustrated in Figure 3.1. One
important thing to note from the figure is that the SFRs are not included in the KSEGO cacheable virtual
memory segment. This is because the SFRs correspond to physical devices, e.g., peripherals, and their values
cannot be cached. For example, if port B is configured as a digital input port, then the SFR PORTB contains
the current input values. When your program asks for these values, it needs the current values; it cannot pull
them from the cache.

For the rest of this chapter we will deal only with virtual addresses like 0x9D000000 and 0xBD000000, and
you should realize that these refer to the same physical address. Since virtual addresses start at 0x80000000,

I Another cacheable segment called USEG, for “user segment,” is available in the lower half of virtual memory. This memory
segment is set aside for “user programs” that are running under an operating system installed in a kernel segment. For safety
reasons, programs in the user segment cannot access the SFRs or boot flash. We will never use the user segment.
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boot flash
0xBFC00000
KSEGT1
SFRs
noncacheable 0xBF800000
OXFFFFFFFF
KSEG3 boot flach program flash 8D
oot flas 0xBD000000
KSEG2 0xT1FC00000
KSEG1 data RAM
0xA0000000 SFRs > 0xA0000000
KSEGO 0x1F800000
0x80000000
boot flash
0x1DOOOCOD program flash 0x9FC00000
X
USEG
KSEGO
0x20000000 data RAM
0x00000000  cacheable
0x00000000 _ _
Physical Virtual program flash
Memory Memory 0x9D000000
Map Map
data RAM
> 0x80000000

Figure 3.1: (Left) The 4 GB physical and virtual memory maps are divided into 512 MB segments. The
mapping of the valid physical memory addresses to the virtual memory regions KSEG0 and KSEGI1 is
illustrated. The PIC32 does not use the virtual memory segments KSEG2 and KSEG3, which are allowed
by the MIPS architecture, and we will not use the user segment USEG, which sits in the bottom half of
the virtual memory map. (Right) Physical addresses mapped to virtual addresses in cacheable memory
(KSEGO) and noncacheable memory (KSEG1). Note that SFRs are not cacheable. The last four words of boot
flash, 0xBFCO02FF0 to 0xBFCO2FFF in KSEG1, correspond to the device configuration words DEVCFGO to
DEVCFG3. Memory regions are not drawn to scale.

and all physical addresses are below 0x20000000, there is no possibility of confusing whether we are talking
about a VA or a PA.
3.2 An Example: The Bootloaded simplePIC.c Program

Let’s build the simplePIC.c bootloaded executable from Chapter 1.4.2. For convenience, here is the program
again:

Code Sample 3.1. simplePIC.c. Blinking lights, unless the USER button is pressed.

#include <plib.h>
void delay(void);

int main(void) {
DDPCONbits.JTAGEN = 0; // Disable JTAG, make pins 4 and 5 of Port A available.
TRISA = OxFFCF; // Pins 4 and 5 of Port A are LED1 and LED2. Clear
// bits 4/5 to zero, for output. Others are inputs.

LATAbits.LATA4 = 0; // Turn LED1 on and LED2 off. These pins sink ...
LATAbits.LATAS = 1; // ... current on NU32, so "high" = "off."
while(1) {

delayQ);
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LATAINV = 0x0030; // toggle the two lights
}
return O;

}

void delay(void) {
int j;
for (j=0; j<1000000; j++) { // number is 1 million
while ('PORTDbits.RD13); // Pin D13 is the USER switch, low if pressed.
}
}

Following the same procedure as in Chapter 1.4.1 (command line) or in Chapter 1.4.2 (MPLAB X IDE),
build the executable and load it onto your NU32. Remember to use the linker script NU32bootloaded.1d.
When you have the program loaded and running, the NU32’s two LEDs should alternate on and off, and stop
while you press the USER button.

This program refers to SFRs named TRISA, LATAINV, etc. These names align with the SFR names in
the Data Sheet and Reference Manual sections on 1/O Ports. We will consult the Data Sheet and Reference
Manual often when programming the PIC32. We will come back to understanding the use of these SFRs
shortly.

3.3 What Happens When You Build?

Now let’s begin to understand how you created the .hex file in the first place. Figure 3.2 gives a schematic of
what happens when you click “Build” in your MPLAB X IDE or type make with a makefile.

First the preprocessor strips out comments and inserts #included header files. You can have multiple
.c C source files and .h header files, but only one C file is allowed to have a main function. The other files
may contain helper functions. We will learn more about this in Chapter 4.

Then the compiler turns the C files into MIPS32 assembly language files, machine commands that are
directly understood by the PIC32’s MIPS32 CPU. So while some of your C code may be easily portable to
non-MIPS32 microprocessors, your assembly code generally will not be. These assembly files are readable by
a text editor, and it is possible to program the PIC32 directly in assembly language.

The assembler then turns the assembly files into machine-level relocatable object code. This code cannot
be inspected with a text editor. The code is called relocatable because the final memory addresses of the
program instructions and data used in the code are not yet specified. The archiver is a utility that allows
you to package several related .o object files into a single .a library file. We will not be making our own
archived libraries, but we will certainly be using .a libraries that have already been made for us!

Finally, the linker takes multiple object files and links them together into a single executable file, with
all program instructions assigned to specific memory locations. The linker uses a linker script that has
information about the amount of RAM and flash on your particular PIC32, as well as directions as to where
to place the data and program instructions in virtual memory. The end result is an executable and linkable
format (.elf) file, a standard format. This file contains a plethora of information that is useful for debugging
and disassembling the file into the assembly code produced by the compiler (Chapter 5.1.3). In fact, building
simplePIC.c results in a .elf file that is hundreds of kilobytes! A final step creates a stripped-down .hex
file of less than 10 KB that is suitable for placing directly into the memory of your PIC32.

Although the entire process consists of several steps, it is often referred to as “compiling” for short. “Build”
or “make” is more accurate.

3.4 What Happens When You Reset the PIC327?

You’ve got your program running. Now you hit the RESET button on the NU32. What happens next?
The first thing your PIC32 does is to jump to the first address in boot flash, 0xBFC00000, and begin
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Figure 3.2: The “compilation” process.

executing instructions there.? For an NU32 with a bootloader installed, the preloaded bootloader program
sits at that location in memory. The bootloader first checks to see if you are pressing the USER button. If
so0, it knows that you want to reprogram your PIC32, so the bootloader attempts to establish communication
with the bootloader communication utility on your computer. When communication is established, the
bootloader receives your executable .hex file and writes it to your PIC32’s program flash. (See question 3.)
Let’s call the virtual address where your program is installed RESET_ADDR.

Note: The PIC32’s reset address 0xBFC00000 is fixed in hardware and cannot be changed. On the other
hand, there is nothing too special about the choice of the program flash address where the bootloader writes
your program.

Let’s say you weren’t pressing the USER button when you reset the PIC32. Then the bootloader jumps

2If you are just powering on your PIC32, it will wait a short period while electrical transients die out, clocks synchronize, etc.,
before jumping to 0xBFC00000.
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Figure 3.3: Port A registers, taken from the PIC32 Data Sheet.

to the address [RESET_ADDR and begins executing the program you previously installed there. Notice that
our program simplePIC.c is an infinite loop, so it never stops executing. That is the desired behavior in
embedded control. If your program exits, the PIC32 will just sit in a tight loop, doing nothing until it is reset.

3.5 Understanding simplePIC.c

OK, let’s get back to understanding simplePIC.c. The main function is very simple. It initializes values
of DDPCONDits, TRISA, and LATAbits, then enters an infinite while loop. Each time through the loop
it calls delay() and then assigns a value to LATAINV. The delay function simply goes through a for
loop a million times. Each time through the for loop it enters a while loop, which checks the value of
('lPORTDbits.RD13). If PORTDbits.RD13 is 0 (FALSE), then the expression (IPORTDbits.RD13) evaluates
to TRUE, and the program stays stuck here, doing nothing but checking the expression (IPORTDbits.RD13).
When this evaluates to FALSE, the while loop is exited, and the program continues with the for loop. After
a million times through the for loop, control returns to main.

Special Function Registers (SFRs) The only reason this program is even a little interesting is that
TRISA, LATA, and PORTD all refer to peripherals that interact with the outside world. Specifically,
TRISA and LATA correspond to port A, an input/output port, and PORTD corresponds to port D, another
input /output port.> We can start our exploration by consulting the table in Section 1 of the Data Sheet
which lists the pinout I/O descriptions. We see that port A, with pins named RAO to RA15, consists of 12
different pins, and port C, with pins named RC1 to RC15, has 8 pins. These are in contrast to port B, which
has a full 16 pins, labeled RBO to RB15.

Now turn to the Data Sheet section on I/O Ports to get some more information. We find that TRISA,
short for “tri-state A,” is used to control the direction, input or output, of the pins on port A. For each pin,
there is a corresponding bit in TRISA. If the bit is a 0, the pin is an output. If the bit is a 1, the pin is an
input. (0 = Oygpus and 1 = Ipu. Get it?) We can make some pins inputs and some outputs, or we can
make them all have the same direction.

If you're curious what direction the pins are by default, you can consult the Memory Organization section
of the Data Sheet. Tables there list the VAs of many of the SFRs, as well as the values they default to upon
reset. There are a lot of SFRs! But after a bit of searching, you find that TRISA sits at virtual address
0xBF886000, and its default value upon reset is 0x0000C6FF. (We’ve reproduced part of this table for you in
Figure 3.3.) In binary, this would be

0x0000C6FF = 0000 0000 0000 0000 1100 0110 1111 1111.

The leftmost four hex digits (two bytes, or 16 bits) are all 0. This is because those bits don’t exist, technically.
Microchip calls them “unimplemented.” No I/O port has more than 16 pins, so we don’t need those bits,
which are numbered 16-31. (The 32 bits are numbered 0-31.) Of the remaining bits, since the 0’th bit (least
significant bit) is the rightmost bit, we see that bits 0-7, 9-10, and 14-15 have a value 1, while the rest
have value 0. The bits with value 1 correspond precisely to the pins we have available: RAO-7, RA9-10, and

3DDPCON corresponds to JTAG debugging, which we do not use in this book. The DDPCONbits.JTAGEN = 0 command
simply disables the JTAG debugger so that pins RA4 and RA5 are available for digital I/O. See the Special Features section of
the Data Sheet.
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RA14-15. (There is no RAS, for example.) This is for safety reasons; when we power on the PIC32, each pin
will take its default direction before the program has a chance to change it. If an output pin were connected
to an external circuit that is also trying to control the voltage on the pin, the two devices would be fighting
each other, with damage to one or the other a possibility. No such problems arise if the pin is configured as
an input by default.

So now we understand that the instruction

TRISA = OxFFCF;

clears bits 4 and 5 to 0, implicitly clears bits 16-31 to 0 (which is ignored, since the bits are not implemented),
and sets the rest of the bits to 1. It doesn’t matter that we try to set some unimplemented bits to 1; those
bits are simply ignored. The result is that port A pins 4 and 5, or RA4 and RAS5 for short, are now outputs.

Our PIC32 C compiler allows the use of binary (base 2) representations of unsigned integers using 0b at
the beginning of the number, so if you don’t get lost counting bits, you could have equally written

TRISA = 0b1111111111001111;
Another option would have been to use the instructions
TRISAbits.TRISA4 = 0; TRISAbits.TRISA5 = 0;

This allows us to change individual bits without worrying about specifying the other bits. We see this kind of
notation later in the program, with LATAbits.LATA4 and PORTDbits.RD13, for example.

The two other basic SFRs in this program are LATA and PORTD. Again consulting the I/O Ports section
of the Data Sheet, we see that LATA, short for “latch A,” is used to write values to the output pins. Thus

LATAbits.LATAS = 1;

sets pin RA5 high. Finally, PORTD contains the digital inputs on the port D pins. (Notice we didn’t
configure port D as input; we relied on the fact that it’s the default.) PORTDbits.RD13 is 0 if 0 V is present
on pin RD13 and 1 if approximately 3.3 V is present.

Pins RA4, RA5, and RD13 on the NU32 Figure 2.4 shows how pins RA4, RA5, and RD13 are wired
on the NU32 board. LED1 (LED2) is on if RA4 (RA5) is 0 and off if it is 1. When the USER button is
pressed, RD13 registers a 0, and otherwise it registers a 1.

The result of these electronics and the simplePIC.c program is that the LEDs flash alternately, but
remain unchanging while you press the USER button.

CLR, SET, and INV SFRs So far we have ignored the instruction

LATAINV = 0x0030;

Again consulting the Memory Organization section of the Data Sheet, we see that associated with the
SFR LATA are three more SFRs, called LATACLR, LATASET, and LATAINV. (Indeed, many SFRs have
corresponding CLR, SET, and INV SFRs.) These are used to easily change some of the bits of LATA without
affecting the others. A write to these registers causes a one-time change to LATA’s bits, but only in the bits
corresponding to bits on the right-hand side that have a value of 1. For example,

LATAINV = 0x30; // flips (inverts) bits 4 and 5 of LATA; all others unchanged
LATAINV = 0b110000; // same as above

LATASET = 0x0005; // sets bits 0 and 2 of LATA to 1; all others unchanged
LATACLR = 0x0002; // clears bit 1 of LATA to O; all others unchanged

A less efficient way to toggle bits 4 and 5 of LATA is

LATAbits.LATA4 = !LATAbits.LATA4; LATAbits.LATAS5 = !LATAbits.LATAS5;
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We'll look at efficiency in Chapter 5.

You can go back to the table in the Data Sheet to see the VA addresses of the CLR, SET, and INV registers.
They are always offset from their base register by 4, 8, and 12 bytes, respectively; they are consecutive in the
memory map. Since LATA is at 0xBF886020, LATACLR, LATASET, and LATAINV are at 0xBF886024,
0xBF886028, and 0xBF88602C, respectively.

OK, we should now have a pretty good understanding of how simplePIC.c works. But we have been
ignoring the fact that we never declared TRISA, etc., before we started using them. We know you can’t do
that in C; they must be declared somewhere. The only place they could be declared is in the included file
plib.h. We've been ignoring that #include <plib.h> statement until now. Time to take a look.*

3.5.1 Down the Rabbit Hole

But where do we find plib.h? If our program had the preprocessor command #include "plib.h", the
preprocessor would look for plib.h in the same directory as the C file including it. But we had #include
<plib.h>, and the <...> notation means that the preprocessor will look in directories specified in your
include path. This include path was generated for you automatically when you installed the XC32 compiler.
For us, the default include path means that the compiler finds plib.h sitting in the directory path

microchip/xc32/v1.30/pic32mx/include/plib.h

Your path or version number might be slightly different. In this book the directory separator character is /,
consistent with Linux, Unix, and Mac OS X. On Windows, the directory separator character is \.

Including plib.h gives us access to many data types, variables, constants, macros, and functions that
Microchip has provided for our convenience. While plib.h stands for “peripheral library,” including plib.h
provides functionality beyond just the peripherals.

Before we open up plib.h, let’s look at the directory structure that was created when we installed the
X(C32 compiler. There’s a lot here! We certainly don’t need to understand all of it at this point, but let’s try
to get a sense of what’s going on. Let’s start at the level microchip/xc32/v1.30 and summarize what’s in
the nested set of directories, without being exhaustive.

1. bin: This contains the actual executable programs that do the compiling, assembling, linking, etc. For
example, xc32-gcc is the C compiler.

2. docs: Some manuals, including the XC32 C Compiler User’s Guide, and other documentation.
3. examples: Some sample code.
4. lib: Contains some .h header files and .a library archives containing general C object code.

5. pic32-1libs: This directory is notable because it contains the .c C files, .h header files, and .S
assembly files needed to create the object code for a number of pre-built PIC32 functions, particularly
for the peripherals. Later we might want to look at these more closely, as they are some of the best
documentation on the peripheral library functions. A few notable subdirectories:

(a) peripheral: The subdirectories under this directory contain the C code for peripheral library
functions.

(b) include/peripheral: This directory contains header files for peripheral library functions. Though
there is a plib.h here, it is not the one the compiler finds when building simplePIC.c.

(c¢) dsp: This directory contains some C functions that call vector math, filter, and Fourier transform
code in the MIPS Digital Signal Processing library.

(d) 1ibpic32: This directory contains a number of C and assembly files for basic PIC32 functions,
such as code that should be executed at the beginning of any executable (see next).

4Microchip often makes changes to the software it distributes, so there may be differences in details, but the broad strokes
described here will be the same.
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(e) 1libpic32/startup/crt0.S: This “C run-time startup” assembly code gets inserted at the begin-
ning of every program we create. This code takes care of a number of initialization tasks. For
example, if your program uses uninitialized global variables, crtO writes zeros into their data
RAM locations. If your global variables are initialized at the time of definition, e.g., int k=3,
then crt0 copies the initialized values from program flash to data RAM.

6. pic32mx: This directory has a number of files we are interested in.

(a) 1ib: This directory consists mostly of PIC32 object code and libraries that are linked with our
compiled and assembled source code. For some of these libraries, source code exists in pic32-1ibs;
for others we have only the object code libraries. Some important files in this directory include:

i.

ii.

iii.

iv.

vi.

vii.

viii.

crt0.o0: This is the compiled object code of crt0.S. The linker combines this code with our
program’s object code and makes sure that it is executed first.

libmchp_peripheral.a: This library contains the .o object code versions of the .c core timer
functions in the top-level pic32-1ibs library.
libmchp_peripheral 32MX795F512L.a: This library contains the .o object code versions of

the .c peripheral library functions in the top-level pic32-1ibs library. There are versions of
this file for every type of PIC32MX.

libdsp.a: This library contains MIPS implementations of finite and infinite impulse response
filters, the fast Fourier transform, and various vector math functions.

ldscripts/elf32pic32mx.x: For a standalone program, this is the default linker script that
gives the linker rules as to where it is allowed to finally place the relocatable object codes in
virtual memory. This script includes procdefs.1d, below.

If your program is built to be bootloaded, the linker uses your custom linker script instead,
such as NU32bootloaded.1d.

proc/32MX795F512L/procdefs.1d: This file is included by the default linker script, above.
It declares segments of data RAM and program flash where the linker can place data and
instructions, and it is specific to your particular PIC32 model. It also includes processor. o,
below.

proc/32MX795F512L/processor.o: This object file gives the SFR virtual memory addresses
for your particular PIC32. We can’t look at it directly with a text editor, but there are utilities
that allow us to examine it. For example, from the command line you could use the xc32-nm
program in the top-level bin directory to see all the SFR VAs:

> xc32-nm processor.o
b£809040 A AD1CHS

bf886000 A TRISA

bf886004 A TRISACLR
bf88600c A TRISAINV
b£886008 A TRISASET

All of the SFRs are printed out, in alphabetical order, with their corresponding VA. The
spacing between SFRs is four, since there are four bytes (32 bits) in an SFR. The “A” means
that these are absolute addresses. This tells the linker that it must use these addresses when
making final address assignments. This makes sense; the SFR’s are implemented in hardware
and can’t be moved! The listing above indicates that TRISA is located at VA 0xBF886000,
agreeing with the Memory Organization section of the Data Sheet.

proc/32MX795F512L/configuration.data: This file describes some constants used in setting
the configuration bits in DEVCFGO to DEVCFG3 (Chapter 2.1.4). The main purpose of
these constants is to make your code more readable. For example, a standalone program like
simplePIC_standalone.c from Chapter 1.5 has the following code:

#pragma config DEBUG = OFF // Background Debugger disabled
#pragma config FPLLMUL = MUL_20 // PLL Multiplier: Multiply by 20
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These #pragmas are nonstandard C code, and for our particular compiler, they are used
to write to the DEVCFGx bits the values defined by constants like MUL_20, defined in
configuration.data. Many of these #pragmas are used to set up the timing generation
circuit that turn our 8 MHz resonator into an 80 MHz SYSCLK, an 80 MHZ PBCLK, and a
48 MHz USBCLK. You can learn more about the DEVCFGx configuration bits in the Special
Features section of the Data Sheet.

For bootloaded code, the configuration bits are set by the bootloader program, so these
#pragmas are not necessary.

(b) include: This directory contains a number of .h header files, including the one we’ve been looking
for, plib.h.

i.

ii.

iii.

iv.

plib.h: This is the file that was found in our compiler’s include path. If we open it up, we
find that it includes a bunch of other files! One of them is peripheral/ports.h, so let’s open
that one up.
peripherals/ports.h: This file provides constants, macros, and function prototypes for
library functions that work with the I/O ports. More importantly, for now, is that it includes
xc.h. This file is found one directory up in the directory tree. Let’s open that next.
xc.h: This file does a few different things, such as defining constants and macros, and including
files defining MIPS constants and macros, but the most important for the moment is that it
includes proc/p32mx795£f5121.h because of the lines

#elif defined(__32MX795F512L__)

#include <proc/p32mx795£5121.h>
Why does this code include proc/p32mx795£5121.h? When you were setting up your
simplePIC project in the first place, you had to specify the particular PIC32 you were
using. The MPLAB X IDE passed your answer to the compilation process by “defining” the
constant __32MX795F512L__. This allows the preprocessor to include the right files for your
PIC32. Let’s open proc/p32mx795£5121 . h.
proc/p32mx795£5121.h: Whoa! This file is over 40,000 lines long. It also includes one other
file in the same directory, ppic32mx.h, which is over 1000 lines long. With these we have
reached the bottom of our include chain. Let’s pop out of this big directory tree we are sitting
in and look at those two files in a little more detail.

3.5.2 The Include Files p32mx795£5121.h and ppic32mx.h
The first 30% of p32mx795£5121.h, about 14,000 lines, consists of code like this:

extern volatile unsigned int TRISA __attribute__((section("sfrs")));
typedef union {
struct {

};

unsigned TRISAO:
unsigned TRISA1:
unsigned TRISA2:
unsigned TRISA3:
unsigned TRISA4:
unsigned TRISA5:
unsigned TRISAG:
unsigned TRISAT7:
unsigned :1; // don’t give a name to bit 8; it’s unimplemented
unsigned TRISA9:1; // bit 9 is called TRISA9

unsigned TRISA10:1;

unsigned :3; // skip 3 bits, 11-13

unsigned TRISA14:1;

unsigned TRISA15:1; // later bits are not given names

struct {

// TRISAO is bit O (1 bit long), interpreted as an unsigned int
// bits are in order, so the next bit, bit 1, is called TRISA1
/...

s e s

unsigned w:32; // w is a field referring to all 32 bits; the 16 above, and 16 more
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};
} __TRISAbits_t;

extern volatile __TRISAbits_t TRISAbits asm__ ("TRISA") __attribute__((section("sfrs")));

extern volatile unsigned int TRISACLR __attribute__((section("sfrs")));
extern volatile unsigned int TRISASET __attribute__((section("sfrs")));
extern volatile unsigned int TRISAINV __attribute__((section("sfrs")));

The first line, beginning extern, indicates that TRISA is an unsigned int variable that has been defined
elsewhere; no space has to be allocated for it.> The processor.o file is the one that actually defines the VA
of the symbol TRISA, as mentioned earlier. (The __attribute__ syntax tells the linker that TRISA is in the
sfrs section of memory.)

The next section of code defines a data type called __TRISAbits_t. The purpose of this is to provide a
struct that gives easy access to the bits of the SFR. After defining this type, a variable named TRISAbits
is declared of this type. Again, since it is an extern variable, no memory is allocated, and, in fact, the
__asm__ ("TRISA") syntax means that TRISAbits is at the same VA as TRISA. The definition of the bit
field TRISAbits allows us to use TRISAbits. TRISAO to refer to bit 0 of TRISA. In general, fields do not
have to be one bit long; for example, TRISA.w is the unsigned int created from all 32 bits, and the type
__RTCALRMbits_t defined earlier in the file by

typedef union {
struct {
unsigned ARPT:8;
unsigned AMASK:4;

} __RTCALRMbits_t;

has a first field ARPT that is 8 bits long and a second field AMASK that is 4 bits long. Since RTCALRM is
a variable of type __RTCALRMbDbits_t, a C statement of the form RTCALRMbits.AMASK = 0xB would put the
values 1, 0, 1, 1 in bits 11, 10, 9, 8, respectively, of RTCALRM.

After the declaration of TRISA and TRISAbits, we see declarations of TRISACLR, TRISASET, and
TRISAINV. The presence of these declarations in this included header file allows simplePIC.c, which uses
these variables, to compile successfully. When the object code of simplePIC.c is linked with the processor.o
object code, references to these variables are resolved to the proper VAs.

With these declarations in p32mx795£5121.h, the simplePIC.c statements

TRISA = OxFFCF;
LATAINV = 0x0030;
while (!PORTDbits.RD13)

finally make sense; these statements write values to, or read values from, SFRs at VAs specified by processor.o.
You can see that p32mx795£5121.h declares a lot of SFRs, but no memory has to be allocated for them; they
exist at fixed addresses in the PIC32’s hardware.
The next 9% of p32mx795£5121.h is the extern variable declaration of the same SFRs, without the bit
field types, for assembly language. The VAs of each of the SFRs is given, making this a handy reference.
Starting at about 17,500 lines into the file, we see constant definitions like the following:

#define _T1CON_TCS_POSITION 0x00000001
#define _T1CON_TCS_MASK 0x00000002
#define _T1CON_TCS_LENGTH 0x00000001
#define _T1CON_TCKPS_POSITION 0x00000004
#define _T1CON_TCKPS_MASK 0x00000030
#define _T1CON_TCKPS_LENGTH 0x00000002

5The volatile keyword, applied to all the SFRs, means that the value of this variable could change without the CPU
knowing it. Thus the CPU should reload it every time it is needed, not assume that its value is unchanged just because the
CPU has not changed it.
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These refer to the Timer 1 SFR T1CON. Consulting the information about TICON in the Timerl section of
the Data Sheet, we see that bit 1, called TCS, controls whether Timer 1’s clock input comes from the TICK
input pin or from PBCLK. Bits 4 and 5, called TCKPS for “timer clock prescaler,” control how many times
the input clock has to “tick” before Timer 1 is incremented (e.g., TCKPS = 0b10 means there is one clock
increment per 64 input ticks). The constants defined above are for convenience in accessing these bits. The
POSITION constants indicate the least significant bit location in TCS or TCKPS in TICON—one for TCS
and four for TCKPS. The LENGTH constants indicate that TCS consists of one bit and TCKPS consists of two
bits. Finally, the MASK constants can be used to determine the values of the bits we care about. For example:

unsigned int tckpsval = (T1CON & _T1CON_TCKPS_MASK) >> _T1CON_TCKPS_POSITION;
// AND MASKing clears all bits, except bits 5 and 4, which are unchanged and shifted to 1 and O

Another example usage is in pic32mx/include/peripheral/timer.h, where we find the constant definition
#define T1_PS_1_64 (2 << _T1CON_TCKPS_POSITION) /* 1:64 x/

T1_PS_1_64 is set to the value of 2, or binary 0b10, left-shifted by _-T1CON_TCKPS_POSITION positions, yielding
0b100000. If this is bitwise OR’ed with other constants, you can specify the properties of Timer 1 using code
that is readable without consulting the Data Sheet or Reference Manual. For example, you could use the
statement

T1CON = T1_ON | T1_PS_1_64 | T1_SOURCE_INT;

to turn the timer on, set the prescaler to 1:64, and set the source of the timer to be the internal PBCLK. Of
course you have to read the file timer.h to know what the available constants are! You might find it easier
to consult the Data Sheet or Reference Manual and assign the bit values based on the information there.

The definitions of the POSITION, LENGTH, and MASK constants take up most of the rest of the file. At the
end, some more constants are defined, like below:

#define _ADC10

#define _ADC10_BASE_ADDRESS 0xBF809000
#define _ADC_IRQ 33

#define _ADC_VECTOR 27

The first is merely a flag indicating to other .h and . c files that the 10-bit ADC is present on this PIC32. The
second indicates the first address of 22 consecutive SFRs related to the ADC (see the Memory Organization
section of the Data Sheet). The third and fourth relate to interrupts. The PIC32MX’s CPU is capable of
being interrupted by up to 96 different events, such as a change of voltage on an input line or a timer rollover
event. Upon receiving these interrupts, it can call up to 64 different interrupt service routines, each identified
by a “vector” corresponding to its address. These two lines say that the ADC’s “interrupt request” line is 33
(out of 0 to 95), and its corresponding interrupt service routine is at vector 27 (out of 0 to 63). Interrupts are
covered in Chapter 6.

Finally, p32mx795£5121 .h concludes by including ppic32mx.h, which defines a number of other constants,
again with the intent to help you write more readable code. These constants are common for all PIC32 types,
unlike those defined in p32mx795£5121.h.

3.5.3 The NU32bootloaded.1ld Linker Script

To create the executable .hex file, we needed the C source file simp1ePIC. c and the linker script NU32bootloaded. 1d.
Examining NU32bootloaded.1d with a text editor, we see the following three lines near the beginning:

INPUT ("processor.o")
OPTIONAL("libmchp_peripheral.a")
OPTIONAL("libmchp_peripheral_32MX795F512L.a")
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The first line tells the linker to load the processor. o file specific to your PIC32. This allows the linker to
resolve references to SFRs to actual addresses. The next two lines tell the linker to give the code access to
the .o object codes for the PIC32 peripheral library.

The rest of the NU32bootloaded.1d linker script has information such as the amount of program flash
and data memory available, as well as the virtual addresses where program elements and global data should
be placed. Below is a portion of NU32bootloaded.1d:

_RESET_ADDR = (0xBD0O00000 + 0x1000 + 0x970);

[/ skskokok stk ke sk sk ok sk ksl sk ok skskosk ok sk sk s ok skl ok sk sk ke ok sk sk sk sk ke ok sk ksl sk sk ks sk ok sk sk ok sk sk s ok skok ok sk ok
* NOTE: What is called boot_mem and program_mem below do not directly
correspond to boot flash and program flash. For instance, here

ksegO_boot_mem and ksegl_boot_mem both live in program flash memory.

(We leave the boot flash solely to the bootloader.)

The boot_mem names below tell the linker where the startup codes should

go (here, in program flash). The first 0x1000 + 0x970 + 0x490 = 0x1EOQ
of program flash memory is allocated to the interrupt vector table and
startup codes. The remaining Ox7E200 is allocated to the user’s program.

stttk stk sk ok stk s ok sk sk sk ok stk ok sk ok sk sk sk sk sk sk stk skl sk ok stk s ok sk sk sk ok sk ok sk sk skok ke sksk sk ok kok /

¥ X X X X X *

MEMORY
{
/* interrupt vector table */
exception_mem : ORIGIN = 0x9D000000, LENGTH = 0x1000
/* Start-up code sections; some cacheable, some not */
kseg0_boot_mem : ORIGIN = (0x9D000000 + 0x1000), LENGTH = 0x970
ksegl_boot_mem : ORIGIN = (0xBDO0O000O + 0x1000 + 0x970), LENGTH = 0x490
/* User’s program is in program flash, ksegO_program_mem, all cacheable x/
/* 512 KB flash = 0x80000, or 0x1000 + 0x970 + 0x940 + 0x7E200 */

ksegO_program_mem (rx) : ORIGIN (0x9D000000 + 0x1000 + 0x970 + 0x490), LENGTH = 0x7E200

debug_exec_mem : ORIGIN = 0xBFC02000, LENGTH = OxFFO

/* Device Configuration Registers (configuration bits) */

config3 : ORIGIN = 0xBFCO2FFO, LENGTH = 0x4

config2 : ORIGIN = O0xBFCO2FF4, LENGTH = 0x4

configl : ORIGIN = OxBFCO2FF8, LENGTH = 0x4

config0 : ORIGIN = O0xBFCO2FFC, LENGTH = 0x4

configsfrs : ORIGIN = OxBFCO2FFO, LENGTH = 0x10

/* all SFRS */

sfrs : ORIGIN = 0xBF800000, LENGTH = 0x100000

/* PIC32MX795F512L has 128 KB RAM, or 0x20000 */

ksegl_data_mem (w!x) : ORIGIN = 0xA0000000, LENGTH = 0x20000
}

Converting virtual to physical addresses, we see that the cacheable interrupt vector table (we will learn
more about this in Chapter 6) in exceptionmem is placed in a memory region of length 0x1000 bytes
beginning at PA 0x1D000000 and running to 0x1DO00FFF; cacheable startup code in ksegO_boot_mem is
placed at PAs 0x1D001000 to 0x1D00196F; noncacheable startup code in ksegl_boot_mem is placed at PAs
0x1D001970 to 0x1D0O01DFF; and cacheable program code in ksegO_program_mem is allocated the rest of
program flash, PAs 0x1D001E00 to 0x1DO7FFFF. This program code includes the code we write plus other
code that is linked.

The linker script for the NU32 bootloader placed the bootloader completely in the 12 KB boot flash with
little room to spare. Therefore, the linker script for our bootloaded programs should place the programs solely
in program flash. This is why the boot_mem sections above are defined to be in program flash. The label
boot_mem simply tells the linker where the startup code should be placed, just as the label kseg0O_program_mem
tells the linker where the program code should be placed. (For the bootloader program, kseg0_program_mem
was in boot flash.)

If the LENGTH of any given memory region is not large enough to hold all the program instructions for
that region, the linker will fail.
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Upon reset, the PIC32 always jumps to 0xBFC00000, where the first instruction of the startup code
for the bootloader resides. The last thing the bootloader does is jump to VA 0xBD001970. Since the first
instruction in the startup code for our bootloaded program is installed at the first address in ksegl_boot_mem,
NU32bootloaded.1d must define the ORIGIN of ksegl_boot_mem at this address. This address is also known
as _RESET_ADDR in NU32bootloaded.1d.

3.6 Summarizing the Build

Section 3.5 was a long one, so let’s summarize by looking at what happens when you build a project. If you
look at the output when you type make out.hex at the command line, or at your IDE’s Output window after
pressing “Build,” you see the actual command line commands that were executed. They look approximately
like this:

xc32-gcc -g -x ¢ —c -mprocessor=32MX795F512L -o simplePIC.o simplePIC.c

xc32-gcc -mprocessor=32MX795F512L -o out.elf simplePIC.o \
-Wl,--defsym=__MPLAB_BUILD=1,--script="NU32bootloaded.1ld",-Map=out.map

xc32-bin2hex out.elf

The first line preprocesses, compiles, and assembles the simplePIC.c program, the second links the resulting
.o file to make a .elf file, and the third line converts the .elf file to a .hex file.

Using the XC32 compiler guide, in the docs directory of our XC32 distribution, we see that the -g
flag in the first line tells the compiler to produce debugging information, which is useful for examining the
assembly code compiled from your source code; the -x ¢ sequence indicates that the input file is C source
code; the -c flag tells the compiler to compile and assemble, but not to link, and instead produce a .o
object file; -mprocessor=32MX795F512L indicates the device so that the proper device-specific files are used
in compilation; and the -o flag indicates the name of the output file. The last argument, simplePIC.c, is
the name of the file to be compiled.

In the second line, the linker guide tells us that -mprocessor=32MX795F512L specifies the device type
(e.g., which processor.o file to load); -o indicates the name of the output file; and
-Wl,--defsym=__MPLAB_BUILD=1,--script="NU32bootloaded.1ld,-Map=out.map" tells the linker to put
the symbol __MPLAB_BUILD at address 1, to use the linker script NU32bootloaded.1d, and to create a “map”
file with information on where instructions and global variables are placed in memory. We will learn more
about map files in Chapter 5. The option -W1 is “-W ell” not “-W one.”

Note that in the first line, xc32-gcc compiles and assembles, based on the specified options, while in the
second line, xc32-gcc links because the input file is object code.

To summarize, here is what you need to know about the creation of your final .hex executable from your
simplePIC. c source file:

e IDE setting of the processor type. If you build your project using the IDE, you must choose
the processor type. This tells the IDE which -mprocessor to specify to the xc32-gcc command
which preprocesses, compiles, and assembles, and to the xc32-gcc command which links to create the
executable.

e Including the Microchip plib.h file. By including plib.h at the beginning of your program, we
get access to variables for all the SFRs, as well as a number of other constants, macros, and prototypes
for functions that Microchip provides. The simplePIC.c file, which contains references to these, will
now compile and assemble successfully, and these references will be resolved at the linking stage.

e Linking. The object code simplePIC.o is linked with (a) the crt0.o C run-time startup library,
which performs functions such as initializing global variables; (b) the processor.o object code with the

6You can see even more information about the build by specifying the --verbose option for the compiler and linker in the
IDE. Type --verbose under Additional Options at both Run > Set Project Configuration > Customize > xc32-gcc
and Run > Set Project Configuration > Customize > xc32-1d. At the command line, put --verbose at the end of the
compile command and ,--verbose immediately at the end of the linker -W1 options, with no space in front of the comma.
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SFR VAs; and (c) code from object code libraries such as 1ibpic32.a, libmchp_peripheral.a, and
libmchp_peripheral 32MX795F512L.a. The linker script NU32bootloaded.1d, which is specific to the
bootloader and the PIC32MX795F512L, provides information to the linker on the allowable absolute
virtual addresses for the program instructions and data. The result of the linker is a fully self-contained
executable in .elf format, which is then converted to .hex format by xc32-bin2hex. The address of
the first instruction in the executable is the same address the bootloader jumps to.

e Installing the program. The last step is to use the NU32 bootloader and the host computer’s
bootloader communication utility to install the executable. By resetting the PIC32 while holding
the USER button, the bootloader enters a mode where it tries to communicate with the bootload
communication utility on the host computer. When it receives the executable from the host, it writes
the program instructions to the virtual memory addresses specified by the linker. Now every time the
PIC32 is reset without holding the USER button, the bootloader exits and jumps to the newly installed
program.

3.7 Building simplePIC_standalone.c

In the case of the standalone version simplePIC_standalone.c in Code Sample 1.2 in Chapter 1.5, the build
process is very similar to that of the bootloaded version in Section 3.6, with the following exceptions:

e Source code differences. The source code has the following additions compared to the bootloaded
version:

1. Configuration bits. A number of lines beginning #pragma config define the configuration bits
of the Device Configuration Registers (Chapter 2.1.4). These bits define fundamental operating
behavior of the PIC32 that should not be changed during execution. Examples include bits that
control the conversion of the external oscillator frequency into the SYSCLK and PBCLK. These
X(C32-specific preprocessor commands will cause the final .hex file to contain values to be written
to the Device Configuration Registers. The constants used in these #pragmas, like MUL_20, are
defined in the configuration.data file. You can learn more about the configuration bits in the
Special Features section of the Data Sheet.

When using a bootloader, the configuration bits are set by the bootloader, so the #pragmas are
not needed.

2. Configuring the cache and flash wait cycles. The other additions to the source code are the
preprocessor command

#define SYS_FREQ 80000000 // 80 million Hz
and the code statement
SYSTEMConf ig(SYS_FREQ , SYS_CFG_ALL);

The preprocessor command simply defines the constant SYS_FREQ for use in SYSTEMConfig().
Defining SYS_FREQ does not actually affect SYSCLK; SYSCLK is determined by the configuration
bits and the frequency of the external oscillator. We must make sure SYS_FREQ is consistent with
these.

The command SYSTEMConfig() is defined in pic32mx/include/peripheral/system.h. Its pur-
pose is to maximize performance by turning on the prefetch cache module and setting the smallest
possible number of flash wait cycles. The number of flash wait cycles is the number of cycles that
the CPU must stall while waiting for an instruction to load from flash. Based on the SYSCLK
frequency (80 MHz) and the maximum frequency of flash access (30 MHz), the number of flash
wait cycles is set to 2. This wait time is set in the CHECON SFR, described in the Prefetch Cache
Module chapter of the Reference Manual.

When using a bootloader, the bootloader configures the cache and flash wait cycles.
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e The linker script. The standalone version of the program uses the default linker script e1£32pic32mx. x,
not NU32bootloaded.ld. Opening elf32pic32mx.x, we see the command INCLUDE procdefs.ld.
If there happens to be a procdefs.1d file in the same folder as simplePIC_standalone.c, that
file will be included in the linker script. Otherwise, the linker will find the file in the directory
pic32mx/1ib/proc/MX795F512L/. This file contains default definitions of the size of RAM and flash
memory. Since there is no bootloader, there is no concern of the new executable overwriting a boot-
loader. Your standalone executable will be installed beginning at the hardware-defined reset address,
0xBFC00000.

Since the linker script NU32bootloaded.1d is no longer needed, we do not have the —-script option
to -W1 in the linker command:

xc32-gcc -mprocessor=32MX795F512L -o out.elf simplePIC.o \
-W1,--defsym=__MPLAB_BUILD=1,-Map=out.map

3.8 Useful Command Line Utilities

The bin directory of the XC32 installation contains a number of useful command line utilities. These can be
used directly at the command line, and some of them are invoked by the MPLAB X IDE. We have already
seen the first two of these utilities, as described in Section 3.6:

xc32-gcec The XC32 version of the gcc compiler is used to compile, assemble, and link, creating the
executable .elf file.

xc32-bin2hex Converts a .elf file to a .hex file suitable for placing directly into PIC32 flash memory.

xc32-ar The archiver can be used to create an archive, list the contents of an archive, or extract object
files from an archive. Example uses include:

xc32-ar -t lib.a // list the object files in lib.a (in current directory)
xc32-ar -x lib.a code.o // extract code.o from lib.a to the current directory

xc32-as The assembler.
xc32-1d This is the actual linker called by xc32-gcc.

xc32-nm Prints the symbols (e.g., global variables) in an object file. Examples:

Xc32-nm processor.o // list the symbols in alphabetical order
xc32-nm -n processor.o // list the symbols in numerical order

xc32-objdump Displays the assembly code corresponding to an object or .elf file. This process is
called disassembly. Examples:

xc32-objdump -D file.o
xc32-objdump -d -S file.elf // change -d to -D to see debugging info
xc32-objdump -d -S file.elf > file.disasm // send output to the file file.disasm
xc32-readelf Displays a lot of information about the .elf file. Example:
xc32-readelf -a filename.elf // output is dominated by SFR definitions
These utilities correspond to standard “GNU binary utilities” of the same name without the preceding

xc32-. You can search online for more information on these utilities. To learn the options available for a
command called xc32-cmdname, you can type xc32-cmdname 7 at the command line.
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3.9 Chapter Summary

OK, that’s a lot to digest. Don’t worry, you can view much of this chapter as reference material; you don’t
have to memorize it to program the PIC32!

Software refers almost exclusively to the virtual memory map. Virtual addresses map directly to
physical addresses by PA = VA & 0x1FFFFFFF.

Building an executable .hex file from a source file consists of the following steps: preprocessing,
compiling, assembling, linking, and converting the .elf file to a .hex file.

Including the file p1lib.h initiates a chain of included files that gives our program access to variables,
data types, constants, macros, and prototypes of functions that significantly simplify programming. C
source files can be found in pic32-1ibs/peripheral, header files in pic32mx/include, and compiled
libraries in pic32mx/1ib.

The included file pic32mx/include/proc/p32mx795£5121 . h contains variable declarations, like TRISA,
that allow us to read from and write to the SFRs. We have several options for manipulating these
SFRs. For TRISA, for example, we can directly assign the bits with TRISA=0x30, or we can use bitwise
operations like & and |. Many SFRs have associated CLR, SET, and INV registers which can be used
to efficiently clear, set, or invert certain bits. Finally, particular bits or groups of bits can be accessed
using bit fields. For example, we access bit 3 of TRISA using TRISAbits. TRISA3. The names of the
SFRs and bit fields follow the names in the Data Sheet (particularly the Memory Organization section)
and Reference Manual.

All programs are linked with pic32mx/1ib/crt0.o to produce the final .hex file. This C run-time
startup code executes first, doing things like initializing global variables in RAM, before jumping to the
main function. Other linked object code includes processor.o, with the VAs of the SFRs.

Upon reset, the PIC32 jumps to the boot flash address 0xBFC00000. Standalone executables have their
first instruction (of the crt0 startup code) at this address. For a PIC32 with a bootloader, the crt0 of
the bootloader is installed at this address. When the bootloader completes, it jumps to an address
where the bootloader has previously installed a bootloaded executable.

If the PIC32 has a bootloader, the bootloader sets the Device Configuration Registers, turns on the
prefetch cache module, and minimizes the number of CPU wait cycles for instructions to load from
flash. If a program is standalone, it must have code to perform these functions.

A bootloaded program is linked with a custom linker script, like NU32bootloaded.1d, to make sure the
flash addresses for the instructions do not conflict with the bootloader’s, and to make sure that the
program is placed at the address where the bootloader jumps. A standalone program uses the default
el1f32pic32mx.x linker script, which makes use of a default procdefs.1d for the particular processor.

Command line utilities like xc32-ar, xc32-nm, xc32-objdump, and xc32-readelf allow us to learn
more about our compiled code, outside of the MPLAB X IDE.

3.10 Exercises

1.

Convert the following virtual addresses to physical addresses, and indicate whether the address is
cacheable or not, and whether it resides in RAM, flash, SFRs, or boot flash. (a) 0x80000020. (b)
0xA0000020. (c) 0xBF800001. (d) 0x9FC00111. (e) 0x9D001000.

. Explain the differences between a standalone PIC32 program and a program that is meant to be loaded

with a bootloader. Which commands or functions must appear in a standalone program that are not
needed in a program loaded by a bootloader? What differences are there in the linker scripts used by a
standalone program and a program loaded by a bootloader?
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3. Look at the linker script used with bootloaded programs for the NU32. Where does the bootloader
install your program in virtual memory? (Hint: look at the _RESET_ADDR.)

4. Refer to the Memory Organization section of the Data Sheet and Figure 2.1.

(a) Referring to the Data Sheet, indicate which bits, 0..31, can be used as input/outputs for each of
Ports A through G. For the PIC32MX795F512L in Figure 2.1, indicate which pin corresponds to
bit 0 of port E (this is referred to as REO).

(b) The SFR INTCON refers to “interrupt control.” Which bits, 0..31, of this SFR are unimplemented?
Of the bits that are implemented, give the numbers of the bits and their names.

5. Modify simplePIC.c so that both lights are on or off at the same time, instead of opposite each other.
Turn in only the code that changed.

6. Modify simplePIC.c so that the function delay takes an int cycles as an argument. The for loop
in delay executes cycles times, not a fixed value of 1,000,000. Then modify main so that the first
time it calls delay, it passes a value equal to MAXCYCLES. The next time it calls delay with a value
decreased by DELTACYCLES, and so on, until the value is less than zero, at which time it resets the
value to MAXCYCLES. Use #define to define the constants MAXCYCLES as 1,000,000 and DELTACYCLES as
100,000. Turn in your code.

7. Give the VAs and reset values of the following SFRs. (a) I2C2CON. (b) TRISC.

8. The processor.o file linked with your simplePIC project is much larger than your final .hex file.
Explain how that is possible.

9. The building of a typical PIC32 program makes use of a number of files in the XC32 compiler distribution.
Let’s look at a few of them.

(a) Look at the assembly startup code pic32-1ibs/1libpic32/startup/crt0.S. Although we are not
studying assembly code, the comments help you understand what the startup code does. Based on
the comments, list four things that the startup code does.

(b) Copy the library file pic32mx/1ib/libmchp_peripheral 32MX795F512L.a to a directory where
you can experiment. Using the archiver command xc32-ar, find the object codes that belong to
the library by the command

xc32-ar -t libmchp_peripheral_32MX795F512L.a

You should see that one of the included object codes is pcache.o. Now extract this object file
using

xc32-ar -x libmchp_peripheral_32MX795F512L.a pcache.o

Finally we can disassemble the object code to see the corresponding assembly code using

xc32-objdump -D pcache.o

The two functions of interest are CheKsegOCacheOn and CheKsegOCacheOff, which are used
to turn on and off the cache. Find the C source file corresponding to the object code under
pic32-1libs/peripheral. For the function CheKsegOCache0ff, give the one line of C code in the
C source file that corresponds to the two lines of assembly code beginning with and (a bitwise
AND) and ori (a bitwise OR).

(c) Using the command xc32-nm -n processor.o, give the names and addresses of the five SFRs
with the highest addresses.

(d) Give five files included by pic32mx/include/plib.h.

(e) In pic32mx/include/peripheral/ports.h, explain how the macro mPORTAReadBits() works
and give an example call to this macro that reads bits 0 and 3.
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(f) Open the file p32mx795£5121.h and go to the declaration of the SFR SPI2STAT and its associated
bit field data type __.SPI2STATbits_t. How many bit fields are defined? What are their names and
sizes? Do these coincide with the Data Sheet?

10. Give three C commands, using TRISASET, TRISACLR, and TRISAINV, that set bits 2 and 3 of
TRISA to 1, clear bits 1 and 5, and flip bits 0 and 4.
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Chapter 4
Using Libraries

In Chapter 3 we learned a bit about the functions, macros, variables, and constants made available when we
include the header file plib.h. Including this single file eventually gives us access to all of the code that
Microchip has provided for us. Most of this code is compiled and placed in libraries with the extension .a,
like the math library pic32mx/1ib/1ibm.a. These .a libraries are collections of .o object codes.

In this chapter we will explore how to make our own libraries, a big step toward modular code. We will
not bother to compile into archive files, however; we will leave them as C source code. We informally refer
to a “library” as a .h header file and an associated .c file without a main function. The functions in this
“helper” C file all serve some related purpose (like the math functions in 1ibm.a) and are easily reused in
different projects.

One example of a library is the NU32 library consisting of NU32.h and NU32.c. The NU32 library provides
initialization and communication functions for the NU32 board. The talkingPIC.c code in Chapter 1.6 uses
the NU32 library, and we will use the NU32 library extensively throughout the book.

The basics of helper C source files and their header files are covered in Chapter A.4.16.

4.1 An Example: The Ports Header File

Here is a portion of the pic32mx/include/peripheral/ports.h header file associated with I/O port functions,
slightly simplified and with comments added:

#ifndef _PORTS_H_ // include guard; if _PORTS_H_ already defined, skip to end

#define _PORTS_H_ // if not, define so preprocessor won’t include again during this compile
#include <xc.h> // definitions in xc.h are needed by ports.h

typedef enum { // a new data type; variables of the new type IoPortId can only

// take values IOPORT_A, IOPORT_B, etc.
IOPORT_A, IOPORT_B, IOPORT_C, IOPORT_D,
IOPORT_E, IOPORT_F, IOPORT_G, IOPORT_NUM
} IoPortld;

// function prototype; the definition of this function is in
// pic32-libs/peripheral/ports/source/port_read_bits_lib.c
unsigned int PORTReadBits(IoPortId portId, unsigned int bits);
// macros and constants

#define mPORTAReadBits(_bits) (PORTA & (unsigned int) (_bits))
#define DEBUG_JTAGPORT_ON 1)

#endif // end _PORTS_H_ include guard
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This file demonstrates a typical include guard in the first two lines and last line; the defined constant used in
the include guard could be anything you want, but it is common to choose the name based on the name of
the .h file. An underscore can be used to replace the disallowed dot character, and underscores are often
added at the beginning or end to help make sure the constant name does not accidentally match the name of
a constant in your program. For any file that includes it, ports.h provides the header file xc.h, a new data
type IoPortld, a prototype that allows the use of the function PORTReadBits, the macro mPORTAReadBits (),
and the constant DEBUG_JTAGPORT_ON.

4.2 The NU32 Library

The NU32 library provides a number of functions for initializing the NU32 development board and com-
municating with the host computer. The talkingPIC.c program in Chapter 1.6 makes use of this library.
By adding NU32.c and NU32.h to the same directory as our program, and by including the command
#include "NU32.h" at the beginning of our program, we gain access to some useful functions and constants.
The listing of NU32.h is given below.

Code Sample 4.1. NU32.h. The NU32 header file.

#ifndef __NU32_H
#define __NU32_H

#include <plib.h>

#ifdef NU32_STANDALONE // config bits if not set by bootloader

#pragma config DEBUG = OFF // Background Debugger disabled

#pragma config FPLLMUL = MUL_20 // PLL Multiplier: Multiply by 20

#pragma config FPLLIDIV = DIV_2 // PLL Input Divider: Divide by 2

#pragma config FPLLODIV = DIV_1 // PLL Output Divider: Divide by 1

#pragma config FWDTEN = OFF // WD timer: OFF

#pragma config POSCMOD = HS // Primary Oscillator Mode: High Speed xtal
#pragma config FNOSC = PRIPLL // Oscillator Selection: Primary oscillator w/ PLL
#pragma config FPBDIV = DIV_1 // Peripheral Bus Clock: Divide by 1

#pragma config BWP = OFF // Boot write protect: OFF

#pragma config ICESEL = ICS_PGx2 // ICE pins configured on PGx2, Boot write protect OFF.
#pragma config FSOSCEN = OFF // Disable second osc to get pins back

#pragma config FSRSSEL = PRIORITY_7 // Shadow Register Set for interrupt priority 7
#endif // NU32_STANDALONE

#define NU32LED1 LATAbits.LATA4
#define NU32LED2 LATAbits.LATA5
#define NU32USER PORTDbits.RD13
#define SYS_FREQ 80000000 // 80 million Hz

void NU32_Startup();

void NU32_ReadUART1(char* string,int maxLength);

void NU32_WriteUART1(const char *string);

void NU32_EnableUART1Interrupt();

void NU32_DisableUART1Interrupt();

void WriteString(UART_MODULE id, const char *string);
void PutCharacter (UART_MODULE id, const char character);

#endif // __NU32_H

The __NU32_H include guard, consisting of the first two lines and the last line, ensure that NU32.h is not
included twice when compiling any single C file. The test #ifdef NU32_STANDALONE checks to see if the C file
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has defined the constant NU32_STANDALONE. If so, the device configuration bits are set by the header file; if
not, the bootloader has already set them. The next three lines define the mnemonic constants NU32LED1 and
NU32LED2 for the two LEDs and NU32USER for the USER button. With these we can use the C statements

unsigned int button;
button = NU32USER; // button now has O if pressed, 1 if not
NU32LED1 = 0; NU32LED2 = 1; // LED1 is turned on and LED2 is turned off

The remainder of NU32.h consists of function prototypes, described below.

void NU32_Startup() This function configures the prefetch cache module and flash wait cycles for
maximum performance, enables interrupts, disables JTAG debugging so RA4 and RA5 are available
as digital I/O, configures RA4 and RA5 as outputs for the LEDs, and enables UART1 and UART3
for RS-232 serial communication with the host computer. UART3 is used to talk to the bootloader
communication utility on the host, while UART1 is meant for communication by the user’s program
with the host (as in talkingPIC.c). The communication is configured for 230,400 baud (bits
per second), eight data bits, no parity, one stop bit, and hardware flow control with CTS/RTS.
NU32_Startup() should be called at the beginning of main.

Example usage:
NU32_Startup() ;

void NU32_ReadUART1(char *string, int maxLength) This function takes string (a pointer
to the first element of an array of char) and maxLength, the maximum length of string input from
the user. It fills string with characters received from the host via UART1 until a newline \n or
carriage return \r is received. If the string exceeds maxLength, the new characters simply wrap
around to the beginning of the string.

Example usage:

char message[100], str[100];

int i;

NU32_ReadUART1 (message, 100);

sscanf (message, "%s %d", str, &i); // if message expected to have a string and int

void NU32_WriteUART1(const char *string) This function writes a string over UART1. The
function does not complete until the transmission has been completed.

Example usage:

char msg[100];
sprintf (msg,"The value is %d.\n",22);
NU32_WriteUART1 (msg) ;

void NU32_EnableUART1Interrupt() This function causes UART1 to generate an interrupt when
it receives a character from the host. We will discuss interrupts in detail in Chapter 6. For
now, suffice to say that an interrupt causes the CPU to stop what it is doing and jump to an
interrupt service routine (ISR). The ISR must be written by the user to read the character, clear
the interrupt flag, and do something with the data. UART1 is typically used either in interrupt
mode or in NU32_ReadUART1 / NU32_WriteUART1 mode.

Example usage:
// the user-defined interrupt service routine
void __ISR(_UART_1_VECTOR, IPL2SOFT) IntUartiHandler(void) {

char data;

if (INTGetFlag(INT_SOURCE_UART_RX(UART1))) { // RX interrupt?
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data = UARTGetDataByte (UART1) ; // get the data
PutCharacter (UART1,data); // do something, your choice
INTClearFlag (INT_SOURCE_UART_RX(UART1)) ; // clear interrupt flag

}

if (INTGetFlag(INT_SOURCE_UART_TX(UART1))) { // ignore TX interrupts
INTClearFlag (INT_SOURCE_UART_TX(UART1)) ;
}
}

int main() {
// ...
NU32_EnableUART1Interrupt () ;
// ...

}

void NU32_DisableUART1Interrupt() Disable the UARTI1 interrupt to return to the
NU32_ReadUART1 / NU32_WriteUART1 mode.

Example usage:
NU32_DisableUART1Interrupt();

void WriteString(UART _MODULE id, const char *string) This is an alternative to
NU32_WriteUART1 that can write to any of the UARTSs.

Example usage:
WriteString(UART2, "here’s a string!");

void PutCharacter(UART_MODULE id, const char character) This puts a single character
out to any of the UARTS.

Example usage:

char ch = ’k’;
PutCharacter (UART4,ch) ;

If you are using NU32_ReadUART1 or NU32_WriteUART1, your program will hang if an open serial port is
not connecting the host to the PIC32’s UART1.

4.3 Bootloaded and Standalone Programs Throughout the Book

Throughout the remainder of this book, the first two lines of all C files with a main function will be

//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded
#include "NU32.h" // plib.h, config bits, constants, funcs for startup and UART

and the first line of code (other than local variable definitions) in main will be
NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init

While other C files and header files might include NU32.h to gain access to its contents and function prototypes,
no file except the C file with the main function should define NU32_STANDALONE or call NU32_Startup().

Even if the program does not need any of the functions in the NU32 library, we use the lines above
for consistency. This allows the same code to build correctly whether it is built to be bootloaded (do not
uncomment the first line) or standalone (uncomment the first line). It also makes explicit that the program
performs some initialization of the NU32. Whether the program is bootloaded or standalone, including
"NU32.h" and executing NU32_Startup() does the following things:
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e the constants NU32LED1, NU32LED2, NU32USER, and SYS_FREQ are made available
e access is given to the NU32 library commands described above

e the prefetch cache is enabled and the flash wait cycles are set to the minimum (this is redundant for
bootloaded programs)

e pins RA4 and RA5 are configured as outputs to control LED1 and LED2
e interrupts are enabled and UART1 and UARTS are set up for communication with the host
e if NU32_STANDALONE is defined, the device configuration bits are set in NU32.h

As always, if the project is built to be bootloaded, it must contain the NU32bootloaded.1d linker file. If
standalone, the default linker script should be used.

If you are writing programs for another development board, simply replace the NU32.h file, the #include "NU32.h"
statement, and the NU32_Startup() ; statement with the equivalents for your board. Microchip often uses a
generic file called HardwareProfile.h that includes a specific header file depending on a constant you have
defined to the preprocessor (much like NU32_STANDALONE in our examples).

A C source file without a main function, i.e., a library helper file helper.c, should include plib.h if
any of Microchip’s SFR definitions or functions are used, and NU32.h if any of the constants or function
prototypes in NU32.h are used. Alternatively, it could simply include helper.h which then includes plib.h
and NU32.h.

4.4 An LCD Library

A dot matrix LCD screen is a cheap and portable device to display information to the user. Such LCD

screens cost less than $10 each. In this section we give a simple library to interface the NU32 with a 16x2

LCD screen equipped with a Hitachi HD44780 LCD controller, one of the most common LCD controllers.
The pinout of the HD44780 is given below:

1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 15 16
GND | VCC | VO | RS |R/W | CLK | DO | D1 | D2 | D3 | D4 | D5 | D6 | D7 | BL+ | BL—

The LCD is powered by VCC and GND, where VCC could be between 3.3 V and 5 V; let’s assume 5 V.
The R/W, or Read/Write, input determines whether the LCD is in write mode (R/W = 0) or read mode
(R/W = 1). Since we will only write to the LCD, we connect R/W to GND. BL+, the anode of the backlight
for the LCD, is connected to VCC and BL—, the cathode of the backlight, is connected through a resistor
R1 to ground. The VO, or contrast adjustment, input is connected to GND through a resistor R2. The
resistors R1 and R2 should be chosen for proper brightness and contrast according to the particular LCD
model. Reasonable first guesses are R1 = 100 ohms and R2 = 1000 ohms.

The LCD library assumes the rest of the pins are connected to the NU32 according to the following table:

RS |CLK | DO | D1 | D2 | D3 | D4 | D5 | D6 | D7
Gl12 | G15 | EO | E1 | E2 | E3 | E4 | E5 | E6 | E7

The RS pin tells the HD44780 whether the bits on pins D0..D7 are data or a command. On a falling edge of
CLK, the information on the RS and D0..D7 pins is clocked into the HD44780 and the LCD screen is updated.
Based on the connections above, the LCD library provides three functions: LCDSetup (), which initializes
the necessary Port E and Port G pins as outputs and clears the screen; LCDClear (int line), which clears
line 1, 2, or both lines if 1ine is any other value; and LCDWriteString(char *str, int row, int col)
which writes the string str starting at row 1 or 2 and col 1 to 16. The header file and C file that make these
functions available are given below.

Code Sample 4.2. LCD.h. The LCD library header file.
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#ifndef LCD_H
#define LCD_H

// Initialize the LCD
void LCDSetup();

// Write a string to the LCD starting at (row, col). row and col start at 1.
void LCDWriteString(char* str, int row, int col);

// Clears the designated line in the LCD. O clears both lines.
void LCDClear (int line);

#endif

Code Sample 4.3. LCD.c. The LCD library C source code.

#include <plib.h>
#include "LCD.h"

#define CLK LATGbits.LATG15 // CLK falling edge sends data to controller

void LCDWriteChar(char c); // write a char to the LCD’s cursor position

void LCDcommand(int command, int d7, int d6, int d5, int d4, int d3, int d2, int d1, int d0);
void wait(); // make sure clock pulses long enough

void LCDSetup() {
TRISGbits.TRISG12

]
o
~
~

G12 is output to LCD RS pin (cmd or data)

TRISGbits.TRISG15 = 0; // G15 is output to LCD CLK line
TRISECLR = OxFF; // REO..7 are outputs to LCD DO..7
LCDcommand (0, 0,0,1,1,1,0,0,0); // initialize 2 lines
LCDcommand (0, 0,0,0,0,0,0,0,1); // clear screen
LCDcommand (0, 0,0,0,0,0,1,1,0); // cursor moves right
LCDcommand (0, 0,0,0,0,1,1,0,0); // restore screen

}

void LCDWriteChar(char c) { // send 8 bits of data for char c

LCDcommand (1, c>>7&1, c>>6&1, c>>5&1, c>>4&1, c>>3&1, c>>2&1, c>>1&1, c&l);
}

void LCDWriteString(char *str, int row, int col) {
row--; col--; // LCD uses rows 0-1, cols 0-15
LCDcommand (0,1,row,0,0,col>>3&1,col>>2&1,col>>1&1,col&l);
while(*str) LCDWriteChar (*str++); // increment string pointer after char sent

}

void LCDClear(int line) {
switch(line) {

case 1: // clear line 1
LCDWriteString(" "1, 1)
break;

case 2: // clear line 2
LCDWriteString(" ", 2, 1);
break;

default: // clear both lines
LCDcommand (0,0,0,0,0,0,0,0,1);

}
}
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void LCDcommand(int command, int d7, int d6, int d5, int d4, int d3, int d2, int d1, int d40) {

LATGbits.LATG12 = command; // 0 for command, 1 for data
LATECLR = OxFF; // clear bits E0-7, then write data to them
LATE = LATE | d0 | (d1<<1) | (d2<<2) | (d3<<3) | (d4<<4) | (d5<<5) | (d6<<6) | (d7<<7);
CLK = 1; wait(); // set CLK high and wait
CLK = 0; wait(); // data sent to HD44780 on CLK falling edge
}
void wait() { // ensure pulse is long enough

int i = 0;
for (; i<10000; i++);
}

The program LCDwrite.c uses both the NU32 and LCD libraries to accept a string from the user’s host
computer and write it to the LCD. To build the executable, you need the source files LCDwrite.c, NU32.c,
and LCD. ¢; the header files NU32.h and LCD.h; and the linker script NU32bootloaded.1d (if the program is
to be bootloaded). After building, loading, and running the program, it writes the following string to the
host computer:

String to send to LCD:

If the user responds Echo! !, the LCD prints

where the underscores represent blank spaces. As the user sends more strings, the Command number
increments. The code listing is given below.

Code Sample 4.4. LCDwrite.c. Takes input from the user and prints it to the LCD screen.

//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded
#include "NU32.h" // plib.h, config bits, constants, funcs for startup and UART
#include "LCD.h"

int main() {
char msg[20];

int i=1;

NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init

LCDSetup();

while (1) {
NU32_WriteUART1("String to send to LCD: ");
NU32_ReadUART1(msg,16) ; // get msg string from the user
LCDClear (0); // clear LCD screen
LCDWriteString(msg,1,1); // write msg at row 1 col 1
sprintf (msg, "Command %3d",i++); // increment i after making string
LCDWriteString(msg,2,3); // write new msg at row 2 col 3

}

}

4.5 Microchip Libraries

Microchip provides a number of libraries for PIC32s. Understanding these libraries is rather confusing (as we
began to see in Chapter 3), in part because they are written to support a large number of models of PIC32s,
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and in part because of the requirement to maintain some backward compatibility, so that code written a few
years ago does not become obsolete with new library releases.

First, a little history. Historically, microcontrollers were primarily programmed in assembly language,
so that the interaction between the code and the hardware is quite direct: typically a single assembly
command is executed each clock cycle, and there are no hidden steps. For complex software projects, however,
assembly code is cumbersome, in part because it is not particularly portable; the assembly language for one
microcontroller may be different from another’s.

The C language, while still being relatively low-level, provides a standard allowing a level of portability
and abstraction. Much of your C code can work for a variety of microcontrollers, provided you have a compiler
for your particular microcontroller. Still, if your code directly manipulates a particular SFR that doesn’t
exist on another microcontroller model, portability is broken.

Microchip software addresses this issue by providing a range of software services that allows the code that
you write (the user’s application) to be portable across many PIC32 models. In a simplified hierarchical view,
the user’s application may call Microchip middleware libraries, which provide a high-level of abstraction
and keep the user somewhat insulated from the hardware details. The middleware libraries may interface
with lower-level device drivers. Device drivers may interface with still lower-level peripheral libraries. These
peripheral libraries then, finally, read or write the SFRs associated with your particular PIC32.

Microchip’s most recent software release, Harmony, provides middleware, device drivers, and peripheral
libraries. This permits the most abstract programming model, partially insulating the programmer from the
hardware details. In this book, however, we only make use of low-level peripheral libraries, SFR variable
declarations, etc., in the XC32 distribution, which is independent of Harmony. The philosophy is to stay close
to the hardware level, similar to assembly language programming, but with the benefits of the more portable,
higher-level C language. This approach is further supported by the fact that the PIC32 hardware is currently
better documented (in the Data Sheets and Reference Manual) than some of Harmony’s middleware and
device driver software.

The Microchip peripheral libraries in the XC32 distribution, accessible by #include <plib.h>, consist
of a large number of functions, macros, constants, SFR variable declarations, and data types to simplify
programming of the PIC32. These can be found in the header files in pic32mx/include/peripheral and in
C source code in pic32-1libs/peripheral (more specifically, the .a libraries built from that C source code).

Where possible and convenient, code in this book directly manipulates the SFR variables. Code statements
that directly manipulate SFRs are accompanied by comments to make the purpose clear to the reader. An
example is the following line from simplePIC.c:

LATAINV = 0x0030; // toggle the two lights

In some cases, however, higher-level library functions and macros are used, particularly when they
conveniently perform several steps or contain assembly code that would otherwise be cumbersome to write
ourselves. An example is in simplePIC_standalone.c:

SYSTEMConfig(SYS_FREQ, SYS_CFG_ALL); // cache on, PBCLK setup, min flash wait

This macro, in pic32mx/include/peripheral/system.h, performs a number of steps to turn on the prefetch
cache and to configure the peripheral bus clock and the flash wait states.

Finding the definition of a particular library function, variable, macro, constant, or data type in the
Microchip code is not easy due to the large number of files and the long chains of includes. Fortunately the
MPLAB X IDE simplifies this problem. For any function, constant, etc., in your program, right-click on the
symbol in the source listing and choose Navigate > Go to Declaration. The IDE will open the file where
the symbol is declared and take you to the declaration.

Another thing you can try is Window > Classes. This will open a window with all peripheral library
data types, SFR variable declarations, and function prototypes. Double-clicking on one will take you to the
file where it is declared.

4.6 Chapter Summary

e A library is often considered a .a archive of .o object codes and an associated .h header file that give
user programs access to function prototypes, constants, macros, data types, and variables associated
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with the object codes. In this chapter we call a .c helper file and an associated .h file a library.

e For a helper library, the helper.h header file can be included by both helper.c as well as the main
C file which uses the helper library. The header file helper.h should contain function prototypes,
constants, etc., that are meant to be public. Function prototypes and variables that are meant to be
private to helper.c should be defined in helper.c, not helper.h.

e For a project with multiple C files, each C file is compiled and assembled independently with the aid of
its included header files. Compiling a C file does not require the actual definitions of helper functions
in other helper C files; only the prototypes, provided by the header files, are needed. The function calls
are resolved to the proper virtual address when the multiple object codes are linked. If more than one
object code has a main() function, the linker will fail.

e The NU32 library provides functions for initializing the PIC32 and communicating with the host
computer. The LCD library provides functions to write to a 16x2 character dot matrix LCD screen.

)

e The Microchip “peripheral library” consists of a large set of header files and object code to be used
with your programs. Some peripheral library functions and macros, such as those that execute several
steps or manipulate the CPU’s CPO register, are particularly useful. Other functions and macros are
less useful; it may be easier to set the values of SFRs based on reading the Data Sheet and Reference
Manual than to find the equivalent peripheral library functions.

4.7 Exercises

1. Explain what can go wrong if a header file contains the global variable definition int i=2; if that
header file is included by more than one C file in the same project.

2. Identify which, if any, functions, constants, and global variables in NU32.c are private to NU32.c.
3. You will create your own libraries.

(a) Strip out all the comments from invest.c in the Appendix. Now modify it to work on the
NU32 using the NU32 library. You will need to replace all instances of printf and scanf with
appropriate combinations of sprintf, sscanf, NU32_ReadUART1 and NU32_WriteUART1. Verify
that you can provide data to the PIC32 with your keyboard and display the results on your
computer screen. Turn in your code for all the files, with comments where you altered the input
and output statements.

(b) Now break invest.c into two C files, main.c and helper.c, and one header file, helper.h.
helper.c contains all functions other than main. Which constants, function prototypes, data type
definitions, etc., should go in each file? Build your project and verify that it works. For safety of
future users of the helper library, make sure to put an include guard in helper.h. Turn in your
code and a separate paragraph justifying your choice for where to put the various definitions.

(¢) Now break invest.c into three files: main.c, io.c, and calculate.c. Any function which deals
with input or output should be in io.c. Think about which prototypes, data types, etc., are
needed for each C file and come up with a good choice of a set of header files and how to include
them. Again, for safety, use include guards on your header files. Verify that your code works.
Turn in your code and a separate paragraph justifying your choice of header files.

If you prefer, you are welcome to first solve the tasks using a C installation on your computer, then
modify the input/output functions for the NU32.

4. When you try to build and run a program, you could run into (at least) three different kinds of errors: a
compiler error, a linker error, or a run-time error. A compiler or linker error would prevent the building
of an executable, while a run-time error would only become evident when the program doesn’t behave
as expected. Say you're building a program with no global variables and two C files, exactly one of
which has a main() function. For each of the three types of errors, give simple code that would lead to
it.
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5. Take a look at pic32mx/include/peripheral/uart.h, a header file for the UART library with asso-
ciated C code at pic32-libs/peripheral/uart/source/uart_lib.c. From the header file, give one
example of as many of these definitions that you can find: constant, macro (a #define that takes at
least one argument), new data type, function prototype, and inline function. (An inline function can
be defined right in the header file; it does not need to be a prototype for a function in a C file. Code
calling the inline function is replaced by the definition in the header file. This can potentially save a
small amount of time associated with jumping to and returning from a true function.)
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Time and Space

Of course it is a good idea to write “efficient” code. But “efficient” can mean a number of different things,
such as time-efficient (runs fast), RAM-efficient (makes the most of limited RAM), flash-efficient (makes
the most of limited flash), but perhaps most importantly, programmer-time-efficient (minimizes the time
needed to write and debug the code, or for a future programmer to understand it). Often these interests are
in competition with each other. In fact, the XC32 compiler provides a number of compilation options, some
of which are not available in the free version of the compiler, that allow you to explicitly make space-time
tradeoffs. As one example, the compiler could “unroll” loops. If a loop is known to be executed 20 times, for
example, instead of using a small piece of code, incrementing a counter, and checking to see if the count has
reached 20, the compiler could simply write the same block of code 20 times. This may save a little bit of
execution time (no counter increments, no conditional tests, no branches) at the expense of using more flash
to store the program.

The purpose of this chapter is to make you aware of some tools for understanding the time and space
consumed by your program. These will help you squeeze the most out of your PIC32, allowing you to do
more with a given PIC32 or to choose a cheaper PIC32. More importantly, though, they help you understand
how your software works.

5.1 Time and the Disassembly File

5.1.1 Timing Using a Stopwatch (or an Oscilloscope)

A direct way to time something is to toggle a digital output and look at that digital output using an
oscilloscope or stopwatch. For example:

o // digital output RA4 has been high for some time
LATACLR

= 0x10; // clear RA4 to O (turn on NU32 LED1)
e // some code you want to time
LATASET = 0x10; // set RA4 to 1 (turn off LED1)

The time that RA4 is low (or the NU32’s LEDI1 is on) is approximately the duration of the code you want to
measure.

If the duration is too short to catch with your scope or stopwatch, you could modify the code to something
like

- // digital output RA4 has been high for some time
LATACLR = 0x10; // clear RA4 to O (turn on NU32 LED1)
for (i=0; 1<1000000; i++) { // but modify 1,000,000 to something appropriate for you
// some code you want to time
}
LATASET = 0x10; // set RA4 to 1 (turn off LED1)
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Then you can divide the total time by 1,000,000. Keep in mind, however, that there is overhead to implement
the for loop (incrementing a counter, checking the inequality, etc.). We will see this in Section 5.1.3. If the
code you want to time uses only a few assembly instructions, then the time you actually measure will be
dominated by the implementation of the for loop.

5.1.2 Timing Using the Core Timer

A more accurate time can be obtained using a timer onboard the PIC32. The NU32’s PIC32 has 6 timers: a

32-bit core timer, associated with the MIPS CPU, and five 16-bit peripheral timers. We can use the core

timer for pure timing operations, leaving the much more flexible peripheral timers available for other tasks

(see Chapter 8). The core timer increments once for every two ticks of SYSCLK. For a SYSCLK of 80 MHz,

the timer increments every 25 ns. Because the timer is 32 bits, it rolls over every 232 x 25 ns = 107 seconds.
If your program includes plib.h, you can use statements such as the following:

unsigned int elapsedticks, elapsedns;

WriteCoreTimer (0) ; // set the core timer counter to 0; in pic32-libs/peripheral/timer
// some code you want to time

elapsedticks = ReadCoreTimer(); // read the core timer

elapsedns = elapsedticks * 25; // for 80 MHz SYSCLK

Writing to and reading from the core timer takes a few processor cycles, and the timer only counts every 2
ticks of SYSCLK. To minimize the uncertainty introduced by these, you can execute the code several times
(just copy and paste it) between the write and read of the core timer. Avoid the overhead of implementing a
loop.

We can actually do a bit better. Since we are concerned about timing, let’s reduce the overhead for writing
to and reading from the core timer to the bare minimum. Looking up the source for the WriteCoreTimer ()
and ReadCoreTimer () functions in pic32-1libs/peripheral/timer/source, we see that each is implemented
by a single assembly command instruction to the CPU.

unsigned int elapsed, start=0;

asm volatile("mtcO %0, $9": "+r"(start)); // WriteCoreTimer(0);
// some code you want to time
asm volatile("mfcO 70, $9" : "=r"(elapsed)); // elapsed = ReadCoreTimer();

The asm command constructs a line of assembly code to be directly inserted by the compiler.
In the next section we look more systematically at the assembly code created by our C code. See also
Problem 3.

5.1.3 Disassembling Your Code

A convenient way to examine the time efficiency of your code is to look at the assembly code produced by
the compiler. The fewer instructions, the faster your code will execute.
In Chapter 3.5, we claimed that the code

LATAINV = 0x30;
is more efficient than
LATAbits.LATA4 = !'LATAbits.LATA4; LATAbits.LATAS5 = !LATAbits.LATA5;

Let’s examine that claim by looking at the assembly code of the following program. This program simply
delays by executing a for loop 50 million times, then toggles RA5 (LED2 on the NU32).

Code Sample 5.1. timing.c. RA5 toggles (LED2 on the NU32 flashes).
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//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded
#include "NU32.h" // plib.h, config bits, constants, funcs for startup and UART
#define DELAYTIME 50000000 // 50 million

void delay(void);
void toggleLight(void) ;

int main(void) {
NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init
while(1) {
delay(Q);
toggleLight () ;
}
}

void delay(void) {

int i;

for (i=0; i<DELAYTIME; i++) {}
}

void toggleLight(void) {

LATAINV = 0x20;

// LATAbits.LATA5 = !LATAbits.LATA5;
}

After building it in the IDE, go to Window > Output > Disassembly Listing File.! You will see
a listing showing your C code and, below each C line, the assembly code it generated. Each assembly line
has the actual virtual address where the assembly instruction was placed in memory, the 32-bit machine
instruction, and the equivalent human-readable (if you know assembly!) assembly code. Let’s look at the
segment of the listing corresponding to the command LATAINV = 0x20. You should see something like

22: LATAINV = 0x20;

9D003370 3CO2BF88 LUI VO, -16504

9D003374 24030020 ADDIU V1, ZERO, 32

9D003378 AC43602C SW V1, 24620(V0)

23: //LATAbits.LATAS5 = !LATAbits.LATAS5;

We see that the LATAINV = 0x20 command has expanded to three assembly statements. Without going into
detail®, the ADDIU stores the value 0x20 (the sum of ZERO and 32 in decimal) into the 32-bit CPU register
V1, and the SW stores this word into the memory address corresponding to LATAINV.

If instead we comment out the LATAINV = 0x20 command and replace it with the bit manipulation
version, we get the following disassembly:

22: //LATAINV = 0x20;
23: LATAbits.LATA5 = !LATAbits.LATAS5;
9D003370 3C02BF88  LUI VO, -16504
9D003374 8C426020 LW VO, 24608(V0)
9D003378 30420020  ANDI VO, VO, 32
9D00337C 2C420001  SLTIU VO, VO, 1
9D003380 304400FF  ANDI AO, VO, 255
9D003384 3CO03BF88 LUI V1, -16504
9D003388 8C626020 LW VO, 24608(V1)
9D00338C 7C822944 INS VO, AO, 5, 1
9D003390 AC626020  SW VO, 24608(V1)

LAt the command line, you can instead use xc32-objdump -S filename.elf > filename.disasm and inspect the file
filename.disasm. The results may not be quite as easy to interpret, however.
2You can look up the MIPS32 assembly instruction set if you’re interested.
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The bit manipulation version requires nine assembly statements. Basically the value of LATA is being copied
to a CPU register, manipulated, then stored back in LATA. With the LATAINV syntax, this is done in
hardware.

Although one method of manipulating the SFR bit appears three times slower than the other, we don’t
yet know how many processor cycles each consumes. Assembly instructions are generally performed in a
single clock cycle, but there is still the question of whether the CPU is getting one instruction per cycle.
(Recall the issue of slow program flash.) We will look at this further with the prefetch cache module in
Section 5.1.4 below. For now, though, let’s time that delay loop that is executed 50 million times. Here is the
disassembly for delay(), with comments added to the right:

16: void delay(void) {

9D003314 27BDFFFO  ADDIU SP, SP, -16 // manipulate the stack pointer on ...

9D003318 AFBEOOOC  SW S8, 12(SP) // ... entering the function (see text)

9D00331C 03A0F021  ADDU S8, SP, ZERO

17: int i;

18: for (i=0; i<DELAYTIME; i++) {}

9D003320 AFC00000  SW ZERO, 0(S8) // initialization of i in RAM to O

9D003324 OB400CCE J 0x9D003338 // jump to 9D003338 (skip adding 1 to i)
9D003328 00000000  NOP // "no operation," let jump complete

9D00332C 8FC20000 LW VO, 0(S8) // start of the loop; load RAM i into register VO
9D003330 24420001  ADDIU VO, VO, 1 // add 1 to VO ...

9D003334 AFC20000 SW VO, 0(s8) // ... and store it to i in RAM

9D003338 8FC30000 LW V1, 0(S8) // load i into V1

9D00333C 3C0202FA LUI VO, 762 // these two lines ...

9D003340 3442F080 ORI VO, VO, -3968 // ... load the constant 50,000,000 into VO
9D003344 0062102A  SLT VO, Vi, VO // store "true" (1) in VO if V1 < VO

9D003348 1440FFF8 BNE VO, ZERO, 0x9D00332C // if VO does not equal O, branch to top of loop
9D00334C 00000000  NOP // branch delay slot is executed before branch
19: 1

9D003350 03COE821  ADDU SP, S8, ZERO // manipulate the stack pointer on exiting

9D003354 8FBEO0OOC LW S8, 12(SP)

9D003358 27BD0010  ADDIU SP, SP, 16

9D00335C 03E00008  JR RA // jump to return address RA stored by JAL
9D003360 00000000  NOP

There are nine instructions in the delay loop itself, starting with LW VO, 0(88) and ending with the NOP.
When the LED comes on, these instructions are carried out 50 million times, and then the LED turns off.
(There are a few other instructions to set up the loop, but these are negligible compared to the 50 million
executions of the loop.) So if one instruction is executed per cycle, we would predict the light to stay on
for 50 million x 9 instructions X 12.5 ns/instruction = 5.625 seconds. When we timed by a stopwatch, we
got about 6.25 seconds, which implies 10 cycles per loop. So our cache module has the CPU executing one
assembly instruction almost every cycle.

You might notice a couple of ways you could have written the assembly code for the delay function
more time-efficiently. This is certainly one of the advantages of coding directly in assembly: direct control
of the processor instructions. The disadvantage, of course, is that MIPS32 assembly is a much lower-level
language than C, requiring significantly more knowledge of MIPS32 from the programmer. Until you have
already invested a great deal of time learning the assembly language, programming in assembly fails the
“programmer-time-efficient” criterion! Also, more efficient assembly code can be generated from your C code
by employing certain compiler optimizations (Section 5.1.5). (Not to mention that delay was designed to
waste time, so no need to be efficient!)

Another thing you may have noticed in the disassembly of delay() is the manipulation of the stack
pointer (SP) upon entering and exiting the function. The stack is an area of memory that holds function
local variables and parameters. When a function is called, its parameters and local variables are “pushed”
onto the stack. When the function exits, the local variables are “popped” off of the stack by moving the stack
pointer back to its original position before the function was called. A stack overflow occurs if the stack is too
small for the local variables defined in currently-called functions. We will see the stack again in Section 5.2.
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The overhead due to manipulating the stack pointer on entering and exiting a function should not
discourage you from writing modular code. This should only be a concern when your code is fully debugged
and you are trying to squeeze a final few nanoseconds out of your program execution time.

5.1.4 The Prefetch Cache Module

In the previous section, we saw that our bootloaded timing.c program was executing an assembly instruction
nearly every clock cycle. This is because NU32_Startup () optimized performance by turning on the prefetch
cache module and choosing the minimum number of CPU wait cycles for instructions loading from flash. (See
Chapters 3.7 and 4.2.)

Let’s try turning off the prefetch cache module to see the effect on our program timing.c. The prefetch
cache module performs two primary tasks: it keeps recent instructions in the cache, ready if the CPU requests
the instruction at that address (allowing the cache to completely store small loops); and for linear code it
runs ahead so as to have the instruction ready to go when needed (prefetch). We can disable each of these
functions separately, or we can disable both.

Let’s start by disabling both. Modify timing.c in Code Sample 5.1 by adding

CHECONCLR = 0x30; // SFR in prefetch cache section of Reference Manual
CheKsegOCache0ff(); // defined in pic32-libs/peripheral/pcache/source/pcache.c

right after NU32_Startup() in main. Everything else stays the same. Consulting the section on the prefetch
cache module in the Reference Manual, we see that bits 4 and 5 of the SFR CHECON determine whether
instructions are prefetched, and that clearing both bits disables predictive prefetch. The second line is a
library function that uses MIPS32 assembly instructions to turn off the cache.

Rerunning timing.c with these two commands, we find that the LED stays on for approximately
17 seconds, compared to approximately 6.25 seconds before. We are seeing the effect of the flash wait
cycles—the CPU has to wait two cycles before receiving requested instructions from flash.

If we comment out the first line, so that the prefetch is enabled but the cache is off, and rerun, we find
that the LED stays on for about 7.5 seconds, or 12 SYSCLK cycles per loop, a small penalty compared to
our original performance of 10 cycles. The prefetch is able to run ahead to grab future instructions, but it
cannot run past the for loop conditional statement, since it does not know the outcome of the test.

Finally, if we comment out the second line but leave the first line, so that the prefetch is disabled but the
cache is on, we recover our original performance of approximately 6.25 seconds. The reason is that the entire
loop can be stored in the cache, so prefetch is not necessary.

5.1.5 Optimization

Compilers can sometimes recognize ways to increase the speed of execution (or decrease program size) by
trimming redundant code, eliminating code that doesn’t do anything, and many other ways.? For example,
the function delay in timing.c accomplishes nothing but wasting time. In our case, that was the desired
effect. If we chose a compiler option to optimize running time, however, we shouldn’t be surprised if that
code were to be optimized away. Depending on the compiler, something like this could happen even if we
didn’t choose to optimize for execution time. If you want to implement a delay with predictable behavior,
consider using the core timer.

5.1.6 Math

For real-time systems, it is often critical to perform mathematical operations as quickly as possible. Mathe-
matical expressions should be coded to minimize execution time. We will delve into the speed of various
math operations in the Exercises, but here are a few rules of thumb for efficient math:

e There is no floating point unit on the PIC32MX, so all floating point math is carried out in software.
Integer math is much faster than floating point math. If speed is an issue, perform all math as integer

3See the Command Line chapter of the MPLAB XC32/XC32++ Compiler User’s Guide in your docs directory if you are
interested. Certain optimizations are not available in the free version of the XC32 compiler.
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math, scaling the variables as necessary to maintain precision, and only convert back to floating point
when needed.

e Floating point division is slower than multiplication. If you will be dividing by a fixed value many
times, consider taking the reciprocal of the value once and then using multiplication thereafter.

e Functions such as trigonometric functions, logarithms, square roots, etc. in the math library are generally
slower to evaluate than arithmetic functions. Their use should be minimized when speed is an issue.

e Partial results should be stored in variables for future use to avoid performing the same computation
multiple times.

5.2 Space and the Map File

The previous section focused on the time of execution. Now let’s look at how much program memory (flash)
and data memory (RAM) our programs use.

The linker allocates virtual addresses in program flash for all program instructions, and virtual addresses
in data RAM for all global variables. The rest of RAM is allocated to the heap and the stack. The heap
is memory set aside to hold dynamically allocated memory, as allocated by malloc and calloc. The stack
holds local variables used by functions. When a function is called, space on the stack is allocated for its local
variables. When the function exits, the local variables are thrown away and the space is made available again
by simply moving the stack pointer.

If you are building with the MPLAB IDE, the easiest way to keep track of the amount of flash and global
variable RAM used by your program is to look at Window > Dashboard after a build. If your program
attempts to put too many local variables on the stack (stack overflow), however, the error won’t show up
until run time. The linker does not catch this error because it does not explicitly set aside space for specific
local variables; it assumes they will be handled by the stack.

To dig a little deeper into how memory is allocated, we can ask the linker to create a “map” file when it
creates the .elf file. The map file indicates where instructions are placed in program memory and where
global variables are placed in data memory. For an executable created from two object code files filel.o
and file2.o0, we can create a map file at the command line (Section 3.6) with a linker command of the form

xc32-gcc -mprocessor=32MX795F512L -o proj.elf filel.o file2.o -Wl,--script="NU32bootloaded.ld",-Map="proj.map"

If you are not getting a map file by default in the MPLAB X IDE, under Run > Set Project Configuration
> Customize > xc32-1d > Diagnostics you can set the name of the map file. The map file can be opened
with a text editor.

Let’s create a map file for timing.c as shown in Code Sample 5.1. There’s a lot in this file, but here’s an
edited portion of it:

Microchip PIC32 Memory-Usage Report

ksegO Program-Memory Usage

section address length [bytes] (dec) Description

.text 0x9d001e00 Oxacc 2764 App’s exec code

.rodata 0x9d0028cc 0x7d4 2004 Read-only const

.text 0x9d0030a0 0x168 360 App’s exec code

.text.general_exception 0x9d003208 Oxdc 220

.text 0x9d0032e4 Oxac 172 App’s exec code
[[[ ... snipping long ksegO_program_mem report ...]]]

.text 0x9d003580 0x44 68 App’s exec code
[[[ ... snipping long ksegO_program_mem report ...]]]
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.text.UARTSetLineContro 0x9d0038e8 0x28 40
.rodata 0x9d003910 Oxlc 28 Read-only const
.text.INTRestoreInterru 0x9d00392c Oxlc 28
.text.CheKsegOCacheOff 0x9d003948 0x18 24
.text.CheKsegOCacheOn  0x9d003960 0x18 24
.rodata 0x9d003978 0x18 24 Read-only const
.text 0x9d003990 0x18 24 App’s exec code
.dinit 0x9d0039a8 0x10 16
.text.INTDisableInterru 0x9d0039b8 0x8 8
.text.INTEnableInterrup 0x9d0039c0 0x8 8
.text._on_reset 0x9d0039c8 0x8 8
.text._on_bootstrap 0x9d0039d0 0x8 8

Total ksegO_program_mem used : 0x1bd8 7128 1.4% of 0x7e200

ksegO Boot-Memory Usage
section address length [bytes] (dec) Description

Total ksegO_boot_mem used : 0 0 <1% of 0x970

Exception-Memory Usage

section address length [bytes] (dec) Description

.app_excpt 0x9d000180 0x10 16 General-Exception

.vector_31 0x9d0005e0 0x8 8 Interrupt Vector 31
Total exception_mem used : 0x18 24 0.6% of 0x1000

ksegl Boot-Memory Usage

section address length [bytes] (dec) Description

.reset 0xbd001970 0x1e0 480 Reset handler

.bev_excpt 0xbd001c£f0 0x10 16 BEV-Exception
Total ksegl_boot_mem used : 0x1£f0 496 42.5Y% of 0x490
Total Program Memory used : 0x1de0 7648 1.5% of 0x80000

The kseg0 program memory usage report tells us that 7128 bytes are used for the main part of our program.
The first entry is denoted .text, which stands for program instructions. It is the largest single section, using
2764 bytes, described as App’s exec code, and installed starting at VA 0x9DO001E00. Searching for this
address in the map file, we see that this is the code for NU32. 0, the object code associated with the NU32
library.

Going down through the subsequent sections of ksegO program memory, we see that the sections are
packed tightly and in order of decreasing section size. The next section is .rodata, standing for “read-only
data.” An example of read-only data is the string on the right-hand side of the following initialized char
array:

char str[] = "my initialized string";

Searching the map file for the memory address 0x9D0028CC, we see that the read-only data in question is
information about the interrupt table (Chapter 6).

Continuing down, we see other .text program instruction sections, including ones named for the specific
C functions that were compiled to make the object code in that section. Some of these are functions that are
called by NU32_Startup() in NU32.c; others are functions added automatically to the program by crt0.o.
The .text section that is 172 bytes long corresponds to timing.o, and searching the map file for the address
0x9D0032E4 reveals

.text 0x9d0032e4 Oxac
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.text 0x9d0032e4 Oxac build/default/production/timing.o
0x9d0032e4 main
0x9d003314 delay
0x9d003364 toggleLight

our functions main, delay, and toggleLight of timing.o are stored consecutively in memory. The addresses
agree with our disassembly file from Section 5.1.3.

Continuing, the kseg0 boot memory report indicates that no code is placed in this memory region. The
exception memory report indicates that instructions corresponding to interrupts occupy 24 bytes. Finally, the
ksegl boot memory report indicates that crt0.o installs reset functions that occupy 480 bytes. The .reset
section is the first section that the bootloader jumps to.

In all, 7648 bytes of program memory are used.

Continuing further in the map file, we see

ksegl Data-Memory Usage

section address length [bytes] (dec) Description
.bss 0xa0000000 0x20 32 Uninitialized data
Total ksegl_data_mem used : 0x20 32 0.0% of 0x20000
Total Data Memory used : 0x20 32 0.0% of 0x20000

Dynamic Data-Memory Reservation

section address length [bytes] (dec) Description
heap 0xa0000028 0 0 Reserved for heap
stack 0xa0000040 0x1£f£fb8 131000 Reserved for stack

The heap size is zero and all data memory is reserved for the stack. Only 32 bytes of ksegl data memory are
set aside for global variables, beginning at the origin of data memory, 0xA0000000. This section is called
.bss, which is for uninitialized data. These 32 bytes are the 32 bytes reserved by NU32.c in the statement

char NU32_RS2320utBuffer[32];

Now let’s modify our program by adding some useless global variables, just to see what happens to the
map file. Let’s add the following lines just before main:

char my_cat_string[] = "2 cats!";
int my_int = 1;
char my_message_string[] = "Here’s a long message stored in a character array.";

char my_small_string[6], my_big_string[97];
Rebuilding and examining the new map file, we see the following for the data memory report:

ksegl Data-Memory Usage

section address length [bytes] (dec) Description
.sdata 0xa0000000 Oxc 12 Small init data
.sbss 0xa000000c 0x6 6 Small uninit data
.bss 0xa0000014 0x84 132 Uninitialized data
.data 0xa0000098 0x34 52 Initialized data
Total ksegl_data_mem used : Oxca 202 0.2% of 0x20000
Total Data Memory used : Oxca 202 0.2} of 0x20000
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Our global variables now occupy 202 bytes of data memory. The global variables have been placed in four
different data memory sections, depending on whether the variable is small or large (according to a command
line option or xc32-gcc default) and whether or not it is initialized:

section name data type variables stored there
.sdata small initialized data my_cat_string, my_int
.sbss small uninitialized data my_small_string
.bss larger uninitialized data my_big_string
.data larger initialized data my_message_string

Searching for the .sdata section further in the map file, we see

.sdata 0xa0000000 Oxc build/default/production/timing.o
0xa0000000 my_cat_string
0xa0000008 my_int
0xa000000c¢ _sdata_end = .

Even though the string my_cat_string uses only 7 bytes, the variable my_int starts 8 bytes after the start
of my_cat_string. This is because variables must be aligned on four-byte boundaries. Similarly, the strings
my_message_string, my_small_string, and my_big_string occupy memory to the next four-byte boundary.
You are not saving memory by defining a string as 5 bytes instead of 8 bytes.

Apart from the addition of these sections to the data memory usage report, we see that the global variables
reduce the data memory available for the stack, and the .dinit (global data initialization) section of the
kseg0 program memory report has grown from 16 bytes to 128, meaning that our total program memory
used is now 7760 bytes compared to 7648 before.

Now let’s make one last change. Let’s move the definition

char my_cat_string[] = "2 cats!";

inside the main function, so that my_cat_string is now local to main. Building the program again, we find in
the data memory report that the initialized global variable section .sdata has shrunk by 8 bytes, as expected.

ksegl Data-Memory Usage

section address length [bytes] (dec) Description
.sdata 0xa0000000 0x4 4 Small init data
.sbss 0xa0000004 0x6 6 Small uninit data
.bss 0xa000000c 0x84 132 Uninitialized data
.data 0xa0000090 0x34 52 Initialized data
Total ksegl_data_mem used : 0xc2 194 0.1% of 0x20000
Total Data Memory used : 0xc2 194 0.1% of 0x20000

Now looking at the program memory report

kseg0 Program-Memory Usage

section address length [bytes] (dec) Description
.text 0x9d001e00 Oxacc 2764 App’s exec code
.rodata 0x9d0028cc 0x7d4 2004 Read-only const
.text 0x9d0030a0 0x168 360 App’s exec code
.text.general_exception 0x9d003208 Oxdc 220
.text 0x9d0032e4 0xc4d 196 App’s exec code
[[[ ... snipping long ksegO_program_mem report ...]]]
Total ksegO_program_mem used : 0x1ch8 7256 1.4% of 0x7e200
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we see that our timing.o code is now 196 bytes as compared to 172 before. This is because the assignment
of my_cat_string is now taken care of by assembly commands in our code, not by the global variable
initialization in .dinit. Correspondingly, the global data initialization section .dinit shrinks from 128 bytes
to 112 bytes.

Finally, we might wish to reserve some RAM for dynamic memory allocation using malloc or calloc.
These functions allow you to declare a variable size array, for example, while the program is running, instead
of specifying a (possibly space-wasteful) fixed sized array in advance. By default, MPLAB assumes you will
not use dynamic memory allocation and sets the heap size to zero. To set a nonzero heap size, go to Run
> Set Project Configuration > Customize > xc32-1d > General. If we choose 4 KB, or 4096 bytes,
the map file after building shows

Dynamic Data-Memory Reservation

section address length [bytes] (dec) Description
heap 0xa00000c8 0x1000 4096 Reserved for heap
stack 0xa00010e0 Ox1lef10 126736 Reserved for stack

A heap can also be allocated at the command line using a linker command of the form

xc32-gcc -mprocessor=32MX795F512L -o proj.elf filel.o file2.o
-Wl,--script="NU32bootloaded.1ld",-Map="proj.map",--defsym=_min_heap_size=4096

The heap is allocated just after the global variables, starting in this case at address 0xA00000C8. The
stack grows “down” from the end of RAM—as local variables are added to the stack, the stack pointer address
decreases, and when local variables are discarded after exiting a function, the stack pointer address increases.

5.3 Chapter Summary

e The CPU’s core timer increments once every two ticks of the SYSCLK, or every 25 ns for an 80 MHz
SYSCLK. The commands WriteCoreTimer(0); and unsigned int dt = ReadCoreTimer(); can be
used to measure the execution time of the code in between to within a few SYSCLK cycles.

e In MPLAB, use Window > Output > Disassembly Listing File to see how your C code is compiled
to assembly code. At the command line, use xc32-objdump -S filename.elf > filename.disasm.

e With the prefetch cache module fully enabled, your PIC32 should be able to execute an assembly
instruction nearly every cycle. The prefetch allows instructions to be fetched in advance for linear code,
but the prefetch cannot run past conditional statements. For small loops, the entire loop can be stored
in the cache.

e The linker assigns specific program flash VAs to all program instructions and data RAM VAs to all
global variables. The remainder of RAM is allocated to the heap, for dynamic memory allocation, and
to the stack, for function parameters and local variables. The heap is zero bytes by default.

e A summary of program flash and global variable data RAM usage can be found at Window >
Dashboard in MPLAB after a build.

e A map file provides a more detailed summary of memory usage. If a map file is not created by default,
you can create one during the build by choosing a map file name in the MPLAB X IDE under Run >
Set Project Configuration > Customize > xc32-1d > Diagnostics. At the command line, use
the -Map option:

xc32-gcc -mprocessor=32MX795F512L -o proj.elf filel.o file2.o
-W1l,--script="NU32bootloaded.ld",-Map="proj.map"
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e Global variables can be initialized (assigned a value when they are defined) or uninitialized. Initialized
global variables are stored in RAM memory sections .data and .sdata and uninitialized globals are
stored in RAM memory sections .bss and .sbss. Sections beginning with .s mean that the variables
are “small.” When the program is executed, initialized global variables are assigned their values by
startup code, and uninitialized global variables are set to zero.

e Global variables are packed tightly at the beginning of data RAM, 0xA0000000. The heap comes
immediately after. The stack begins at the high end of RAM and grows “down” toward lower RAM
addresses.

5.4 Exercises

1. Describe two examples of how you can write code differently to either make it execute faster or use less
program memory.

2. Compile and run timing.c, Code Sample 5.1. With a stopwatch, verify the time taken by the delay
loop. Do your results agree with Section 5.1.37

3. When you look atWindow > Output > Disassembly Listing File, it shows you the disassembly
of your code, not Microchip object code that you may have linked with. You can try the command-line
command

xc32-objdump -d - S filename.elf > filename.disasm

to create a disassembly listing filename.disasm of your entire executable. (The listing will look
somewhat different than what you see in MPLAB.) Let’s do this for two different versions of some
timing code.

(a) Write a short program that uses WriteCoreTimer (0) and elapsed = ReadCoreTimer() to time
a few C statements. Disassemble your executable and look at it. If you assume that one assembly
instruction is executed per clock cycle, how many SYSCLK cycles does it take to complete
the WriteCoreTimer command? How many cycles does it take to complete the ReadCoreTimer
command? Approximately how much error will you have in your estimate of the timed code? (It’s
certainly not a sum of the two.)

(b) Now replace the WriteCoreTimer (0) and elapsed = ReadCoreTimer () with their assembly equiv-
alents, as in Section 5.1.2. Disassemble and look at the code, and answer the same questions.

4. To write time-efficient code, it is important to understand that some mathematical operations are faster
than others. We will look at the disassembly of code that performs simple arithmetic operations on
different data types. Create a program with the following local variables in main:

char c1=5, c2=6, c3;

int i1=5, i2=6, i3;

long long int j1=5, j2=6, j3;
float f1=1.01, £2=2.02, £3;

long double di1=1.01, d2=2.02, d3;

Now write code that performs add, subtract, multiply, and divide for each of the five data types, i.e.,

for chars:
c3 = cl+c2;
c3 = cl-c2;
c3 = cl*c2;
c3 = c1/c2;
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Build the program and look at the disassembly. For each of the statements, you’ll notice that some
of the assembly code involves simply loading the variables from RAM into CPU registers and storing
the result (also in a register) back to RAM. Also, while some of the statements are completed by a
few assembly commands in sequence, others result in a jump to a software subroutine to complete
the calculation. (These subroutines are provided with our C installation and included in the linking
process.) Answer the following questions.

(a) Which combinations of data types and arithmetic functions result in a jump to a subroutine? From
your disassembly file, copy the C statement and the assembly commands it expands to (including
the jump) for one example.

(b) For those statements that do not result in a jump to a subroutine, which combination(s) of data
types and arithmetic functions result in the fewest assembly commands? From your disassembly,
copy the C statement and its assembly commands for one of these examples. Is the smallest data
type, char, involved in it? If not, what is the purpose of extra assembly command(s) for the char
data type vs. the int data type? (Hint: the assembly command ANDI takes the bitwise AND of the
second argument with the third argument, a constant, and stores the result in the first argument.
Or you may wish to look up a MIPS32 assembly instruction reference.)

(c) Fill in the following table. Each cell should have two numbers: the number of assembly commands
for the specified operation and data type, and the ratio of this number (greater than or equal to
1.0) to the smallest number of assembly commands in the table. For example, if addition of two
ints takes four assembly commands, and this is the fewest in the table, then the entry in that cell
would be 1.0 (4). This has been filled in below, but you should change it if you get a different
result. If a statement results in a jump to a subroutine, write J in that cell.

’ H char \ int \ long long | float \ long double
+ 1.0 (4)

ES

/

(d) From the disassembly, find out the name of any math subroutine that has been added to your
assembly code. Now create a map file of the program. Where are the math subroutines installed in
virtual memory? Approximately how much program memory is used by each of the subroutines?
You can use evidence from the disassembly file and/or the map file. (Hint: You can search
backward from the end of your map file for the name of any math subroutines.)

5. Let’s look at the assembly code for bit manipulation. Create a program with the following local
variables:

unsigned int ul=33, u2=17, u3;

and look at the assembly commands for the following statements:

u3 = ul & u2; // bitwise AND

u3 = ul | u2; // bitwise OR

u3 = u2 << 4; // shift left 4 spaces, or multiply by 274 = 16
ud = ul > 3; // shift right 3 spaces, or divide by 273 = 8

How many commands does each use? For unsigned integers, bit-shifting left and right make for
computationally efficient multiplies and divides, respectively, by powers of 2.

6. Use the core timer to calculate a table similar to that in Problem 4, except with entries corresponding
to the actual execution time in terms of SYSCLK cycles. So if a calculation takes 15 cycles, and the
fastest calculation is 10 cycles, the entry would be 1.5 (15). This table should contain all 20 entries,
even for those that jump to subroutines. (Note: subroutines often have conditional statements, meaning
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10.

11.

12.

13.

that the calculation could terminate faster for some operands than for others. You can report the
results for the variable values given in Problem 4.)

To minimize uncertainty due to the setup and reading time of the core timer, and the fact that the
timer only increments once every two SYSCLK cycles, each math statement could be repeated ten or
more times (no loops) between setting the timer to zero and reading the timer. The average number of
cycles, rounded down, should be the number of cycles for each statement. Use the NU32 communication
routines, or any other communication routines, to report the answers back to your computer.

Certain math library functions can take quite a bit longer to execute than simple arithmetic functions.
Examples include trigonometric functions, logarithms, square roots, etc. Make a program with the
following local variables:

float f1=2.07, f2; // four bytes for each float
long double d1=2.07, d2; // eight bytes for each long double

Also be sure to put #include <math.h> at the top of your program to make the math function
prototypes available.

(a) Using methods similar to those in Problem 6, measure how long it takes to perform each of £2 =
cosf(f1), £2 = sqrtf(f1), d2 = cos(dl), and d2 = sqrt(dl).

(b) Copy and paste the disassembly from a £2 = cosf(£f1) statement and a d2 = cos(d1) statement
into your solution set and compare them. Based on the comparison of the assembly codes,
comment on the advantages and disadvantages of using the eight-byte long double floating point
representation compared to the four-byte float representation when you compute a cosine with
the PIC32 compiler.

(¢) Make a map file for this program, and search for the references to the math library libm.a in the
map file. There are several 1ibm.a files in your C installation, but which one was used by the
linker when you built your program? Give the directory.

Explain what stack overflow is, and give a short code snippet (not a full program) that would result in
stack overflow on your PIC32.

In the map file of the original timing.c program, there are several App’s exec code, one corresponding
to timing.o. Explain briefly what each of the others are for. Provide evidence for your answer from
the map file.

Create a map file for simplePIC.c from Chapter 3. (a) How many bytes does simplePIC.o use? (b)
Where are the functions main and delay placed in virtual memory? Are instructions at these locations
cacheable? (c) Search the map file for the .reset section. Where is it in virtual memory? Is it
consistent with your NU32bootloaded.1d linker file? (d) Now augment the program by defining short
int, long int, long long int, float, double, and long double global variables. Provide evidence
from the map file indicating how much memory each data type uses.

Assume your program defines a global int array int glob[5000]. Now what is the maximum size of
an array of ints that you can define as a local variable for your particular PIC327

Provide global variable definitions (not an entire program) so that the map file has data sections .sdata
of 16 bytes, .sbss of 24 bytes, .data of 0 bytes, and .bss of 200 bytes.

If you define a global variable and you want to set its initial value, is it “better” to initialize it when
the variable is defined or to initialize it in a function? Explain any pros and cons.
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Chapter 6

Interrupts

Say the PIC32 is attending to some mundane task when an important event occurs. For example, the user
has pressed a button. We want the PIC32 to respond immediately. To do so, we have this event generate
an interrupt, or interrupt request (IRQ), which interrupts the program and sends the CPU to execute some
other code, called the interrupt service routine (ISR). Once the ISR has completed, the CPU returns to its
original task.

Interrupts are a key concept in real-time control, and they can arise from many different events. This
chapter provides a summary of PIC32 interrupt handling.

6.1 Overview

Interrupts can be generated by the processor core, peripherals, and external inputs. Example events include
e a digital input changing its value,
e information arriving on a communication port,
e the completion of some task a PIC32 peripheral was executing in parallel with the CPU, and
e the elapsing of a specified amount of time.

As an example, to guarantee performance in real-time control applications, sensors must be read and new
control signals calculated at a known fixed rate. For a robot arm, a common control loop frequency is 1 kHz.
So we could configure one of the PIC32’s counter/timers to use the peripheral bus clock as input and roll
over every 80,000 ticks x 12.5 ns/tick = 1 ms. This roll-over event generates the interrupt that calls the
feedback control ISR, which reads sensors and produces output. In this case, we would have to make sure
that the control ISR is efficient code that always executes in less than 1 ms. (To check this, you could use the
core timer to measure the time between entering and exiting the ISR.)

Imagine the PIC32 is controlling the robot arm to hold steady at a particular position when it receives a
message from the user over the UART, asking the arm to move to a new position. The arrival of data on the
UART generates an interrupt, and the corresponding ISR reads in the information and stores it in global
variables representing the desired state. These desired states are used in the feedback control ISR.

So what happens if the PIC32 is in the middle of executing the control ISR when the communication
interrupt is generated? Or if the PIC32 is in the middle of the communication ISR and a control interrupt
is generated? We have to choose which has higher priority. If a high priority interrupt occurs while a low
priority ISR is executing, the CPU will jump to the high priority ISR, complete it, and then return to finish
the low priority ISR. If a low priority interrupt occurs while a high priority ISR is executing, the low priority
ISR will remain pending until the high priority ISR is finished executing. When it is finished, the CPU jumps
to the low priority ISR.

In our example, communication could be slow, and we might not have a guarantee as to the duration. To
ensure the stability of the robot arm, we would probably choose the control interrupt to have higher priority
than the communication interrupt.
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Every time an interrupt is generated, the CPU must save the contents of the internal CPU registers,
called the “context,” to the stack (data RAM). It then uses its registers in the execution of the ISR. After
the ISR completes, it copies the context from RAM back to its registers and continues where it left off before
the interrupt. The copying of register data back and forth is called “context save and restore.”

6.2 Details

The address of an ISR in virtual memory is determined by the interrupt vector associated with the IRQ. The
PIC32MX supports up to 64 unique interrupt vectors (and therefore 64 ISRs). For timing.c in Chapter 5.2,
the virtual addresses of the interrupt vectors can be seen in this edited exception memory listing from the
map file (an interrupt is also known as an “exception”):

.vector_0 0x9d000200 0x0
.vector_1 0x9d000220 0x0

[[[ ... snipping long list of vectors ...]]]
.vector_63 0x9d0009e0 0x0

If an ISR has been written for the core timer (interrupt vector 0), the code at 0x9D000200 simply contains a
jump to the location in program memory that actually holds the ISR.

Although the PIC32 can have only 64 interrupt vectors, it has up to 96 events (or IRQs) that generate an
interrupt. Therefore some of the IRQs share the same interrupt vector and ISR.

Before interrupts can be used, the CPU has to be enabled to process them in either “single vector mode
or “multi-vector mode.” In single vector mode, all interrupts jump to the same ISR. This is the default
setting on reset of the PIC32. In multi-vector mode, different interrupt vectors are used for different IRQs.
We typically use multi-vector mode, which is set by NU32_Startup().

After interrupts have been enabled, the CPU jumps to an ISR when three conditions are satisfied: (1) the
specific IRQ has been enabled by setting a bit to 1 in the SFR IECx (one of three Interrupt Enable Control
SFRs, with x equal to 0, 1, or 2); (2) some event causes a 1 to be written to the same bit of the SFR TFSx
(Interrupt Flag Status); and (3) the priority of the interrupt vector, as represented in the SFR IPCy (one of
16 Interrupt Priority Control SFRs, y=0...15), is greater than the current priority of the CPU. If the first
two conditions are satisfied, but not the third, the interrupt waits until the CPU’s priority drops lower.

The “x” in the IECx and IFSx SFRs above can be 0, 1, or 2, corresponding to (3 SFRs) x (32 bits) = 96
interrupt sources. The “y” in IPCy takes values 0. ..15, and each of the IPCy registers contains the priority
level for four different interrupt vectors, i.e., (16 SFRs) x (four vectors per register) = 64 interrupt vectors.
The priority level for each of the 64 vectors is represented by five bits: three indicating the priority (taking
values 0 to 7, or 0b000 to Ob111; a priority of 0 indicates that the interrupt is disabled) and two indicating
the subpriority (taking values 0 to 3). Thus each IPCy has 20 relevant bits—five for each of the four interrupt
vectors—and 12 unused bits.

The list of interrupt sources (IRQs) and their corresponding bit locations in the IECx and IFSx SFRs, as
well as the bit locations in IPCy of their corresponding interrupt vectors, are are given in the table below,
reproduced from the Interrupts section of the Data Sheet. Consulting this table, we see that the change
notification’s (CN) interrupt has x=1 (for the IRQ) and y=6 (for the vector), so information about this
interrupt is stored in IFS1, IEC1, and IPC6. Specifically, IEC1(0) is its interrupt enable bit, IFS1(0) is its
interrupt flag status bit, IPC6(20:18) are the three priority bits for its interrupt vector, and IPC6(17:16) are
the two subpriority bits.

9
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TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION

Interrupt Source™ IRQ Vector Interrupt Bit Location
Number | Number |  gjaq \ Enable \ Priority | Sub-Priority
Highest Natural Order Priority

CT — Core Timer Interrupt 0 0 IFS0<0> |[IEC0<0> |IPC0<4:2> IPC0<1:0>
CS0 - Core Software Interrupt 0 1 1 IFS0<1> [IEC0<1> |IPC0<12:10> |IPC0<9:8>
CS1 — Core Software Interrupt 1 2 2 IFS0<2> |IEC0<2> |[IPC0<20:18> |IPCO0<17:16>
INTO — External Interrupt O 3 3 IFS0<3> |[IEC0<3> |IPC0<28:26> |IPC0<25:24>
T1 - Timer1 4 4 IFS0<4> |IEC0<4> |IPC1<4:2> IPC1<1:0>
IC1 — Input Capture 1 5 5 IFS0<5> |IEC0<5> |IPC1<12:10> |[IPC1<9:8>
OC1 - Output Compare 1 6 6 IFS0<6> |[IEC0<6> |IPC1<20:18> |IPC1<17:16>
INT1 — External Interrupt 1 7 7 IFS0<7> |IECO0<7> |IPC1<28:26> |IPC1<25:24>
T2 — Timer2 8 8 IFS0<8> |IEC0<8> |IPC2<4:2> IPC2<1:0>
IC2 — Input Capture 2 9 9 IFS0<9> |IEC0<9> |IPC2<12:10> |[IPC2<9:8>
OC2 - Output Compare 2 10 10 IFS0<10> |IEC0<10> |IPC2<20:18> |IPC2<17:16>
INT2 — External Interrupt 2 1 1 IFS0<11> [IEC0<11> |IPC2<28:26> |IPC2<25:24>
T3 — Timer3 12 12 IFS0<12> |IEC0<12> |IPC3<4:2> IPC3<1:0>
IC3 — Input Capture 3 13 13 IFS0<13> |IEC0<13> |IPC3<12:10> |IPC3<9:8>
OC3 — Output Compare 3 14 14 IFS0<14> |IEC0<14> |IPC3<20:18> |IPC3<17:16>
INT3 — External Interrupt 3 15 15 IFS0<15> | I[EC0<15> |IPC3<28:26> |IPC3<25:24>
T4 — Timer4 16 16 IFS0<16> |IEC0<16> |IPC4<4:2> IPC4<1:0>
IC4 — Input Capture 4 17 17 IFS0<17> |IEC0<17> |IPC4<12:10> |IPC4<9:8>
OC4 — Output Compare 4 18 18 IFS0<18> [IEC0<18> |IPC4<20:18> |IPC4<17:16>
INT4 — External Interrupt 4 19 19 IFS0<19> |IEC0<19> |IPC4<28:26> |IPC4<25:24>
T5 — Timer5 20 20 IFS0<20> |IEC0<20> |IPC5<4:2> IPC5<1:0>
IC5 — Input Capture 5 21 21 IFS0<21> |IEC0<21> |IPC5<12:10> |IPC5<9:8>
OC5 — Output Compare 5 22 22 IFS0<22> |IEC0<22> |IPC5<20:18> |IPC5<17:16>
SPI1E — SPI1 Fault 23 23 IFS0<23> |IEC0<23> |IPC5<28:26> |IPC5<25:24>
SPI1RX — SPI1 Receive Done 24 23 IFS0<24> |IEC0<24> |IPC5<28:26> |IPC5<25:24>
SPI1TX — SPI1 Transfer Done 25 23 IFS0<25> |IEC0<25> |IPC5<28:26> |IPC5<25:24>
U1E — UART1 Error
SPI3E - SPI3 Fault 26 24 IFS0<26> |IEC0<26> |IPC6<4:2> IPC6<1:0>
12C3B - 12C3 Bus Collision Event
U1RX — UART1 Receiver
SPI3RX — SPI3 Receive Done 27 24 IFS0<27> |IEC0<27> |IPC6<4:2> IPC6<1:0>
I12C3S - 12C3 Slave Event
U1TX — UART1 Transmitter
SPI3TX — SPI3 Transfer Done 28 24 IFS0<28> |IEC0<28> |IPC6<4:2> IPC6<1:0>
I12C3M — 12C3 Master Event
12C1B - 12C1 Bus Collision Event 29 25 IFS0<29> ||EC0<29> |IPC6<12:10> |IPC6<9:8>
I12C1S — 12C1 Slave Event 30 25 IFS0<30> |IEC0<30> |IPC6<12:10> |IPC6<9:8>
12C1M - 12C1 Master Event 31 25 IFS0<31> |IEC0<31> |IPC6<12:10> |IPC6<9:8>
CN — Input Change Interrupt 32 26 IFS1<0> |IEC1<0> |IPC6<20:18> |IPC6<17:16>

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: “PIC32 USB and CAN - Features”,
TABLE 2: “PIC32 USB and Ethernet — Features” and TABLE 3: “PIC32 USB, Ethernet and CAN —
Features™ for the list of available peripherals.
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TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)
IRQ Vector Interrupt Bit Location
Interrupt Source(") Number | Numb
umber | Number Flag Enable Priority Sub-Priority

AD1 — ADC1 Convert Done 33 27 IFS1<1> |IEC1<1> |IPC6<28:26> |IPC6<25:24>
PMP — Parallel Master Port 34 28 IFS1<2> |IEC1<2> |IPC7<4:2> IPC7<1:0>
CMP1 — Comparator Interrupt 35 29 IFS1<3> |IEC1<3> |IPC7<12:10> |IPC7<9:8>
CMP2 — Comparator Interrupt 36 30 IFS1<4> |IEC1<4> |IPC7<20:18> |[IPC7<17:16>
U3E — UART2A Error

SPI2E — SPI2 Fault 37 31 IFS1<5> IEC1<5> |IPC7<28:26> |IPC7<25:24>
12C4B - 12C4 Bus Collision Event

U3RX — UART2A Receiver

SPI2RX — SPI2 Receive Done 38 31 IFS1<6> IEC1<6> |IPC7<28:26> |IPC7<25:24>
12C4S - 12C4 Slave Event

U3TX — UART2A Transmitter

SPI2TX — SPI2 Transfer Done 39 31 IFS1<7> |IEC1<7> |IPC7<28:26> |IPC7<25:24>
IC4M — 12C4 Master Event

U2E — UARTS3A Error

SPI4E - SPI4 Fault 40 32 IFS1<8> |IEC1<8> |IPC8<4:2> IPC8<1:0>
I12C5B — 12C5 Bus Collision Event

U2RX — UART3A Receiver

SPI4RX — SPI4 Receive Done 41 32 IFS1<9> |IEC1<9> |IPC8<4:2> IPC8<1:0>
12C5S — 12C5 Slave Event

U2TX — UART3A Transmitter

SPI4TX — SPI4 Transfer Done 42 32 IFS1<10> |IEC1<10> |IPC8<4:2> IPC8<1:0>
IC5M — 12C5 Master Event

12C2B - 12C2 Bus Collision Event 43 33 IFS1<11> |IEC1<11> |IPC8<12:10> |IPC8<9:8>
12C2S - 12C2 Slave Event 44 33 IFS1<12> |IEC1<12> |IPC8<12:10> |IPC8<9:8>
12C2M — 12C2 Master Event 45 33 IFS1<13> |IEC1<13> |IPC8<12:10> |IPC8<9:8>
FSCM - Fail-Safe Clock Monitor 46 34 IFS1<14> |IEC1<14> |IPC8<20:18> |IPC8<17:16>
RTCC - Real-Time Clock and 47 35 |IFS1<15> |IEC1<15> |IPC8<28:26> |IPC8<25:24>
Calendar

DMAO — DMA Channel 0 48 36 IFS1<16> |IEC1<16> |IPC9<4:2> IPC9<1:0>
DMA1 — DMA Channel 1 49 37 IFS1<17> |IEC1<17> |IPC9<12:10> |IPC9<9:8>
DMA2 — DMA Channel 2 50 38 IFS1<18> |IEC1<18> |IPC9<20:18> |IPC9<17:16>
DMA3 — DMA Channel 3 51 39 IFS1<19> |IEC1<19> |IPC9<28:26> |IPC9<25:24>
DMA4 — DMA Channel 4 52 40 IFS1<20> |IEC1<20> |IPC10<4:2> |IPC10<1:0>
DMAS — DMA Channel 5 53 41 IFS1<21> |IEC1<21> |IPC10<12:10> [IPC10<9:8>
DMAG6 — DMA Channel 6 54 42 IFS1<22> |IEC1<22> |IPC10<20:18> |IPC10<17:16>
DMA7 — DMA Channel 7 55 43 IFS1<23> |IEC1<23> |IPC10<28:26> | IPC10<25:24>
FCE - Flash Control Event 56 44 IFS1<24> |IEC1<24> |IPC11<4:2> IPC11<1:0>
USB - USB Interrupt 57 45 IFS1<25> |IEC1<25> |IPC11<12:10> | IPC11<9:8>
CAN1 — Control Area Network 1 58 46 IFS1<26> |IEC1<26> |IPC11<20:18> |[IPC11<17:16>
CAN2 — Control Area Network 2 59 47 IFS1<27> |IEC1<27> |IPC11<28:26> |IPC11<25:24>
ETH — Ethernet Interrupt 60 48 IFS1<28> |IEC1<28> |IPC12<4:2> |IPC12<1:0>
IC1E — Input Capture 1 Error 61 5 IFS1<29> |IEC1<29> |IPC1<12:10> |IPC1<9:8>
IC2E — Input Capture 2 Error 62 9 IFS1<30> |IEC1<30> |IPC2<12:10> |IPC2<9:8>

Note 1:

Not all interrupt sources are available on all devices. See TABLE 1: “PIC32 USB and CAN - Features”,

TABLE 2: “PIC32 USB and Ethernet — Features” and TABLE 3: “PIC32 USB, Ethernet and CAN -
Features” for the list of available peripherals.
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TABLE 7-1:

INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)

IRQ Vector Interrupt Bit Location
Interrupt Source(" Number | Number — —
Flag Enable Priority Sub-Priority
IC3E — Input Capture 3 Error 63 13 IFS1<31> |IEC1<31> |IPC3<12:10> |IPC3<9:8>
IC4E — Input Capture 4 Error 64 17 IFS2<0> |[IEC2<0> |IPC4<12:10> |IPC4<9:8>
IC4E — Input Capture 5 Error 65 21 IFS2<1> |IEC2<1> |IPC5<12:10> |IPC5<9:8>
PMPE — Parallel Master Port Error 66 28 IFS2<2> |IEC2<2> |IPC7<4:2> IPC7<1:0>
U4E — UART4 Error 67 49 IFS2<3> |IEC2<3> |IPC12<12:10>|IPC12<9:8>
U4RX — UART4 Receiver 68 49 IFS2<4> |IEC2<4> |IPC12<12:10>|IPC12<9:8>
U4TX — UART4 Transmitter 69 49 IFS2<5> |IEC2<5> |IPC12<12:10> |IPC12<9:8>
UBE — UART®6 Error 70 50 IFS2<6> |IEC2<6> |IPC12<20:18>|IPC12<17:16>
UBRX — UART6 Receiver 71 50 IFS2<7> |IEC2<7> |IPC12<20:18>|IPC12<17:16>
UBTX — UART6 Transmitter 72 50 IFS2<8> |IEC2<8> |IPC12<20:18>|IPC12<17:16>
USE — UARTS5 Error 73 51 IFS2<9> IEC2<9> |IPC12<28:26> | IPC12<25:24>
U5RX — UART5 Receiver 74 51 IFS2<10> |IEC2<10> |IPC12<28:26> ||IPC12<25:24>
U5TX — UARTS5 Transmitter 75 51 IFS2<11> |IEC2<11> |IPC12<28:26> | IPC12<25:24>
(Reserved) — — — — — —
Lowest Natural Order Priority

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: “PIC32 USB and CAN — Features”,

TABLE 2: “PIC32 USB and Ethernet — Features” and TABLE 3: “PIC32 USB, Ethernet and CAN —
Features” for the list of available peripherals.

As mentioned earlier, some IRQs share the same vector. For example, IRQs 26, 27, and 28, each
corresponding to UART1 events, all share vector number 24. Priorities and subpriorities are associated with
interrupt vectors, not IRQs.

If the CPU is currently processing an ISR at a particular priority level, and it receives an interrupt request
for a vector (and therefore ISR) at the same priority, it will complete its current ISR before servicing the
other IRQ, regardless of the subpriority. When the CPU has multiple interrupts pending at a higher priority
level than it is currently operating at, the CPU first processes the one with the highest priority level. If
there are more than one at the same highest priority level, the CPU first processes the one with the highest
subpriority. If interrupts have the same priority and subpriority, then their priority is resolved using the
“natural order priority” table given above, where vectors earlier in the table have higher priority.

If the priority of an interrupt vector is zero, then the interrupt is disabled. There are seven enabled
priority levels.

Every ISR should clear the interrupt flag (clear the appropriate bit of IFSx to zero), indicating that the
interrupt has been serviced. By doing so, after the ISR completes, the CPU is free to return to the program
state when the ISR was called.

When setting up an interrupt, you set a bit in IECx to 1 indicating the interrupt is enabled (all bits are
set to zero upon reset) and assign values to the associated IPCy priority bits. (These priority bits default to
zero upon reset, which will keep the interrupt disabled.) You will generally never write code setting an IFSx
bit to 1. Instead, when you set up the device that generates the interrupt (e.g., a UART or counter/timer),
you configure it to set the interrupt flag IFSx upon the appropriate event.

The Shadow Register Set The PIC32MX’s CPU provides an internal shadow register set (SRS), which
is a full extra set of registers. You can take advantage of this extra register set to avoid the time needed for
context save and restore. When processing an ISR using the SRS, the CPU simply switches to this extra set
of internal registers. When it finishes the ISR, it switches back to its original register set, without needing to
save and restore them. We see examples of this in Section 6.5. Obviously we cannot allow one ISR using the
SRS to be interrupted by another ISR using the SRS! An easy way to avoid this is to have only one ISR
written to use the SRS.

The Device Configuration Register DEVCFG3 determines which priority level is assigned to the shadow
register set. The preprocessor command
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#pragma config FSRSSEL = PRIORITY_7

implemented in NU32.h and the NU32 bootloader, sets the shadow register set to priority level 7. This choice
makes sense; the highest priority interrupt should spend the least time jumping to and from the ISR.

External Interrupt Inputs The PIC32 has five digital inputs, INTO-INT4, that can be used to generate
interrupts on rising or falling edges. The enable and flag status bits are in IFS0 and IECO, respectively, at bits
3, 7,11, 15, and 19 for INTO, INT1, INT2, INT3, and INT4, respectively. The priority and subpriority bits
are in IPCy(28:26) and IPCy(25:24) for the input INTy. The SFR INTCON bits 0. ..4 determine whether
the associated interrupt is triggered on a falling edge (bit cleared to 0) or rising edge (bit set to 1).

Special Function Registers

The SFRs associated with interrupts are summarized below. For full details, consult the Reference Manual.

INTCON The interrupt control SFR determines whether the interrupt controller operates in single vector
or multi-vector mode. It also determines whether the five external interrupt pins INT0-INT4 generate
an interrupt on a rising edge or a falling edge.

INTSTAT The interrupt status SFR is read-only and contains information on the address and priority level
of the latest IRQ given to the CPU when in single vector mode. We will not need it.

IPTMR The interrupt proximity timer SFR can be used to implement a delay to queue up interrupt requests
before presenting them to the CPU. For example, upon receiving an interrupt request, the timer starts
counting clock cycles, queuing up any subsequent interrupt requests, until IPTMR cycles have passed.
By default, this timer is turned off by INTCON, and we will typically leave it that way.

IECx, x = 0, 1, or 2 Three 32-bit interrupt enable control SFRs for up to 96 interrupt sources. A 1
enables the interrupt, a 0 disables it.

IFSx, x = 0, 1, or 2 The three 32-bit interrupt flag status SFRs represent the status of up to 96 interrupt
sources. A 1 indicates an interrupt has been requested, a 0 indicates no interrupt is requested.

IPCy, y = 0 to 15 Each of the sixteen interrupt priority control SFRs contains 5-bit priority and subpriority
values for 4 different interrupt vectors (64 vectors total).

In this chapter only, we reproduce some SFR information from the Data Sheet. You should always consult
the appropriate sections from the Reference Manual and the Data Sheet for more information. The Memory
Organization section of the Data Sheet indicates which of the SFRs in the Reference Manual are present on
your PIC32.

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER

Bit Bit Bit Bit Bit Bit Bit Bit Bit
Range | 31/23/15/7 | 30/22/14/6 | 29/21/13/5 | 28/20/12/4 | 27/19/11/3 | 26/18/10/2 25/17/9/1 24/16/8/0
31:24 U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
u-0 u-0 u-0 U-0 u-0 u-0 u-0 R/W-0
23:16 — — — — — — — S50
) u-0 u-0 u-0 R/W-0 u-0 R/W-0 R/W-0 R/W-0
15:8 — — — MVEC — TPC<2:0>
] u-0 u-0 u-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
70 — — — INT4EP INT3EP INT2EP INT1EP INTOEP
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1" = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

e INTCON(16), or INTCONDits.SS0: 1 = use the shadow register set when in single vector mode, 0 =
do not use
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e INTCON(12), or INTCONbits. MVEC: 1 = interrupt controller in multi-vector mode, 0 = single vector
mode

e INTCON(10:8), or INTCONDits.TPC: control bits for the IPTMR (we leave it at the default of 000 =
IPTMR off)

e INTCON(x), for x = 0 to 4, or INTCONbDits.INTXEP: 1 = external interrupt pin x triggers on a rising
edge, 0 = triggers on a falling edge

REGISTER 7-4:  IFSx: INTERRUPT FLAG STATUS REGISTER

Bit Bit Bit Bit Bit Bit Bit Bit Bit
Range | 31/23/15/7 | 30/22/14/6 | 29/21/13/5 | 28/20/12/4 | 27/19/11/3 | 26/18/10/2 25/17/91 24/16/8/0
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
31:24 IFS31 IFS30 IFS29 IFS28 IFS27 IFS26 IFS25 IFS24
) R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
2316 IFS23 IFS22 IFS21 IFS20 IFS19 IFS18 IFS17 IFS16
) R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
158 IFS15 IFS14 IFS13 IFS12 IFS11 IFS10 IFS09 IFS08
. R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
70 IFS07 IFS06 IFS05 IFS04 IFS03 IFS02 IFS01 IFS00
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

IFSx(bit): 1 = interrupt has been requested, 0 = no interrupt has been requested. See the Interrupt Controller
section of the Data Sheet, or the table reproduced earlier, for the the register number x in IFSx, and the bit
number, for a particular IRQ source. For example, the change notification interrupt request flag status bit is
IFS1(0).

REGISTER 7-5: IECx: INTERRUPT ENABLE CONTROL REGISTER

Bit Bit Bit Bit Bit Bit Bit Bit Bit
Range | 31/23/15/7 | 30/22/14/6 | 29/21/13/5 | 28/20/12/4 | 27/19/11/3 | 26/18/10/2 | 25/17/9/1 24/16/8/0
R/W-0 RIW-0 R/W-0 RIW-0 RIW-0 R/W-0 R/W-0 R/W-0
31:24 IEC31 IEC30 IEC29 IEC28 IEC27 IEC26 IEC25 IEC24
. R/W-0 RIW-0 R/W-0 RIW-0 R/W-0 R/W-0 R/W-0 R/W-0
2316 IEC23 IEC22 IEC21 IEC20 IEC19 IEC18 IEC17 IEC16
. R/W-0 RIW-0 R/W-0 RIW-0 R/W-0 R/W-0 R/W-0 R/W-0
15:8 IEC15 IEC14 IEC13 IEC12 IEC11 IEC10 IEC09 IEC08
) R/W-0 R/W-0 R/W-0 RW-0 R/W-0 R/W-0 R/W-0 R/W-0
70 IECO7 IEC06 IEC05 IEC04 IEC03 IEC02 IECO1 IEC00
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

TIECx(bit): 1 = interrupt has been enabled so that requests are allowed, 0 = interrupt is disabled. See the
Interrupt Controller section of the Data Sheet, or the table reproduced earlier, for the the register number x
in IECx, and the bit number, for a particular IRQ source. For example, the change notification interrupt
enable bit is IEC1(0).
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REGISTER 7-6: IPCx: INTERRUPT PRIORITY CONTROL REGISTER
Bit Bit Bit Bit Bit Bit Bit Bit Bit
Range | 31/23/15/7 | 30/22/14/6 | 29/21/13/5 | 28/20/12/4 | 27/19/11/3 | 26/18/10/2 25/17/91 24/16/8/0
i U0 U0 U0 RIW-0 RIW-0 RIW-0 RIW-0 RIW-0
31:24 — — — IP03<2:0> 1S03<1:0>
2316 u-0 u-0 U-0 RwWo [ Rwo [ RWo RWo | RWO
— — — 1P02<2:0> 1S02<1:0>
158 u-0 u-0 U-0 Rwo | Rwo | RWoO RW0o | Rwo
— — — IP01<2:0> 1S01<1:0>
70 u-0 u-0 U-0 Rwo | Rwo | RWO RWo | RWo
’ — — — IP00<2:0> 1S00<1:0>
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1" = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

Each IPCy, y = 0 to 15, contains five priority and subpriority bits for each of four different interrupt
vectors. For example, consulting the table, we see that IPC6(20:18) are the three priority bits for the change
notification interrupt vector, and IPC6(17:16) are its two subpriority bits.

6.3 Steps to Set Up and Use an Interrupt

There are seven basic steps to set up and use an interrupt. We recommend your program execute steps 2-7
in the order given below. The details of the syntax are left to the examples in Section 6.5.

1.

6.
7.

Write an ISR with a priority level 1-7 using the syntax IPLnSOFT, for n=1...7, or IPL7SRS. SOFT
indicates software context save and restore, and SRS makes use of the shadow register set. (The
bootloader on the NU32 allows only priority level 7 to use the SRS.) No subpriority is specified in the
ISR function. The ISR must clear the appropriate interrupt flag IFSx(bit).

Disable interrupts at the CPU to prevent spurious generation of interrupts while you are configuring.
Although interrupts are disabled by default on reset, NU32_Startup() enables them.

Configure the device (e.g., peripheral) to generate interrupts on the appropriate event. This often
involves configuring the SFRs of the particular peripheral.

. Configure the interrupt priority and subpriority in IPCy. The IPCy priority should match the priority

of the ISR defined in Step 1.
Clear the interrupt flag status bit to 0 in IFSx.
Set the interrupt enable bit to 1 in IECx.

Configure the CPU to receive interrupts in multi-vector mode and enable the CPU to process interrupts.

Steps 2 and 7 involve assembly commands to the CPU, so we use peripheral library functions to implement
them. Steps 4-6 involve manipulation of SFRs, which can be accomplished directly or by using peripheral
library functions.

If it helps you remember the steps to setting up and using an interrupt, you can make up a mnemonic
phrase for yourself, like the following:

Routinely 1. interrupt service Routine

Disable 2. Disable interrupts at the CPU

Devices demanding 3. configure Device to generate interrupts
Priority over the 4. set Priority and subpriority

Flag by 5. clear the interrupt Flag

Enabling the 6. Enable the specific interrupt

Military. 7. enable Multivector interrupts at the CPU

Maybe you can come up with a better one!
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6.4 Library Functions

Library functions can be found in pic32-1libs/peripheral/int/source, particularly in int_tbl_1ib.c,
int_enable mv_int_1ib.c, and int_disable_interrupts_lib.c. Constants and function prototypes can
be found in pic32mx/include/peripheral/int.h, and mnemonic constants for IRQ sources and interrupt
vectors can be found in p32mx795£5121.h. Examples include the IR(Q) _CHANGE_NOTICE_IRQ (defined as 32)
and _EXTERNAL_2_VECTOR, for the interrupt input INT2, defined as 11. These agree with the table given
earlier.

Two library functions are particularly useful for their assembly language commands. Apart from these,
we will use direct SFR manipulation.

INTEnableSystemMultiVectoredInt() This command does three things: it sets INTCON(12) to choose
multi-vector interrupts, sets the IV bit in the CPU’s CP0O Cause register to use the interrupt vector
table (not the general exception vector), and sets the IE bit in the CPU’s CP0 Status register to cause
the CPU to start processing interrupts.

INTDisableInterrupts() Disables interrupts at the CPU. You can ignore the return value.

6.5 Sample Code

6.5.1 Core Timer Interrupt

Let’s toggle a digital output once per second based on an interrupt from the CPU’s core timer. To do this,
we place a value in the CPU’s CPO_COMPARE register, and whenever the core timer counter value is equal
to CPO_COMPARE, an interrupt is generated. In the interrupt routine, the core timer counter is reset to 0.
Since the core timer runs at half the frequency of the system clock, setting CPO_COMPARE to 40,000,000
toggles the digital output once per second.

To make the effect visible, let’s toggle pin RA5, which corresponds to LED2 on the NU32 board. We’ll
use priority level 7, subpriority 0, and the shadow register set.

Code Sample 6.1. INT core_timer.c. A core timer interrupt using the shadow register set.

//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded
#include "NU32.h" // plib.h, config bits, constants, funcs for startup and UART
#define CORE_TICKS 40000000 // 40 M ticks (one second)

void __ISR(_CORE_TIMER_VECTOR, IPL7SRS) CoreTimerISR(void) { // step 1: the ISR

IFSOCLR = 1; // clear CT int flag IFS0<0>, same as IFSObits.CTIF=0
LATAINV = 0x20; // invert pin RA5 only

WriteCoreTimer (0) ; // set core timer counter to 0O

_CPO_SET_COMPARE (CORE_TICKS) ; // must set CPO_COMPARE again after interrupt

}

void main(void) {
NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init

INTDisableInterrupts(); // step 2: disable interrupts at CPU
_CPO_SET_COMPARE (CORE_TICKS) ; // step 3: CPO_COMPARE register set to 40 M
IPCObits.CTIP = 7; // step 4: interrupt priority

IPCObits.CTIS = 0; // step 4: subp is 0, which is the default
IFSObits.CTIF = O; // step 5: clear CT interrupt flag
IECObits.CTIE = 1; // step 6: enable core timer interrupt
INTEnableSystemMultiVectoredInt(); // step 7: CPU enabled for multivec interrupts
WriteCoreTimer (0) ; // set core timer counter to O

while(1); // infinite loop
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Following our seven steps in using an interrupt, we have:

Step 1. The ISR.

void __ISR(_CORE_TIMER_VECTOR, IPL7SRS) CoreTimerISR(void) { // step 1: the ISR
IFSOCLR = 1; // clear CT int flag IFS0<0>, same as IFSObits.CTIF=0

We are allowed to call our ISR whatever we want, and in this example we call it CoreTimerISR. The __ISR
syntax is XC32-specific (not a C standard) and tells the compiler and linker that this function should be
treated as an interrupt handler. The two arguments to this syntax are the interrupt vector for the core
timer, called _CORE_TIMER VECTOR (defined as 0 in p32mx795£5121.h, which agrees with the table), and the
interrupt priority level. The interrupt priority level is specified using the syntax IPLnSRS or IPLnSOFT, where
n is 1 to 7, SRS indicates that the shadow register set should be used, and SOFT indicates that software
context save and restore should be used. Use IPL7SRS if you'd like to use the shadow register set, as in this
example, and IPLnSOFT otherwise. You don’t specify subpriority in the ISR.

The ISR must clear the interrupt flag in IFS0(0), which the table tells us corresponds to the core timer
interrupt. Specifically for the core timer, a write to CPO_COMPARE is also needed to clear the interrupt.

Step 2. Disabling interrupts. Since NU32_Startup() enables interrupts, we disable them before configur-
ing the core timer interrupt.

INTDisableInterrupts(); // step 2: disable interrupts at CPU

Disabling interrupts before configuring the device that generates interrupts is good general practice, to avoid
unwanted interrupts during configuration. In many cases it is not strictly necessary, however.

Step 3. Configuring the core timer to interrupt.

_CPO_SET_COMPARE (CORE_TICKS) ; // step 3: CPO_COMPARE register set to 40 M
This line sets the core timer’s CPO_.COMPARE value so that an interrupt is generated when the core timer
counter reaches CORE_TICKS. If the interrupt were to be generated by a peripheral, we should consult the

appropriate section of this book, or the Reference Manual, to set the SFRs to generate an TRQ on the
appropriate event.

Step 4. Configuring interrupt priority.

IPCObits.CTIP
IPCObits.CTIS

7 // step 4: interrupt priority
0; // step 4: subp is 0, which is the default

These two commands set the appropriate bits in IPCy (y=0, according to the table). Consulting the file
p32mx795£5121.h or the Memory Organization section of the Data Sheet tells us that the priority and
subpriority bits of IPCO are called IPCObits.CTIP and IPCObits.CTIS, respectively. Alternatively, we could
have used any other means to manipulate the bits IPC0(4:2) and IPC0(1:0), as indicated in the table, while
leaving all other bits unchanged. The priority must agree with the ISR priority. It is not strictly necessary to
set the subpriority, which defaults to zero in any case.

Step 5. Clearing the interrupt flag status bit.
IFSObits.CTIF = O; // step 5: clear CT interrupt flag

84 08:24 January 27, 2014



CHAPTER 6. INTERRUPTS

This command clears the appropriate bit in IFSx (x=0 here). An alternative would be IFSOCLR = 1;, to
clear the zeroth bit of IFS0, as used in the ISR.

Step 6. Enabling the core timer interrupt.
IECObits.CTIE = 1; // step 6: enable core timer interrupt

This command sets the appropriate bit in IECx (x=0 here). An alternative would be IECOSET = 1;, to set
the zeroth bit of TECO.

Step 7. Configure for multi-vector interrupts and tell the CPU to accept interrupt requests.
INTEnableSystemMultiVectoredInt(); // step 7: CPU enabled for multivec interrupts

Sets the CPU to process multi-vectored interrupts.

6.5.2 External Interrupt

Code Sample 6.2 causes the NU32’s LEDs to turn on briefly on a falling edge on the external interrupt input
pin INTO. The TRQ associated with INTO is 3, and the flag, enable, priority, and subpriority bits can be
found in the table. In this example we use interrupt priority level 2, with software context save and restore.

You can test this program with the NU32 by connecting a wire from the D13/USER pin to the DO/INTO
pin. When the USER button is pressed, there is a falling edge on digital input D13 (see the wiring diagram
in Figure 2.4) and therefore INT0, which causes the LEDs to flash. You might also notice the issue of switch
bounce: when you release the button, nominally creating a rising edge, you might see the LEDs flash again.
This is because there may be a brief period of chattering when mechanical contact between two conductors
is established or broken, creating spurious rising and falling edges. This can be addressed by a debouncing
circuit or software; see Problem 17.

Code Sample 6.2. INT ext_int.c. Using an external interrupt to flash LEDs on the NU32.

//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded
#include "NU32.h" // plib.h, config bits, constants, funcs for startup and UART

void __ISR(_EXTERNAL_O_VECTOR, IPL2SOFT) ExtOISR(void) { // step 1: the ISR

LATACLR = 0x30; // clear RA4 and RA5 low
WriteCoreTimer (0);

while (ReadCoreTimer () <10000000) ; // delay for 10 M core ticks, 0.25 s
LATASET = 0x30; // set pins RA4 and RA5 high
IFSOCLR = 1 << 3; // clear interrupt flag IFS0<3>

}

void main(void) {
NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init

INTDisableInterrupts(); // step 2: disable interrupts at the CPU
INTCONCLR = Ox1; // step 3: INTO triggers on falling edge
IPCOCLR = 0x1F << 24; // step 4: clear the 5 pri and subpri bits
IPCO |= 9 << 24; // step 4: set priority to 2, subpriority to 1
IFSObits.INTOIF = O; // step 5: clear the int flag, or IFSOCLR=1<<3
IECOSET = 1 << 3; // step 6: enable INTO by setting IEC0<3>
INTEnableSystemMultiVectoredInt(); // step 7: CPU enabled for multivec interrupts
while(1); // infinite loop
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6.5.3 Speedup Due to the Shadow Register Set

This last example measures the amount of time it takes to enter and exit an ISR using context save and
restore vs. the SRS. We write two identical ISRs; the only difference is that one uses IPL7SOFT and the other
uses IPL7SRS. The two ISRs are based on the external interrupts INTO and INT1, respectively. To get precise
timing, however, we trigger interrupts in software by setting the appropriate bit of the appropriate SFR.

After setting up the interrupts, the program INT_timing.c enters an infinite loop. First the core timer is
reset to zero, then the interrupt flag is set for INT0. The main function then waits until the ISR clears the
flag. The first thing the ISR for INTO does is log the core timer counter; then it toggles LED2 and clears the
interrupt flag; and the last thing it does before exiting is log the time again. Finally, the main function logs
the time when control is returned. The timing results are written back to the host computer over a serial link
using the NU32 library. Then the main function does the same for INT1 and goes back to the beginning of
the infinite loop.

These are the results (which are repeated over and over):

IPL7SOFT in 32 out 39 total 68 time 1700 ns
IPL7SRS in 22 out 29 total 46 time 1150 ns

For context save and restore, it takes 32 core clock ticks (about 64 SYSCLK ticks) to begin executing
statements in the ISR; the last ISR statement completes about 7 (14) ticks later; and finally control is
returned to main approximately 68 (136) total ticks, or 1.7 microseconds, after the interrupt flag is set. For
the SRS, the first ISR statement is executed after about 22 (44) ticks; 7 (14) ticks are needed to complete the
last ISR statement; and a total of approximately 46 (92) ticks, or 1.15 microseconds, elapse between the time
the interrupt flag is set and control is returned to main.

While the numbers may be different for other ISRs and main functions, a few things can be noted:

e The ISR is not entered immediately after the flag is set. It takes time to respond to the interrupt
request, and instructions in main may be executed after the flag is set.

e The SRS saves time in entering and exiting the ISR, approximately 0.55 microseconds total in this case.
e Simple ISRs can be completed in just over a microsecond after the interrupt event occurs.

The sample code is below.

Code Sample 6.3. INT_timing.c. Timing the shadow register set vs. typical context save and restore.

//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded
#include "NU32.h" // plib.h, config bits, constants, funcs for startup and UART
#define DELAYTIME 40000000 // 40 million core clock ticks, or 1 second

void delay();

int Entered,Exited;

void __ISR(_EXTERNAL_O_VECTOR, IPL7SOFT) ExtOISR(void) {
Entered = ReadCoreTimer(); // record time ISR begins

IFSOCLR = 1 << 3; // clear the interrupt flag
NU32LED2 = 1; // turn off LED2
Exited = ReadCoreTimer(); // record time ISR ends

}

void __ISR(_EXTERNAL_1_VECTOR, IPL7SRS) Ext1ISR(void) {
Entered = ReadCoreTimer();
IFSOCLR = 1 << 7;
NU32LED2 = 0; // turn on LED2
Exited = ReadCoreTimer();
}
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void main(void) {
int dt;
char msg[128];

NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init

INTDisableInterrupts(); // step 2: disable interrupts at CPU
INTCONSET = 0x3; // step 3: INTO and INT1 trigger on rising edge
IPCOCLR = 31 << 24; // step 4: clear 5 priority and subp bits for INTO
IPCO |= 28 << 24; // step 4: set INTO to priority 7 subpriority O
IPCICLR = 0x1F << 24; // step 4: clear 5 priority and subp bits for INT1
IPC1 |= 0x1C << 24; // step 4: set INT1 to priority 7 subpriority O
IFSObits.INTOIF = 0; // step 5: clear INTO flag status
IFSObits.INT1IF = 0; // step 5: clear INT1 flag status
IECOSET = 0x88; // step 6: enable INTO and INT1 interrupts
INTEnableSystemMultiVectoredInt(); // step 7: CPU enabled for multivec interrupts
while(1) {
delay(Q); // delay, so results sent back at reasonable rate
WriteCoreTimer (0) ; // start timing

IFSObits.INTOIF = 1; // artificially set the INTO interrupt flag

while (IFSObits.INTOIF);// wait until the interrupt clears the flag

dt = ReadCoreTimer(); // get elapsed time

sprintf (msg,"IPL7SOFT in %3d out %3d total %3d time %4d ns\r\n",Entered,Exited,dt,dt*25);
NU32_WriteUART1(msg); // send times to the host

delay(Q); // same as above, except for INT1

WriteCoreTimer (0);

IFSObits.INT1IF = 1; // trigger INT1 interrupt

while (IFSObits.INT1IF);

dt = ReadCoreTimer();

sprintf (msg," IPL7SRS in %3d out %3d total %3d time %4d ns\r\n",Entered,Exited,dt,dt*25);
NU32_WriteUART1 (msg) ;

}
}

void delay() {
WriteCoreTimer (0) ;
while (ReadCoreTimer () <DELAYTIME) ;

}

6.6 Chapter Summary

The PIC32 supports 96 interrupt requests (IRQs) and 64 interrupt vectors, and therefore up to 64
interrupt service routines (ISRs). Therefore, some IRQs share the same ISR. For example, all IRQs
related to UART1 (data received, data transmitted, error) have the same interrupt vector.

The PIC32 can be configured to operate in single vector mode (all IRQs result in a jump to the same
ISR) or in multi-vector mode. NU32_Startup() puts the NU32 in multi-vector mode.

Priorities and subpriorities are associated with interrupt vectors, and therefore ISRs, not IRQs. The
priority of a vector is defined in an SFR IPCy, y=0...15. In the definition of the associated ISR, the
same priority n should be specified using IPLnSOFT or IPL7SRS. SOFT indicates that software context
save and restore is performed, while SRS means that the shadow register set is used instead, reducing
ISR entry and exit time.

When an interrupt is generated, it is serviced immediately if its priority is higher than the current
priority. Otherwise it waits until the current ISR is finished.
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e In addition to configuring the CPU to accept interrupts, enabling specific interrupts, and setting their

priority, the specific peripherals (such as counter/timers, UARTS, change notification pins, etc.) must
be configured to generate interrupt requests on the appropriate events. These configurations are left for
the chapters covering those peripherals.

e The seven steps to use an interrupt are: (1) write the ISR; (2) disable interrupts; (3) configure a device

or peripheral to generate interrupts; (4) set the ISR priority and subpriority; (5) clear the interrupt
flag; (6) enable the IRQ; and (7) enable multivector interrupts at the CPU.

6.7 Exercises

1.

Interrupts can be used to implement a fixed frequency control loop (e.g., 1 kHz). Another way is polling:
keep checking the core timer, and when some number of ticks has passed, jump to the control routine.
Polling can also be used to check for changes on input pins and other events. Give pros and cons (if
any) of using interrupts vs. polling.

You are watching TV. Give an analogy to an IRQ and ISR for your mental attention in this situation.
Also give an analogy to polling.

What is the relationship between an interrupt vector and an ISR? What is the maximum number of
ISRs that the PIC32 can handle?

(a) What happens if an IRQ is generated for a priority level 4, subpriority level 2 vector while the CPU
is in normal execution (not executing an ISR)? (b) What happens if that IRQ is generated while the
CPU is executing a priority level 2, subpriority level 3 ISR? (¢) What happens if that IRQ is generated
while the CPU is executing a priority level 4, subpriority level 0 ISR? (d) What happens if that TRQ is
generated while the CPU is executing a priority level 6, subpriority level 0 ISR?

An interrupt asks the CPU to stop what it’s doing, attend to something else, and then return to what
it was doing. When the CPU is asked to stop what it’s doing, it needs to remember the “context” of
what it was working on, i.e., the values currently stored in the CPU registers. (a) Assuming no shadow
register set, what is the first thing the CPU must do before executing the ISR and the last thing it
must do upon completing the ISR? (b) How are things different if a shadow register set is used?

What is the peripheral and interrupt vector number associated with IRQ 35?7 What are the SFRs and
bit numbers controlling its interrupt enable, interrupt flag status, and priority and subpriority? Does
IRQ 35 share the interrupt vector with any other IRQ?

What peripherals and TRQs are associated with interrupt vector 247 What are the SFRs and bit
numbers controlling the interrupt enable, flag status, and priority and subpriority of the associated
TRQs?

For the problems below, use only the SFRs IECx, IFSx, IPCy, and INTCON, and their CLR, SET,
and INV registers (do not use other registers, nor the bit fields as in IFSObits.INTOIF). Give valid C
bit manipulation commands to perform the operations without changing any uninvolved bits. Also
indicate, in English, what you are trying to do, in case you have the right idea but wrong C statements.
Do not use any constants defined in Microchip XC32 files; just use numbers.

(a) Enable the Timer2 interrupt, set its flag status to 0, and set its vector’s priority and subpriority
to 5 and 2, respectively.

(b) Enable the Real-Time Clock and Calendar interrupt, set its flag status to 0, and set its vector’s
priority and subpriority to 6 and 1, respectively.

(c) Enable the UART4 receiver interrupt, set its flag status to 0, and set its vector’s priority and
subpriority to 7 and 3, respectively.

(d) Enable the INT2 external input interrupt, set its flag status to 0, set its vector’s priority and
subpriority to 3 and 2, and configure it to trigger on a rising edge.
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9. Edit steps 3, 4, and 6 of Code Sample 6.2 so that each line correctly uses the “bits” forms of the SFRs.
In other words, the left-hand sides of the statements should use a form similar to that used in step 5,
except using INTCONDits, IPCObits, and IECObits.

10. Consulting the p32mx795£5121.h file, give the names of the constants, and the numerical values,
associated with the following IRQs: (a) Input Capture 5. (b) SPI3 receive done. (c¢) USB interrupt.

11. Consulting the p32mx795£5121.h file, give the names of the constants, and the numerical values,
associated wih the following interrupt vectors: (a) Input Capture 5. (b) SPI3 receive done. (¢) USB
interrupt.

12. True or false? When the PIC32 is in single vector interrupt mode, only one IRQ can trigger an ISR.
Explain your answer.

13. Give the numerical value of the SFR INTCON, in hexadecimal, when it is configured for single vector
mode using the shadow register set; and external interrupt input INT3 triggers on a rising edge while
the rest of the external inputs trigger on a falling edge. The Interrupt Proximity Timer bits are left as
the default.

14. So far we have only seen interrupts generated by the core timer and the external interrupt inputs,
because we first have to learn something about the other peripherals to complete Step 3 of the seven-step
interrupt setup procedure. Let’s jump ahead and see how the Change Notification peripheral could be
configured in Step 3. Consulting the Reference Manual chapter on 1/O Ports, name the SFR and bit
number that has to be manipulated to enable Change Notification pins to generate interrupts.

15. Consult Code Sample 6.3. It uses a few different kinds of syntax to perform bit manipulation on SFRs.
For each line of code labeled step 3 to step 6, explain in one sentence what that line of code does and
what the purpose is.

16. Build INT_timing.c in Code Sample 6.3. Now disassemble it at the command line using the command

xc32-objdump -S filename.elf > disasm.txt

and open disasm.txt with a text editor. (Do not use the IDE’s disassembly window, as it does not
show you the disassembly of all the code in your .elf file.) Starting at the top of the file, you see
the startup code inserted by crt0.o. Continuing down, you see the “bootstrap exception” section
.bev_excpt, which handles any exceptions that might occur while executing boot code; the “general
exception” section .app_excpt, which the CPU could be set to jump to on an interrupt instead of
using the interrupt table; and finally the interrupt vector sections, labeled .vector_x, where x can
take values from 0 to 63. Each of these exception vectors simply jumps to another address. (Note that
j, jal, and jr are all jump statements in assembly. Jumps are not executed immediately; the next
assembly statement, in the jump delay slot, executes before the jump completes. The jump j jumps
to the address specified. jal jumps to the address specified, usually corresponding to a function, and
stores in a CPU register ra a return address two instructions [eight bytes] later. jr jumps to an address
stored in a register, often ra to return from a function.)

(a) What addresses do the .vector_x sections jump to? What is installed at these addresses?

(b) Find the Ext0ISR and Ext1ISR functions. How many assembly commands are before the first
ReadCoreTimer () command in each function? How many assembly commands are after the last
ReadCoreTimer () command in each function? What is the purpose of the commands that account
for the majority of the difference in the number of commands? (Note that sw, short for “store
word,” copies a 32-bit CPU register to RAM, and 1w, short for “load word,” copies a 32-bit word
from RAM to a CPU register.) Explain why the two functions are different even though their C
code is essentially identical.

17. Modify Code Sample 6.2 so the USER button is debounced. How can you change the ISR so the LEDs
do not flash if the falling edge comes at the beginning of a very brief, spurious down pulse? Verify that
your solution works.
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18.

19.
20.

21.

22.

Using your solution to debouncing the USER button (Problem 17), write a stopwatch program using
an ISR based on INT2. Connect a wire from the USER button pin to the INT2 pin so you can use
the USER button as your timing button. Using the NU32 library, your program should send the
following message to the user’s screen: Press the USER button to start the timer. When the
USER button has been pressed, it should send the following message: Press the USER button again
to stop the timer. When the user presses the button again, it should send a message such as 12.505
seconds elapsed. The ISR should either (1) start the core timer at 0 counts or (2) read the current
timer count, depending on whether the program is in the “waiting to begin timing” state or the “timing
state.” Use priority level 7 and the shadow register set. Verify that the timing is accurate. The
stopwatch only has to be accurate for periods of less than the core timer’s rollover time.

You could also try using polling in your main function to write out the current elapsed time (when the
program is in the “timing state”) to the user’s screen every second so the user can see the running time.

Modify the previous program to use a 16x2 LCD screen instead of the host computer’s display.

Write a program that interrupts at a frequency defined interactively by the user. The main function is an
infinite loop that uses the NU32 library to ask the user to specify the integer variable InterruptPeriod.
If the user enters a number greater than an appropriate minimum and less than an appropriate maximum,
this becomes the number of core clock ticks between core timer interrupts. The ISR simply toggles the
LEDs, so the InterruptPeriod is visible. Set the IRQ priority to 3 and subpriority to 0.

(a) Write a program that has two ISRs, one for the core timer and one for the debounced input INT2.
The core timer interrupts every four seconds, and the ISR simply turns on LED1 for two seconds, turns
it off, and exits. The INT2 interrupt turns LED2 on and keeps it on until the user lets go of the button.
Choose interrupt priority level 1 for the core timer and 5 for INT2. Run the program, experiment with
button presses, and see if it agrees with what you expect. (b) Modify the program so the two priority
levels are switched. Run the program, experiment with button presses, and see if it agrees with what
you expect.

The NU32 library, Chapter 4.2, allows the programmer to use interrupt-based receiving of data from
the host computer, rather than just sitting and waiting for the user to send a carriage return as with
NU32_ReadUART1 (). By including the command

NU32_EnableUART1Interrupt();

in your main function, you can create a UART1 ISR that receives a character and does something based
on it. See the example ISR in Chapter 4.2.

Write a program using a UART1 ISR to receive a character, add one to the ASCII representation, and
send it back to the host screen.
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Chapter 7

Digital Input and Output

Digital inputs and outputs (DIO) are the simplest of interfaces between the PIC and other electronics, sensors,
and actuators. The PIC32 has many DIO pins, each of which normally takes one of two states: high or low.
The interrupt associated with DIO is change notification—an interrupt can optionally be generated when the
input changes on at least one of up to 22 digital inputs.

7.1 Overview

The PIC32 offers many DIO pins, arranged into “ports” A through G. The pins are labeled Rxy, where x is
the port letter and y is the pin number. For example, pin 5 of port B is named RB5. Ports B and D are full
16-bit ports, with pins 0-15. (Port B can also be used for analog input.) Other ports have a smaller number
of pins, not necessarily sequentially numbered; for example, port C has pins 1-4 and 12-15. All pins labeled
Rxy can be used for input or output, except for RG2 and RG3, which are input only. For more details on the
available pin numbers, see the Data Sheet.

Each pin configured as an output can output 0 or 3.3 V (assuming the PIC32 is powered by 3.3 V). Some
DIO pins can alternatively be configured as “open drain” outputs. An open-drain output can take one of two
states: 0 V or “floating” (disconnected). An open-drain output allows you to attach an external “pull-up”
resistor from the output to a positive voltage you choose, up to 5 V. Then when the output is left floating by
the PIC, the external pull-up resistor will pull the output up to this voltage. Voltages between 3.3 V and 5 V
should only be used on 5 V tolerant pins (see, e.g., Figure 2.1 and Table 2.2).

An input pin will read low, or 0, if the input voltage is close to zero, and it will read high, or 1, if it is
close to 3.3 V. Some pins tolerate inputs up to 5 V. Some input pins, those that can also be used for “change
notification” (labeled CNy, y = 0 ...21), can be configured with an internal pull-up resistor to 3.3 V. If
configured this way, the input will read “high” if it is disconnected (left floating). Otherwise, if an input pin
is not connected to anything, we cannot be certain what the input will read.

The interrupt associated with digital I/O is change notification. If any of the 22 CN pins is configured
as a change notification input and the change notification interrupt is enabled, then an interrupt will be
generated when any of those inputs changes value. The ISR must then read the ports of those pins, or else
future input changes will not result in an interrupt. The ISR can compare the new port values to the previous
values to determine what has changed.

Microchip recommends that unused digital I/O pins be configured as outputs and driven to a logic low
state, though this is not required.

7.2 Details

AD1PCFG The PIC32MX795F512L has one analog-to-digital converter named AD1, and this AD1 pin
configuration SFR determines which of the 16 pins with an analog input function (port B) are
treated as analog inputs and which are treated as DIO pins. The 16 most significant bits (high bits)
AD1PCFG(31:16) are ignored. ADIPCFG(x), or ADIPCFGbits.PCFGx, x = 0 to 15, controls whether
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pin ANx is an analog input or not: 0 = analog input, 1 = digital pin. The default on reset is 0, so all
pins on port B are analog inputs by default.

TRISx, x = A to G These tri-state SFRs determine which of the DIO pins of port x are inputs and
which are outputs. For example, TRISAbits. TRISA5 = 0 makes RA5 an output (0 = Output), and
TRISAbits. TRISA5 = 1 makes RA5 an input (1 = Input). Bits of TRISx default to 1 on reset.

LATx, x = A to G A write to the latch chooses the output for pins configured as digital outputs. (Pins
configured as inputs will ignore the write.) For example, if TRISD = 0x0000, then LATD = 0x00FF makes
pins RDO0-7 high and pins RD8-15 low. An individual pin can be referenced using LATDbits. LATD13.
A write of 1 to an open-drain output sets the output to floating, while a write of 0 sets the output to
low.

PORTx, x = A to G PORTD returns the current digital inputs for DIO pins on port D configured as
inputs. PORTDbits.RD6 returns the digital input for RD6.

ODCx, x = A to G The open-drain configuration SFR determines whether outputs are open drain or not.
If TRISDbits. TRISD8 = 0, then ODCDbits.ODCDS8 = 1 configures RDS8 as an open-drain output, and
ODCDbits.ODCDS8 = 0 configures RDS8 as a typical buffered output. The reset default for all bits is 0.

CNPUE The relevant bits of the change notification pull-up enable SFR are CNPUE(21:0), and they apply
only to the 22 pins that have a change notification function, CNO ... CN21. If CNPUEDbits. CNPUE2 =
1, then CN2/RBO0 has the internal pull-up resistor enabled, and if CNPUEbits. CNPUE2 = 0, then it is
disabled. The reset default for all bits is 0.

To activate the change notification interrupt, the interrupt flag status IFS1(0) (or IFS1bits.CNIF) should
be initially cleared, the priority should be placed in IPC6(28:26) (or IPC6bits.CNIP), the subpriority should be
placed in TPC6(25:24) (or IPC6bits.CNIS), and the interrupt enable control bit IEC1(0) (or IEC1bits.CNIE)
must be set. Other SFRs specific to the interrupt function of the digital I/O peripheral are:

CNCON The change notification control SFR enables CN interrupts if CNCON(15) (or CNCONDits.ON)
equals 1. The default is 0.

CNEN A particular pin CNx is included in the change notification scan if CNEN(x) (or CNENDbits. CNENx)
is 1. Otherwise it is not included in the change notification.

A recommended procedure for enabling the CN interrupt is to (1) disable interrupts at the CPU using
INTDisableInterrupts(); (2) clear the interrupt flag IFS1bits. CNIF, set the priority IPC6bits. CNIP and sub-
priority IPC6bits.CNIS, enable the appropriate pins using CNEN, and choose any desired pull-up resistors with
CNPUE; (3) read all the ports of pins involved in the change notification scan; (4) enable the interrupt by set-
ting IEC1bits.CNIE; and (5) re-enable interrupts at the CPU using INTEnableSystemMultiVectoredInt ().

7.3 Library Functions

C functions for the DIO ports can be found in pic32-1libs/peripheral/ports, and macros and constants
can be found in pic32mx/include/peripheral/ports.h. Most of these perform simple SFR manipulation.
Below are some macros from ports.h.

mPORTBSetPinsAnalogIn(bits) Configures TRISB and AD1PCFG so that pins with a 1 in bits are
analog inputs.

mPORTxSetPinsDigitalOut(bits) Configures TRISx and ADIPCFG so that pins of port x with a 1 in
bits are digital outputs.

mPORTxSetPinsDigitalln(bits) Configures TRISx and ADIPCFG so that pins of port x with a 1 in
bits are digital inputs.
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mPORTxOpenDrainOpen(bits) Configures TRISx and ODCx so that pins with a 1 in bits are open-
drain outputs.

mPORTxOpenDrainClose(bits) Configures TRISx and ODCx so that pins with a 1 in bits are digital
inputs.

mPORTxREAD() Reads the digital inputs from port x. Equivalent to PORTx.
mPORTxWrite(bits) Writes digital outputs to port x. Equivalent to LATx = bits.

mCNOpen(config, pins, pullups) Choosing config = 0 or CN_ON simply enables CN interrupts in CN-
CON. CNEN is set to pins and CNPUE is set to pullups.

*** DO NOT USE THE PERIPHERAL LIBRARY VERSIONS OF THE INTERRUPT
SETTING. ***

Apart from these, you can use the interrupt setting functions INTSetVectorPriority(vec, pri),
IntSetVectorSubPriority(vec, subpri), INTClearFlag(IRQ), and INTEnable(IRQ, val) from Chap-
ter 6, using the IRQ name _CHANGE_NOTICE_IRQ and the vector name _-CHANGE_NOTICE_VECTOR.

7.4 Sample Code

In this example, we set up the following inputs and outputs:
e Pins RBO and RB1 as digital inputs with internal pull-up resistors enabled.
e Pins RB2 and RB3 as digital inputs without pull-ups.
e Pins RB4 and RB5 as buffered digital outputs.
e Pins RB6 and RB7 as open-drain digital outputs.
e Pins AN8-AN15 as analog inputs.
e Port F as digital input, with RF4 with an internal pull-up.

e Change notification based on pins RB0O, RF4, and RF5. Since both ports B and F are involved in the
change notification, both ports must be read inside the ISR to allow the interrupt to be re-enabled.

The following code is written with direct SFR manipulation.

Code Sample 7.1. DI0O_sfrs.c. Digital input, output, and change notification.

//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded
#include "NU32.h" // plib.h, config bits, constants, funcs for startup and UART

unsigned 0ldB, oldF, newB, newF; // to hold the port B and F reads

void __ISR(_CHANGE_NOTICE_VECTOR, IPL3SOFT) CNISR(void) { // INT step 1

newB = PORTB; // since pins on port B and F are being monitored ...

newF = PORTF; // ... by CN, must read both to allow continued functioning
// ... do something here with 0ldB, oldF, newB, newF ...

0ldB = newB; // save the current values for future use

oldF = newF;

LATBINV = 0xFO; // toggle buffered RB4, RB5 and open-drain RB6, RB7

IFS1CLR = 1; // clear the interrupt flag

}

void main(void) {
NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init
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AD1PCFG = O0xOOFF; // set port B pins 8-15 as analog in, 0-7 as digital pins
TRISB = OxFFOF; // set port B pins 4-7 as digital outputs, 0-3 as digital inputs
ODCBSET = 0x00BO; // set ODCB bits 6 and 7, so RB6, RB7 are open drain outputs

CNPUEbits.CNPUE2 = 1; // CN2/RBO input has internal pull-up
CNPUEbits.CNPUE3 = 1; // CN3/RB1 input has internal pull-up
CNPUEbits.CNPUE17 = 1; // CN17/RF4 input has internal pull-up

0ldB = PORTB; // bits 0-3 are relevant input
oldF = PORTF; // all of port F are inputs, by default
LATB = 0x0050; // RB4 is buffered high, RB5 is buffered low,

// RB6 is floating open drain (could be pulled to 3.3 V by
// external pull-up resistor), RB7 is low

INTDisableInterrupts(); // INT step 2

CNCONbits.ON = 1; // INT step 3, configure peripheral: turn on CN

CNEN = (1<<2)|(1<<17)|(1<<18); // INT step 3: listen to CN2/RBO, CN17/RF4, CN18/RF5
IPC6bits.CNIP = 3; // INT step 4: set interrupt priority

IPC6bits.CNIS = 2; // INT step 4: set interrupt subpriority

IFS1bits.CNIF = 0; // INT step 5: clear the interrupt flag

IEC1bits.CNIE = 1; // INT step 6: enable the CN interrupt

INTEnableSystemMultiVectoredInt(); // INT step 7: CPU enabled for mvec interrupts

while(1); // infinite loop

The following code implements the same functionality, but this time using peripheral library functions.

Code Sample 7.2. DI0_plib.c. Digital input, output, and change notification using the peripheral library.

//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded
#include "NU32.h" // plib.h, config bits, constants, funcs for startup and UART

unsigned oldB, oldF, newB, newF; // to hold the port B and F reads

void __ISR(_CHANGE_NOTICE_VECTOR, IPL3SOFT) CNISR(void) { // INT step 1

newB = mPORTBRead () ; // since pins on port B and F are being monitored ...

newF = mPORTFRead() ; // ... by CN, must read both to allow continued functioning
// ... do something here with 0ldB, oldF, newB, newF ...

0ldB = newB; // save the current values for future use

0ldF = newF;

LATBINV = OxFO; // toggle buffered RB4, RB5 and open-drain RB6, RB7
INTClearFlag(_CHANGE_NOTICE_IRQ); // clear the interrupt flag

void main(void) {
NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init

mPORTBSetPinsAnalogIn(BIT_8|BIT_9|BIT_10|BIT_11|BIT_12|BIT_13|BIT_14|BIT_15);
mPORTBSetPinsDigitalOut (BIT_4 | BIT_5 | BIT_6 | BIT_7);
mPORTBSetPinsDigitalIn(BIT_O | BIT_1 | BIT_2 | BIT_3);
mPORTBOpenDrainOpen(BIT_6 | BIT_7);

INTDisableInterrupts(); // INT step 2

// INT step 3: turn on CN and choose pins for CN (also choose pull-ups)

mCNOpen (CN_ON, CN2_ENABLE | CN17_ENABLE | CN18_ENABLE,
CN2_PULLUP_ENABLE | CN3_PULLUP_ENABLE | CN17_PULLUP_ENABLE) ;
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01dB = mPORTBRead () ;
0ldF = mPORTFRead();

mPORTBWrite (0x0050) ;

INTSetVectorPriority (_CHANGE_NOTICE_VECTOR, 3); // INT step 4: priority
INTSetVectorSubPriority (_CHANGE_NOTICE_VECTOR, 2); // INT step 4: subpriority
INTClearFlag(_CHANGE_NOTICE_IRQ); // INT step 5

INTEnable (_CHANGE_NOTICE_IRQ, INT_ENABLED); // INT step 6
INTEnableSystemMultiVectoredInt () ; // INT step 7

while(1); // infinite loop

7.5 Chapter Summary

e The PIC32 has DIO ports A through G. Only ports B and D have all 16 bits. Nearly all of the pins can
be configured to be digital input or digital output. Some of the outputs can be configured to be open
drain. Only port B inputs can be used for analog input.

e Twenty-two pins can be configured as change notification pins. For those pins that are enabled as
change notification pins, any change on their inputs will trigger an interrupt. The change notification
pins also offer an optional internal pull-up resistor so that the input registers as high when it is left
floating. These pull-up resistors can be used regardless of whether change notification is used on the
pins. The internal pull-up resistor allows simple interfacing of pushbuttons, for example.

e In the change notification ISR, ports with enabled change notification pins must be read to clear the
interrupt.

7.6 Exercises

1. True or false? If an input pin is not connected to anything, it will always read digital low.

2. You are setting up port B to receive analog input and digital input, and to write digital output. Here is
how you would like to configure the port. (Pin x corresponds to RBx.)
e Pin 0 is an analog input.
e Pin 1 is a “typical” buffered digital output.
e Pin 2 is an open-drain digital output.
e Pin 3 is a “typical” digital input.
e Pin 4 is a digital input with an internal pull-up resistor.
e Pins 5-15 are analog inputs.

e Pin 3 is monitored for change notification, and the change notification interrupt is enabled.

Questions:

(a) Which digital pin would most likely have an external pull-up resistor? What would be a reasonable
range of resistances to use? Explain what factors set the lower bound on the resistance and what
factors set the upper bound on the resistance.

(b) To achieve the configuration described above, give the eight-digit hex values you should write to
ADI1PCFG, TRISB, ODCB, CNPUE, CNCON, and CNEN. (Some of these SFRs have unimple-
mented bits 16-31; you can just write 0 for those bits.)
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Chapter 8

Counter/Timers

The basic function of counters is quite simple: they count pulse rising edges. If the pulses come from
a fixed frequency clock, they can be thought of as timers, hence the words counter and timer are often
used interchangeably. Since Microchip’s documentation mostly refers to them as timers, we’ll adopt that
terminology. The pulses may come from the internal peripheral bus clock or external sources. Timers can
generate an interrupt (1) when a preset number of pulses has been counted or (2) on the falling edge of an
external pulse whose duration is being timed.

8.1 Overview

The PIC32 is equipped with five 16-bit peripheral timers, Timerl-5. A timer increments on the rising edge of
a clock signal, which may come from the PBCLK or from an external source of pulses, such as an encoder. If
an external source is used, the input for Timerx is on the pin TxCK. A prescaler N > 1 determines how many
clock pulses must be received before the counter increments. If the prescaler is set to NV = 1, the counter
increments on each clock rising edge; if it is set to IV = 8, it increments every eighth rising edge. The clock
source type (internal or external) and the prescaler value is chosen by setting the value of the SFR TxCON.

Each 16-bit timer can count from 0 up to a period P < 216 — 1 = 65535 = 0xFFFF. The current count is
stored in the SFR TMRx and the value of P can be chosen by writing to the period register SFR, PRx. When
the timer reaches the value P, a period match occurs, and after N more pulses are received, the counter “rolls
over” to 0. If the input to the timer is the 80 MHz PBCLK, with 12.5 ns between rising edges, then the time
between rollovers is T = (P 4+ 1) x N x 12.5 ns. Choosing N = 1 and P = 79,999, we get T = 1 ms, and
changing N to 8 gives T'= 8 ms. By configuring the timer to use the PBCLK and to generate an interrupt
when a period match occurs, the timer can implement a fixed frequency function (a control loop, for example).

If the period P is set to 0, then once the count reaches zero, the timer will never increment again (it keeps
rolling over). No interrupt can be generated by a period match if P = 0.

There are two types of timer on the PIC32, Type A and Type B, with slightly different features explained
shortly. Only Timerl is type A; Timers 2-5 are type B. The timers can be used in the following modes, chosen
by the SFR TxCON:

Counting PBCLK pulses. This is the mode described above, and it is often used to generate interrupts
at a desired frequency by appropriate setting of N and P. It could also be used to time the duration
of some code, much like WriteCoreTimer () and ReadCoreTimer () are used in Chapter 5, except that
peripheral timers can be set to increment once every PBCLK cycle instead of every 2 SYSCLK cycles.

Synchronous counting of external pulses. For the timer Timerx, an external pulse source is connected
to the pin TxCK. The timer count increments after each rising edge of the external source. This mode
is called “synchronous” because timer increments are synchronized to the PBCLK; the timer does not
actually increment until the rising edge of PBCLK after the rising edge of the external source. If the
external pulses are too fast, the timer will not accurately count them. According to the Electrical
Characteristics section of the Data Sheet, the duration of the high and low portions of a pulse should
be at least 37.5 ns.
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Asynchronous counting of external pulses (Type A Timerl only). The Type A pulse counting cir-
cuit can be configured to increment independently of the PBCLK. Because of this, Timerl can count
even when the PBCLK is not operating, such as in the power-saving Sleep mode. If there is a period
match, Timerl can generate an interrupt and wake up the PIC32.

When Timerl is set up to count external pulses and the Secondary Oscillator is enabled by the
configuration bit FSOSCEN of DEVCFGI, then the secondary oscillator on the pins SOSCO and SOSCI
becomes the timer input. Typically a precise 32.768 kHz oscillator (2! pulses every second) is used on
SOSCO/SOSCT for the Real-Time Clock and Calendar function (Chapter 20).

The Timerl asynchronous counting mode can count shorter pulses than the synchronous mode, down
to 10 ns high and low durations.

Timing the duration of an external pulse. This is also called “gated accumulation mode.” For Timerx,
when the input on external pin TxCK goes high, the counter starts incrementing according to the
PBCLK and the prescaler N. When the input drops low, the count stops. The timer can also generate
an interrupt when the input drops low, for example signaling an ISR to examine the duration of the
pulse.

Important differences between Timerl (Type A) and Timer2-5 (Type B) are:
e Only Timerl can count external pulses asynchronously, as described above.

e Timerl can have prescalers N = 1, 8, 64, and 256, while Timer2-5 can have prescalers N = 1, 2, 4, 8,
16, 32, 64, and 256.

e Timer2 and Timer3 can be chained to make a single 32-bit timer, called Timer23. Timer4 and Timerb
can similarly be used to make a single 32-bit timer, called Timer45. These combined timers allow
counts up to 232 — 1, or over 4 billion. When two timers are used to make Timerxy (x < y), Timerx is
called the “master” and Timery is the “slave”—only the prescaler and mode information in TxCON are
relevant, while that in TyCON is ignored. When Timerx rolls over from 2% — 1 to 0, it sends a clock
pulse to increment Timery. In Timerxy mode, the 16 bits of TMRy are copied to the most significant
16 bits of the SFR TMRx, so the 32 bits of TMRx contain the full count of Timerxy. Similarly, the 32
bits of PRx contain the 32-bit period match value Pxy. The interrupt associated with a period match
(or a falling input in gated accumulation mode) is actually generated by Timery, so interrupt settings
should be chosen for Timery’s IRQ and vector.

Timers are used in conjunction with digital waveform generation by the Output Compare peripheral
(Chapter 9) and in timing digital input waveforms by the Input Capture peripheral (Chapter 15). A timer
can also be used to automatically trigger analog to digital conversions (Chapter 10).

8.2 Details

The following SFRs are associated with the timers. All SFRs default to 0x0000, except the PRx SFRs, which
default to OxFFFF.

T1CON The Timerl control SFR configures the behavior of the Type A timer Timerl. Important bits
include

T1CON(15), or TICONDits.ON: 1 = timer is enabled, 0 = timer is off.

T1CON(T7), or TICONDbits. TGATE: 1 = gated time accumulation is enabled, 0 = gated time accumu-
lation is disabled. The gate input is TICK. (Gated time acculumation mode requires TICON(1)
=0.)

T1CON(5:4), or TICONbDits. TCKPS: 0b11 = 1:256 prescaler, 0b10 = 1:64 prescaler, 0b01 = 1:8
prescaler, ObO0 = 1:1 prescaler.

T1CON(2), or TICONbDits. TSYNC: 1 = external clock inputs are synchronized with the PBCLK, 0 =
unsynchronized.
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T1CON(1), or TICONDits. TCS: 1 = external clock from T1CK pin, 0 = from PBCLK.
TxCON, x = 2 to 5 These SFRs configure the behavior of the Type B timers Timer2-5.

TxCON(15), or TxCONDits.ON: 1 = timer is enabled, 0 = timer is off.

TxCON(7), or TxCONbits. TGATE: 1 = gated time accumulation is enabled, 0 = gated time accumu-
lation is disabled. The gate input is TxCK. (Gated time acculumation mode requires TxCON(1)
=0.)

TxCON{(6:4), or TxCONDbits. TCKPS: 0b111 = 1:256 prescaler, 0b110 = 1:64 prescaler, 0b101 = 1:32
prescaler, 0b100 = 1:16 prescaler, 0b011 = 1:8 prescaler, 0b010 = 1:4 prescaler, 0b001 = 1:2
prescaler, Ob000 = 1:1 prescaler.

TxCON(3), or TxCONbits.T32: This bit is only relevant for x = 2 and 4 (Timer2 and Timer4), and
it determines whether Timer3 and Timer5 are chained to make a 32-bit timer, respectively. 1 =
chain Timerx with Timery to make a 32-bit timer Timerxy, 0 = Timerx and Timery are separate
16-bit timers. For a 32-bit timer, TyCON settings are ignored; TMRy is enabled and its clock
comes from the rollover of TMRx after hitting OxFFFF.

TxCON(1), or TxCONDits. TCS: 1 = external clock from TxCK pin, 0 = from PBCLK.

TMRx, x = 1 to 5 TMRx(15:0) stores the 16-bit count of Timerx. TMRx resets to 0 on the next clock
input (after the prescaler) after TMRx reaches the number stored in PRx. This is called a period
match. In Timerxy 32-bit mode, TMRx contains the 32-bit value of the chained timer, and period
match occurs when TMRx = PRx.

PRx, x = 1 to 5 PRx(15:0) of the period register contains the maximum value of the count of TMRx
before it resets to zero on the next count. An interrupt can be generated on this period match. In
Timerxy 32-bit timer mode, PRx contains the 32-bit value of the period Pxy.

If the timer is enabled (TxCON.ON = 1), the timer can generate an interrupt on the falling edge of the
gate input when it is in gated mode (TxCONbits. TCS = 0 and TxCONbDits. TGATE = 1) or a period match
otherwise. To enable the interrupt for Timerx, the interrupt enable bit IECObits. TxIE must be set. The
interrupt flag bit IFSObits. TxIF should be cleared and the priority and subpriority bits IPCxbits. TxIP and
IPCxbits. TxIS must be written. See the the table in Chapter 6 or in the Interrupt Controller section of the
Data Sheet. In 32-bit Timerxy mode, interrupts are generated by Timery; interrupt settings for Timerx are
ignored.

8.3 Library Functions

The macros below can be found in pic32mx/include/peripheral/timer.h along with some constants for
code readability.

OpenTimerx(config, period), x = 1 to 5 Sets TMRx to 0, the 16-bit PRx to period, and TxCON to
config.

OpenTimerxy(config, period), x = 2 or 4, y = x+1 Sets the 32-bit count in TMRx to 0, the 32-bit
PRx to period, and TxCON to config, making sure TxCONbits.ON = 1 and TxCONbits.T32 = 1.

CloseTimerx(), x = 1 to 5 Disables the interrupt associated with Timerx and turns it off (clears TxCON
to 0).

CloseTimerxy(), x = 2 or 4, y = x+1 Disables the interrupt and turns off both timers.
WriteTimerx(value), x = 1 to 5 Simply performs TMRx = value, where value is a 16-bit value.

WriteTimerxy(value), x = 2 or 4, y = x+1 Simply performs TMRx = value, where value is a 32-bit
value.
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ReadTimerx(), x = 1 to 5 Returns TMRx.
ReadTimerxy(), x = 2 or 4, y = x+1 Returns TMRx.
WritePeriodx(value), x = 1 to 5 Simply performs PRx = value, where value is a 16-bit value.

WritePeriodxy(value), x = 2 or 4, y = x+1 Simply performs PRx = value, where value is a 32-bit
value.

ReadPeriodx(value), x = 1 to 5 Returns PRx.

ReadPeriodxy(), x = 2 or 4, y = x+1 Returns PRx.

8.4 Sample Code

8.4.1 A Fixed Frequency ISR

To create a 5 Hz ISR with an 80 MHz PBCLK, the interrupt must be triggered every 16 million PBCLK
cycles. The highest a 16-bit timer can count is 26 — 1. Insteaad of wasting two timers to make a 32-bit timer
with a prescaler N = 1, let’s use a single 16-bit timer with a prescaler N = 256. We’ll use Timerl. We should
choose PR1 to satisfy

16000000 = (PR1 + 1) * 256

that is, PR1 = 62499. The ISR in the following code toggles a digital output at 5 Hz, creating a 2.5 Hz
square wave (a flashing LED on the NU32).

Code Sample 8.1. TMR_5Hz.c. Timerl toggles RA5 five times a second (LED2 on the NU32 flashes).

//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded
#include "NU32.h" // plib.h, config bits, constants, funcs for startup and UART

void __ISR(_TIMER_1_VECTOR, IPL5SOFT) Timer1ISR(void) { // INT step 1: the ISR
LATAINV = 0x20; // toggle RA5
IFSObits.T1IF = 0; // clear interrupt flag

}

int main(void) {
NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init

INTDisableInterrupts(); // INT step 2: disable interrupts at CPU
// INT step 3: setup peripheral

PR1 = 62499; // set period register

TMR1 = 0; // initialize count to O

T1CONbits.TCKPS = 3; // set prescaler to 256

T1CONbits.TGATE = O; // not gated input (the default)

T1CONbits.TCS = 0; // PCBLK input (the default)

T1CONbits.ON = 1; // turn on Timerl

IPC1ibits.T1IP = 5; // INT step 4: priority

IPC1bits.T1IS = O; // subpriority

IFSObits.T1IF = O; // INT step 5: clear interrupt flag

IECObits.T1IE = 1; // INT step 6: enable interrupt

INTEnableSystemMultiVectoredInt(); // INT step 7: enable interrupts at CPU

while (1);
return O;
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8.4.2 Counting External Pulses

The following code uses the 16-bit timer Timer2 to count the rising edges on the input T2CK. The 32-bit
Timer45 creates an interrupt at 2 kHz to toggle a digital output, generating a 1 kHz pulse train on RD1 that
acts as input to T2CK. Although a 16-bit timer can certainly generate a 1 kHz pulse train, we use a 32-bit
timer just to show the configuration. In Chapter 9 we will learn about the Output Compare peripheral, a
better way to use a timer to create more flexible waveforms.

To create an IRQ every 0.5 ms (2 kHz), we use a prescaler N =1 and a period match PR4 = 39,999, so

(PR4 + 1) * N * 12.5 ns = 0.5 ms

The code below uses both the peripheral library as well as direct SFR manipulation. If you wait 65
seconds, you’ll see Timer2 roll over.

Code Sample 8.2. TMR_external_count.c. Timer45 creates a 1 kHz pulse train on RD1, and these external
pulses are counted by Timer2.

//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded
#include "NU32.h" // plib.h, config bits, constants, funcs for startup and UART

void __ISR(_TIMER_5_VECTOR, IPL4SOFT) Timer5ISR(void) { // INT step 1: the ISR
LATDINV = 0b10; // toggle RD1
IFSObits.T5IF = 0; // clear interrupt flag

}

int main(void) {
char message[200];
int i;

NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init
TRISDbits.TRISD1 = O; // make pin 1 of Port D an output

// plib function to set up and turn on Timer2. We use the full period, OxFFFF,

// for counting external pulses. In the config info, only T2_SOURCE_EXT and T2_0N

// are necessary; others for 1:1 prescaler, no gate, and 32-bit mode off are defaults.
OpenTimer2(T2_SOURCE_EXT | T2_0N | T2_PS_1_1 | T2_GATE_OFF | T2_32BIT_MODE_OFF, OxFFFF);

INTDisableInterrupts(); // INT step 2: disable interrupts at CPU
// INT step 3: setup Timer45: T4CON, TMR4, PR4, INT for T5
T4CON = 1 << 15 | 1 << 3; // turn on Timer4 in 32-bit; others default
PR4 = 39999; // set period register for 2 kHz INT
TMR4 = 0; // initialize count to O
IPC5bits.T5IP = 4; // INT step 4: priority for Timer5 (INT for Timer45)
IFSObits.T5IF = O; // INT step 5: clear interrupt flag
IECObits.T5IE = 1; // INT step 6: enable interrupt

INTEnableSystemMultiVectoredInt(); // INT step 7: enable interrupts at CPU

while (1) {
sprintf (message,"Elapsed time: %5u ms\r\n",TMR2);
NU32_WriteUART1(message) ;
for (i=0; i<10000000; i++); // for loop to 10M; delay print statements
}

return O;
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8.4.3 Timing the Duration of an External Pulse

In this last example we modify our previous code so that Timer45 creates a train of pulses on RD1 that are
high for one second and low for one second (a 500 Hz square wave). These pulses are timed by the 32-bit
Timer23 in gated accumulation mode. The accumulated count begins when the T2CK input from RD1 goes
high and stops when the T2CK input drops low. The falling edge calls an ISR that resets the Timer23 count
and displays the count, and the duration in seconds, to the screen. You should find that the count is very
close 80 million, as expected for the one second pulses generated by Timer45.

Code Sample 8.3. TMR pulse duration.c. Timer45 creates a series of 1 second pulses on RD1. These
pulses are input to T2CK and Timer23 measures their duration.

//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded
#include "NU32.h" // plib.h, config bits, constants, funcs for startup and UART

void __ISR(_TIMER_5_VECTOR, IPL4SOFT) Timer5ISR(void) { // INT step 1: the ISR
LATDINV = 0b10; // toggle RD1
IFSObits.T5IF = 0; // clear interrupt flag

}

void __ISR(_TIMER_3_VECTOR, IPL3SOFT) Timer23ISR(void) { // INT step 1: the ISR
char msg[100];

IFSObits.T3IF = 0; // clear interrupt flag
sprintf (msg, "The count was %10u, or %10.8f seconds.\r\n",TMR2,TMR2/80000000.0) ;
NU32_WriteUART1 (msg) ;
TMR2 = 0; // reset Timer23
}

int main(void) {
char message[200] ;
int i;

NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init
TRISDbits.TRISD1 = 0; // make pin 1 of Port D an output

// plib function to set up and turn on the 32-bit Timer23. We use the full period,
// OxFFFFFFFF, to avoid unnecessary rollovers in timing durations. In the config
// we specify only the gated mode and to turn Timer23 on; other defaults are fine.
OpenTimer23(T23_0N | T23_GATE_ON, OxFFFFFFFF);

INTDisableInterrupts(); // INT step 2: disable interrupts at CPU

// INT step 3: setup Timer45: T4CON, TMR4, PR4, INT for T5
T4CON = 1 << 15 | 1 << 3; // turn on Timer4 in 32-bit; others default
PR4 = 79999999; // set period register for 1 Hz INT
TMR4 = 0; // initialize count to O
IPCSbits.T5IP = 4; // INT step 4: priority for Timer5 (INT for Timer45)
IPC3bits.T3IP = 3; // priority for Timer3 (INT for Timer23)
IFSObits.T5IF = O; // INT step 5: clear interrupt flag for Timer4b
IFSObits.T3IF = O; // clear interrupt flag for Timer23
IECObits.T5IE = 1; // INT step 6: enable interrupt for Timer45
IECObits.T3IE = 1; // enable interrupt for Timer23

INTEnableSystemMultiVectoredInt(); // INT step 7: enable interrupts at CPU

while (1);
return O;
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8.5 Chapter Summary

e All five of the 16-bit PIC32 timers can be used to generate fixed-frequency interrupts, count external
pulses, and time the duration of external pulses. Additionally, the Type A Timerl can asynchronously
count external pulses even when the PIC32 is in Sleep mode, while the Type B timers Timer2 and
Timer3 can be chained to make the 32-bit timer Timer23. Similarly, Timer4 and Timer5 can be chained
to make the 32-bit timer Timer45.

e For a 32-bit timer Timerxy, the timer configuration information in TxCON is used (TyCON is ignored),
and the interrupt enable, flag status, and priority bits are configured for Timery (this information for
Timerx is ignored). The 32-bit Timerxy count is held in TMRx and the 32-bit period match value is
held in PRx.

e A timer can generate an interrupt when (1) the external pulse being timed falls low (gated accumulation
mode) or (2) the count reaches a value stored in a period register (period match).

8.6 Exercises

1. Assume PBCLK is running at 80 MHz. Give the four-digit hex values for T3CON and PR3 so that
Timer3 is enabled, accepts PBCLK as input, has a 1:64 prescaler, and rolls over (generates an interrupt)
every 16 ms.

2. Using a 32-bit timer (Timer23 or Timer45), what is the longest duration you can time, in seconds,
before the timer rolls over? (Use the prescaler that maximizes this time.)
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Chapter 9

Output Compare

“Output compare” refers to the fact that the count of a timer is compared against a fixed value, and when
they are equal, a digital output is set high or low. This can be used to generate a single pulse of specified
duration or a continuous train of pulses. Each mode of operation can generate an interrupt.

Like most microcontrollers, the PIC32 does not come with analog output (DAC). Instead, one way to
transmit an analog value is by using the timing of a fixed period pulse train from a single digital output: the
analog value is proportional to the duty cycle of the pulse train, where the duty cycle is the percentage of
the period that the signal is high. This is often called “pulse width modulation” (PWM). PWM signals are
commonly used as input to H-bridge amplifiers that drive motors. High-frequency PWM can also be low-pass
filtered to create a true analog output.

9.1 Overview

The five output compare peripherals can be configured to operate in seven different modes. In all modes, the
module uses either the count of the 16-bit timer Timer2 or Timer3, or the count of the 32-bit timer Timer23,
depending on the Output Compare Control SFR OCxCON (where x = 1...5 is the particular module). We
will call the timer Timery, where y = 2, 3, or 23. Timery must be set up with its own prescaler and period
register, which will influence the behavior of the OC peripheral.

The OC peripheral’s operating modes consist of three “single compare” modes, two “dual compare” modes,
and two PWM modes, as chosen by three bits in OCxCON. In the single compare modes, the Timery count
TMRy is compared to the value in OCxR. When they match, the OC output is either set high, cleared
low, or toggled, depending on the mode. The last mode generates a continuous pulse train, with the period
determined by the period register PRy of Timery and the pulse duration determined by OCxR.

In the dual compare modes, TMRy is compared to two values, OCxR and OCxRS. On the first match,
the output is driven high, and on the second the output is driven low. Depending on a bit in OCxCON,
either a single pulse is generated or a continuous pulse train is produced.

The two PWM modes create continuous pulse trains. Each pulse begins (is set high) at rollover of the
timer base. The output is then set low when the timer count reaches OCxR. To change the value of OCxR,
the user’s program may alter the value in OCxRS at any time. This value will then be transferred to OCxR
at the beginning of the new time period. The duty cycle of the pulse train, as a percentage, is

duty cycle = 0CxR/(PRy + 1) x 100%.

The two PWM modes also offer the use of a fault protection input. If this is chosen, then the OCFA pin
(corresponding to OC1 through OC4) or the OCFB pin (corresponding to OC5) must be high for PWM to
operate. If the pin drops to logic low, corresponding to some external fault condition, then the the PWM
output will be high impedance until the fault condition is removed and the PWM mode is reset by a write to
OCxCON.
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9.2 Details

The output compare modules are controlled by the following SFRs. The OCxCON SFRs default to 0x0000
on reset; the OCxR and OCxRS SFR values are unknown after reset.

OCxCON, x = 1 to 5 This output compare control SFR determines the operating mode of OCx.

OCxCON(15), or OCxCONDits.ON: 1 = output compare is enabled, 0 = disabled and alterations to
the OC SFRs can be made.

OCxCON(5), or OCxCONDits.0OC32: 1 = use all 32 bits of OCxR and OCxRS to compare to the
32-bit timer source, 0 = use only OCxR(15:0) and OCxRS(15:0) to compare to a 16-bit timer
source.

OCxCON({4), or OCxCONDits.OCFLT: The read-only PWM fault condition status bit. 1 = PWM
fault has occurred, 0 = no fault has occurred.

OCxCON(3), or OCxCONbits.OCTSEL: This timer select bit chooses the timer used for comparison.
1 = Timer3, 0 = Timer2. If the 32-bit timer Timer23 is selected using OCxCONDbits.OC32 = 1,
then the OCTSEL bit is ignored.

OCxCON(2:0), or OCxCONbits.OCM: These three bits determine the operating mode:

0b111 PWM mode with fault pin enabled. OCx is set high on the timer rollover, then set low when
the timer value matches OCxR. The SFR OCxRS can be altered at any time, and it is copied
to OCxR at the beginning of the next timer period. (OCxR should be initialized before the
OC module is enabled, to handle the first PWM cycle. After the OC module is enabled, OCxR
is read-only.) The duty cycle of the PWM signal is OCxR/(PRy + 1) x 100%, where PRy is
the period register of the timer. If the fault pin, OCFA for OC1-4 and OCFB for OC5, drops
low, the read-only fault status bit OCxCONDbits.OCFLT is set to 1, the OCx output is set
to high impedance, and an interrupt is generated. The fault condition is cleared and PWM
resumes once the fault pin goes high and the OCxCONDbits.OCM bits are rewritten. One
possible use of the fault pin is in conjunction with an Emergency Stop button that is normally
high but drops low when the user presses it. If the OCx output is driving an H-bridge that
powers a motor, setting the OCx output to high impedance will signal the H-bridge to stop
sending current to the motor.

0b110 PWM mode with fault pin disabled. Identical to above, without the fault pin.

0b101 Dual compare mode, continuous output pulses. When the module is enabled, OCx is driven
low. OCx is driven high on a match with OCxR and driven low on a match with OCxRS. The
process repeats, creating an output pulse train. An interrupt can be generated when OCx is
driven low.

0b100 Dual compare mode, single output pulse. Same as above, except the OCx pin will remain low
after the match with OCxRS until the OC mode is changed or the module is disabled.

0b011 Single compare mode, continuous pulse train. When the module is enabled, OCx is driven
low. The output is toggled on all future matches with OCxR until a mode change has been
made or the module is disabled. An interrupt can be generated on each toggle.

0b010 Single compare mode, single high pulse. When the module is enabled, OCx is driven high.
OCx will be driven low and an interrupt can be generated on a match with OCxR. OCx will
remain low until the mode is changed or the module disabled.

0b001 Single compare mode, single low pulse. When the module is enabled, OCx is driven low. OCx
will be driven high and an interrupt can be generated on a match with OCxR. OCx will
remain high until the mode is changed or the module disabled.

0b000 The output compare module is disabled but still drawing current, unless OCxCONbits.ON =
0.

OCxR, x = 1 to 5 If OCxCONDits.OC32 = 1, then all 32-bits of OCxR are used for the compare to the
32-bit counter TMR23. Otherwise, only OCxR(15:0) is compared to the 16-bit counter Timer2 or
Timer3, depending on OCxCONbits.OCTSEL.
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duty cycle =100% * OCxR / (PRy + 1)

PRy +1

OCx
output

1 | | |
@ Timery rolls over, the TylF interrupt flag is asserted, the OCx pin is driven high,
and OCxRS is loaded into OCxR.

@ TMRy matches the value in OCxR and the OCx pin is driven low.
Figure 9.1: A PWM waveform from OCx using Timery as the time base.

OCxRS, x = 1 to 5 If OCxCONbits.OC32 = 1, then all 32-bits of OCxRS are used for the compare to
the 32-bit counter TMR23. Otherwise, only OCxRS(15:0) is compared to the 16-bit counter Timer2 or
Timer3, depending on OCxCONbits.OCTSEL. This SFR is not used in the single compare modes.

Timer2, Timer3, or Timer23 (depending on OCxCONDbits.OC32 and OCxCONbits. OCTSEL) must be
separately configured. Output compare modules do not affect the behavior of the timers; they simply compare
values in OCxR and OCxRS and alter the digital output OCx on match events.

The interrupt flag status and enable bits for OCx are IFSObits.OCxIF and IECObits.OCxIE, and the
priority and subpriority bits are IPCxbits.OCxIP and IPCxbits.OCxIS.

PWM Modes The most common modes for Output Compare are the PWM modes. They can be used to
drive H-bridges powering motors or to continuously transmit analog values represented by the duty cycle.
Microchip often refers to the duty cycle as the duration OCxR of the high portion of the PWM waveform,
but it is more standard to refer to the duty cycle in the range 0 to 100%. A plot of a PWM waveform is
shown in Figure 9.1.

9.3 Library Functions

The file pic32mx/include/peripheral/outcompare.h contains macros and readable constants for the output
compare peripheral.

OpenOCx(config, vall, val2) Sets OCxCON to config, OCIRS to vall, and the initial OC1R to val2.

SetDCOCxPWDM (hightime) Sets the duration of the high portion of the PWM signal. Equivalent to
0CxRS = hightime.

9.4 Sample Code

9.4.1 Generating a Pulse Train with PWM

Below is sample code using OC1 with Timer2 to generate a 10 kHz 50% duty cycle PWM signal with no
fault pin.
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Code Sample 9.1. 0C_PWM_sfrs.c Generating 10 kHz PWM with 50% duty cycle.

//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded
#include "NU32.h" // plib.h, config bits, constants, funcs for startup and UART

int main(void) {
NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init

T2CONbits.TCKPS = 2; // Timer2 prescaler N=4 (1:4)

PR2 = 1999; // period = (PR2+1) * N * 12.5 ns = 100 us, 10 kHz

TMR2 = 0; // initial TMR2 count is 0O

0C1CONbits.OCM = 0b110; // PWM mode without fault pin; other OC1CON bits are defaults
0C1RS = 500; // duty cycle = OC1RS/(PR2+1) = 25}

0C1R = 500; // initialize before turning 0OC1 on; then it is read-only
T2CONbits.ON = 1; // turn on Timer2

0C1CONbits.ON = 1; // turn on 0C1

// some code ...

0C1RS = 1000; // set duty cycle to 507
while (1);
return O;

Here’s the same code written with library functions.

Code Sample 9.2. 0C_PWM_plib.c Generating 10 kHz PWM with 50% duty cycle using library functions.

//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded
#include "NU32.h" // plib.h, config bits, constants, funcs for startup and UART

int main(void) {
NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init

// some defaults could be relied on below
OpenTimer2(T2_0ON | T2_PS_1_4, 1999);
0pen001(0C_ON | OC_TIMER2_SRC | OC_PWM_FAULT_PIN_DISABLE, 500, 500);

// some code ...
SetDCOC1PWM(1000); // set duty cycle to 50%

while (1);
return O;

9.4.2 Analog Output
DC Analog Output

We can use a PWM signal of constant duty cycle to generate a DC (constant) analog output by low-pass
filtering the PWM. The low-pass filter essentially time-averages the high and low voltages of the waveform,

average voltage = duty cycle * 3.3 V
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LI T R

PWM waveform RC filter

0G5 >_‘f\/\/\/\ “averaged”

C output voltage

Figure 9.2: An RC low-pass filter “averaging” the PWM output from OCS5.

PWM

RC filtered output

RC time constant

Figure 9.3: A close-up of the PWM, the RC filter output (with RC charging/discharging time constant
illustrated), and the true time-averaged output (dashed). If the variation in the RC filtered output is
unacceptably large, a larger value of RC should be chosen.

assuming that the output compare module swings between 0 and 3.3 V (the range may actually be a bit less).

There are many ways to build circuits to low-pass filter a signal, including active filter circuits using
op amps. Here we focus on a simple passive RC filter, as shown in Figure 9.2. The voltage V- across the
capacitor C is the output of the filter. In the limit where R is zero, then the output compare module attempts
to source or sink enough current to allow the capacitor voltage to exactly track the nominal PWM square
wave, and there is no “averaging” effect. As the resistance R is increased, however, the resistor increasingly
limits the current I available to charge or discharge the capacitor, meaning that the capacitor’s voltage
changes more and more slowly, according to the relationship dVe/dt = I/C.

The charging and discharging of the capacitor, and its relationship to the product RC, is shown in
Figure 9.3. During the low portion of the PWM, the voltage across the capacitor decays toward zero according
to the first-order exponential

Vc<t) = Vc(O) e_t/RC,

where time ¢ = 0 corresponds to the beginning of the low portion of the PWM. The time constant RC, which
has units of seconds, can be visualized by extending the slope dV/dt from Vi(0) until it crosses Vo = 0.
The time between ¢ = 0 and the crossover is equal to RC'.

During the high portion of the PWM, the voltage follows a first-order exponential rise toward 3.3 V.

In Figure 9.3, the RC filter voltage variation during one PWM cycle is rather large. To reduce this
variation, we would choose a larger product RC by increasing the resistance and/or capacitance. The
drawback of a large RC is that the filter’s output voltage changes slowly in response to a change in the PWM
duty cycle. We address this in more detail below.

The PWM OCxR value can range from 0 to PRy + 1, where PRy is the period register of the Timery
base for the OCx module. This means that PRy + 2 different average voltage levels are achievable.

Time-Varying Analog Output

If the PWM duty cycle is changing over time, it is more convenient to think of the RC filter’s action on
its input in terms of the filter’s frequency response. Since the RC filter is linear, any sinusoidal input of

111 08:24 January 27, 2014



CHAPTER 9. OUTPUT COMPARE

0.1

001}

Filter Gain

_ 45 A/V2

Filter Phase

—90 . R
001f, 0.1f,  f, 10f,  100f,

Frequency

Figure 9.4: (Left) The frequency-dependent gain and phase response of an RC low-pass filter, with the gain
and phase indicated at the cutoff frequency f.. (Right) A sine wave input of amplitude A and frequency f. is
phase shifted by —45° and reduced in amplitude by a factor of 1/v/2.

frequency f of the form Asin ft yields a scaled, phase-shifted sinusoidal output of the same frequency,
G(f)Asin(ft + ¢(f)), where the filter gain G(f) and phase ¢(f) are a function of the frequency f of the
input. The gain and phase response of an RC filter are shown in Figure 9.4. At low input frequencies, the
gain is approximately 1 and the phase is zero. At high frequencies, the gain approaches zero and the phase
approaches —90 degrees. At the cutoff frequency f. = 1/(2rRC), the gain is G(f.) = 1/v/2 and the phase is
o(f.) = —45°, as shown in Figure 9.4. An input signal at the cutoff frequency is reduced to about 71% of its
magnitude and is phase delayed by 45 degrees.

Suppose we want to create a sinusoidal analog output voltage by changing the duty cycle of the PWM.
Let’s call the frequency of this desired analog output f,. Now we have three relevant frequencies: the PWM
frequency fpwwm, the RC filter cutoff frequency f., and the desired analog voltage frequency f,. Examining
the frequency response of the RC filter in Figure 9.4, we could adopt the following rules of thumb for choosing
these three frequencies:

o fpwm > 100f.: The PWM waveform consists of a base frequency at fpwy plus higher harmonics to
create the square wave output. According to the gain response of the filter, only about 1% of the
magnitude of the PWM frequency component at 100 f. makes it through the RC filter. This is probably
acceptable.

e f. > 10f,: Again consulting the RC filter frequency response, we see that signals at 10 times less than
fe are relatively unaffected by the RC filter: the phase delay is only a few degrees and the gain is nearly
1.

As an example, if the PWM is at 100 kHz, then we might choose a cutoff frequency of 1 kHz, and the
highest frequency analog output we should expect to be able to create would be 100 Hz. In other words, we
can vary the PWM duty cycle through a full sinusoid (e.g., from 50% duty cycle to 100% duty cycle to 0%
duty cycle and back to 50% duty cycle) 100 times per second.! If the desired analog output is not a sinusoid,
then it should be the sum of signals at frequencies less than 100 Hz.

The maximum possible PWM frequency is determined by the 80 MHz PBCLK and the number of bits of
resolution we require of the analog output. For example, if we want 8 bits of resolution, or 28 = 256 analog

INote that this creates a signal that is the sum of a 100 Hz sinusoid with a duty cycle amplitude equal to 50% plus a DC
(zero frequency) component of amplitude equal to 50% duty cycle.
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levels, the maximum PWM frequency is 80 MHz / 256 = 312.5 kHz.2 On the other hand, if we require
210 = 1024 voltage levels, the maximum PWM frequency is 78.125 kHz. Thus there is a fundamental tradeoff
between the voltage resolution and the maximum PWM frequency (and therefore the maximum analog output
frequency f,). While high resolution analog output might be desirable, (1) the device receiving the analog
input may have a limit to its analog input sensing resolution, and (2) the transmission lines for an analog
signal may be subject to electromagnetic noise, making extremely high resolution worthless.

Below is code to generate PWM at 78.125 kHz with a duty cycle determined by OC5R in the range 0 to
1024. The timer base is Timer2. With a suitable resistor and capacitor attached to OC5, the voltage across
the capacitor reflects the analog voltage requested by the user. Because the voltage does not change quickly
in this example, it is fine to choose f. significantly lower than 781.25 Hz.

Code Sample 9.3. 0C_analog_out.c Using Timer2, OC5, and an RC low-pass filter to create analog output.

//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded

#include "NU32.h" // plib.h, config bits, constants, funcs for startup and UART
#define PERIOD 1024 // this is PR2 + 1
#define MAXVOLTAGE 3.3 // in case another voltage is used

int getUserPulseWidth(void) {
char msg[100];
float f;
int hightime;

sprintf (msg, "Enter the desired voltage, from O to %3.1f (volts): ",MAXVOLTAGE);
NU32_WriteUART1 (msg) ;

NU32_ReadUART1 (msg,10) ;

sscanf (msg, "%f",&£) ;

if (£>MAXVOLTAGE) f = MAXVOLTAGE;

if (£<0.0) f = 0.0;

sprintf (msg, "\r\nSending %5.3f volts.\r\n",f);

NU32_WriteUART1(msg) ;

hightime = (int) (0.5 + PERIOD*f/MAXVOLTAGE); // convert volts to counts
return(hightime) ;

}

int main(void) {
NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init

PR2 = PERIOD-1; // Timer2 is the base for 0C5, PR2 defines PWM frequency
TMR2 = 0;
T2CON = 1<<15; // turn Timer2 on, all defaults fine
// below, only OC_ON is needed for config, others are defaults.
// initial pulse width is O counts (0 volts out)
Open0C5(0C_ON | OC_PWM_FAULT_PIN_DISABLE | OC_TIMER2_SRC | OC_TIMER_MODE16, 0, 0);
while (1) {
OC5RS = getUserPulseWidth();
}

return O;

2Technically this yields 257 possible duty cycle levels, since OCxR = 0 corresponds to 0% duty cycle and OCxR = 256
corresponds to 100% duty cycle.
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9.5 Chapter Summary

e Output Compare modules pair with Timer2, Timer3, or the 32-bit Timer23 to generate a single timed
pulse or a continuous pulse train with controllable duty cycle. Microcontrollers commonly control
motors using pulse-width modulation (PWM) to drive H-bridge amplifiers that power the motors.

e Low-pass filtering of PWM signals, perhaps using an RC filter with a cutoff frequency f., allows the
generation of analog outputs. There is a fundamental tradeoff between the resolution of the analog
output and the maximum possible frequency component f, of the generated analog signal. If the PWM
frequency is fpwwm, then generally the frequencies should satisfy fpwwnm > fo > fa-

9.6 Exercises

1. Enforce the constraints fpwwm > 100f. and f. > 10f,. Given that PBCLK is 80 MHz, provide a formula
for the maximum f, given that you require n bits of resolution in your DC analog voltage outputs.
Provide a formula for RC'.

2. You will use PWM and an RC low-pass filter to create a time-varying analog output waveform that is
the sum of a constant offset and two sinusoids of frequency f and kf, where k is an integer greater than
1. The PWM frequency will be 10 kHz and f satisfies 50 Hz > f > 10 Hz. Use OC1 and Timer2 to
create the PWM waveform, and set PR2 to 999 (so the PWM waveform is 0% duty cycle when OCI1R,
= 0 and 100% duty cycle when OC1R = 1000). You can break this program into the following pieces:

(a) Write a function that forms a sampled approximation of a single period of the waveform
Vout(t) = C + A; sin(2r ft) + Ay sin(2rk ft + ),

where the constant C is 1.65 V (half of the full range 0 to 3.3 V), A; is the amplitude of the
sinusoid at frequency f, Ay is the amplitude of the sinusoid at frequency kf, and ¢ is the phase
offset of the higher frequency component. Typically values of A; and A would be 1 V or less
so the analog output is not saturated at 0 or 3.3 V. The function takes Ay, Ao, k, f, and ¢
as input and creates an array dutyvec, of appropriate length, where each entry is a value 0 to
1000 corresponding to the voltage range 0 to 3.3 V. Each entry of dutyvec corresponds to a time
increment of 1/10 kHz = 0.1 ms, and dutyvec holds exactly one cycle of the analog waveform,
meaning that it has n = 10 kHz/f elements. A Matlab implementation is given below. You
can experiment plotting waveforms or just use the function for reference. A reasonable call of
the function is signal(20, 0.5, 2, 0.25, 45), where the phase 45 is in degrees. An example
waveform is shown in Figure 9.5.

function signal (BASEFREQ,BASEAMP,HARMONIC,HARMAMP,PHASE)

% This function calculates the sum of two sinusoids of different
% frequencies and populates an array with the values. The function
% takes the arguments

% * BASEFREQ: the frequency of the low frequency component (Hz)
% * BASEAMP:  the amplitude of the low frequency component (volts)
% * HARMONIC: the other sinusoid is at HARMONIC*BASEFREQ Hz; must be

% an integer value > 1

% * HARMAMP:  the amplitude of the other sinusoid (volts)
% * PHASE: the phase of the second sinusoid relative to
% base sinusoid (degrees)

% Example matlab call: signal(20,1,2,0.5,45);

% some constants:
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Duty Cycle vs. sample #, 20 Hz
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Figure 9.5: An example analog output waveform from Problem 2, plotted as the duration 0 to 1000 of the
high portion of the PWM waveform, which has a period of 1000.

MAXSAMPS = 1000; % no more than MAXSAMPS samples of the signal
ISRFREQ = 10000; % frequency of the ISR setting the duty cycle; 10kHz

% Now calculate the number of samples in your representation of the
% signal; better be less than MAXSAMPS!

numsamps = ISRFREQ/BASEFREQ;

if (numsamps>MAXSAMPS)
disp(’Warning: too many samples needed; choose a higher base freq.’);
disp(’Continuing anyway.’);

end

numsamps = min(MAXSAMPS,numsamps); 7% continue anyway

ct_to_samp = 2*pi/numsamps; % convert counter to time
offset = 2%pix(PHASE/360); % convert phase offset to signal counts

for i=1:numsamps % in C, we should go from O to NUMSAMPS-1
ampvec(i) = BASEAMP*sin(i*ct_to_samp) + ...
HARMAMP*sin (HARMONIC*i*ct_to_samp + offset);
dutyvec(i) = 500 + 500*ampvec(i)/1.65; % duty cycle values,
% 500 = 1.65 V is middle of 3.3V
% output range
if (dutyvec(i)>1000) dutyvec(i)=1000;
end
if (dutyvec(i)<0) dutyvec(i)=0;
end
end

% ampvec is in volts; dutyvec values are in range 0...1000

plot(dutyvec);
hold on;
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plot([1 10001, [500 5001);

axis([1 numsamps 0 1000]);

title([’Duty Cycle vs. sample #, ’,int2str(BASEFREQ),’ Hz’]);
hold off;

Write a function using the NU32 library that prompts the user for A;, As, k, f, and ¢. The array
dutyvec is then updated based on the input.

Use Timer2 and OC1 to create a PWM signal at 10 kHz. Enable the Timer2 interrupt, which
generates an IRQ at every Timer2 rollover (10 kHz). The ISR for Timer2 should update the PWM
duty cycle with the next entry in the dutyvec array. When the last element of the dutyvec array
is reached, wrap around to the beginning of dutyvec. Use the shadow register set for the ISR.

Choose reasonable values for RC' for your RC filter. Justify your choice.

The main function of your program should sit in an infinite loop, asking the user for new parameters.
In the meantime, the old waveform continues to be “played” by the PWM. For the values given in
Figure 9.5, use your oscilloscope to confirm that your analog waveform looks correct.

Your code will be graded on organization, comments, simplicity /elegance, and correctness. Turn
in your C file for testing.
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Analog Input

The PIC32 has a single analog-to-digital converter (ADC) that, through the use of multiplexers, can be used
to sample the analog voltage at up to 16 different pins (Port B). The ADC has 10-bit resolution, which means
it can distinguish 2'° = 1024 different voltage values, usually in the range 0 to 3.3 V, the voltage used to
power the PIC32. This yields 3.3 V/1024 = 3 mV resolution. The ADC can take up to one million analog
readings per second. The ADC is typically used in conjunction with sensors that produce analog voltage
values.

10.1 Overview

A block diagram of the ADC peripheral, adapted from the Reference Manual, is shown in Figure 10.1. There
is a lot going on in this figure, but let’s start at the differencing amp. Some control logic (determined by
SFRs) selects the + input of the differencing amp from the analog input pins ANO to AN15. Other control
logic selects the — input to be either AN1 or Vggrr,, the low reference voltage to the ADC selected by the
bits VCFG. (This reference Vrgrr, can be chosen to be either Vrgr., a voltage provided on an external pin,
or AVgg, the PIC32’s GND line, also known as Vgg.) For proper operation, the — input voltage Vinr, should
be less than or equal to the + input voltage Ving.

The difference between the two input voltages, Vsga = Ving — VInL, is sent to the Sample and Hold
Amplifier (SHA). During the sampling (or acquisition) stage, a 4.4 pF internal holding capacitor is charged or
discharged to hold the voltage difference Vgiga. Once the sampling period has ended, the SHA is disconnected
from the inputs. This allows Vgga to be constant during the conversion stage, even if the voltages on
the inputs are changing. The Successive Approximation Register (SAR) ADC converts Vgga to a 10-bit
result depending on its relationship to the low and high reference voltages Vrerr, and Vrerg. VREFL Was
mentioned earlier, and Vygpyg can be chosen from a voltage reference on the external pin Vgrgp4 or from
the PIC32’s power supply rail AVpp (also called Vpp). If Vsga = VRErL, the 10-bit result is 0. If Vgga =
VRErH, the 10-bit result is 2'0 — 1 = 1023. For a voltage Vgua that is x% of the way from Vrgrr, to VrReFH,
the 10-bit result is 1023 x x/100. (See the Reference Manual for more details on the ADC transfer function.)
The 10-bit conversion result is written to the buffer ADC1BUF which is read by your program. If you don’t
read the result right away, ADC1BUF can store up to 16 results before the ADC begins overwriting old
results.

Sampling and Conversion Timing The two main stages of an ADC read are sampling/acquisition and
conversion. During the sampling stage, we must allow sufficient time for the internal holding capacitor to
converge to the difference Ving — Vinn. According to the Electrical Characteristics section of the Data
Sheet, this is 132 ns when the SAR ADC uses the external voltage references Vrgr. and Vrgp4 as its low
and high references. The minimum sampling time is 200 ns when using AVgg and AVpp as the low and high
references.

Once the sampling stage has concluded, the SAR ADC requires 12 ADC clock cycles to accomplish the
conversion: one cycle for each of the 10 bits, plus two more. This can be understood by the fact that the
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Note 1: VREF+ and VREF- inputs can be multiplexed with other analog inputs.

Figure 10.1: A simplified schematic of the ADC module.

ADC uses successive approximation to find the digital representation of the voltage. In this method, Vgga
is iteratively compared to a test voltage produced by an internal digital-to-analog converter (DAC). The
DAC takes a 10-bit number and produces a test voltage in the range [VrrrL, Vreru|, where 0x000 produces
VgrerL and 0x3FF produces Vrgry. In the first cycle of the conversion process, the test value to the DAC is
0x200 = 0b1000000000, which produces a voltage in the middle of the reference voltage range. If Vgpa is
greater than this DAC voltage, the first bit of the conversion result is 1, otherwise it is zero. On the next
cycle, the DAC’s most significant bit is set to the result from the first test, and the second most significant
bit is set to 1 for the next test. The process continues until all 10 bits of the result are determined. You
should see that this process is a binary search. The entire process takes 10 cycles, plus 2 more, or 12 ADC
clock cycles.

The ADC clock is derived from PBCLK. According to Table 31-37 of the Data Sheet, the ADC clock
period (TAD, or Tad) must be at least 65 ns to allow time for the conversion of a single bit. The ADC SFR
AD1CONS3 allows us to choose the ADC clock period as 2 x k x Tpb, where Tpb is the PBCLK period and
k is any integer from 1 to 256. Since Tpb is 12.5 ns for the NU32, to meet this specification, we can choose k
= 3, or Tad = 75 ns.

The minimum time between samples is the sum of the sampling time and the conversion time. If the
ADC is set up to take samples automatically, we have to choose the sampling time to be an integer multiple
of Tad. The shortest time we can choose is 2 x Tad = 150 ns to satisfy the 132 ns minimum sampling time.
Thus the fastest we can read from an analog input is

minimum read time = 150 ns + 12 * 75 ns = 1050 ns

or just over 1 microsecond. We can take almost a million samples per second, theoretically.
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Multiplexers Two multiplexers determine which of the analog input pins to connect to the differencing

amp.

These two multiplexers are called MUX A and MUX B. MUX A is the default active multiplexer, and

the SFR. AD1CON3 contains CHOSA bits that determine which of AN0O-AN15 is connected to the + input
and CHONA bits that determine which of AN1 and Vggp. is connected to the — input. It is possible to
alternate between MUX A and MUX B, but you are unlikely to need this.

Options The ADC peripheral provides a bewildering array of options, some of which are described here:

Data format: The result of the conversion is stored in a 32-bit word, and it can be represented as a
signed integer, unsigned integer, fractional value, etc. Typically we would use a 16-bit or 32-bit unsigned
integer.

Sampling and conversion initiation events: Sampling can be initiated by a software command, or
immediately after the previous conversion has completed (auto sample). Conversion can be initiated by
(1) a software command, (2) the expiration of a specified sampling period (auto convert), (3) a period
match with Timer3, or (4) a signal change on the INTO pin. If sampling and conversion are being done
automatically (not through software commands), the conversion results will be placed in the ADC1BUF
in successively higher addresses, before returning to the first address in ADC1BUF after a specified
number of conversions.

Input scan and alternating modes: You can read in a single analog input at a time, you can scan
through a list of analog inputs using MUX A, or you can alternate between two inputs, one from MUX
A and one from MUX B.

Voltage reference: The ADC can be configured to use reference voltages 0 and 3.3 V (the power rails of
the PIC32). If you are interested in voltages in a different range, say 1.0 V to 2.0 V, for example, you
can instead set up the ADC so 0x000 corresponds to 1.0 V and 0x3FF corresponds to 2.0 V, to get
better resolution in this smaller range: (2 V — 1 V)/1024 = 1 mV resolution. These reference voltage
limits are Vrgr. and Vgrgrt and must be provided to the PIC32 externally. (These must be limited to
the range 0 to 3.3 V.)

Unipolar differential mode: Any of the analog inputs (say AN5) can be compared to AN1, so you read
the difference between the voltage on AN5 and AN1 (where the voltage on AN5 should not be less than
the voltage on AN1).

Interrupts: An interrupt may be generated after a specified number of conversions.

ADC clock period: The ADC clock period Tad can range from 2 times the PB clock period up to 512
times the PB clock period, in integer multiples of two. You may also choose Tad to be the period of the
ADC internal RC clock.

Dual buffer mode for reading and writing conversion results: When an ADC conversion is complete, it
is written into the output buffer ADC1BUF. After a series of one or more conversions is complete, an
interrupt flag is set, indicating that the results are available for the program to read. If the program is
too slow to respond, however, the next set of conversions may begin to overwrite the previous results.
To make this less likely, we can divide the 16-word ADC1BUF into two buffers, each consisting of 8
words: one in which the current conversions are being written, and one from which the program should
read the previous results.

10.2 Details

The operation of the ADC peripheral is determined by the following SFRs:

AD1PCFG Only the least significant 16 bits are relevant. If a bit is 0, the associated pin is configured as

an analog input. If a bit is 1, it is digital I/0O.
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)

AD1CON1 Determines whether ADC is on or off; the output format of the conversion; the “start conversion’
signal generator; whether the ADC continually does conversions or just does one sequence of samples;
and whether sampling begins again immediately after the previous conversion ends, or waits for a signal
from the user. Also indicates if the most recent conversion is finished.

AD1CON2 Determines the voltage references for the ADC (positive reference could be 3.3 V or VREF+,
negative reference could be GND or VREF-); whether or not inputs will be scanned; whether MUX A
and MUX B will be used in alternating mode; whether dual buffer mode is selected; and the number of
conversions to be done before generating an interrupt.

AD1CON3 Determines whether Tad is generated from the ADC internal RC clock or the PB clock; the
number of Tad cycles to sample the signal; and the number of Tad cycles allowed for conversion of each
bit (must be at least 65 ns).

AD1CHS This SFR determines which pins will be sampled (the “positive” inputs) and what they will be
compared to (i.e., VREF- or AN1). When in scan mode, the sample pins specified in this SFR are
ignored.

AD1CSSL Bits set to 1 in this SFR indicate which analog inputs will be sampled in scan mode (if ADICON2
has configured the ADC for scan mode). Inputs will be scanned from lower number inputs to higher
numbers.

Apart from these SFRs, the ADC module has bits associated with the ADC interrupt in IFS1bits. AD1IF,
TIEC1bits.AD1IE, IPC6bits.AD1IP, and IPC6bits. AD1IS.
For more details, see the Reference Manual.

10.3 Library Functions

Relevant macros and constants can be found in pic32-1ibs/include/peripheral/adc10.h.

OpenADC10(configl, config2, config3, configport, configscan) The bits set as 1 in configport cor-
respond to pins configured as analog inputs. The bits set as 0 in configscan are inputs that are included
in a scan (AD1CSSL is the bitwise NOT of configscan). AD1ICON3, AD1CON2, and ADICONI1 are
set as config3, config2, and configl, respectively.

SetChanADC10(config) Sets the AD1CHS SFR to config (i.e., which pins are sampled).
EnableADC10() Sets the ON bit in ADICONI1 that indicates that the ADC is activated.
AcquireADC10() Sets AD1CON1bits.SAMP to 1, which causes the SHA to sample.

Convert ADC10() Clears AD1CON1bits.SAMP to 0, which causes the SHA to hold and conversion to
begin.

BusyADC10() Returns the AD1CON1bits. DONE bit, where 1 indicates that the ADC conversion is done
and 0 indicates that it is not.

ReadADC10(bufindex) Reads the conversion result stored in the bufindex’th element of the buffer
ADCI1BUF.

ReadActiveBufferADC10() Returns 0 if conversions are currently being written into words 0-7 of
ADCI1BUF, and 1 if they are being written into words 8-15. Only relevant in the dual buffer mode.

CloseADC10() Turns off the ADC (clears the ON bit in ADCICON1) and disables the interrupt.
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10.4 Sample Code

10.4.1 Manual Sampling and Conversion

There are many ways to read the analog inputs, but the sample code below is perhaps the simplest. This
code reads in analog inputs AN14 and AN15 every half second and sends their values to the user’s terminal.
It also logs the time it takes to do the two samples and conversions, which is a bit under 5 microseconds
total. In this program we set the ADC clock period Tad to be 6 x Tpb = 75 ns, and the acquisition time to
be at least 250 ns. There are two places in this program where we are just sitting around waiting: during the
sampling and during the conversion. If speed were an issue, we could use more advanced settings to let the
ADC do the work in the background and let us know via an interrupt when the samples are ready.

Code Sample 10.1. ADC_Read2.c Reading two analog inputs with manual initialization of sampling
initialization and conversion.

//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded
#include "NU32.h" // plib.h, config bits, constants, funcs for startup and UART

#define VOLTS_PER_COUNT (3.3/1024)

#define CORE_TICK_TIME 25 // nanoseconds between core ticks

#define SAMPLE_TIME 10 // 10 core timer ticks = 250 ns

#define DELAY_TICKS 20000000 // delay 1/2 sec, 20 M core ticks, between messages

int main(void) {
unsigned int samplel4, samplel5, elapsed, finishtime;

char msg[100];

NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init

AD1PCFG = Ox3FFF; // bits 14 and 15 are 0, so AN14 and AN15 are AN inputs
AD1CON3bits.ADCS = 2; // ADC clock period is Tad = 2 * (ADCS+1) * Tpb
AD1CON1bits.ADON = 1; // turn on A/D converter
while (1) {

WriteCoreTimer (0);

AD1CHSbits.CHOSA = 14; // connect pin AN14 to MUXA for sampling
AD1CON1bits.SAMP = 1; // start sampling

elapsed = ReadCoreTimer();

finishtime = elapsed + SAMPLE_TIME;

while (ReadCoreTimer() < finishtime); // sample for more than 200 ns
AD1CON1bits.SAMP = 0; // stop sampling and start converting

while (!'AD1CON1bits.DONE); // wait for the conversion process to finish
samplel4 = ADC1BUFO; // read the buffer with the result

AD1CHSbits.CHOSA = 15; // connect pin AN15 to MUXA for sampling
AD1CON1bits.SAMP = 1; // start sampling

elapsed = ReadCoreTimer();

finishtime = elapsed + SAMPLE_TIME;

while (ReadCoreTimer() < finishtime); // sample for more than 200 ns
AD1CON1bits.SAMP = 0; // stop sampling and start converting

while (!'AD1CON1bits.DONE); // wait for the conversion process to finish
samplel5 = ADC1BUFO; // read the buffer with the result

elapsed = ReadCoreTimer();

// send the results over serial

sprintf(msg, "Time elapsed: %5u ns AN14: %4u (%5.3f volts) \
AN15: %4u (%5.3f volts) \r\n",elapsed*CORE_TICK_TIME, samplel4,

sample14*VOLTS_PER_COUNT, samplelb5, samplel5*VOLTS_PER_COUNT) ;
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NU32_WriteUART1 (msg) ;
WriteCoreTimer(0) ; // make the messages less frantic!
while (ReadCoreTimer () <DELAY_TICKS);
}
}

10.4.2 Maximum Possible Sample Rate

Code Sample 10.2. ADC_max_rate.c Reading a single analog input at the maximum possible rate to meet
the Electrical Characteristics section of the Data Sheet, given that the PBCLK is 80 MHz.

~
*

ADC_max_rate.c

This program reads from a single analog input, ANO, at the maximum speed
that fits the PIC32 Electrical Characteristics and the 80 MHz PBCLK
(Tpb = 12.5 ns). We choose

Tad = 6 * Tpb = 75 ns

as the smallest time that is an even integer multiple of Tpb and greater
than the 65 ns required in the Electrical Characteristics section of the
Data Sheet. We choose the sample time to be

Tsamp = 2 * Tad = 150 ns,

the smallest integer multiple of Tad that meets the minimum spec of 132 ns in
the Data Sheet. The ADC is set up to auto-sample and auto-convert 8 samples,
then generate an interrupt. The ISR reads in 8 samples from ADCBUFO-7 or
ADCBUF8-F while the ADC is busily filling the other 8-word section. The ISR
must finish reading in one 8-word section before the other 8-word section

is filled.

After reading in NUM_ISRS * 8 samples, the ADC interrupt is disabled to
free up the CPU from servicing the ISR, and the data points are written to
the user’s terminal, along with the average time it took to get each sample.
Theoretically the time is 150 ns + (12 * 75 ns) = 1050 ns, but on average
we get an extra 75 ns (6 Tpb) for 1125 ns. This is 888.89 kHz sampling.

(The Electrical Characteristics section of the Data Sheet lists 132 ns as the
minimum sampling time for an analog input coming from a source with 500 ohm
output impedance. If the source is a much lower output impedance, it *mayx*
be possible to reduce the sampling time to, say, 1*Tad = 75 ns. Accounting
for the extra 75 ns, we get 1050 ns sample time or 952.38 kHz sampling.

This seemed to work fine in our preliminary tests with low impedance
outputs.)

High-speed sampling requires that pin RA9/VREF- be connected to ground and
pin RA10/VREF+ be connected to 3.3 V. These are the external low and high
voltage references for analog input in high speed mode. Actually, in the
Reference Manual, Microchip says that VREF- should be attached to ground
through a 10 ohm resistor and VREF+ should be attached to two capacitors in
parallel to ground (0.1 uF and 0.01 uF) as well as a 10 ohm resistor to

3.3 V.

¥R R K K K X K X X X X K K K K K X X X X K K K K K X X X X X X K K X X X X X X X ¥ *

To provide input to the ADC, this code sets up 0Cl1 using Timer2 as a base
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to output a square wave at 5 kHz and 25J, duty cycle. We can confirm that
the ADC samples obtained correspond to 888.89 kHz sampling of the waveform.
This program also uses Timer45 to time the duration between ISR entries.
The ISR also toggles an LED every 1 million entries, allowing the time to
sample 8 million times to be measured with a stopwatch (about 9 seconds).

* X ¥ X *

*/

//#define NU32_STANDALONE // uncomment if program is standalone, not bootloaded
#include "NU32.h" // plib.h, config bits, constants, funcs for startup and UART

#define NUM_ISRS 125 // number of times the ISR should store ADC samples
#define NUM_SAMPS (NUM_ISRS*8) // number of samples to be stored

unsigned int SampleNum = O, // current analog input sample number
Trace [NUM_SAMPS+8], // array of analog input samples
TM[NUM_ISRS+1], // time of interrupts from Timer45
ISRCounter = 1, // number of times we’ve entered ISR (rolls over)
Storing = 1; // if 1, currently storing data; if O, done storing

void __ISR(_ADC_VECTOR, IPL7SRS) ADCHandler(void) { // interrupt every 8 samples
if (ISRCounter <= NUM_ISRS)
TM[ISRCounter] = TMR4; // keep track of Timer45 time the ISR is entered
if (AD1CON2bits.BUFS) {
Trace[SampleNum++] = ADC1BUFO; // all ADC samples must be read in, even
Trace[SampleNum++] = ADC1BUF1; // if we don’t want to store them, so that
Trace[SampleNum++] = ADC1BUF2; // the interrupt can be cleared
Trace [SampleNum++] = ADC1BUF3;
Trace[SampleNum++] = ADC1BUF4;
Trace [SampleNum++] = ADC1BUF5;
Trace [SampleNum++] = ADC1BUF6;
Trace [SampleNum++] = ADC1BUF7;

}
else {
Trace[SampleNum++] = ADC1BUFS;
Trace [SampleNum++] = ADC1BUF9;
Trace [SampleNum++] = ADC1BUFA;
Trace[SampleNum++] = ADC1BUFB;
Trace [SampleNum++] = ADC1BUFC;
Trace [SampleNum++] = ADC1BUFD;
Trace[SampleNum++] = ADC1BUFE;
Trace [SampleNum++] = ADC1BUFF;
}
if (SampleNum >= NUM_SAMPS) { // done storing data; print it out
Storing = 0;
SampleNum = O;
}
ISRCounter++; // increment ISR counter
if (ISRCounter > 1000000) { // toggle LED every 1M ISRs (8M samples)
LATAINV = 0x20;
ISRCounter = 1; // reset ISR counter
}
IFS1bits.AD1IF = 0; // clear interrupt flag

}

int main(void) {
int i, j, ind;
float dt; // time between samples
char msg[100];
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NU32_Startup(); // cache on, min flash wait, interrupts on, LED/button init, UART init

// 5 kHz 25Y, duty cycle PWM on 0Cl using Timer2 as base
OpenTimer2(T2_0N | T2_PS_1_1, 15999);
Open0C1(0C_ON | OC_TIMER2_SRC | OC_PWM_FAULT_PIN_DISABLE, 4000, 4000);

// 32-bit Timer45 counting every PBCLK cycle, roll over at 2"{32}-1
OpenTimer45(T4_ON | T4_PS_1_1, OxFFFFFFFF);

INTDisableInterrupts(); // disable interrupts before configuring ADC

// make sure RBO/ANO is analog input (but it’s the default)
AD1PCFGCLR = 0x1;
TRISBSET = 0x1;

// neg input for MUX A is VREFL | ANO is pos input
AD1CHSCLR = (0<<23)|(0<<16);

// ADC clk from PBCLK | sample for 2 Tad | Tad = 6*Tpb
AD1CON3 = (0<<15)|(2<<8) | (2<<0);

// use external VREF+ and VREF- for VREFH and VREFL | disable offset cal mode |
// don’t scan inputs | INT after 8 converts | use two 8-word ADC1BUF | use MUX A only
AD1CON2 = (3<<13)](0<<12)](0<<10) | (7<<2) | (1<<1) | (0<<0);

// turn ADC on | unsigned 32-bit int output | auto-convert after sample finished |
// don’t stop conversions at interrupt | auto-sample after conversion finished
AD1CON1 = (1<<15)]|(4<<8)|(7<<5) | (0<<4) | (1<<2);

IPC6bits.AD1IP
IFS1bits.AD1IF
IEC1bits.AD1IE

7; // INT priority level 7, for shadow register set
0; // clear interrupt flag
1; // enable interrupts

INTEnableSystemMultiVectoredInt(); // enable interrupts at CPU

while(Storing) ; // wait until NUM_SAMPS samples taken
IEC1bits.AD1IE = 0; // disable ADC interrupt
for (i=0; i<NUM_ISRS; i++) { // write out NUM_SAMPS analog samples ...

dt = (TM[i+1] - TM[i])*12.5/8.0; // and average time for each sample (in ns)
for (j=0; j<8; j++) {
ind = i%8+j;
sprintf (msg,"%4d %4d  %9.3f\n",ind,Trace[ind],dt);
NU32_WriteUART1 (msg) ;
}
}
IEC1bits.AD1IE = 1; // enable ADC interrupt for flashing LED
while (1);
return O;

10.5 Chapter Summary

e The ADC peripheral converts an analog voltage to a 10-bit digital value, where 0x000 corresponds
to an input voltage at Vgrgrr, (typically GND) and 0x3FF corresponds to an input voltage at Vrern
(typically 3.3 V). There is a single ADC on the PIC32, AD1, but it can be multiplexed to sample from
any or all of the 16 pins on Port B.
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e Getting an analog input is a two-step process: sampling and conversion. Sampling requires a minimum
time to allow the sampling capacitor to stabilize its voltage. Once the sampling terminates, the capacitor
is isolated from the input so its voltage does not change during conversion. The conversion process
is performed by a Successive Approximation Register (SAR) ADC which carries out a 10-step binary
search, comparing the capacitor voltage to a new reference voltage at each step.

e The ADC provides a huge array of options which are only touched on in this chapter. The sample code
in this chapter provides a manual method for taking a single ADC reading in the range 0 to 3.3 V in
just over 2 microseconds. For details on how to use other reference value ranges, sample and convert in
the background and use interrupts to announce the end of a sequence of conversions, etc., consult the
long section in the Reference Manual.

10.6 Exercises
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Chapter 11

UART

11.1 Overview

flow control also; what if we don’t set CTS/RTS 7 still works, i guess.

11.2 Detalils
11.3 Library Functions
11.4 Sample Code

e (*) loopback (no flow control) PIC talks to itself (not using NU32 library; no external chps)
e (*) PIC to PIC comm
e (*) hardware flow control for more reliability PIC to PC (no NU32 library but uses the NU32 hardware)

e XBee wireless comm

11.5 Chapter Summary

11.6 Exercises
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Chapter 12

SPI Communication

12.1 Overview

12.2 Detalils

12.3 Library Functions
12.4 Sample Code

e (*) loopback

e (*) pic to pic

e (*) DAC

e (*) ADC (higher res, more channels)
e (*) SRAM (1 MB)

e SD card (?) file structure? or just extra memory

12.5 Chapter Summary

12.6 Exercises
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Chapter 13

I°C Communication

13.1 Overview

13.2 Detalils

13.3 Library Functions
13.4 Sample Code

*

o (*

(*)

(*) pic to pic
o (*) DAC
e (*) ADC (24 bits low speed)
e (*) SRAM (1 MB)

13.5 Chapter Summary

13.6 Exercises
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Chapter 14

USB

NU32 connector is soldered as a host. need A-A cable if you want to be a slave.
next version may have a mini A/B

14.1 Overview

14.2 Detalils

14.3 Library Functions
14.4 Sample Code

e (*) talking to Android

(*) HID comm with a computer (no external hardware)
e CDC comm with a computer (no external hardware)

e USB mouse, keyboard

USB to bluetooth dongle

USB to wifi dongle

e mass storage device (SD card, micro SD card?, flash stick thumb drive)

14.5 Chapter Summary

14.6 Exercises
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Chapter 15

Input Capture

15.1 Overview

15.2 Detalils

15.3 Library Functions
15.4 Sample Code

e (*) loopback with PWM (?)

e add some stuff

15.5 Chapter Summary

15.6 Exercises
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Chapter 16

Comparator

16.1 Overview

16.2 Detalils

16.3 Library Functions
16.4 Sample Code

e (*) comparing an analog input to an internally set analog voltage
e (*) comparator 16 value analog output

e comparing two inputs

16.5 Chapter Summary

16.6 Exercises
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Chapter 17

Watchdog Timer

If WDT is disabled in config bits, it can still be enabled in software. If enabled in config bits, cannot be
disabled in software. But timeout is set by configbits.

17.1 Overview

17.2 Detalils

17.3 Library Functions
17.4 Sample Code

e (*) turns on watchdog timer and resets the pic if not petted

e when pic turns on, check the reason for previous reset (not WDT)

17.5 Chapter Summary

17.6 Exercises
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Chapter 18

Storing Data in Flash Memory

KML says: Writing data to flash to save between runs. And reading it back in! Must ensure
that we don’t overwrite the program; doesn’t appear to be much preotection.
a page is 4 KB

18.1 Overview
18.2 Detalils
18.3 Library Functions
18.4 Sample Code
e write some data to memory and read back in next time
18.5 Chapter Summary

18.6 Exercises
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Chapter 19

Power Saving: Sleep, Idle, and Freeze

what shuts down during the different modes.

19.1 Overview

19.2 Detalils

19.3 Library Functions
19.4 Sample Code

e how to put in sleep, idle, or freeze mode, and how to wake up on an interrupt or other event.

19.5 Chapter Summary

19.6 Exercises
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Chapter 20

Real-Time Clock and Calendar

need to change FSOSCEN in configbits to on so we get RTCC back? But currently using C13 as USER
button. can’t use on current NU32.
needs external clock source.

20.1 Overview

20.2 Details

20.3 Library Functions
20.4 Sample Code

e set the time and day and read it back

20.5 Chapter Summary

20.6 Exercises
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Chapter 21

Controller Area Network (CAN)

21.1 Overview

21.2 Details

21.3 Library Functions
21.4 Sample Code

e loopback
e PIC to PIC
e lots of PICs

e some other device. motion controller. something to do with cars.

21.5 Chapter Summary

21.6 Exercises
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Chapter 22

Direct Memory Access

22.1 Overview

22.2 Details

22.3 Library Functions
22.4 Sample Code

22.5 Chapter Summary

22.6 Exercises
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Chapter 23

Other Peripherals

DMA straight into RAM

DMA from one sensor (camera) into offboard memory
(*) CTMU on DIP PIC32

see microchip’s 40 different uses of CTMU

Sample code from Microchip Applications Libraries on more complicated peripherals, bigger projects
(see Sheng’s Android page, e.g.); see kevin/microchipsolutions/Microchip/Help directory, including
readme

make a Junus amp?
brushless DC motor, maybe
DSP

assignments: LED feedback control, analog output waveforms, read in and DSP, motor control, some
advanced function different for each, XBee, Nick’s 7-segment

interactive motor control from PC, maybe using USB comm, DC motor (including characterization),
RC servos, stepper motors, trapezoids, S-curves, point-to-point multi-step motions, holding functions,
other ongoing control functions. matlab control of the motion, but need only low freq comm with
matlab. can ask for data back so we see how well we tracked motion. maybe some of the functions of
the NUscope for data capture. real software engineering assignment. maybe multiple NU32’s, one just
for comm, one for control, one for scope function. robot programming language for PIC. multi-axis
motor controller? maybe the ISRs call appropriate functions depending on what you want them to be
used for. 1 timer for DC motor PWM (control up to 5 using ocmp), 2 for controlling up to 5 RC servos,
driving steppers (how?)

using a mouse to track position over time, for the gibbot

interfacing to Processing or MATLAB

using ramfunc and comparing time to run
DMA
PMP
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Part 1V

Projects
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Chapter 24

Sensors and Signal Conditioning
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name

quantity measured

principle

options/notes

button, switch

potentiometer, rotary

potentiometer, linear

phototransistor

photodiode

photocell or photoresistor
encoder, incremental,
rotary

encoder, incremental,
linear

encoder, absolute, rotary
encoder, absolute, linear

ultrasonic range sensor

Hall effect sensor

Hall effect absolute
encoder

Reed switch

current sensor
accelerometer

gyro
tachometer

resolver
force-sensitive resistor
strain gauge

flex sensor

capacitive touch
microphone

thermistor
thermocouple

diode (temperature)
piezo vibration sensor
RFID tag

camera

speaker

phono pickup
accelerometer

piezo disk

tachometer

coil o' wire and magnet
coil o' wire

contact

angle

linear position

visible or IR light,
also proximity

visible or IR light

visible or IR light

angle

angle

linear position
linear position
time between
emitted ultrasonic
pulse and its echo
magnetic field,
proximity
magnetic field

magnetic field,
proximity
current
acceleration
angular velocity
shaft angular
speed

shaft position
force

force

bend

touch

pressure waves
temperature
temperature
temperature
vibration

light
sound
vibration

force

ang vel

velocity
inductance, prox

Breaks or establishes contact between electrical conductors.
A pot has three terminals. The rotatable shaft moves a "wiper"
terminal 2 between two ends of a resistor, terminals 1 and 3,
creating a variable resistance between 1-2 and 2-3. Placing a
constant voltage across 1 and 3 allows terminal 2's voltage to
be an indication of the shaft angle.

Linear version of the above.

A transistor that conducts current proportional to the light
hitting the base, up to saturation. Wavelength dependent. A
resistor in series with the phototransistor creates a voltage
change that can be sensed. Often paired with an LED to
create a digital optointerrupter (beam breaker) or an analog
optoreflective sensor.

Reverse current through the diode is created due to light of the
right frequency. Faster response but smaller current than
phototransistor. The current must be amplified, typically, to
create a significant voltage change across a resistor.

A resistor whose resistance drops with increased light.

digital or analog

e.g., AMS AS5045

digital pulse train or analog output

probably not
Wheatstone bridge

maybe not

maybe not

maybe not

12C, SPI, USB, etc.

as a sensor

induction; moving magnet

use same as strain gage, to measure bend. Or vibration
can be just a brushed DC motor

Figure 24.1: Some common mechatronics sensors.
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DPDT, SPST, etc.

linear or logarithmic
scale; single or multi-turn

linear or logarithmic
scale

Hall effect or resistor

metal foil or silicon.

CCD or CMOS

mems or crystal
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Chapter 25

Digital Signal Processing

*** numpy.fft, matplotlib ***

We have already used RC filters to low-pass filter high-frequency PWM signals, creating analog output
signals. Filters find many other applications, like filtering out high-frequency or 60 Hz electrical noise from
a measured signal, extracting high-frequency components from change-sensitive sensors, and integrating
or differentiating a signal. If the signal is an analog voltage, these filters can be implemented by resistors,
capacitors, and op-amps.

Filters can also be implemented in software. In this case, the signal is first converted to digital form, for
example using an analog-to-digital converter to sample the signal at fixed time increments. Once in this form,
a digital filter can be used to difference or integrate the signal, or to suppress, enhance, or extract different
frequency components in the signal. Digital filters offer advantages over their analog electronic counterparts:

e No need for extra external components, such as resistors, capacitors, and op amps.

e Tremendous flexibility in the filter design. Filters with excellent properties can be implemented very
easily in software.

e The ability to operate on signals that do not originate from analog voltage signals.

Digital filtering is one example of digital signal processing (DSP). We start this chapter by providing
some background on sampled signal representation. We then provide an introduction to the fast Fourier
transform (FFT), which can be used to decompose a digital signal into its frequency components. The FFT
is among the most important and heavily used algorithms in video, audio, and many other signal processing
and control applications. We then discuss a class of digital filters called finite impulse response (FIR) filters,
which calculate their output values as weighted sums of their past input samples. We conclude with a brief
description of infinite impulse response (IIR) filters, which calculate their output as weighted sums of their
past inputs and outputs, and FFT-based filters.

This chapter is meant to provide a brief introduction and some practical hints on how to use FFTs, FIR
filters, and IIR filters. We skip most of the mathematical underpinnings, which are covered in books and
courses focusing solely on signal processing.

25.1 Sampled Signals and Aliasing

Let z(t) be a periodic signal as a function of (continuous) time with period T' (z(t) = z(t +T')), and therefore
frequency f = 1/T. It can be shown that any periodic signal z(T) can be expressed as a Fourier series, and
particularly as the sum of a DC (constant) component and an infinite sequence of sinusoids at frequencies f,
2f, 3f, etc.:

o(t) = Ao+ Y Apsin(2mkft + ). (25.1)
k=1
Thus the T-periodic signal z(t) can be uniquely represented by the amplitudes Ay, Ay,... and the phases
@1, 02, . .. of the component sinusoids. This is called the frequency domain representation of x(t).
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Figure 25.1: An illustration of the sum of the first four nonzero frequency components of the Fourier series of
a square wave. The sum converges to the square wave as higher frequency components are included in the
sum.

x(f) x(k)
—— | sampling > 1__.____,__1

Figure 25.2: The sampling module converts the continuous-time signal z(¢) to a discrete-time signal z(k).

An example is a square wave signal that swings between +1 and —1 at frequency f and 50% duty cycle.
The Fourier series that creates this signal is given by Ay = 0 for even k and Ay = 4/(kn) for odd k, with all
phases ¢ = 0. Figure 25.1 illustrates the first four components of the square wave.

In DSP, the first thing we do is sample the continuous-time signal x(¢) at time intervals Ts (or sampling
frequency fs = 1/T5), yielding the samples (k) = z(kTs) = x(t) for k =0,1,2,..., as shown in Figure 25.2.
The sampling process also quantizes the signal; for example, the PIC32’s ADC module converts continuous
voltage levels to one of 1024 levels. While quantization is an important consideration in DSP, in this chapter
we will ignore quantization effects and assume the x(k) can take arbitrary real values.

Suppose the original analog input signal is a sinusoid

z(t) = Asin(2rm ft + ¢),

where f is the frequency, T = 1/f is the period, A is the amplitude, and ¢ is the phase. Given samples z(k),
and knowing the input is a sinusoid, it is possible to use the samples to uniquely determine A, f, and ¢
of the underlying signal, provided f is sufficiently low. As we increase the signal frequency f beyond fs/2,
however, something interesting happens, as illustrated in Figure 25.3. The sampling process renders a signal
of frequency f1 = fs/2+ A, A > 0, with phase ¢, indistinguishable from a signal with lower frequency
fa = fs/2 — A with phase ¢9. For example, for A = f;/2, an input signal of frequency f; = fs/2+ A = f;
looks the same as a constant (DC) input signal (fo = fs/2 — A = 0), because our once-per-cycle sampling
will return the same value each time.

The phenomenon of signals of frequency greater than fs/2 “posing” as signals of frequency between 0
and f,/2 is called aliasing. The frequency fs/2, the highest frequency we can uniquely represent with a
discrete-time signal, is known as the Nyquist frequency fn. The relationship between input sinusoids of
arbitrary frequency and the apparent frequency of the sampled signal is

actual frequency (0 < A< fn, k=0,1,2,...) ‘ apparent frequency
2kfn + A A
(2k+1)fy+A fn—A

Because we cannot distinguish higher-frequency signals from lower-frequency signals, we only concern ourselves
with input frequencies in the range 0. .. f. If the sampled signal is obtained from an analog voltage, it is
common to put an analog low-pass anti-aliasing filter before the sampler to remove frequency components
greater than fy.

Aliasing is familiar from the spinning wheel optical illusion. Your eyes track a mark on the wheel as it
speeds up at a constant rate, and initially you see the wheel spinning forward faster and faster (i.e., the
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Js/2-A fi/2-N f;/2+A

(a) (b)

Figure 25.3: (a) The underlying sinusoid z(t) with frequency f = fs/2 — A, A > 0, can be reconstructed
from its samples x(k), shown as circles. (b) An input sinusoid of frequency f = fs/2 + A, however, appears
to be a signal of frequency f = f;/2 — A with a different phase.

input signal frequency is increasing). The motion becomes a blur, but as the wheel continues to speed up, it
eventually appears to be rotating backward at a high speed. As its actual forward speed increases further,
the apparent reverse speed begins to slow, until eventually the wheel appears to be at rest again. This effect
is determined by the effective “sampling frequency” fs of your visual system. As the wheel increases speed
at a constant rate, the apparent input frequency of the signal increases linearly from 0 to fx = fs/2, then
decreases linearly from fy to 0, since signals at frequency fy + A appear to have the same frequency as
signals at fiy — A. (The aliasing effect is even more obvious in a dark room with a strobe light at a fixed
frequency.)

25.2 The Fast Fourier Transform

Given a sampled signal x(k), we would like to determine its frequency representation. To do this, we calculate
the discrete Fourier transform (DFT) of (k). For example, say that we’ve collected an even number of
samples N at the sampling frequency fs = 1/Ts. Then we can use the DFT to calculate N/2 + 1 amplitudes
Ak, k=0...N/2, and N/2 phases ¢,k = 1...N/2, corresponding to the magnitude and phase of sinusoid
components at frequencies kfs;/N. The frequency spacing between sinusoidal components is fs/N = 1/(NT5).

Of several numerical methods to compute the DFT, by far the most popular is the highly efficient Fast
Fourier Transform (FFT). Many forms of the FFT require that N be a power of 2. To reach the next power
of 2, we can simply “pad” our signal with “virtual” samples of value zero at the end. This is called “zero
padding.”

The mathematics of the DFT (and FFT) implicitly assume that the signal repeats every N samples.
Thus, depending on the original analog signal and how it was sampled, the DFT may have a significant
component at the lowest nonzero frequency, fs/N, even if this frequency is not present in the original signal.
This suggests the following:

e If the original signal is actually known to be periodic, our IV samples should contain several complete
cycles of the signal. This reduces the “phantom” amplitude at fs;/N and ensures that the lowest
frequency component of the actual signal is at a frequency sufficiently higher than (isolated from) the
frequency fs/N. We should also have sufficiently many samples per cycle of the original signal so that
we can adequately distinguish the different frequency components in the actual signal.

e If the original signal is not periodic, zero padding can be used to isolate the lowest nonzero frequency
component of the actual signal from fs/N.
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Figure 25.4: (Top) The original sampled signal. (Bottom) The FFT magnitude plot, with a portion of it
magnified.

As an example, assume an underlying analog signal
x(t) = 0.5 4 sin(2w(20 Hz)t + w/4) 4+ 0.5sin(27(200 Hz)t 4+ 7/2),

with components at DC, 20 Hz, and 200 Hz. We collect 1000 samples at f; = 1 kHz (0.001 s intervals) and
zero pad to get N = 1024. The signal and its FFT magnitude plot is shown in Figure 25.4. The magnitude
components are spaced at frequency intervals of fs/N, or 0.9766 Hz. The DC, 20 Hz (0.04 fx), and 200 Hz
(0.4 fn) components are clearly picked out, though the numerical procedure has spread the 20 Hz component
over several nearby frequencies so that the peak magnitude is less than 1, the amplitude of the actual 20 Hz
component.

The phase plot is not shown, as the phase for small amplitude components (away from 20 Hz and 200 Hz)
is meaningless.

The FFT itself takes N = 2™ samples (k) as input and produces N complex coefficients Y (k) as output,
where k is a frequency index. These complex coefficients can be processed to produce magnitude plots as
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shown in Figure 25.4. Below we discuss how to do this specifically in Matlab and with the PIC32.

25.2.1 Matlab

Given an even number N of samples in a row vector x = [x(1) ... x(N)] in Matlab, the command
Y = £ff(x);
returns an N-vector Y = [Y(1) ... Y(N)] of complex numbers corresponding to the amplitude and phase at

different frequency components. Let’s try an FFT of N = 200 samples of a 50% duty cycle square wave, where
each period consists of 10 samples equal to 2 and 10 samples equal to 0 (i.e., the square wave of Figure 25.1
plus a DC offset of 1). The frequency of the square wave is f5/20, and our entire sampled signal consists of
10 full cycles. According to Figure 25.1, the square wave consists of frequency components at fs/20, 3 fs/20,
5fs/20, 7fs/20, etc. Thus we expect the frequency domain magnitude representation to consist of the DC
component and these nonzero frequency components.

Let’s build the signal and plot it (Figure 25.5(a)):

x=0; % clear any array that might already be in x
x(1:10) = 2; x(11:20)= 0; x = [x x x x x X X x ¥ x]; N = length(x);
plot(x,’Marker’,’0’); axis([-5 205 -0.1 2.1]);

Now let’s take the FFT of it:
Y = fft(x);

Inspecting some of the entries of Y, we see that they are generally complex numbers. Since we are focusing
on magnitude plots, let’s plot the magnitudes of Y:

stem(abs(Y)); axis([-5 205 -10 210]);

The plot is shown in Figure 25.5(b). The entry Y(1) corresponds to the DC component discovered in the
signal, while the entries Y(2) and Y(N) are equal and correspond to fs/N, Y(3) and Y(N-1) are equal and
correspond to 2fs /N, and so on, until finally entry Y(N/2+1) corresponds to fs/2 = fn, the Nyquist frequency.
Thus there is one entry for the DC and Nyquist frequency components, and two for all other frequencies.

To convert the Y(k) to a magnitude plot, we add the magnitudes corresponding to each frequency and
divide by the number of samples, i.e.,

mag (1) = abs(Y(1))/N; % this is the DC component
mag (k) = 2xabs(Y(k))/N; % for all k = 2 .. N/2; this is the component at frequencies (k-1)*fs/N
mag(N/2+1) = abs(Y(N/2+1))/N; 7 this is the Nyquist frequency component

The second line arises from the fact that Y(k) = Y(N-k+1) for 1 < k < N/2, and both of these indexes refer
to the frequency (k-1)*fs/N, where fs is the sampling frequency. Here’s a simple line of code that converts
Y to the frequency component magnitudes mag and plots it in Figure 25.5(c):
mag = 2*abs(Y(1:N/2+1))/N; mag(l) = mag(1l)/2; mag(N/2+1) = mag(N/2+1)/2; stem(mag(1l:N/2+1));
Now let’s rescale the horizontal axis so that frequencies are expressed as a fraction of the Nyquist frequency:

freqs = linspace(0,1,N/2+1); stem(freqs,mag); axis([-0.05 1.05 -0.1 1.4])

The final FFT magnitude plot is shown in Figure 25.5(d). Notice that the FFT very clearly picks out the
frequency components at DC, 0.1fx,0.3fn,0.5fn,0.7fn, and 0.9fx.
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Figure 25.5: (a) The original sampled signal. (b) A plot of the magnitudes of the raw FFT output. (c) After
scaling and adding the components at the same frequency. (d) After rescaling the frequency axis, we have
our final FFT magnitude plot with frequencies expressed as a fraction of the Nyquist frequency.

FFT with N = 2™ For efficiency reasons, on our PIC32 we will only perform FFTs on sampled signals
that have a power-of-2 length. Let’s do that now with Matlab. We will increase our samples from 200 to the
next highest power of 2, 2% = 256. We can either pad the original z(k) with 56 zeros at the end, or we can
take more samples in the first place.

Let’s try the zero-padding option first:
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Figure 25.6: (Top) The FFT of the 200-sample square wave signal with 56 zeros padded. (Bottom) The FFT
of the 256-sample square wave signal.

x = 0; x(1:10) = 2; x(11:20)= 0; x = [x x x x x x ¥ X ¥ x]; N = 2 nextpow2(length(x));
xpad = [x zeros(1,N-length(x))];

Y = fft(xpad);

mag = 2%abs(Y(1:N/2+1))/N; mag(1l) = mag(1)/2; mag(N/2+1) = mag(N/2+1)/2;

freqs = linspace(0,1,N/2+1); stem(freqs,mag); axis([-0.05 1.05 -0.1 1.4]);

And now if the signal were sampled 256 times in the first place:

x =0; x(1:10) = 2; x(11:20)=0; x = [x x X X X X X X X X X X 2%ones(1,10) zeros(1,6)];
N = length(x);

Y = £ft(x);

mag = 2%abs(Y(1:N/2+1))/N; mag(1l) = mag(1)/2; mag(N/2+1) = mag(N/2+1)/2;

freqs = linspace(0,1,N/2+1); stem(freqs,mag); axis([-0.05 1.05 -0.1 1.4]);

The results are plotted in Figure 25.6. The frequency components are still clearly visible, though the results
are not as crystal clear as in Figure 25.5. A major reason for this is that the signal frequencies 0.1fx,0.3fn,
etc., are not exactly represented in the FFT, as they were before. The frequency intervals are now f,/256,
not f/200. As a result, the FFT spreads the original frequency components across nearby frequencies rather
than concentrating them in spikes at exact frequencies. This kind of spread is typical in most applications,
as it is unlikely that the original signal will have component frequencies at exactly frequencies of the form
kfo/N.

Finally, we are sometimes interested in the power in the signal as a function of the frequency. The power
is proportional to the square of the magnitude at each frequency, so we can plot the power spectrum using
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Figure 25.7: The power spectrum of Figure 25.6(bottom).

p = mag."2; stem(freqs,p); axis([-0.05 1.05 -0.1 1.4]);

A plot of the power spectrum of the 256-sample FFT from Figure 25.6(bottom) is shown in Figure 25.7.

25.2.2 PIC32 FFT

The software library that comes with the PIC32 includes a DSP library with computationally efficient code
for the FFT. For efficiency, it is written in assembly language, optimizing the number of instructions and
taking advantage of primitive multiply and add operations which are not directly accessible through C. It also
uses 16- and 32-bit integers to represent values, since, as we’ve seen, integer math is quite a bit faster than
floating point math. To use the PIC32 functions correctly, you must first get your numbers in a reasonable
range so that you don’t lose too much resolution. This often involves multiplying all your data by some value
scale, converting to integer types, performing the FFT, converting back to floating point, and then dividing
the results by scale.

The DSP library also makes use of the new data types int32c and int16c, which are complex 32-bit and
16-bit numbers. The int32c is a struct with two fields, re and im, each 32-bit integers. Here’s an example:

int32c complexnumber;
complexnumber.re = 3.2; // set the real portion of the complex number
complexnumber.im = 1.7; // set the imaginary portion

For more information on using the PIC32’s FFT functions, see the sample code.

25.2.3 The Inverse Fast Fourier Transform

Given the frequency domain representation Y (k) obtained from Y = fft(x), the inverse FFT uses the FFT
algorithm to recover the original signal z(k). In Matlab, this is the procedure:

N = length(x); Y = fft(x); xrecovered = fft(conj(Y)/N); plot(real(xrecovered));
The inverse FFT is accomplished by applying £ft to the complex conjugate of the frequency representation
Y (the imaginary components of all entries are multiplied by —1), scaled by 1/N. The vector xrecovered
is equal to x up to numerical errors, so its entries have essentially zero imaginary components. The real

operation ensures that they are exactly zero.
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x(k) z(k)

Figure 25.8: A digital filter produces filtered output z(k) based on the inputs x(k).

25.3 Finite Impulse Response (FIR) Digital Filters

Now that we have a basic understanding of frequency domain representations of sampled signals, we turn our
attention to filtering those signals (Figure 25.8). A finite impulse response (FIR) filter produces a filtered
signal z(k) by multiplying the P + 1 current and past inputs z(k — j),j = 0... P, by filter coefficients b; and
adding:

P
2(k) = bja(k - j).

J=0

Such filters can be used for a number of operations, such as differencing a signal or suppressing low-frequency
or high-frequency components. Since FIR filtering is a purely linear operation on the samples, filters in series
can be performed in any order; for example, a differencing filter followed by a low-pass filter gives equivalent
output to the low-pass filter followed by the differencing filter.

An FIR filter has P 4+ 1 coefficients, and P is called the order of the filter. The filter coefficients are
directly evident in the impulse response, which is the response z(k) to a unit impulse §(k), where

6(k)_{ 1 fork=0

0 otherwise.

The output is simply z(0) = by, 2(1) = by, 2(2) = b, etc. The impulse response is typically written as h(k).
Since any input signal x can be represented as the sum of scaled and time-shifted impulses, e.g.,

x = 30(k) —26(k —2),
and because the filter is linear, the output is simply the sum of the scaled and time-shifted impulse responses,
z = 3h(k) — 2h(k — 2).

For the second-order filter with coefficients by = 3,61 = 2,bs = 1, for example, the response to the input z is
shown in Figure 25.9. When reading these signals, be aware that the leftmost samples are oldest; for example,
the output z(0) happened three timesteps before the output z(3).

The output z is called the convolution of the input z and the filter’s impulse response h, commonly
written z = x % h. The filter response can be determined using Matlab’s conv command. We collect the filter
coefficients into the impulse response vector h = b = [b0 bl b2] and the input into the vector x = [3 0
-2], and then

z = conv(h,x)

produces z = [9 6 -3 -4 -2].

“Finite Impulse Response” filters get their name from the fact that if the input goes to zero, the output
goes to (exactly) zero in finite time. The shorter the filter’s impulse response, the faster the output goes to
zero. The output of an “Infinite Impulse Response” filter (Section 25.4) may never go to zero.

A filter is fully characterized by its impulse response. Often it is more convenient to look at the filter’s
frequency response, however. Because the filter is linear, a sinusoidal input will produce a sinusoidal output,
and the filter’s frequency response consists of its frequency-dependent gain (the ratio of the output amplitude
to the input amplitude) and phase (the shift in the phase of the output sinusoid relative to the input sinusoid).
To begin to understand the frequency response, we start with the simplest of FIR filters: the moving average
filter.
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Figure 25.9: Any input signal can be expressed as the sum of scaled and time-shifted impulses, and the filter
output is the sum of scaled and time-shifted impulse responses.

25.3.1 Moving Average Filter

Suppose we have a sensor signal x(k) that has been corrupted by noise (Figure 25.10). We would like to find
the low-frequency signal underneath the noise.

The simplest thing to try is a moving average filter (MAF). A moving average filter calulates the output
z(k) as a running average of the input signals z(k),

L P
z(k) = il Zx(k =) (25.2)
=0

i.e., the FIR filter coefficients are by = by = ... = bp = 1/(P + 1). The output y(k) is a smoothed and
delayed version of z(k). The more samples P + 1 we average over, the smoother and more delayed the
output. The delay is due to the fact that the output z(k) is a function of only the current and previous
inputs x(k — j),0 < j7 < P. See Figure 25.10.

To find the frequency response of a third-order four-sample MAF, we can test it on some sinusoidal inputs
at different frequencies (Figure 25.11). We find that the phase ¢ of the (reconstructed) output sinusoid
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Figure 25.10: The original noisy signal with samples (k) given by the circles, the signal z(k) resulting from
filtering with a three-point MAF (P = 2), and the signal z(k) from a nine-point MAF (P = 8). The signal
gets smoother and more delayed as the number of samples in the MAF increases

relative to the input sinusoid, and the ratio G of the amplitude of their amplitudes, depend on the frequency.
For the four test frequencies in Figure 25.11, we get the following table:

frequency ‘ gain G ‘ phase ¢

0.25fx | 0.65 | —67.5°

0.5fn 0 NA

0.67fx | 0.25 0°
i 0 NA

Testing the response at many different frequencies, we can plot the frequency response in Figure 25.12. Two
things to note about the gain plot:

e Gains are usually plotted on a log scale. This allows representation of a much wider range of gains.
e Gains are often expressed in decibels, which are related to gains by the following relationship:
Mag = 20log;, G.
So G =1 corresponds to 0 dB, G = 0.1 corresponds to —20 dB, and G = 0.01 corresponds to —40 dB.

Examining Figure 25.12 shows that low frequencies are passed with a gain of G = 1 and no phase shift.
The gain drops monotonically as the frequency increases, until it reaches G = 0 (—oco dB) at input frequencies
f =10.5fy. (The plot truncates the dip to —o0.) The gain then begins to rise again, before falling once
more to G =0 at f = fy. The MAF behaves somewhat like a low-pass filter, but not a very good one;
high frequency signals can get through with gains of 0.25 or more. Still, it works reasonably well as a signal
smoother.

Given a set of filter coefficients b = [b0 bl b2 ...], we can plot the frequency response in Matlab using

freqz(b);
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~« filter
*, output z(k)

signal
input x(k)

original signal: /= 0.50 f;

original signal: f =0.67 fy original signal: /"= f}
Figure 25.11: Testing the gain G of a four-sample MAF with different input frequencies.

Causal vs. Acausal Filters A filter is called causal if its output is the result of only current and past inputs,
i.e., past inputs “cause” the current output. Causal filters are the only option for real-time implementation.
If we are post-processing data, however, we can choose an acausal version of the filter, where the outputs at
time k are a function of past as well as future inputs. This is useful for eliminating the delay associated with
only using past inputs to calculate the current value. An example acausal filter is a five-sample MAF which
uses the average of the past two inputs, the current input, and the next two inputs to calculate the output.

Zero Padding When a filter is first initialized, there are no past inputs. In this case we can assume
the nonexistent past inputs were all zero. The output transient caused by this assumption will end at the
(P + 1)th input.

25.3.2 FIR Filters Generally

FIR filters can be used for low-pass filtering, high-pass filtering, bandpass filtering, and bandstop (notch)
filtering, among other things. Matlab provides a number of useful functions for filter design, such as firl
and fdatool. In this section we will work with firl. See the Matlab documentation for more details.

A “good” filter is one that

e passes the frequencies we want with gain 1,

e highly attenuates the frequencies we don’t want, and
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Figure 25.12: The frequency response of a four-sample MAF. Test frequencies from Figure 25.12 are shown
as dotted lines.

e provides a sharp transition in gain between the passed and attenuated frequencies.

The order of the filter increases with the sharpness of the desired transition and the degree of attenuation
needed in the stopped frequencies. This is a general principle: the sharper the transitions in the frequency
domain, the longer the impulse response (i.e., the more coefficients that are needed in the filter). The converse
is also true: the sharper the transition in the impulse response, the smoother the frequency response. We saw
this with the moving average filter. It has a sharp transition between filter coefficients of 0 and 1/(P + 1),
and the resulting frequency response has only slow transitions.

High-order filters are fine for post-processing data or for non-time-critical applications such as audio
applications, but they may not be appropriate for real-time control because of unacceptable delay. In audio
applications, you don’t care if the music arrives at your ear a tenth of a second after the bits are read from
the CD.

The Matlab filter design function firil takes the order of the filter, the frequencies you would like to
pass or stop (expressed as a fraction of the Nyquist frequency), and other options, and returns a list of
filter coefficients. Matlab considers the cutoff frequency to be where the gain is 0.5 (—6 dB). Here are some
examples using firl:

o o T T o

£ir1(10,0.2);
£ir1(10,0.2,’high?’);
fir1(150,[0.1 0.2]);
£ir1(50,[0.1 0.2],’stop’);
£ir1(20,0.4,hann(21));

h
h
h
h
h

10th order, 1l-sample LPF with cutoff freq of 0.2 fN

HPF cutting off frequencies below 0.2 fN

150th order bandpass filter with passband 0.1 to 0.2 fN
bandstop filter with notch at 0.1 to 0.2 £fN

you can use a "window" to roll off coeffs; hamming is default

You can then plot the frequency response of your designed filter using freqz(b).
If the order of your specified filter is not high enough, you will not be able to meet your design criteria.
For example, if you want a low-pass filter that cuts off frequencies at 0.1 fy, and you only allow seven
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coefficients (sixth order),
b = £fir1(6,0.1);

you'll find that the filter coefficients that Matlab returns do not achieve your aims.
In the examples below we will work with a 1000-sample signal, with components at DC, 0.004 fx, 0.04f,
and 0.8 fn. The original signal x is plotted in Figure 25.13.
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Figure 25.13: The original 1000-sample signal x.

de (d8)

§ L &

a 05 05
Normalized Frequency (x« radisample)

ase (degrees)

Phe

Figure 25.14: Moving average filter: maf=ones(13,1)/13; freqz(maf); plot(conv(maf,x)). Left: The
frequency response of the 12th-order (13-sample) MAF. Middle: The result of the MAF applied to (convolved
with) the original signal. Since the original signal has 1000 samples, and the MAF has 13 samples, the filtered
signal has 1012 samples. (In general, if two signals of length j and k are convolved with each other, the result
will have length j 4+ k — 1.) This is equivalent to first “padding” the 1000 samples with 12 samples equal
to zero on either end (sample numbers -11 to 0, and 1001 to 1012), then applying the 13-sample filter 1012
times, over samples -11 to 1, then -10 to 2, etc., up to samples 1000-1012. This zero-padding explains why
the signal drops to close to zero at either end. Right: Zoomed in on the smoothed signal.
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Figure 25.15: 1pf=fir1(12,0.2); freqz(1lpf); plot(conv(lpf,x)). Left: The frequency response of a
12th-order LPF with cutoff at 0.2fy. Middle: The signal smoothed by the LPF. Right: A zoomed-in view,
showing superior performance to the 12th-order MAF.
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Figure 25.16: 1pf=fir1(150,0.01). Left: stem(lpf). The coeflicients of a 150th-order FIR LPF with
a cutoff at 0.01fy. Middle: freqz(1pf). The frequency response. Right: plot(conv(lpf,x)). The
smoothed signal, where only the 0.004 fy and DC components get through.
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Figure 25.17: bpf=£fir1(150,[0.02,0.2]). Left: stem(bpf). The coefficients of a 150th-order bandpass
filter). Middle: freqz(bpf). The frequency response. Right: plot(conv(bpf,x)). The signal consisting
mostly of the 0.04fy component, with small DC and 0.004 fy components.

Figure 25.18: hpf=£fir1(150,0.5, high’). Left: stem(hpf). The coeflicients of a 150th-order high-pass
filter. Middle: freqz(hpf). The frequency response. Right: plot(conv(hpf,x)). Zoomed in on the
high-passed signal.
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Figure 25.19: A simple differencing (or “velocity”) filter has coefficients b[0] = 1,b[1] = —1, or written in
Matlab, b = [1 -1]. (Note the order: the coefficient that goes with the most recent input is on the left.) A
differencing filter responds more strongly to signals with larger slopes (i.e., higher frequency signals) and has
zero response to constant (DC) signals. Usually the signal “velocities” we are interested in, though, are those
at low frequency; higher-frequency signals tend to come from sensing noise. Thus a better filter is probably
a differencing filter convolved with a low-pass filter. Left: b1 = [1 -1]; b2 = conv(bl,fir1(12,0.2));
freqz(bl); hold on; freqz(b2). This plot shows the frequency response of the differencing filter, as
well as a differencing filter convolved with a 12th-order FIR LPF with cutoff at 0.2fy. At low frequencies,
where the signals we are interested in live, the two filters have the same response. At high frequencies,
the simple differencing filter has a large (unwanted) response, while the other filter attenuates this noise.
Middle: plot(conv(bl,x)). Zoomed in on the signal filtered by the simple difference filter. Right:
plot(conv(b2,x)). Zoomed in on the signal filtered by the difference-plus-LPF.

simple acceleration

acc + LPF

Figure 25.20: We can also make a double-differencing (or “acceleration”) filter by taking the difference
of two consecutive difference samples, i.e., convolving two differencing filters. This gives a simple filter
with coefficients [1 -2 1]. This filter amplifies high frequency noise even more than a differencing filter. A
better choice would be to use a filter that is the convolution of two difference-plus-low-pass filters from the
previous example. Left: bvel=[1 -1]; bacc=conv(bvel,bvel); bvellpf=conv(bvel,fir1(12,0.2));
bacclpf=conv(bvellpf,bvellpf); freqz(bacc); hold on; freqz(bacclpf). The low-frequency re-
sponse of the two filters is identical, while the low-pass version attenuates high frequency noise. Middle:
plot(conv(bacc,x)). Zoomed in on the second derivative of the signal, according to the simple acceleration
filter. Right: plot(conv(bacclpf,x)). Zoomed in on the second derivative of the signal, according to the
low-passed version of the acceleration filter.
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25.4 Infinite Impulse Response (IIR) Digital Filters

The class of infinite impulse response (IIR) filters generalizes FIR filters to the following form:

Q P
Zaiz(k —i) = ija:(k —J),
i=0 j=0
or, written in a more useful form for us,
1 P Q
2(k) = — > bk —j§) = > aiz(k—1i) | . (25.3)
0 \“ ;
7=0 =1

The response of an IIR filter to an impulse input may never die out, unlike the FIR filter. Some other
differences between FIR and IIR filters are highlighted below:

e IR filters may be unstable, that is, their output may grow unbounded even if the input is bounded.
This is not possible with FIR filters.

e IIR filters often use many fewer coefficients to achieve the same magnitude response transition sharpness.
Hence they can be more computationally efficient than FIR filters.

e IIR filters generally have a nonlinear phase response (phase does not change linearly with frequency,
as with FIR filters). This may or may not be OK, depending on the application. A linear phase
response ensures that the time (not phase) delay associated with signals at all frequencies is the same.
A nonlinear phase response, on the other hand, may cause different time delays at different frequencies.
This may result in unacceptable distortion in an audio application, for example.

Because of roundoff errors in computation, an IIR filter that is theoretically stable may be unstable when
implemented directly in the form of Equation (25.3). Because of the possibility of instability, IIR filters with
many coefficients are usually implemented as a cascade of filters with P = 2 and Q = 2. It is relatively easy
to ensure that these low-order filters are stable, ensuring the stability of the cascade of filters.

Popular IIR filters include Chebyshev and Butterworth filters, which include low-pass, high-pass, bandpass,
and bandstop versions. Matlab offers design tools for these filters. Given a set of coefficients b and a defining
the IIR filter, the Matlab command filter(b,a,signal) returns the filtered version of signal.

Perhaps the simplest IIR filter is the integrator

z(k) = z(k-1) + x(k)*Ts

where Ts is the sample time. The coefficients are a = [1 -1] and b = [Ts]. The behavior of the integrator
on the sample signal in Figure 25.13 is shown in Figure 25.21.

25.5 FFT-based Filters

One more option for filtering signals is to first FFT the signal, then set certain frequency components of the
signal to zero, then do an inverse FFT. Let’s say we're working with the 256-sample square wave we looked
at in Section 25.2.1, and we want to extract only the component at 0.1fy. First let’s build the signal and
FFT it:

x =0; x(1:10) = 2; x(11:20)= 0; x = [X X X X X X X X X X X x 2%ones(1,10) zeros(1,6)];
N = length(x);
Y = £fft(x);

The element Y(1) is the DC component, Y(2) and Y(256) correspond to frequency fs/N, Y(3) and
Y(255) correspond to frequency 2f;/N, Y(4) and Y(254) correspond to frequency 3fs/N, etc., until Y(129)
corresponds to frequency 128 f;/N = fs/2 = fn. So the frequencies we care about are near index 14 and its
counterpart 258 — 14 = 244. To cancel other frequencies, we can do
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Figure 25.21: Left: a=[1 -1]; b=[1]; freqz(b,a). Note that the frequency response of the integrator is
infinite to DC signals (the integral of a nonzero constant signal goes to infinity) and low for high frequency
signals. This is opposite of the differencing filter. Right: plot(filter(b,a,x)). The filter command
applies the filter with coefficients b and a to x. This generalizes conv to IIR filters. (We can’t simply use
conv for IIR filters, since the impulse response is not finite.) The upward slope of the integral is due to the
nonzero DC term. We can also see the wiggle due to the 2 Hz term. It is basically impossible to see the
20 Hz and 400 Hz terms in the signal.
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Figure 25.22: (Left) The extracted frequencies from the FFT magnitude plot in Figure 25.6. (Right) The
FFT filter output, which is approximately a sinusoid at 0.1fy.

halfwidth = 3;

Yfiltered = zeros(1,256);
Yfiltered(14-halfwidth:14+halfwidth) =
Yfiltered(244-halfwidth:244+halfwidth)
xrecovered = fft(conj(Yfiltered)/N);
plot(real(xrecovered));

Y(14-halfwidth:14+halfwidth);
= Y(244-halfwidth:244+halfwidth);

The result is the (approximate) sinusoidal component of the square wave at 0.1fy, shown in Figure 25.22.

This is simple! (Of course the cost is in computing the FFT and inverse FFT.) FFT-based filter design
tools allow you to specify an arbitrary frequency response (e.g., by drawing the magnitude response) and the
size of the filter you are willing to accept, then use an FFT to find filter coefficients that best match the
desired response. The more coefficients you allow, the closer the approximation. In Matlab, you can explore
the use of design, fdesign, and fdatool.

175 08:24 January 27, 2014



CHAPTER 25. DIGITAL SIGNAL PROCESSING

25.6 Exercises
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Chapter 26

Brushed Permanent Magnet DC
Motors

Essentially all electric motors operate on the same principle: current flowing through a magnetic field creates
a force. Because of this relationship between current and force, electric motors can be used to convert
electrical power to mechanical power. They can also be used to convert mechanical power to electrical power;
generators in hydropower dams and regenerative braking in electric and hybrid cars are examples of this.

In this chapter we study perhaps the simplest, cheapest, most common, and arguably most useful electrical
motor: the brushed permanent magnet direct current (DC) motor. For brevity, we refer to these simply as
DC motors. A DC motor has two input terminals, and a voltage applied across those terminals causes the
motor shaft to spin. For a constant load or resistance at the motor shaft, the motor shaft achieves a speed
proportional to the input voltage. Positive voltage causes spinning in one direction, and negative voltage
causes spinning in the other.

Depending on the specifications, you can buy DC motors for tens of cents up to thousands of dollars. For
most small-scale or hobby applications, appropriate DC motors typically cost a few dollars. DC motors are
often outfitted with a sensing device, most commonly an encoder, to track the position and speed of the
motor, and a gearhead to reduce the output speed and increase the output torque.

26.1 Motor Physics

DC motors exploit the Lorentz force law,
F =/ x B, (26.1)

where F,I, and B are 3-vectors, B describes the magnetic field created by permanent magnets, I is the
current vector (including the magnitude and direction of the current flow through the conductor), ¢ is the
length of the conductor in the magnetic field, and F is the force on the conductor. For the case of a current
perpendicular to the magnetic field, the force is easily understood using the right-hand rule for cross-product:
with your right hand, point your index finger along the current direction and your middle finger along the
magnetic field flux lines. Your thumb will then point in the direction of the force. See Figure 26.1.

Now let’s replace the conductor by a loop of wire, and constrain that loop to rotate about its center. See
Figures 26.2 and 26.3. In one half of the loop, the current flows into the page, and in the other half of the
loop the current flows out of the page. This creates forces of opposite directions on the loop. Referring to
Figure 26.3, let the magnitude of the force acting on each half of the loop be f, and let d be the distance
from the halves of the loop to the center of the loop. Then the total torque acting on the loop about its
center can be written

7 = 2df cos b,

where 6 is the angle of the loop. The torque changes as a function of . For —90° < 6 < 90°, the torque
is positive, and it is maximum at # = 0. A plot of the torque on the loop as a function of € is shown in
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Figure 26.1: Two magnets create a magnetic field B, and a current I along the conductor causes a force F on
the conductor.

Figure 26.2: A current-carrying loop of wire in a magnetic field.

@ current into page
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Figure 26.3: A loop of wire in a magnetic field, viewed end-on. Current flows into the page on one side of the
loop and out of the page on the other, creating forces of opposite directions on the two halves of the loop.
These opposite forces create torque on the loop about its center at most angles 6 of the loop.

Figure 26.4(a). The torque is zero at § = —90° and 90°, and of these two, 8 = 90° is stable while § = —90° is
unstable. Therefore, if we send a constant current through the loop, it will eventually come to rest at § = 90°.

To make a more useful motor, we can reverse the direction of current at 6 = —90° and 0 = 90°. This
has the effect of making the torque nonnegative at all angles (Figure 26.4(b)). The torque is still zero at
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Figure 26.4: (a) The torque on the loop of Figure 26.3 as a function of its angle for a constant current. (b) If
we reverse the current direction at the angles § = —90° and 6 = 90°, we can make the torque nonnegative at
all 8. (c) If we use several loops offset from each other, the sum of their torques becomes more constant as a
function of angle. The remaining variation contributes to torque ripple.

0 = —90° and 6 = 90°, however, and it undergoes a large variation as a function of . To make the torque
more constant as a function of 8, we can introduce more loops of wire, each offset from the others in angle,
and each reversing their current direction at appropriate angles. Figure 26.4(c) shows an example with three
loops of wire offset from each other by 120°. Their component torques sum to give a more constant torque as
a function of angle. The remaining variation in torque contributes to angle-dependent torque ripple.

Finally, to increase the torque generated, each loop of wire is replaced by a coil of wire that loops back
and forth through the magnetic field many times. If the coil consists of 100 loops, it generates 100 times
the torque of the single loop for the same current. Wire used to create coils in motors, like magnet wire, is
very thin, so there is resistance from one end of a coil to the other, typically from fractions of an ohm up to
hundreds of ohms.

The only thing missing is the method to switch the current direction. Figure 26.5 shows the idea behind
the solution for brushed DC motors. The two input terminals are connected to brushes, typically made
of a soft conducting metal like graphite, which are spring-loaded to press against the commutator, which
is connected to the motor coils. As the motor rotates, the brushes slide over the commutator and switch
between commutator segments, each of which is electrically connected to the end of one or more coils. This
switching changes the direction of current through the coils. (Unlike the simplified example in Figure 26.4,
however, not all coils are energized at the same time.) Figure 26.5 shows a schematic of a minimal motor
design with three commutator segments and a coil between each pair of segments. Most high quality motors
have more commutator segments and coils.

And that is how brushed DC motors work. The basic concept hasn’t changed much since the late 1800’s.
Figure 26.6 shows a DC motor that has been opened up, exposing the brushes, commutator, and coils, as
well as one of the two permanent magnets on the interior of the housing. The rotating portion of the motor
is called the rotor and the housing is called the stator.

Brushless motors are a variant that use electronic commutation as opposed to brushed commutation.
For a brushless motor, the permanent magnets are on the rotor and the coils (armature) are attached to
the interior of the motor housing. External commutation circuitry switches the direction of the current
through the armature based on the motor angle sensed by Hall effect sensors. Brushless motors are common,
but brushed DC motors still dominate inexpensive applications. Drawbacks of brushed motors relative to
brushless motors include

e brush wear: the brushes will eventually wear down, limiting lifetime compared to brushless motors;
e particles due to the wearing brushes;

e friction and noise due to the brushes;
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magnet

commutator

motor
housing

Figure 26.5: A schematic end-on view of a simple DC motor. The two brushes are held against the commutator
by leaf springs which are electrically connected to the external motor terminals. This commutator has three
segments and there are coils between each segment pair. The stator magnets are epoxied to the inside of the
motor housing.

gearhead

Figure 26.6: The two brushes of this disassembled DC motor are attached to the motor housing, which has
otherwise been removed. One of the two permanent magnets is visible inside the housing. Coils are often
wrapped around iron or other ferromagnetic material to increase magnetic permeability. This motor has a
gearhead on the output.

e greater electrical noise due to the abrupt brush-commutation switching events; and

e lower continuous current ratings, as brushless motors dissipate heat more effectively (and therefore can
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sustain higher continuous currents) due to the attachment of the coils to the motor housing.

Brushless motors have the disadvantage of more complex drive circuitry, however, and the drawbacks above
are not critical for many applications.

26.2 Governing Equations

To derive an equation to approximately model the motor’s behavior, let’s ignore the details of the commutation.
Let’s focus instead on electrical and mechanical power. The electrical power put into the motor is IV, where
I is the current through the motor and V' is the voltage across the motor. We know that the motor converts
some of this input power to mechanical power 7w, where 7 and w are the torque and velocity of the output
shaft, respectively. Electrically, the motor is described by a resistance R between the two terminals as well as
an inductance L due to the coils. The resistance of the motor coils dissipates power I2R as heat. The motor
also stores energy %LI 2 in the inductor’s magnetic field, and the time rate of change of this is LI(dI/dt), the
power into (charging) or out of (discharging) the inductor. Finally, power is dissipated as sound, heat due to
friction at the brush-commutator interface and at the bearings between the motor shaft and the housing, etc.
In SI units, all these power components are expressed in watts. Putting these all together, we have a full
accounting for the electrical power put into the motor:

dI
IV = 7w+ I’R + LIE + power dissipated due to friction, sound, etc.

Ignoring the last term, we have our simple motor model, written in terms of power:

dI
IV =1w+I*R+ LI—. (26.2)
From Equation (26.2) we can derive all other relationships of interest. For example, dividing both sides of
(26.2) by I, we get
T dI
V== IR+ L—. 26.3
7w +IR+ 7 (26.3)
The ratio 7/1 is a constant, an expression of the Lorentz force law for the particular motor design. This
constant is called the torque constant k;, and this constant relating current to torque is one of the most
important properties of the motor:

kt = — or T = kt.[ (264)

The ST units of k; are Nm/A. (In this chapter, we only use SI units, but you should be aware that many
different units are used by different manufacturers, as on the speed-torque curve and data sheet in Figure 26.15
in the Exercises.) Equation (26.3) also shows that the ST units for k; can be written equivalently as Vs/rad,
or simply Vs. When using these units, we sometimes call the motor constant the electrical constant k.. The
inverse is sometimes called the speed constant. You should recognize that these terms all refer to the same
property of the motor. For consistency, we usually refer to the torque constant k;.

With this, we write the motor model in terms of voltage as

V= ktw—f—IR—kL%. (26.5)
You should remember, or be able to quickly rederive, the power equation (26.2), the torque constant (26.4),
and the voltage equation (26.5).

The term k;w, with units of voltage, is called the back-emf, where emf is short for electromotive force. We
could also call this “back-voltage.” Back-emf is the voltage generated by a spinning motor to “oppose” the
input voltage generating the motion. As an example, say that the motor’s terminals are not connected to
anything (open circuit). Then clearly I = 0, and (26.5) reduces to

V= k‘tw.
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This indicates that back-driving the motor (e.g., spinning it by hand) will generate a voltage at the terminals.
If we were to connect a capacitor across the motor terminals, then spinning the motor by hand would cause
the capacitor to charge up, storing some of the mechanical energy we are putting in as electrical energy in
the capacitor. This is basically how hydropower dams and regenerative braking in cars works.

The existence of this back-emf term also means that if we put a constant voltage V across a free-spinning
frictionless motor, after some time it will reach a constant speed V/k;. At this speed, by (26.5), the current I
drops to zero, meaning there is no more torque 7 to accelerate the motor.

26.3 The Speed-Torque Curve

If we assume the motor is at steady state, i.e., dI/d¢t = 0, Equation (26.5) reduces to
V = kw + IR. (26.6)

Using the definition of the torque constant, we get the equivalent form

1 R
= 7V_7 .
w e kt27'

(26.7)
Equation (26.7) gives w as a linear function of 7 for a given constant V. This line, of slope —R/kZ, is called
the speed-torque curve for the voltage V.

The speed-torque curve plots all the possible steady-state operating conditions with voltage V' across the
motor. Assuming friction torque is zero, the line intercepts the 7 = 0 axis at

wo = V/kt = no load speed.

The line intercepts the w = 0 axis at

kV
Tstall = R = stall torque.

At the no-load condition, 7 = I = 0; the motor rotates at maximum speed with no current or torque. At
the stall condition, the shaft is blocked from rotating, and the current (Ispan = Tstan/k: = V/R) and output
torque are maximized due to the lack of back-emf. Which point along the speed-torque curve the motor
actually operates at is determined by the load attached to the motor shaft.

An example speed-torque curve is shown in Figure 26.7. This motor has wy = 500 rad/s and 7gan =
0.1067 Nm for a nominal voltage of Vo, = 12 V. The operating region is any point below the speed-torque
curve, corresponding to voltages less than or equal to 12 V. If the motor is operated at a different voltage
cVhom, the intercepts of the speed-torque curve are linearly scaled to cwg and ¢Tgpan.

The speed-torque curve corresponds to constant V', but not to constant input power IV. The current
I is linear with 7, so the input electrical power increases linearly with 7. The output mechanical power is
P,ut = Tw, and the efficiency in converting electrical to mechanical power is n = Tw/IV. We come back to
efficiency in Section 26.4.

To find the point on the speed-torque curve that maximizes the mechanical output power, we can write
points on the curve as (7,w) = (¢Tstan, (1 — ¢)wp) for 0 < ¢ < 1, so the output power is expressed as

2
Pout =TW = (C —C )TstallWOa

and the value of ¢ that maximizes the power output is found by solving

d 1
%((C — ) Tanwo) = (1 = 20)Tanwo =0 = ¢ = 9’

Thus the mechanical output power is maximized at 7 = Tgpan/2 and w = wp/2. This maximum output power

is
1 1 1
Prax = §Tstall §UJ0 = ZTstallwo-
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Figure 26.7: A speed-torque curve. Many speed-torque curves use rpm for speed, but we prefer SI units.
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Figure 26.8: The quadratic mechanical power plot P = 7w plotted alongside the speed-torque curve. The
area of the speed-torque rectangle below and to the left of the operating point is the mechanical power.

See Figure 26.8.

Motor current is proportional to motor torque, so operating at high torques means large coil heating losses
I’R, sometimes called ohmic heating. For that reason, motor manufacturers specify a mazimum continuous
current I.ont, the largest continuous current such that the coils’ steady-state temperature remains below a
critical point.! The maximum continuous current has a corresponding mazimum continuous torque Teons-
Points to the left of this torque and under the speed-torque curve are called the continuous operating region.
The motor can be operated intermittently outside of the continuous operating region, in the intermittent
operating region, provided the motor is allowed to cool sufficiently between uses in this region. Motors are
commonly rated with a nominal voltage that places the maximum mechanical power operating point (at
Tstall /2) outside the continuous operating region.

Given thermal characteristics of the motor of Figure 26.7, the speed-torque curve can be refined to
Figure 26.9, showing the continuous and intermittent operating regions of the motor. The point on the
speed-torque curve at 7.ont is the rated or nominal operating point, and the mechanical power output at this

1The maximum continuous current depends on thermal properties governing how fast coil heat can be transferred to the
environment. This depends on the environment temperature, typically considered to be room temperature. The maximum
continuous current can be increased by cooling the motor.
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Figure 26.9: The continuous operating region (under the speed-torque curve and left of 7cont) and the
intermittent operating region (the rest of the area under the speed-torque curve). The 10 W mechanical
power hyperbola is indicated, including the nominal operating point at Tcont-

point is called the motor’s power rating. For the motor of Figure 26.9, 7 ont = 26.67 mNm, which occurs at
w = 375 rad/s, for a power rating of

0.02667 Nm x 375 rad/s = 10.0 W.

Figure 26.9 also shows the constant output power hyperbola 7w = 10 W passing through the nominal
operating point.

The speed-torque curve for a motor is drawn based on a nominal voltage. This is a “safe” voltage that
the manufacturer recommends. It is possible to overvolt the motor, however, provided it is not continuously
operated beyond the maximum continuous current. A motor also may have a specified mazimum permissible
speed wWmax, Which creates a horizontal line constraint on the permissible operating range. This speed is
determined by properties of the shaft bearings or allowable brush wear, and it is typically larger than the
no-load speed wy. The shaft and bearings may also have a maximum torque rating Tyax > Tstan- Lhese
limits allow the loose definition of overvolted continuous and intermittent operating regions, as shown in

Figure 26.10.

26.4 Friction and Motor Efficiency

Until now we have been assuming that the full torque 7 = k;I generated by the windings is available at the
output shaft. In practice, some torque is lost due to friction at the brushes and the shaft bearings. Let’s use
a simple model of friction: assume a torque 7 > 7xic > 0 must be generated to overcome friction and initiate
motion, and any torque beyond 7. is available at the output shaft regardless of the motor speed (e.g., no
friction that depends on speed magnitude). When the motor is spinning, the torque available at the output
shaft is

Tout = T — Tfric-

Nonzero friction results in a nonzero no-load current Iy = Tgic/k: and a no-load speed wy less than V/k;. The
speed-torque curve of Figure 26.10 is modified to show a small friction torque in Figure 26.11. The torque
actually delivered to the load is reduced by 7gic.

Taking friction into account, the motor’s efficiency in converting electrical to mechanical power is

ToutW
- . 26.8
n IV ( )

184 08:24 January 27, 2014



CHAPTER 26. BRUSHED PERMANENT MAGNET DC MOTORS

Wmax*'**********ﬁ‘- ———————————————————————————————————— ]
overvolted | :
600 |  continuous ! :
operating i :
. |
_Wo N Jegion i overvolted intermittent :
Q3 E operating region :
T 400 | |
\s-_‘/ I
= I
() I
[ |
o |
s} . I
200 { continuous |
operating intermittent :
region operating region :
I
I
0 i i i i Ny -
0 20 40 60 80 100 T 120
Tcont torque (mNm) Tstall Tmax

Figure 26.10: It is possible to exceed the nominal operating voltage, provided the constraints w < wpax and
T < Tmax are respected and 7.on¢ is only intermittently exceeded.
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Figure 26.11: The speed-torque curve of Figure 26.10 modified to show a nonzero friction torque 7gi. and the
resulting reduced no-load speed wy.

The efficiency depends on the operating point on the speed-torque curve, and it is zero when either 74, or w
is zero, as there is no mechanical power output. Maximum efficiency generally occurs at high speed and low
torque, approaching the limit of 100% efficiency at 7 = 7oy = 0 and w = wy as Txic approaches zero. As an
example, Figure 26.12 plots efficiency vs. torque for the same motor with two different values of 7g4.. Lower
friction results in a higher maximum efficiency nyax, occurring at a higher speed and lower torque.

To derive the maximally efficient operating point and the maximum efficiency nmax for a given motor, we
can express the motor current as

I=1y+1,,

where Ij is the no-load current necessary to overcome friction and I, is the added current to create torque to
drive the load. Recognizing that 7ous = kila, V = IganR, and w = R(Istan — I, — Io)/k: by the linearity of
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Figure 26.12: The speed-torque curve for a motor and two efficiency plots, one for high friction torque (case
1) and one for low friction torque (case 2). For each case, efficiency is zero for all 7 below the level needed to
overcome friction. The low friction version of the motor (case 2) achieves a higher maximum efficiency, at a
higher speed and lower torque, than the high friction version (case 1).

the speed-torque curve, we can rewrite the efficiency (26.8) as

Ia(Istall - IO - Ia)

26.9
(IO +Ia)lsta11 ( )

77:

To find the operating point I} maximizing 7, we solve dn/dI, = 0 for I}, and recognizing that Iy and Ian

are nonnegative, the solution is
I; =V IstalllO - IO-

In other words, as the no-load current I goes to zero, the maximally efficient current (and therefore 7) goes

to zero.
I ?
0
Nmax = | 1 — .
* < Istall)

Plugging I* into (26.9), we find
This answer has the form we would expect: maximum efficiency approaches 100% as the friction torque
approaches zero, and maximum efficiency approaches 0% as the friction torque approaches the stall torque.
Choosing an operating point that maximizes motor efficiency can be important when trying to maximize
battery life in mobile applications. For the majority of analysis and motor selection problems, however,
ignoring friction is a good first approximation.

26.5 Motor Windings and the Motor Constant

It is possible to build two different versions of the same motor by simply changing the windings while keeping
everything else the same. For example, imagine a coil of resistance R with N loops of wire of cross-sectional
area A. The coil carries a current I and therefore has a voltage drop I R. Now we replace that coil with a
new coil with N/c loops of wire with cross-sectional area cA. This preserves the volume occupied by the coil,
fitting in the same form factor with similar thermal properties. Without loss of generality, let’s assume that
the new coil has fewer loops and uses thicker wire (¢ > 1).

The resistance of the new coil is reduced to R/c? (a factor of ¢ due to the shorter coil and another factor
of ¢ due to the thicker wire). To keep the torque of the motor the same, the new coil would have to carry
a larger current ¢/ to make up for the fewer loops, so that the current times the pathlength through the
magnetic field is unchanged. The voltage drop across the new coil is (cI)(R/c?) = IR/c.

Replacing the coils allows us to create two versions of the motor: a many-loop, thin wire version that
operates at low current and high voltage, and a fewer-loop, thick wire version that operates at high current
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and low voltage. Since the two motors create the same torque with different currents, they have different
torque constants. Each motor has the same motor constant k,,, however, where

T kt

VPR VR

km =

with units of Nm/ VW. The motor constant defines the torque generated per square root of the power
dissipated by coil resistance. In the example above, the new coil dissipates (cI)?(R/c?) = I?R power as heat,
just as the original coil does, while generating the same torque.

Figure 26.15 shows the data sheet for a motor that comes in several different versions, each identical in
every way except for the winding. Each version of the motor has a similar stall torque and motor constant
but different nominal voltage, resistance, and torque constant.

26.6 Other Motor Characteristics

Electrical time constant When the motor is subject to a step in the voltage across it, the electrical time
constant T, measures the time it takes for the current to reach 63% of its final value. The motor’s voltage
equation is

dI

V=kw+IR+ L—.

dt
Ignoring back-emf (because the motor speed does not change significantly over one electrical time constant),
assuming an initial current through the motor of Iy, and an instantaneous drop in the motor voltage to 0, we
get the differential equation

dl
0=IR+ L—
oft+ Lo
or
dI R
i 1
dt L

with solution
I(t) = Iy e /L = [y e /T,

The time constant of this first-order decay of current is the motor’s electrical time constant, T, = L/R.

Mechanical time constant When the motor is subject to a step voltage across it, the mechanical time
constant T,, measures the time it takes for the motor speed to reach 63% of its final value. Beginning from
the voltage equation

dl

V=kw+IR+ L—,

dt
ignoring the inductive term, and assuming an initial speed wy at the moment the voltage drops to zero, we
get the differential equation

R JR dw
0 = IR+kwy = ET + kiwo = kit% + kywo
or
dw K
it~ JR™

with a time constant of T,, = JR/k?. If the motor is attached to a load that increases the inertia, the
mechanical time constant increases.
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Short-circuit damping When the terminals of the motor are shorted together, the voltage equation
(ignoring inductance) becomes

0 = kwtIR = ktw+klR
t
or k?
T = —Bw = —Efw,

where B = k?/R is the short-circuit damping. A spinning motor is slowed more quickly by shorting its
terminals together, compared to leaving the terminals open circuit, due to this damping.

26.7 Motor Data Sheet

Motor manufacturers summarize motor properties described above in a speed-torque curve and in a data
sheet similar to the one in Figure 26.13. When you buy a motor second-hand or surplus, you may need to
measure these properties yourself. We will use all ST units, which is not the case on most motor data sheets.

Many of these properties have been introduced already. Below we describe some methods for estimating
them.

Experimentally Characterizing a Brushed DC Motor

Given a mystery motor with an encoder, you can use a function generator, oscilloscope, multimeter and
perhaps some resistors and capacitors to estimate most of the important properties of the motor. Below are
some suggested methods; you may be able to devise others.

Nominal voltage Vy,om This is the specification you are most likely to know for an otherwise unknown
motor. It is sometimes printed right on the motor itself. This voltage is just a recommendation; the real issue
is to avoid overheating the motor or spinning it at speeds beyond the recommended value for the brushes
or bearings. Nominal voltage cannot be measured, but a typical no-load speed for a brushed DC motor is
between 3000 and 10,000 rpm, so the nominal voltage will usually give a no-load speed in this range.

Power rating P The power rating depends on thermal characteristics of the motor and is not easy to
measure without damaging the motor.

Terminal resistance R You can measure R with a multimeter. The resistance may change as you rotate
the shaft by hand, as the brushes move to new positions on the commutator. You should record the minimum
resistance you can reliably find. A better choice, however, may be to measure the current when the motor is
stalled.

Terminal inductance . There are a number of ways to measure inductance. One approach is to add a
capacitor in parallel with the motor and measure the oscillation frequency of the resulting RLC circuit. For
example, you could build the circuit shown in Figure 26.14, where a good choice for C' may be 0.01 uF or
0.1 puF. The motor acts as a resistor and inductor in series; back-emf will not be an issue, because the motor
will be powered by tiny currents at high frequency and therefore will not move.

Use a function generator to put a 1 kHz square wave between 0 and 5 V at the point indicated. The
1 k€ resistor limits the current from the function generator. Measure the voltage with an oscilloscope where
indicated. You should be able to see a decaying oscillatory response to the square wave input when you
choose the right scales on your scope. Measure the frequency of the oscillatory response. Knowing C' and
that the natural frequency of an RLC circuit is w,, = 1/v/LC in rad/s, estimate L.

Let’s think about why we see this response. Say the input to the circuit has been at 0 V for a long time.
Then your scope will also read 0 V. Now the input steps up to 5 V. After some time, in steady state, the
capacitor will be an open circuit and the inductor will be a closed circuit (wire), so the voltage on the scope
will settle to 5 V x (R/(1000 4+ R))—the two resistors in the circuit set the final voltage. Right after the
voltage step, however, all current goes to charge the capacitor (as the zero current through the inductor
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I Motor Property Symbol Value Units Comments |
Nominal voltage Viaom Vv Should be chosen so the no-load speed is safe for
brushes, commutator, and bearings.
Power rating P \W% Output power at the nominal operating point (max
continuous torque).

Terminal resistance R Q Resistance of the motor windings. May change as
brushes slide over commutator segments. Increases
with heat.

Terminal inductance L H Inductance due to the coils.
Torque constant ke Nm/A The constant ratio of torque produced to current
through the motor.
Rotor inertia J kgm? Often given in units gem?.
No-load speed wo rad/s Speed when no load and powered by Viom. Usually
given in rpm (revs/min, sometimes m™").
No-load current Io A The current required to spin the motor at the
no-load condition. Nonzero because of friction
torque.
Max continuous current Teont A Max continuous current without overheating.
Max continuous torque Teont Nm Max continuous torque without overheating.
Stall current Lstan A Same as starting current, Vhom/R.
Stall torque Tstall Nm The torque achieved at the nominal voltage when
the motor is stalled.
Max mechanical power Prax W The max mechanical power output at the nominal
voltage (including short-term operation).
Max efficiency Nmax % The maximum efficiency achievable in converting
electrical to mechanical power.
Electrical constant ke Vs/rad  Same numerical value as the torque constant (in SI
units). Also called voltage or back-emf constant.
Speed constant ks rad/(Vs) Inverse of electrical constant.
Electrical time constant T. s The time for the motor current to reach 63% of
its final value. Equal to L/R.
Mechanical time constant T s The time for the motor to go from rest to 63% of
its final speed under constant voltage and no load.
Equal to JR/k}.
Short-circuit damping B Nms/rad Not included in most data sheets, but useful for

Friction

motor braking (and haptics).

Not included in most data sheets. See explanation.

Figure 26.13: A sample motor data sheet, with values to be filled in.
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Figure 26.14: Using a capacitor to create an RLC circuit to measure motor inductance.

cannot change discontinuously). If the inductor continued to enforce zero current, the capacitor would charge
to 5 V. As the voltage across the capacitor grows, however, so does voltage across the inductor, and therefore
so does the rate of change of current that must flow through the inductor (by the relation Vi, + Vg = Vo and
the constitutive law Vi, = L dI/dt). Eventually the integral of this rate of change dictates that all current is
redirected to the inductor, and in fact the capacitor will have to provide current to the inductor, discharging
itself. As the voltage across the capacitor drops, though, the voltage across the inductor will eventually
become negative, and therefore the rate of change of current across the inductor will become negative. And
so on, to create the oscillation. If R were large, i.e., if the circuit were heavily damped, the oscillation would
die quickly, but you should be able to see it.

Note that you are seeing a damped oscillation, so you are actually measuring a damped natural frequency.
But the damping is low if you are seeing at least a couple of cycles of oscillation, so the damped natural
frequency is nearly indistinguishable from the undamped natural frequency.

Torque constant k; You can measure this by spinning the shaft of the motor, measuring the back-emf at
the motor terminals, and measuring the rotation rate using the encoder. Or, if friction losses are negligible, a
good approximation is Vjom/wo. This eliminates the need to spin the motor externally.

Rotor inertia J The rotor inertia can be estimated from measurements of the mechanical time constant
T, the torque constant k;, and the resistance R. Alternatively, a ballpark esimate can be made based on
the mass of the motor, a guess at the portion of the mass that belongs to the spinning rotor, a guess at the
radius of the rotor, and a formula for the inertia of a uniform density cylinder. Or, more simply, consult a
data sheet for a motor of similar size and mass.

No-load speed wy You can determine wy by measuring the unloaded motor speed when powered with the
nominal voltage. The amount that this is less than V,om/k: can be attributed to friction torque.

No-load current Iy You can determine Iy by using a multimeter in current measurement mode. Friction
torque is k¢ Iy.

Max continuous current I.ont This is determined by thermal considerations, which are not easy to
measure. It is typically less than half the stall current.

Max continuous torque 7¢ont This is determined by thermal considerations, which are not easy to
measure. It is typically less than half the stall torque.
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Stall current g, Stall current is sometimes called starting current. You can estimate this using your
estimate of R. Since R may be difficult to measure with a multimeter, you can instead stall the motor shaft
and use your multimeter in current sensing mode, provided the multimeter can handle the current.

Stall torque 7stann  This can be obtained from k; and Igta .-

Max mechanical power P,,x The max mechanical power occurs at %Tstau and %wg. For most motor
data sheets, the max mechanical power occurs outside the continuous operation region.

Max efficiency nmax Efficiency is defined as the power out divided by the power in, 7outw/(IV). The
wasted power is due to coil heating and friction losses. Maximum efficiency can be estimated using the
no-load current Iy and the stall current I .1, as discussed in Section 26.4.

Electrical constant k. Identical to the torque constant in SI units. The torque constant k; is often
expressed in units of Nm/A or mNm/A or English units like oz-in/A, and often k. is given in V/rpm, but k;
and k. have identical numerical values when expressed in Nm/A and Vs/rad, respectively.

Speed constant k; Just the inverse of the electrical constant.
Electrical time constant 7, The electrical time constant can be calculated from L and R as T, = L/R.

Mechanical time constant 7;,, The time constant can be measured by applying a constant voltage to the
motor, measuring the velocity, and determining the time it takes to reach 63% of final speed. Alternatively,
you could make a reasonable estimate of the rotor inertia J and calculate T, = JR/k}.

Short-circuit damping B This is most easily calculated from estimates of R and ki: B = —k?/R.

Friction Friction torque arises from the brushes sliding on the commutator and the motor shaft spinning
in its bearings, and it may depend on external loads. A typical model of friction includes both Coulomb
friction and viscous friction, written

Ttric = bO Sgﬂ(bd) + blw’
where by is the Coulomb friction torque (sgn(w) just returns the sign of w) and by is a viscous friction
coefficient. At no load, 7gic = kilp. An estimate of each of by and b; can be made by running the motor at
two different voltages with no load.

26.8 Exercises

1. Assume a DC motor with a five-segment commutator. Each segment covers 70° of the circumference of
the commutator circle. The two brushes are positioned at opposite ends of the commutator circle, and
each makes contact with 10° of the commutator circle.

(a) How many separate coils does this motor likely have? Explain.

(b) Choose one of the motor coils. As the rotor rotates 360°, what is the total angle over which that
coil is energized? (For example, an answer of 360° means that the coil is energized at all angles;
an answer of 180° means that the coil is energized at half of the motor positions.)

2. Figure 26.15 gives the data sheet for the 10 W Maxon RE 25 motor. The columns correspond to
different windings.

(a) Draw the speed-torque curve for the 12 V version of the motor, indicating the no-load speed (in
rad/s), the stall torque, the nominal operating point, and the rated power of the motor.

(b) Explain why the torque constant is different for the different versions of the motor.
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(c) Using other entries in the table, calculate the maximum efficiency 7max of the 12 V motor and
compare to the value listed.

(d) Calculate the electrical time constant T, of the 12 V motor. What is the ratio to the mechanical
time constant T;,,7

Calculate the short-circuit damping B for the 12 V motor.

Calculate the motor constant k,,, for the 12 V motor.

)
)

g) How many commutator segments do these motors have?
) Which versions of these motors are likely to be in stock?
)

(Optional) Motor manufacturers may specify slightly different continuous and intermittent operating
regions than the ones described in this chapter. For example, the limit of the continuous operating
region is not quite vertical in the speed-torque plot of Figure 26.15. Come up with a possible
explanation, perhaps using online resources.

3. There are 20 entries on the motor data sheet from Section 26.7. Let’s assume zero friction, so we ignore
the last entry. To avoid thermal tests, you may also assume a maximum continuous power that the
motor coils can dissipate as heat before overheating. Of the 19 remaining entries, under the assumption
of zero friction, how many independent entries are there? That is, what is the minimum number N of
entries you need to be able to fill in the rest of the entries? Give a set of IV independent entries from
which you can derive the other 19 — N dependent entries. For each of the 19 — N dependent entries,
give the equation in terms of the NV independent entries. For example, Vo, and R will be two of the
N independent entries, from which we can calculate the dependent entry Istan = Viom/R-

4. This exercise is an experimental characterization of a motor. For this exercise, you need a low-power
motor (preferably without a gearhead to avoid high friction) with an encoder. You also need a
multimeter, oscilloscope, and a power source for the encoder and motor. Make sure the power source
for the motor can provide enough current when the motor is stalled. A low-voltage battery pack is a
good choice.

(a) Spin the motor shaft by hand. Get a feel for the rotor inertia and friction. Try to spin the shaft
fast enough that it continues spinning briefly after you let go of it.

(b) Now short the motor terminals by electrically connecting them. Spin again by hand, and try to
spin the shaft fast enough that it continues spinning briefly after you let go of it. Do you notice
the short-circuit damping?

(c) Try measuring your motor’s resistance using your multimeter. It may vary with the angle of the
shaft, and it may not be easy to get a steady reading. What is the minimum value you can get
reliably? To double-check your answer, you can power your motor and use your multimeter to
measure the current as you stall the motor’s shaft by hand.

(d) Power the motor’s encoder, attach the A and B encoder channels to your oscilloscope, and make
sure the encoder ground and scope ground are connected together. Do not power the motor.
Attach one of your motor terminals to another scope input and the other motor terminal to scope
ground. Spin the motor shaft by hand and observe the encoder pulses, including their relative
phase. Also observe the motor’s back-emf.

(e) Now disconnect your two motor terminals from the oscilloscope, and instead power your motor
with a low-voltage battery pack. Given the number of lines per revolution of the encoder, and the
rate of the encoder pulses you observe on your scope, calculate the motor’s no-load speed for the
voltage you are using.

(f) Work with a partner. Couple your two motor shafts together by tape or flexible tubing. (This
may only work if your motor has no gearhead.) Now plug one terminal of one of the motors (we’ll
call it the passive motor) into one channel of a scope, and plug the other terminal of the passive
motor into GND of the same scope. Now power the other motor (the driving motor) with the
battery pack so that both motors spin. Measure the speed of the passive motor by looking at its
encoder count rate on your scope. Also measure its back-emf. With this information, calculate the
passive motor’s torque constant k;.

192 08:24 January 27, 2014



CHAPTER 26. BRUSHED PERMANENT MAGNET DC MOTORS

I Stock program A N e
[ Standard program
Special program (on request)

AR o7/ 7 AN
L I O I

Values at nominal voltage

1 Nominal voltage V 45 8 9 12 15 18 24 32 48
2 No load speed rpm 5360 5320 5230 4850 4980 4790 5190 5510 5070
3 No load current mA 79.7 444 387 263 218 988 144 117 6.96
4 Nominal speed rpm 4980 4520 4220 3800 3920 3710 4130 4450 4000
5 Nominal torque (max. continuous torque) mNm 114 209 239 286 282 287 28 279 279
6 Nominal current (max. continuous current) A 15 1.5 1.5 124 1.01 0.811 0.652 0.516 0.317
7 Stall torque mNm 131 132 119 129 131 126 136 144 132
8 Starting current A 165 9.23 731 5.5 457 3.52 341 2.61 1.47
9 Max. efficiency % 87 87 86 87 87 90 87 87 87
Characteristics
10 Terminal resistance Q 0273 0.867 1.23 218 3.28 511 773 123 326
11 Terminal inductance mH 0.0275 0.0882 0.115 0.238 0.353 0.551 0.832 1.31 3.48
12 Torque constant mNm/A 799 143 163 235 286 358 439 552 899
13 Speed constant rpm/V. 1200 668 584 406 334 267 217 1738 106
14 Speed /torque gradient rpm/mNm  40.9 40.5 44 377 383 382 383 385 386
15 Mechanical time constant ms 499 44 437 425 423 422 422 422 423
16 Rotor inertia gem? 117 104 949 108 10.6 106 10.5 10.5 10.5
Thermal data n [rpm] I Continuous operation
17 Thermal resistance housing-ambient 14 KW gooo 10W In observation of above listed thermal resistance
18 Thermal resistance winding-housing 3.1 KW T (lines 17 and 18) the maximum permissible winding
;9 Thermal time constant winding 1255 temperature will be reached during continuous ope-
0 Ther_mal time constant motor 612s 4000 ration at 25°C ambient
21 Ambient temperature -20...+85°C L :
22 Max. permissible winding temperature +100°C =Thermal limit.
Mechanical data (ball bearings) ALY Short term operation
23 Max. permissible speed 5500 rpm The motor may be briefly overloaded (recurring).
24 Axial play 0.05-0.15 mm
ol A—
ax. axial loa namic . —_—— : :
27 Max. force for preé,s fits (static) 64N 05 1.0 15 1A] asslcnecipoweatng
(static, shaft supported) 800 N
28 Max. radial loading, 5 mm from flange 16N
» gthet: spe}cifilcatio_ns ] maxon Modular System QOverview on page 16 - 21
umber of pole pairs
30 Number of gommputator segments 11 Planetary Gearhead Encoder MR
31 Weight of molor 1309 226mm o L
CLL = Capacitor Long Life Page 231/232 Page 272
Values listed in the table are nominal. Planetary Gearhead Encoder Enc
Explanation of the figures on page 49. @32 mm — N 22 mm
0.75- 6.0 Nm A 100 CPT, 2 channels
Option Page 234/235/237 S & Page 274
Preloaded ball bearings Koaxdrive i Encoder HED_ 5540
@32 mm — | 500 CPT,
1.0-4.5Nm { Recommended Electronics: D 3 channels
Page 240 ESCON36/2DC  Page 292 Page 276/278
Spindle Drive ESCON 50/5 292 DC-Tacho DCT
232 mm = EPOS2 24/2 312 _HE}_ 222 mm
Page 255/256/257 = EPOS2 Module 36/2 312 0.52V
EPOS2 24/5 313 Page 286
EPOS2 50/5 313
EPOS2 P 24/5 316
EPOS3 70/10 EtherCAT 319
Notes 18

Figure 26.15: The data sheet for the Maxon RE 25 motor. The columns correspond to different windings for
different nominal voltages.

5. Using techniques discussed in this chapter, or techniques you come up with on your own, create a data
sheet with all 20 entries for your nominal voltage. Indicate how you calculated the entry. (Did you
do an experiment for it? Did you calculate it from other entries? Or did you do estimate by more
than one method to cross-check your answer?) For the friction entry, you can assume Coulomb friction
only—the friction torque opposes the rotation direction (bg # 0), but is independent of the speed of
rotation (b; = 0). For your measurement of inductance, turn in an image of the scope trace you used to
estimate w, and L, and indicate the value of C' that you used.

If there are any entries you are unable to estimate experimentally, approximate, or calculate from other
values, simply say so and leave that entry blank.
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6. Based on your data sheet from above, draw the speed-torque curves described below, and answer the
associated questions.

(a)

()

(d)

Draw the speed-torque curve for your motor. Indicate the stall torque and no-load speed. Assume
a maximum power the motor coils can dissipate continuously before overheating and indicate the
continuous operating regime. Given this, what is the power rating P for this motor? What is the
max mechanical power P,.x?

(Do not do any more experiments for the remainder of this exercise; just extrapolate
your previous results.) Draw the speed-torque curve for your motor assuming a nominal voltage
four times larger than in Exercise 6a. Indicate the stall torque and no-load speed. What is the
max mechanical power Pyax?

Often DC motors spin at speeds that are too high, and torques that are too low, to be useful.
If we put a G = 10, or 10:1, gearhead on the output of our motor, however, the speed of the
motor is reduced by a factor of 10 (weuy = win/G) and the torque is increased by a factor of 10
(Tout = GTin). Draw the speed-torque curve for the voltage from Exercise 6b with a 10:1 gearhead
and indicate the no-load speed and stall torque.

Gearheads are not 100% efficient; some power is lost due to friction and impact between gear teeth.
Now assume our 10:1 gearhead from Exercise 6¢ is n = 80% efficient. The relation wout = win/G
must be preserved (it’s enforced by the gear teeth), so we will use the relation 7444 = nGTin,
giving Pout = TouwtWout = NTinwin = N Py. Draw the speed-torque curve with an 80% efficient 10:1
gearhead.
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Chapter 27

DC Motor Control

Driving a motor with variable torque requires variable high current. A microcontroller is capable of neither
analog output nor high current. Both problems are solved through the use of digital PWM and an H-bridge.
The H-bridge consists of a set of switches that are rapidly opened and closed by the microcontroller’s PWM
signal, alternately connecting and disconnecting high voltage to the motor. The effect is similar to the
time-average of the voltage. Motion control of the motor is achieved using motor position feedback, typically

from an encoder.

27.1 The H-bridge and Pulse Width Modulation

Figure 27.1 shows an H-bridge current amplifier used to drive an inductive load, like a DC motor. It consists
of four switches, typically implemented with bipolar junction transistors or MOSFETSs, and four flyback
diodes. An H-bridge can be used to run a DC motor bidirectionally, depending on which switches are closed:

Closed switches

Voltage across motor

S1, 54
S2, S3
S1, 3
S2, S4

none or one

positive (CCW rotation)

negative (CW rotation)
zero (short-circuit braking)
zero (short-circuit braking)
open circuit (free-wheeling)

Certain switch settings not covered in the table (S1 and S2 closed, or S3 and S4 closed, or any set of three or
four switches closed) result in a short circuit and should obviously be avoided!

While you can build your own H-bridge out of discrete components, it is usually easier to buy one packaged
in an integrated circuit. Apart from reducing your component count, these ICs also make it impossible for

Figure 27.1: An H-bridge constructed of four switches and four flyback diodes. OUT1 and OUT2 are the
H-bridge outputs, attached to the two terminals of the DC motor.
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Input Qutput
IN1 IN2 PWM STBY ouT1 ouT2 Mode
H H H/L H L L Short brake
H H L H cow
L H
L H L L Short brake
H H H L cw
H L
L H L L Short brake
OFF
L L H H (High impedance) Stop
OFF
HAL H/L H/L L (High impedance) Standby

Figure 27.2: The input-output truth table for the TB6612 H-bridge.

you to accidentally cause a short circuit. An example H-bridge IC is the Toshiba TB6612 (google it to find
the datasheet). This chip consists of two full H-bridges, each one of which is capable of providing 1.2 A
continuous and 2 A or more peak. It uses two voltage supplies: one to drive the motor (4.5 V to 15 V and high
current) and one for the chip logic (2.7 V to 6 V, typically the same supply used for your microcontroller).

Let’s consider a single H-bridge of the TB6612 (Figure 27.2). Instead of directly controlling the four
switches S1-S4, our four logic inputs are IN1, IN2, PWM, and STBY (for “standby”). If STBY is logic low,
the H-bridge outputs (at the OUT1 and OUT2 terminals in Figure 27.1) are high impedance, or effectively
disconnected from the motor. If STBY is high, then IN1 and IN2 determine the rotation direction of the
motor: IN1 = L and IN2 = H means CCW rotation of the motor, IN1 = H and IN2 = L. means CW rotation,
IN1 = IN2 = L causes high impedance outputs, and IN1 = IN2 = H causes the two outputs to be at the
same voltage level, i.e., the motor is braked by its own short-circuit damping.

In the CCW mode, when the PWM signal is high, switches S1 and S4 are closed, OUT1 is connected to
voltage VM and OUT?2 is connected to GND, and current flows left to right through the motor. When the
PWM signal is low, switches S2 and S4 are closed, OUT1 and OUT?2 are connected to GND, and the motor
is braked. In the CW mode, switches S2 and S3 are closed when PWM is high, OUT2 is VM and OUT1 is
GND, and current flows right to left through the motor. When PWM is low, OUT1 and OUT?2 are connected
to GND and the motor is braked.

Figure 27.3 provides details of the behavior in CCW mode as PWM switches from high to low and back
to high. When PWM is high, the MOSFET switches S1 and S4 are closed and conduct current from the
power voltage VM, through the motor, to GND, as shown, during time t1. When PWM drops low, first the
switch S1 is opened. Since the inductive motor continues to demand current, it will draw current from GND
through the flyback diode D2. After time t2 elapses, the switch S2 is closed, and the motor is short-circuit
braked. Now PWM goes high, so the switch S2 is opened again, and once again current is drawn through D2.
Finally, after time t4, switch S1 closes again, and current is provided from VM. The “dead” times t2 and t4,
where current is drawn through a diode, are included for a safety margin, to make sure that switches S1 and
S2 are never closed simultaneously, which would cause a short circuit.

The TB6612 has the flyback diodes built in. Some H-bridge ICs require the diodes to be provided
externally. In that case, you must choose flyback diodes capable of carrying the maximum current that can
flow through the motor, and they must be fast switching from nonconducting to conducting. Schottky diodes
are common due to their fast switching and low forward bias voltage, resulting in less power lost to heat.

Figure 27.4 shows the wiring of the TB6612 H-bridge to drive a single DC motor. The 6 V battery pack
provides the motor voltage VM, and the TB6612’s logic operates at the same 3.3 V as the PIC32.
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t1 t5

OUT1
Voltage wave t3

- GND
t4

Y
=
o

PWM

Input —l—li

Figure 27.3: A detailed look at CCW mode as PWM switches high-to-low and then low-to-high.

PWMA PIC32 PWM
A01
AIN1
} PIC32 direction control
A02 AIN2
TB6612
H-bridge  STBY hold high to operate H-bridge
- ™
6 V battery ——_ VCC 33V
B | GND GND

1

Figure 27.4: Connecting the TB6612 to a DC motor, motor battery pack, and the PIC32.

27.1.1 Control with PWM

Referring again to Figure 27.3, we see that we can use PWM to quickly alternate between positive voltage
VM and zero voltage across the motor. Rapidly switching the voltage between VM and 0 has a similar effect
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as an average voltage V,y. across the motor:
Vave = DC*VM, where 0 < DC < 1.

Let’s look at this claim more closely. Assume that PWM is high and a current I is flowing left to right
through the motor. Now we switch PWM to low, switch S2 is closed, and the voltage across the motor drops
from VM to 0. The motor, being inductive, continues to carry current, and we want to see how the current
changes while PWM is low. Ignoring back-emf (it won’t matter here), the motor equation

dl
V=IR+L— +k,
+ ar + Enhw

becomes il
0=IgR+L—
ofi Ly
o dI R
e A
dt 07

with solution R )
I(t) = IQ €_ft = IO e Te.

The time constant of this first-order decay of current is the motor’s electrical time constant, 7. = L/R.
Assuming “typical” values of L =1 mH and R = 10 ( for a small motor, the time constant is 0.1 ms. Thus
the current will decay to about 37% of its original value in 0.1 ms. On the other hand, the mechanical time
constant T, is typically significantly larger (e.g., two orders of magnitude or more), particularly with a load
attached to motor. Let’s assume T,,, = 10 ms. Then if the PWM has a 50% duty cycle at 10 kHz, we have a
braking phase of duration 0.5/10* s = 50 us during each PWM cycle, meaning that the speed of the shaft
will drop to about

€_5><1075/Tm E 995%

of its original value. Not much change. So the net effect of having a rapidly switching voltage, with average
voltage Vaye, is almost the same as having a constant voltage Vaye.-

We should choose the PWM frequency sufficiently high so as to avoid observable variation in the motor’s
speed during a PWM cycle. We should be careful not to choose the frequency so high, however, that the
switches do not have time to fully activate during each cycle. The TB6612 datasheet suggests PWM up to
100 kHz. Common PWM frequencies are 10 to 40 kHz.

27.1.2 Other Practical Considerations

Motors are noisy devices, creating both electromagnetic interference (EMI) and voltage spikes on the power
lines. These effects can disrupt the functioning of your microcontroller, cause erroneous readings on your
sensor inputs, etc. EMI shielding is beyond our scope here, but it is easy to use optoisolation to separate
noisy power and clean logic voltage supplies.

An optoisolator consists of an LED and a phototransistor. When the LED turns on, the phototransistor is
activated, allowing current to flow from its collector to its emitter. Thus a digital on/off signal can be passed
between the logic circuit and the power circuit using only an optical connection, eliminating an electrical
connection. In our case, the PIC32’s H-bridge control signals would be applied to the LEDs and converted by
the phototransistors to high and low signals to be passed to the inputs of the H-bridge. Optoisolators can be
bought in packages with multiple optoisolators. Each LED-phototransistor pair uses four pins: two for the
internal LED and two for the collector and emitter of the phototransistor. Thus you can get a 16-pin DIP
chip with four optoisolators, for example.

Another issue arises when the motor and load attain significant kinetic energy. When we brake the load,
the energy must go somewhere. Some of it is lost to friction, and some of it is lost to I? R winding heating.
Remaining energy is dumped back into the power supply, essentially trying to “charge it up,” whether it wants
to be charged or not. Current passing through the flyback diodes D1 and D3, for example, are essentially
charging the power supply and increasing the voltage. Some power supplies can handle this better than
others; power supplies with large output capacitors may fare better than switching supplies, for example. You
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+V

Q1
D1

cqntrol R
signal
R -

D2

Figure 27.5: A simple linear push-pull amplifier.

can also address the problem by putting a high-capacitance, high-voltage capacitor across the power supply.
This capacitor acts as a repository for the kinetic energy converted to electrical energy. If the capacitor
voltage gets too high, a switch can allow the back-current to be redirected to a “regen” power resistor, which
is designed to dump electrical energy as heat. “Regen” is short for “regenerative” or “regeneration.”

27.1.3 Comparison to a Linear Push-Pull Amp

Another common method for driving a load is the linear push-pull amp, shown schematically in Figure 27.5.
In this amplifier, the NPN transistor Q1 “pushes” current from +V, through the motor, to GND, while the
PNP transistor Q2 “pulls” current from GND, through the motor, to —V. The control signal is a low-current
analog signal. It is fed into an op-amp which is configured as a voltage follower. Since there is feedback from
the output of the op-amp to the inverting input, the op-amp does whatever it can to make sure that the
signals at the inverting and non-inverting inputs are equal. Since the inverting input is connected to the
motor, the voltage across the motor should be equal to the control signal voltage. The circuit simply boosts
the current available to drive the motor beyond the current available from the control signal (i.e., it has a
high impedance input and a low impedance output).

As an example, if +V = 10 V, and the control signal is at 5 V, then 5 V should be across the motor. To
double-check that our circuit works as we expect, we calculate the current that would flow through the motor
(for example, when it is stalled); this is the current I, that must be provided by the emitter of Q1. If the
transistor is capable of providing that much current, we then check if the op-amp is capable of providing the
base current I, = I. /(8 + 1), where j3 is the transistor gain. If so, we are in good shape. The voltage at the
base of Q1 is a diode drop (or more) higher than the voltage across the motor, and the voltage at the op-amp
output is that base voltage plus I R.

An example application would be controlling a motor speed based on a knob (potentiometer). The
potentiometer could be connected to +V and —V, with the wiper voltage serving as the control signal.

If the op-amp by itself can provide enough current, we can connect the op-amp output directly to the
motor and flyback diodes, eliminating the resistors and transistors. Power op-amps are available, but they
tend to be expensive relative to using output transistors to boost current.

We could instead eliminate the op-amp by connecting the control signal directly to the base resistors
of the transistors. The drawback is that neither transistor would be activated for control signals between
approximately —0.7 and 0.7 V, or whatever the base-emitter voltage is when the transistors are activated.
We have a “deadband” or “crossover distortion” from the control signal to the motor voltage.

Comparing an H-bridge driver to a linear push-pull amp, we see the following advantages of the H-bridge:

e Ounly a unipolar power supply is required, as opposed to a bipolar power supply (plus and minus voltage
in addition to ground).

e The H-bridge is driven by a PWM pulse train, which is easily generated by a microcontroller, as opposed
to an analog signal.
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rotating
codewheel

CCW rotation
CW rotation

Figure 27.6: A rotating encoder creates 90 degree out-of-phase pulse trains on A and B using LEDs and
phototransistors.

e Transistors spend most of their time in the off or saturated mode, with relatively small voltage drop
across them, so that relatively little power is dissipated as heat by the transistors. This is in contrast
to the linear amp, where the output transistors usually operate in the linear regime with significant
voltage drops across them.

Linear amps are sometimes used in motor control when analog control signals and a bipolar power supply are
available, and power dissipation and heat are not a concern. They are also preferred for better sound quality
in speaker applications. There are many improvements to, and variations on, the basic circuit in Figure 27.5,
and audio applications have raised amplifier circuit design to an art form. You can use a commercial audio
amplifier to drive a DC motor, but you would have to remove the high-pass filter on the amplifier input.
Since we can’t hear sound below 20 Hz, and low-frequency currents simply heat up the speaker coils without
producing audible sound, audio amplifiers typically cut off input frequencies below 10 Hz.

27.2 Encoder Feedback

Motor angles can be measured using a potentiometer, or, most commonly, an encoder. There are two major
types of encoders: incremental and absolute. By far the more common is the incremental encoder.

27.2.1 Incremental Encoder

An incremental encoder creates two pulse trains, A and B, as the encoder shaft rotates a codewheel. These pulse
trains can be created by magnetic field sensors (Hall effect sensors) or light sensors (LEDs and phototransistors
or photodiodes). The latter is more common and is illustrated in Figure 27.6. The codewheel could be an
opaque material with slots or a transparent material (glass or plastic) with opaque lines.

The relative phase of the A and B pulses determines whether the encoder is rotating clockwise or
counterclockwise. A rising edge on B after a rising edge on A means the encoder is rotating one way, and a
rising edge on B after a falling edge on A means the encoder is rotating the opposite direction. A rising edge
on B followed by a falling edge on B (with no change in A) means that the encoder has undergone no net
motion. The two out-of-phase pulse trains are known as quadrature signals.

Apart from the direction, the pulses can be counted to determine how far the encoder has rotated. The
encoder signals can be “decoded” at 1x, 2x, or 4x resolution, where 1x resolution means that a single count is
generated for each full cycle of A and B (e.g., on the rising edge of A), 2x resolution means that 2 counts
are generated for each full cycle (e.g., on the rising and falling edges of A), and 4x means that a count is
generated for every rising and falling edge of A and B (four counts per cycle). Thus an encoder with “100
lines” or “100 pulses per revolution” can be used to generate up to 400 counts per revolution of the encoder.
If the motor has a 20:1 gearhead, the encoder (attached to the motor shaft) generates 400 x 20 = 8000 counts
per revolution of the gearhead output shaft.
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Figure 27.7: A block diagram for motion control.

Some encoders offer a third output channel called the indexr channel, usually labeled I or Z. The index
channel creates one pulse per revolution of the motor and can be used to determine when the motor is at a
“home” position. Some encoders also offer differential outputs A, B, and Z, which are always opposite A, B,
and Z, respectively. That way, if the encoder is powered by 5 V, the change in voltage on a rising edge on A
can be measured as AA — AA =10 V, as compared to the single-ended measurement AA = 5 V. This is for
noise immunity in electrically noisy environments.

The A and B encoder outputs can be fed to a decoder chip, such as the US Digital LS7183, which converts
the pulses to “up” pulses and “down” pulses to be read directly by an external counter chip or counter/timers
on the PIC32. Alternatively, the signals can be read by a standalone decoder/counter chip which keeps the
count. This count can then be queried by a microcontroller using SPI or I2C. In ME 333, we use a small PIC
dedicated to counting encoder pulses and read the encoder count using SPI.

Incremental encoders also come in linear versions to measure linear motion.

27.2.2 Absolute Encoder

An incremental encoder can only tell you how far the motor has moved since the encoder was turned on.
An absolute encoder can tell you where the motor is at any time, regardless of when you started watching
the encoder signals. To do this, an absolute encoder uses many more LED /phototransistor pairs, and each
one provides a single bit of information on the motor’s position. For example, an absolute encoder with 8
channels can distinguish the absolute orientation of a motor up to a resolution of 360°/(2%) = 1.4°.

As the codewheel rotates, the binary count represented by the 8 channels increments according to Gray
code, not, the typical binary code, so that at each increment, only one of the 8 channels changes signal. This
removes the need for the infinite manufacturing precision needed to to make two signals switch at exactly the
same angle. Compare the following two three-bit sequences, for example:

Decimal 0 1 2 3 4 5 6 7
Binary code | 000 001 010 011 100 101 110 111
Gray code | 000 001 011 010 110 111 101 100

Absolute encoders tend to be more expensive than incremental encoders yielding similar resolution.

27.3 Motion Control of a DC Motor

An example block diagram for control of a DC motor is shown in Figure 27.7.! A trajectory generator creates
a reference position as a function of time. To drive the motor to follow this reference trajectory, we use two

LA simpler block diagram would have the Motion Controller block directly output a PWM duty cycle to an H-bridge, with no
inner-loop control of the actual motor current. This is sufficient for most applications. However, the block diagram in Figure 27.7
is more typical of industrial implementations.
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nested control loops: an outer motion control loop and an inner current control loop. These two loops are
roughly motivated by the two time scales of the system: the mechanical time constant of the motor and load
and the electrical time constant of the motor.

e Outer motion control loop. This outer loop runs at a lower frequency, typically a few hundred Hz
to a few kHz. The motion controller takes as input the desired position and/or velocity, as well as
the motor’s current position, as measured by an encoder or potentiometer, and possibly the motor’s
current velocity, as measured by a tachometer. The output of the controller is a commanded current I..
The current is directly proportional to the torque. Thus the motion control loop treats the mechanical
system as if it has direct control of motor torque.

e Inner current control loop. This inner loop typically runs at a higher frequency, from a few kHz
to tens of kHz, but no higher than the PWM frequency. The purpose of the current controller is to
deliver the current requested by the motion controller. To do this, it monitors the actual current flowing
through the motor and outputs a commanded average voltage V. (derived from the PWM duty cycle)
to compensate error.

Traditionally a mechanical engineer might design the motion control loop, and an electrical engineer might
design the current control loop. But you are a mechatronics engineer, so you will do both.

27.3.1 Motion Control
Feedback Control

Let 6 and 6 be the actual position and velocity of the motor, and 64 and 6, be the desired position and velocity.
Define the error e = ;—8, error rate of change ¢ = 6, —9, and error integral einy = At ), e(k), where At is the
controller time step. Then a reasonable choice of controller would be a PID (proportional-integral-derivative)
controller,

Ic,fb = k;pe + kieint + kqé, (27.1)

where I. #, is the commanded current. The kye term acts as a virtual spring that creates a force proportional
to the error, pulling the motor to the desired angle. The kyé term acts as a virtual damper that creates a
force proportional to the “velocity” of the error, driving the error rate of change toward zero. The k;ejns
term is a little harder to interpret, but its job is to create a force proportional to the time integral of error.
So if the motor has been sitting a long time with an error in angle, the error integral builds up and therefore
the force builds up to try to overcome the error.

Pseudocode for the controller is given below, where dt is the controller timestep:

eprev = 0; // initial "previous error" is zero
eint = 0; // initial error integral is zero
now = 0; // "now" counts the timesteps
while(1) { // enter the control loop
actual = readEncoder(); // get actual motor angle
desired = desiredAng(now); // get desired angle for time "now"
e = desired - actual; // calculate the angle error now
edot = (e - eprev)/dt; // estimate the error rate of change
eint = eint + ex*dt; // update the integral of error
u = kp*e + kixeint + kd*edot; // calculate the control (current)
sendCurrent (u) ; // send the current to the motor
eprev = e; // current error is now previous error
now = now + 1; // increment the time
}

To tune the controller, start with k; = k; = 0 and focus on finding a proportional gain k, that provides
approximate tracking without too much oscillation. Then add in a nonzero derivative gain k4 to damp out
oscillations that arise from the pure spring-like proportional controller. The two gains can then be tuned
together to further improve tracking of the desired trajectory. Typically higher gains yield better tracking,
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Figure 27.8: An unbalanced load in gravity.

but if the gains are too high, then the controller becomes unstable due to repeated overcompensation for
errors.

PD (proportional-derivative) control, i.e., PID control with k; = 0, is a common choice for motor position
control. A nonzero k; can be added at the end of the tuning process to try to compensate any persistent
(steady-state) errors.

Other issues are discussed below.

e Integrator anti-windup. Imagine that the motor is prevented from moving for some time. During
this time, the integrator error e;y; builds up to a large value. This then causes the controller to try to
dissipate the integrated error by causing error of the opposite sign. To limit the oscillation caused by
this effect, the integrator error should be upper bounded. This can be implemented by adding two lines
to the code above:

eint = eint + exdt; // update the integral of error
if (eint > EINTMAX) eint = EINTMAX; // ADDED: integrator anti-windup
if (eint < -EINTMAX) eint = -EINTMAX; // ADDED: integrator anti-windup

This is called integrator anti-windup.

e Velocity estimates. An estimate of velocity can be obtained from encoder position data by finite
differencing, as in the pseudocode above. This may lead to a very jumpy, low-resolution signal, however,
particularly if the encoder’s resolution is not high. Digital low-pass filtering or smoothing of the estimate
may be a good idea, perhaps by averaging edot estimates over the past several cycles. An alternative
is to use a direct velocity measurement from a tachometer.

e Velocity control. When the goal is to track a desired velocity, then actual and desired in the
pseudocode above are the actual and desired velocity, respectively. Just as a PD controller is common
for motor position, the most common velocity controller is a PI controller (kg = 0). Notice that
the integral term in a PI velocity controller is equivalent to the proportional term in a PD position
controller, and the proportional term in a PI velocity controller is equivalent to the derivative term in a
PD position controller.

Feedforward Plus Feedback Control

A PID controller is called a feedback controller, since it uses sensor feedback. You could instead try a
feedforward controller. A feedforward controller uses only a model of the system and the desired trajectory
to choose a commanded current. For example, for an unbalanced load as in Figure 27.8, you could choose
your current command to be

1 N . .
e g = F(Jad + mgrsin 0 + by sgn() + b1 6),

m

203 08:24 January 27, 2014



CHAPTER 27. DC MOTOR CONTROL

where k,, is the motor constant, J is the motor and load inertia, 64 can be obtained by finite differencing
the desired trajectory, mg is the weight of the load, r is the distance of the load center of mass from the
motor axis, € is the angle of the load from vertical, by is Coulomb friction torque, and b; is a viscous friction
coefficient.

Feedforward control alone will never yield acceptable performance, as no model will be sufficiently accurate.
However, feedback control can only respond to errors. Why wait for effects you can model to manifest
themselves as error? If you have a good model of the mechanical properties of your system and you use a
commanded current I, = I. s, + I. ¢r, you should be able to get better tracking control than you can by
either controller alone.

27.3.2 Current Sensing and Current Control
Current Sensor

We will use a 15 m{2 current-sensing resistor in conjunction with a MAX9918 current-sense amplifier to
measure the current flowing through the motor. The current-sensing resistor is placed in series with the
motor, so that a current of 1 A through the motor results in a 15 mV drop across the resistor. This voltage is
then amplified and level shifted according to the user’s choice of external resistors. (See the datasheet for
more information.) Finally, the amplifier signal should be low-pass filtered (with a cutoff of a few hundred to
1000 Hz) to filter out current ripple due to PWM switching.

Current Control

The output of the current controller is V., the commanded average voltage (to be converted to a PWM duty
cycle). The simplest current controller would be

Ve =kyvl..

This would be a good choice if your load were only a resistance. Even if not, if you do not have a good
mechanical model of your system, achieving a particular current/torque may not matter anyway. You can
just tune your motion control PID gains, use ky = 1, and not worry about what the actual current is.

On the other hand, if your battery pack voltage changes (due to discharging, or changing batteries, or
changing from a 6 V to a 12 V battery pack), the change in behavior of your overall controller will be
much larger if you do not measure the actual current in your current controller. More sophisticated current
controller choices might be a mixed model-based and I feedback controller

Vo.=I.R+ kmﬂ + k],i €1,int

or a PI feedback controller
Ve=Fkrper+kr;erint,

where e; is the error between the commanded current I, and the measured current, ey jn¢ is the integral of
current error, R is the motor resistance, ky, is the motor constant, k7, is a proportional current control gain,
and kj; is an integral current control gain. A good current controller would closely track the commanded
current.

27.3.3 An Industrial Example: The Copley Controls Accelus Amplifier

Copley Controls, http://www.copleycontrols.com, is a well known manufacturer of amplifiers for brushed and
brushless motors for industrial applications and robotics. One of their models is the Accelus, pictured in
Figure 27.9. The Accelus supports a number of different operating modes. Examples include control of motor
current or velocity to be proportional to either an analog voltage input or the duty cycle of a PWM input. A
microcontroller on the Accelus interprets the analog input or PWM duty cycle and implements a controller
similar to that in Figure 27.7. (Note: the duty cycle of a PWM input can be determined using the Input
Capture peripheral on the PIC32, which we haven’t discussed.)
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Figure 27.9: The Copley Controls Accelus amplifier.

@ Oscilloscope 5 !Em

Trace Status: Reading trace data from amplifier

Figure 27.10: A plot of the reference square wave current and the actual measured current during PI current
controller tuning.

The mode most relevant to us is the Programmed Position mode. In this mode, the user specifies a few
parameters to describe a desired rest-to-rest motion. The controller’s job is to drive the motor to track this
trajectory.

When the amplifier is first paired with a motor, some initialization steps must be performed. A GUI
interface on your PC, provided by Copley, communicates with the microcontroller on the Accelus using
RS-232.

1. Enter motor parameters. From the motor’s data sheet, enter the inertia, peak torque, continuous
torque, maximum speed, torque constant, resistance, and inductance. These values are used for initial
guesses at control gains for motion and current control. Also enter the number of lines per revolution of
the encoder.

2. Tune the current control loop. Set a limit on the integrated current to avoid overheating the
motor. This limit is based on the integral f I?dt, which is related to how much energy the motor coils
have dissipated recently. (When this limit is exceeded, the motor current is limited to the continuous
operating current until the history of currents indicates that the motor has cooled.) Also, tune the
values of P and I control gains for the PI current controller. This tuning is assisted by plots of reference
and actual currents as a function of time. See Figure 27.10. The current control loop executes at 20 kHz,
which is also the PWM frequency (i.e., the PWM duty cycle is updated every cycle).

3. Tune the motion control loop with the load attached. Attach the load to the motor and tune
PID feedback control gains, a feedforward acceleration term, and a feedforward velocity term to achieve
good tracking of sample reference trajectories. This process is assisted by plots of reference and actual
positions and velocities as a function of time. The motion control loop executes at 4 kHz.

Once the initial setup procedures have been completed, the Accelus microcontroller saves all the motor
parameters and control gains to nonvolatile flash memory. These tuned parameters then survive power cycling

205 08:24 January 27, 2014



CHAPTER 27. DC MOTOR CONTROL

and are available the next time you power up the amplifier.

Now the amplifier is ready for use. The user specifies a desired trajectory using any of a number of
interfaces (RS-232, CAN, etc.), and the amplifier uses the saved parameters to drive the motor to track the
trajectory.

27.4 Exercises
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Brushless Motor Control
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Stepper Motors and RC Servos

Stepper motors and RC servo motors are options that do not require external feedback control. Stepper
motors take discrete steps when their control inputs are changed, and they are commonly used in devices like
copiers, scanners, and plotters where the load is predictable. This predictability ensures that the motor takes
a step each time the control inputs are changed, eliminating the need for feedback.

For RC servos, the feedback control is built in. A control signal specifies the desired position of the servo,
and internal feedback control achieves the position.

29.1 Stepper Motors

The basic operation of a stepper motor is shown in Figure 29.1. Current flows through coils 1 and 2 of the
stator. Current through coil 1 creates an electromagnet of one sign (e.g., N) on coil 1 and the opposite sign
(e.g., S) on its partner coil 1; coil 2 operates similarly. These magnetic fields attract permanent magnets
on the rotor, causing the rotor to rotate (step) to a new equilibrium position. As the currents through the
electromagnets proceed through a fixed sequence, the motor steps around.

A complete full-stepping sequence for the coils is shown below:

coilll1 || + | — | — | + | + (back to the beginning)
coil 2 || + | + | — | — | 4+ (back to the beginning)

We also have the option of half-stepping, where the current to one of the coils is turned off before
transitioning to the next full-step state. This doubles the number of steps we have available, but results in
reduced holding torque at the half-steps. A complete half-stepping sequence is given below:

coil1 || +]0|—=|—=|—=10/|+ ]|+ |+ (back to the beginning)
coll2 ||+ |+ |+ | 0| —1]—|—1 0| + (back to the beginning)

Figure 29.1(b) shows two half-steps making a full step.

The simple stepper shown in Figure 29.1(b) has only two rotor poles, and a full rotation of the motor
consists of only four full steps (or eight half steps). Real stepper motors have many more rotor poles and
stator poles, but always only two independently controlled sets of coils that energize these electromagnetic
stator poles. The rotor poles are teeth that are attracted to stator pole teeth, and a large number of rotor
teeth create much finer step sizes than the 90° of our simple example. For a rotor with IV teeth, a full
revolution of the rotor corresponds to 2N full steps, or 360°/(2N) degrees per step. Figure 29.2 shows a
stepper motor that has been opened up, exposing the stator poles and rotor poles.

Stepper motors are characterized by the resistance and inductance of their coils; the current each coil can
carry continuously without overheating (usually specified by the coil voltage); the holding torque, the amount
of torque the rotor can resist before being moved out of its equilibrium position when the coils are energized;
and the detent torque, the amount of torque needed to move the rotor out of its equilibrium position when
the coils are off. The detent torque comes from the attraction of the permanent magnets to the stator teeth.
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Figure 29.1: (a) A stepper motor with two rotor poles and four stator poles. The four stator poles correspond
to two independent coils, 1 and 2. (b) The stepping sequence. As the coils change from current flowing one
way, to off, to the other way, the rotor rotates to new equilibrium positions.

Stator coils

Rotor Poles

Figure 29.2: (Left) A stepper motor stator, showing the coils creating the electromagnets and the stator pole
teeth. (Right) A stepper motor rotor, removed from the motor, showing the rotor pole teeth.

When a stepper is stepped slowly, it settles into its equilibrium position between steps. When the stepper
is stepped quickly, it may never settle before the coils change, leading to continuous motion. If a stepper
motor is stepped too quickly, it will not be able to keep up. Similarly, if a stepper is moving at a high speed
and the stepping sequence stops suddenly, inertia may cause it to continue to rotate. Once either of these
happens, it is impossible to know the angle of the rotor without an external sensing device, like an encoder.
The speed at which the motor can be stepped reliably decreases as the torque it must provide increases. To
ensure that the stepping sequence is followed, particularly in the presence of a significant load, it is a good
idea to ramp up the stepping frequency at the beginning of a motion, and ramp down the frequency at the
end, to place limits on the acceleration and deceleration of the load.

To save power when the stepper motor is not moving, the coils can be turned off, provided the detent
torque is sufficient to prevent any unwanted motion.

Stepper motors come in two major types: bipolar and unipolar (Figure 29.3). With bipolar stepper
motors, current can flow either direction (hence bipolar) through each coil. With unipolar stepper motors,
each coil is broken into two subcoils, and current only flows one direction (hence unipolar) through each
subcoil.
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Figure 29.3: (Left) A bipolar stepper motor has four connections to the two coils. (Right) A unipolar stepper
motor has six connections to the two coils, or five if 1C and 2C are combined.

29.1.1 Bipolar Stepper Motor

A bipolar stepper motor has four external wires to connect: two at either end of coil 1, and two at either end
of coil 2. Let’s call the two ends of coil 1 1A and 1B. To switch coil 1’s current, we apply V and GND to 1A
and 1B, then switch to GND and V' at 1A and 1B, respectively. A bipolar stepper motor can be driven using
two H-bridges, treating each coil separately as a DC motor that is driven either full forward or full backward.

If you are using an unknown bipolar stepper motor, you can determine which wires are connected to
which coil using a multimeter set to resistance testing mode.

29.1.2 Unipolar Stepper Motor

A unipolar stepper motor typically has six external wires to connect, three for each coil. For coil 1, for
example, the wires 1A and 1B are at either end of coil 1, as before, and the connection 1C is a “center
tap.” This center tap is commonly connected to the voltage V', and we switch current through the coil by
alternating between 1A grounded and 1B left floating, and 1B grounded while 1A is left floating.

Five-wire unipolar stepper motors have a single center tap that is common to both coils.

One method for driving a unipolar stepper motor is to ignore the center taps, treating it as a bipolar
stepper, and use one H-bridge for each coil.

If you are using an unknown unipolar stepper motor, you can determine which wires are connected to
which coil using a multimeter set to resistance testing mode. The center taps are at half the resistance of the
full coil resistance.

29.2 RC Servos

An RC servo consists of a DC motor, gearhead, position sensor (typically a potentiometer), and a feedback
control circuit (typically implemented by a microcontroller), all in a single package (Figure 29.4). This makes
an RC servo an excellent choice for high torque approximate positioning without requiring your own feedback
controller. The servo’s output shaft typically has a total rotation angle of less than 360 degrees, with 180
degrees being common.

An RC servo has three input connections: power (typically 5 or 6 V), GND, and a digital control signal.
By convention, the control signal consists of a high pulse every 20 ms, and the duration of this pulse indicates
the desired output shaft angle. A typical choice has a 0.5 ms pulse mapping to one end of the rotation range
and a 2.5 ms pulse mapping to the other end of the range, with a linear relationship between pulse length
and rotation angle in between (Figure 29.5).

29.3 Exercises
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Figure 29.4: An RC servo cutaway showing the gears and the microcontroller that receives the control signal,
reads the potentiometer, and implements the feedback controller.

0.5 ms

2.5 ms

A
\

20 ms

Figure 29.5: Typical RC servo control wave forms. These pulse widths typically drive the servo output shaft
to the two ends of its rotation range.
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Connecting to an Android Device

http://hades.mech.northwestern.edu/index.php/Interfacing_the_PIC32_with_an_Android_device

30.1 Overview

30.2 Details

30.3 Sample Code

30.4 More Information

30.5 Exercises
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Appendix A

A Crash Course in C

This appendix gives a brief introduction to C for beginners who have some programming experience in a
high-level language such as MATLAB. It is not intended as a complete reference; there are lots of great C
resources and references out there for a more complete picture. This appendix is also not specific to the
Microchip PIC. In fact, I recommend that you start by programming your laptop or desktop so you can
experiment with C without needing extra equipment like a PIC32 board.

A.1 Quick Start in C

To get started with C, you need three things: a desktop or laptop, a text editor, and a C compiler. You
use the text editor to create your C program, which is a plain text file with a name ending with the postfix
.c, such as myprog.c. Then you use the C compiler to convert this program into machine code that your
computer can execute. There are many free C compilers available. I recommend the gcc C compiler, which
is part of the free GNU Compiler Collection (GCC, found at http://gcc.gnu.org). GCC is available for
Windows, Mac OS, and Linux. For Windows, you can download the GCC collection in MinGW.! (If the
installation asks you about what tools to install, make sure to include the make tools.) For Mac OS, you can
download the full Xcode environment from the Apple Developers site. This installation is multiple gigabytes,
however; you can instead opt to install only the “Command Line Tools for Xcode,” which is much smaller
and more than sufficient for getting started with C (and for this appendix).

Many C installations come with an Integrated Development Environment (IDE) complete with text editor,
menus, graphical tools, and other things to assist you with your programming projects. Each IDE is different,
however, and the things we cover in this appendix do not require a sophisticated IDE. Therefore we will use
only command line tools, meaning that we initiate the compilation of the program, and run the program, by
typing at the command line. In Mac OS, the command line can be accessed from the Terminal program. In
Windows, you can access the command line (also known as MS-DOS or Disk Operating System) by searching
for cmd or command prompt.

To work from the command line, it is useful to learn a few command line instructions. The Mac operating
system is built on top of Unix, which is almost identical to Linux, so Mac/Unix/Linux use the same syntax.
Windows is similar but slightly different. See the table of a few useful commands below. You can find more
information online on how to use these commands as well as others by searching for command line commands
in Unix, Linux, or DOS (disk operating system, for Windows).

1You are also welcome to use Visual C from Microsoft. The command line compile command will look a bit different than
what you see in this appendix.
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function Mac/Unix/Linux | Windows

show current directory pwd cd

list directory contents 1s dir

make subdirectory newdir mkdir newdir mkdir newdir
change to subdirectory newdir | cd newdir cd newdir

move “up” to parent directory | cd .. cd ..

copy file to filenew cp file filenew copy file filenew
delete file file rm file del file

delete directory dir rmdir dir rmdir dir

help on using command cmd man cmd cmd 7

Following the long-established programming tradition, your first C program will simply print “Hello
world!” to the screen. Use your text editor to create the file HelloWorld.c:

#include <stdio.h>

int main(void) {
printf ("Hello world!\n");
return(0);

}

Your text editor could be Notepad in Windows or TextEdit on the Mac. You could even use Microsoft Word
if you insisted. I personally prefer emacs, but it’s not easy to get started with! Text editors packaged with
IDEs help enforce a consistent look to your programs. Whichever editor you use, you should save your file as
plain text, not rich text or any other formatted text.

To compile your program, navigate from the command line to the directory where the program sits. Then,
assuming your command prompt appears as >, type the following at the prompt:

> gcc HelloWorld.c -o HelloWorld

This should create the executable file HelloWorld in the same directory. (The argument after the -o output
flag is the name of the executable file to be created from HelloWorld.c.) Now to execute the program, type

> HelloWorld
The response should be

Hello world!
>

If the response is instead command not found or similar, your computer didn’t know where to look for the
executable HelloWorld. On Mac/Unix/Linux, you can type

> ./HelloWorld

W

where the
HelloWorld.

If you've succeeded in getting this far, you have a working C installation and you are ready for the rest of
this appendix. If not, time to get help from friends or the web.

is shorthand for “current directory,” telling your computer to look in the current directory for

A.2 Overview

If you are familiar with a high-level language like MATLAB, you have some idea of loops, functions, program
modularity, etc. You’ll see that C syntax is different, but that’s not a big deal. Let’s start instead by focusing
on important concepts you must master in C which you don’t have to worry about in MATLAB:

e Memory, addresses, and pointers. A variable is stored at a particular address in memory as 0’s
and 1’s. In C, unlike MATLAB, it is often useful to have access to the memory address where a variable
is located. We will learn how to generate a pointer to a variable, which contains the address of the
variable, and how to access the contents of an address, i.e., the pointee.
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e Data types. In MATLAB, you can simply typea = 1; b = [1.2 3.1416]; ¢ = [1 2; 3 4]; s =
’a string’. MATLAB figures out that a is a scalar, b is a vector with two elements, c is a 2 x 2 matrix,
and s is a string, and automatically keeps track of the type of the variable (e.g., a list of numbers for a
vector or a list of characters for a string) and sets aside, or allocates, enough memory to store them.
In C, on the other hand, you have to first define the variable before you ever use it. For a vector, for
example, you have to say what data type the elements of the vector will be—integers or numbers with a
decimal point (floating point)—and how long the vector will be. This allows the C compiler to allocate
enough memory to hold the vector, and to know that the binary representations (0’s and 1’s) at those
locations in memory should be interpreted as integers or floating point numbers.

e Compiling. MATLAB programs are typically run as interpreted programs—the commands are
interpreted, converted to machine-level code, and executed while the program is running. C programs,
on the other hand, are compiled in advance. This process consists of several steps, but the point is to
turn your C program into machine-executable code before the program is ever run. The compiler can
identify some errors and warn you about other questionable code. Compiled code typically runs faster
than interpreted code, since the translation to machine code is done in advance.

Each of these concepts is described in Section A.3 without going into detail on C syntax. In Section A .4

we will look at sample programs to introduce the syntax, then follow up with a more detailed explanation of
the syntax.

A.3 Important Concepts in C
We begin our discussion of C with this caveat:

Important! C consists of an evolving set of standards for a programming language, and any specific C
installation is an “implementation” of C. While C standards require certain behavior from all implementations,
a number of details are left as implementation-dependent. For example, the number of bytes used for some
data types is not fully standard. C wonks like to point out when certain behavior is required and when it is
implementation-dependent. While it is good to know that differences may exist from one implementation to
another, in this appendix I will often blur the line between what is required and what is common. I prefer to
keep this introduction succinct instead of overly precise.

A.3.1 Data Types

Binary and hexadecimal. On a computer, programs and data are represented by sequences of 0’s and 1’s.
A 0 or 1 may be represented by two different voltage levels (low and high) held by a capacitor and controlled
by a transistor, for example. Each of these units of memory is called a bit.

A sequence of 0’s and 1’s may be interpreted as a base-2 or binary number, just as a sequence of digits
in the range 0 to 9 is commonly treated as a base-10 or decimal number. In the decimal numbering system,
a multi-digit number like 793 is interpreted as 7 x 10% + 9 % 10 + 3 * 10°; the rightmost column is the 10°
(or 1’s) column, the next column to the left is the 10* (or 10’s) column, the next column to the left is the
10% (or 100’s) column, and so on. Similarly, the rightmost column of a binary number is the 2° column,
the next column to the left is the 2! column, etc. Converting the binary number 00111011 to its decimal
representation, we get

0%2" +0%20 + 1525+ 122 + 122 4+ 0%22 + 152" +152°=32+16+8+2+1=59.
We can clarify that a sequence of digits is base-2 by writing it as 001110115 or 0b00111011, where the b
stands for “binary.”

To convert a base-10 number x to binary:

1. Initialize the binary result to all zeros and k to a large integer, such that 2* is known to be larger than
x.
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2. If 2% < z, place a 1 in the 2 column of the binary number and set = to x — 2F.
3. If x =0 or k =0, we're finished. Else set k to k — 1 and go to line 2.

The leftmost digit in a multi-digit number is called the most significant digit, and the rightmost digit,
corresponding to the 1’s column, is called the least significant digit. For binary representations, these are
often called the most significant bit (msb) and least significant bit (Isb), respectively.

Compared to base-10, base-2 has a more obvious connection to the actual hardware representation. Binary
can be inconvenient for human reading and writing, however, due to the large number of digits. Therefore we
often use base-16, or hexadecimal (hex), representations. A single hex digit represents four binary digits
using the numbers 0..9 and the letters A..F:

base-2 base-16 base-10 base-2 base-16 base-10
0000 0 0 1000 8 8
0001 1 1 1001 9 9
0010 2 2 1010 A 10
0011 3 3 1011 B 11
0100 4 4 1100 C 12
0101 5 5 1101 D 13
0110 6 6 1110 E 14
0111 7 7 1111 F 15

Thus we can write the eight-digit binary number 00111011, or 0011 1011, more succinctly in hex as 3B, or
3B or 0x3B to clarify that it is a hex number. The corresponding decimal number is 3 * 16* 4+ 11 * 16° = 59.

Bits, bytes, and data types. Bits of memory are grouped together in groups of eight called bytes. A
byte can be written equivalently in binary or hex (e.g., 00111011 or 3B), and can represent values between 0
and 28 — 1 = 255 in base-10. Sometimes the four bits represented by a single hex digit are referred to as a
nibble. (Get it?)

A word is a grouping of multiple bytes. The number of bytes depends on the processor, but four-byte
words are common, as with the PIC32. A word 01001101 11111010 10000011 11000111 in binary can be
written in hex as 4DFA83C7. The msb is the leftmost bit of the leftmost byte, a 0 in this case.

A byte is the smallest unit of memory that has its own address. The address of the byte is a number
that represents where the byte is in memory. Suppose your computer has 4 gigabytes (GB)?, or 4 x 230 = 232
bytes, of RAM. Then to find the value stored in a particular byte, you need at least 32 binary digits (8 hex
digits or 4 bytes) to specify the address.

An example showing the first eight addresses in memory is shown below.

7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | address

11001101| 00100111 | 01110001 | 01010111 | 01010011 | 00011110 | 10111011 | 01100010 | value

Now assume that the byte at address 4 is part of the representation of a variable. Do these 0’s and 1’s
represent an integer, or part of an integer? A number with a fractional component? Something else?

The answer lies in the data type of the variable at that address. In C, before you use a variable, you
have to define it and its type. This tells the compiler how many bytes to set aside for the variable and how
to write or interpret 0’s and 1’s at the address(es) used by that variable. The most common data types come
in two flavors: integers and floating point numbers (numbers with a decimal point). Of the integers, the two
most common types are char?, often used to represent keyboard characters, and int. Of the floating point
numbers, the two most common types are float and double. As we will see shortly, a char uses 1 byte and
an int usually uses 4, so two possible interpretations of the data held in the eight memory addresses could be

2In common usage, a kilobyte (KB) is 210 = 1024 bytes, a megabyte (MB) is 220 = 1,048,576 bytes, a gigabyte is
230 = 1,073, 741,824 bytes, and a terabyte (TB) is 240 = 1,099, 511,627, 776 bytes. To remove confusion with the common SI
prefixes that use powers of 10 instead of powers of 2, these are sometimes referred to instead as kibibyte, mebibyte, gibibyte, and
tebibyte, where the “bi” refers to “binary.”

3char is derived from the word “character.” People pronounce char variously as “car” (as in “driving the car”), “care” (a
shortening of “character”), and “char” (as in charcoal), and some just punt and say “character.” Up to you.

9

4 08:24 January 27, 2014



APPENDIX A. A CRASH COURSE IN C

7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | address
11001101 | 00100111 | 01110001 | 01010111 | 01010011 | 00011110 | 10111011 | 01100010 | value
int char

where byte 0 is used to represent a char and bytes 4-7 are used to represent an int, or

7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | address
11001101 | 00100111 | 01110001 | 01010111 | 01010011 | 00011110 | 10111011 | 01100010 | value
char int

where bytes 0-3 are used to represent an int and byte 4 represents a char. Fortunately we don’t usually
have to worry about how variables are packed into memory.

Below are descriptions of the common data types. While the number of bytes used for each type is not the
same for every processor, the numbers given are common. (Differences for the PIC32 are noted in Table A.1.)
Example syntax for defining variables is also given. Note that most C statements end with a semicolon.

char

Example definition:
char ch;

This syntax defines a variable named ch to be of type char. chars are the smallest common data type, using
only one byte. They are often used to represent keyboard characters. You can do a web search for “ASCII
table” (pronounced “ask-key”) to find the American Standard Code for Information Interchange, which
maps the values 0 to 127 to keyboard characters and other things. (The values 128 to 255 may map to an
“extended” ASCII table.) For example, the values 48 to 57 map to the characters ’0’ to '9’; 65 to 90 map to
the uppercase letters A’ to 'Z’, and 97 to 122 map to the lowercase letters ’a’ to ’z’. The assignments

ch = ’a’;
and
ch = 97;

are equivalent, as C equates characters inside single quotes to their ASCII table numerical value.

Depending on the C implementation, char may be treated by default as unsigned, i.e., taking values
from 0 to 255, or signed, taking values from —128 to 127. If you plan to use the char to represent a standard
ASCII character, you don’t need to worry about this. If you plan to use the char data type for integer
math on small integers, however, you may want to use the specifier signed or unsigned, as appropriate. For
example, we could use the following definitions, where everything after // is a comment:

unsigned char chl; // chl can take values O to 255
signed char ch2; // ch2 can take values -128 to 127

int (also known as signed int or signed)

Example definition:
int 1i,j;

signed int k;
signed n;

ints are typically four bytes (32 bits) long, taking values from —(231) to 23! — 1 (approximately +2 billion).
In the example syntax, each of i, j, k, and n are defined to be the same data type.

We can use specifiers to get the following integer data types: unsigned int or simply unsigned, a
four-byte integer taking nonnegative values from 0 to 232 — 1; short int, short, signed short, or signed
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# bytes on | # bytes on
type my laptop PIC32
char 1 1

short int 2 2
int 4 4
long int 8 4
long long int 8 8
float 4 4
double 8 4
long double 16 8

Table A.1: Data type sizes on two different machines.

short int, a two-byte integer taking values from —(21%) to 21° —1 (i.e., —32, 768 to 32, 767); unsigned short
int or unsigned short, a two-byte integer taking nonnegative values from 0 to 2'6 — 1 (i.e., 0 to 65,535);
long int, long, signed long, or signed long int, often consisting of eight bytes and representing values
from —(25%) to 252 —1; and unsigned long int or unsigned long, an eight-byte integer taking nonnegative
values from 0 to 264 — 1. A long long int data type may also be available.

float

Example definition:
float x;

This syntax defines the variable x to be a four-byte “single-precision” floating point number.

double

Example definition:
double x;

This syntax defines the variable x to be an eight-byte “double-precision” floating point number. The data
type long double (quadruple precision) may also be available, using 16 bytes (128 bits). These types allow
the representation of larger numbers, to more decimal places, than single-precision floats.

The sizes of the data types, both on my laptop and the PIC32, are summarized in Table A.1. Note the
differences; C does not enforce a strict standard.

Using the data types. If your program calls for floating point calculations, you can choose between float,
double, and long double data types. The advantages of smaller types are that they use less memory and
computations with them (e.g., multiplies, square roots, etc.) may be faster. The advantage of the larger
types is the greater precision in the representation (e.g., smaller roundoff error).

If your program calls for integer calculations, you are better off using integer data types than floating
point data types due to the higher speed of integer math and the ability to represent a larger range of
integers for the same number of bytes.* You can decide whether to use signed or unsigned chars, or
{signed/unsigned} {short/long} ints. The considerations are memory usage, possibly the time of the
computations®, and whether or not the type can represent a sufficient range of integer values. For example, if
you decide to use unsigned chars for integer math to save on memory, and you add two of them with values
100 and 240 and assign to a third unsigned char, you will get a result of 84 due to integer overflow. This
example is illustrated in the program overflow.c in Section A.4.

As we will see shortly, functions have data types, just like variables. For example, a function that calculates

4Just as a four-byte float can represent fractional values that a four-byte int cannot, a four-byte int can represent more
integers than a four-byte float can. See the type conversion example program typecast.c in Section A.4 for an example.
5Computations with smaller data types are not always faster than with larger data types. It depends on the architecture.
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the sum of two doubles and returns a double should be defined as type double. Functions that don’t return
a value are defined of type void.

Representations of data types. A simple representation for integers is the sign and magnitude represen-
tation. In this representation, the msb represents the sign of the number (0 = positive, 1 = negative), and
the remaining bits represent the magnitude of the number. The sign and magnitude method represents zero
twice (positive and negative zero) and is not often used.

A much more common representation for integers is called two’s complement. This method also uses the
msb as a sign bit, but it only has a single representation of zero. The two’s complement representation of an
8-bit char is given below:

binary signed char, base-10 | unsigned char, base-10
00000000 0 0
00000001 1 1
00000010 2 2
00000011 3 3
01111111 127 127
10000000 —128 128
10000001 —127 129
11111111 -1 255

As the binary representation is incremented, the two’s complement (signed) interpretation of the binary
number also increments, until it “wraps around” to the most negative value when the msb becomes 1 and all
other bits are 0. The signed value then resumes incrementing until it reaches —1 when all bits are 1.

Another representation choice is endianness. The little-endian representation of an int stores the least
significant byte at ADDRESS and the most significant byte at ADDRESS+3, while the big-endian convention is
the opposite.® The convention used depends on the processor. For definiteness in this appendix, we will use
the little-endian representation, which is also used by the PIC32.

floats, doubles, and long doubles are commonly represented in the IEEE 754 floating point format
(—=1)®xb*2°, where one bit is used to represent the sign (s = 0 or 1); m = 23/52/112 bits are used to represent
the significand b in the range 1 to 2 — 27™; and n = 8/11/15 bits are used to represent the exponent ¢ in
the range —(2"1) + 2 to 2"~! — 1, where n and m depend on whether the type uses 4/8/16 bytes. Certain
exponent and significand combinations are reserved for representing zero, positive and negative infinity, and
“not a number” (NaN).

It is rare that you need to worry about the specific bit-level representation of the different data types:
endianness, two’s complement, IEEE 754, etc. You tell the compiler to store values and retrieve values, and
it takes care of implementing the representations.

A.3.2 Memory, Addresses, and Pointers

Consider the following C syntax:

int i;
int *ip;

or equivalently

int i, *ip;

6These phrases come from Gulliver’s Travels, where Lilliputians fanatically divide themselves according to which end of a
soft-boiled egg they crack open.
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These definitions appear to define the variables i and *ip of type int. The character * is not allowed as part
of a variable name, however. The variable name is actually ip, and the special character * means that ip is a
pointer to something of type int. The purpose of a pointer is to hold the address of a variable it “points”
to. I often use the words “address” and “pointer” interchangeably.

When the compiler sees the definition int i, it allocates four bytes of memory to hold the integer i.
When the compiler sees the definition int *ip, it creates the variable ip and allocates to it whatever amount
of memory is needed to hold an address. The compiler also remembers the data type that ip points to, int in
this case, so if later you use ip in a context that requires a pointer to a different variable type, the compiler
will generate a warning or an error. Technically, the type of ip is “pointer to type int.”

Important! Defining a pointer only allocates memory to hold the pointer. It does not allocate memory for
a pointee variable to be pointed at. Also, simply defining a pointer does not initialize it to point to anything
valid.

When we have a variable and we want the address of it, we apply the reference operator to the variable,
which returns a “reference” (i.e., a pointer to the variable, or the address). In C, the reference operator is
written & Thus the following command makes sense:

ip = &i; // ip now holds the address of i

The reference operator always returns the lowest address of a multi-byte type. For example, if the four-byte
int i occupies addresses 0x0004 to 0x0007 in memory, &i will return 0x0004.7

If we have a pointer (an address) and we want the contents at that address, we apply the dereference
operator to the pointer. In C, the dereference operator is written *. Thus the following command makes
sense:

i = *ip; // i now holds the contents at the address ip

However, you should never dereference a pointer until it has been initialized to point at something using a
statement such as ip = &i.

As an analogy, consider the pages of a book. A page number can be considered a pointer, while the
text on the page can be considered the contents of a variable. So the notation &text would return the page
number (pointer or address) of the text, while *page_number would return the text on that page (but only
after page_number is initialized to point at a page of text).

Even though we are focusing on the concept of pointers, and not C syntax, let’s go ahead and look at
some sample C code, remembering that everything after // on the same line is a comment:

int i,j,*ip; // define i, j as type int, as well as ip as type "pointer to type int"

ip = &i; // set ip to the address of i (& references i)

i = 100; // put the value 100 in the location allocated by the compiler for i

j = *ip; // set j to the contents of the address ip (* dereferences ip), i.e., 100

j o= j+2; // add 2 to j, making j equal to 102

i = *(&j); // & references j to get the address, then * gets contents; i is set to 102

*(&j) = 200; // content of the address of j (j itself) is set to 200; i is unchanged

The use of pointers can be powerful, but also dangerous. For example, you may accidentally try to access
an illegal memory location. The compiler is unlikely to recognize this during compilation, and you may end
up with a “segmentation fault” when you execute the code.® This kind of bug can be difficult to track down,
and dealing with it is a C rite of passage. More on pointers in Section A.4.8.

A.3.3 Compiling

The process loosely referred to as “compilation” actually consists of four steps:

7This is the right way to think about it conceptually, but in fact the computer may automatically translate the value of &i to
an actual physical address.
8 A good name for a program like this is coredumper.c.
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1. Preprocessing. The preprocessor takes the program.c source code and produces an equivalent .c
source code, performing operations such as stripping out comments. The preprocessor is discussed in
more detail in Section A.4.3.

2. Compiling. The compiler turns the preprocessed code into assembly code for the specific processor.
This process converts the code from standard C syntax into a set of commands that can be understood
natively by the processor. The compiler can be configured with a number of options that impact the
assembly code generated. For example, the compiler can be instructed to generate assembly code
that trades off time of execution with the amount of memory needed to store the code. Assembly
code generated by a compiler can be inspected with a standard text editor. In fact, coding directly in
assembly is still a popular, if painful, way to program microcontrollers.

3. Assembling. The assembler takes the assembly code and produces processor-dependent machine-level
binary object code. This code cannot be examined using a text editor. Object code is called relocatable,
in that the exact memory addresses for the data and program statements are not specified.

4. Linking. The linker takes one or more object codes and produces a single executable file. For example,
if your code includes pre-compiled libraries, such as printout functions in the stdio library (described
in Sections A.4.3 and A.4.15), this code is included in the final executable. The data and program
statements in the various object codes are assigned to specific memory locations.

In our HelloWorld.c program, this entire process is initiated by the single command line statement

> gcc HelloWorld.c -o HelloWorld

If our HelloWorld.c program used any mathematical functions in Section A.4.7, the compilation would be
initiated by

> gcc HelloWorld.c -o HelloWorld -1m

where the -1m flag tells the linker to link the math library, which may not be linked by default like other
libraries are.

If you want to see the intermediate results of the preprocessing, compiling, and assembling steps, Problem 40
gives an example.

For more complex projects requiring compilation of several files into a single executable or specifying
various options to the compiler, it is common to create a makefile that specifies how the compilation is
to be done, and to then use the command make to actually create the executable. The use of makefiles is
beyond the scope of this appendix. Section A.4.16 gives a simple example of compiling multiple C files to
make a single executable program.

A.4 C Syntax

So far we have seen only glimpses of C syntax. Let’s begin our study of C syntax with a few simple programs.
We will then jump to a more complex program, invest.c, that demonstrates many of the major elements of
C structure and syntax. If you can understand invest.c and can create programs using similar elements,
you are well on your way to mastering C. We will defer the more detailed descriptions of the syntax until
after introducing invest.c.

Printing to screen. Because it is the simplest way to see the results of a program, as well as the most
useful tool for debugging, let’s start with the function printf for printing to the screen. We have already
seen it in HelloWorld.c. Here’s a slightly more interesting example. Let’s call this program file printout.c.

#include <stdio.h>

int main(void) {
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int i; float f; double d; char c;

i =232; f=4.278; d = 4.278; c = ’k’; // or, by ASCII table, c = 107;
printf ("Formatted output:\n");
printf(" i = %4d c¢ = ’%c’\n",i,c);

printf(" £ = %19.17f\n",f);
printf(" d = %19.171f\n",d);
return(0);

}

The 171f in the last printf statement is “seventeen ell eff.”
The first line of the program

#include <stdio.h>

tells the preprocessor that the program will use functions from the “standard input and output” library,
one of many code libraries provided in standard C installations that extend the power of the language. The
stdio.h function used in printout.c is printf, covered in more detail in Section A.4.15.

The next line

int main(void) {

starts the block of code that defines the main function. The main code block is closed by the final closing
brace }. Each C program has exactly one main function. The type of main is int, meaning that the function
should end by returning a value of type int. In our case, it returns a 0, which indicates that the program
has terminated successfully.

The next line defines and allocates memory for four variables of four different types, while the line after
assigns values to those variables. The printf lines will be discussed after we look at the output.

Now that you have created printout.c, you can create the executable file printout and run it from the
command line. Make sure you are in the directory containing printout.c, then type the following:

> gcc printout.c -o printout
> printout

(Again, you may have to use ./printout to tell your computer to look in the current directory.) On my
laptop, here is the output:

Formatted output:
i= 32 c="k’
f = 4.27799987792968750
d = 4.27799999999999958

The main point of this program is to demonstrate formatted output from the code

printf ("Formatted output:\n");
printf(" i = %4d c = ’%c’\n",i,¢);
printf(" f = %19.17f\n",f);
printf(" d = %19.171f\n",d);

Inside a printf statement, everything inside the double quotes is printed to the screen, but some character
sequences have special meaning. The \n sequence creates a newline (carriage return). The % is a special
character, indicating that some data will be printed, and for each % in the double quotes, there must be a
variable or other expression in the comma-separated list at the end of the printf statement. The %4d means
that an int type variable is expected, and it will be displayed right-justified using 4 spaces. (If the number is
more than 4 digits, it will take as much space as is needed.) The %c means that a char is expected. The
%19.17f means that a float will be printed right-justified over 19 spaces with 17 spaces after the decimal
point. The %19.171f means that a double (or “long float”) will be printed right-justified over 19 spaces,
with 17 after the decimal point. More details on printf can be found in Section A.4.15.

The output of the program also shows that neither the float f nor the double d can represent 4.278
exactly, though the double-precision representation comes closer.
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Data sizes. Since we have focused on data types, our next program measures how much memory is used
by different data types. Create a file called datasizes.c that looks like the following:

#include <stdio.h>
int main(void) {

char a, *bp; short c; int d; long e;
float f; double g; long double h, *ip;

printf("Size of char: %21d bytes\n",sizeof(a));// "% 2 ell 4"
printf("Size of char pointer: %21d bytes\n",sizeof (bp));
printf("Size of short int: %21d bytes\n",sizeof (c));
printf("Size of int: %21d bytes\n",sizeof(d));
printf("Size of long int: %21d bytes\n",sizeof (e));
printf ("Size of float: %21d bytes\n",sizeof (f));
printf("Size of double: %21d bytes\n",sizeof(g));
printf("Size of long double: %21d bytes\n",sizeof (h));
printf("Size of long double pointer:  %21d bytes\n",sizeof (ip));
return(0);
}

The first two lines in the main function define nine variables, telling the compiler to allocate space for these
variables. Two of these variables are pointers. The sizeof () operator returns the number of bytes allocated
in memory for its argument.

Here is the output of the program:

Size of char: 1 bytes
Size of char pointer: 8 bytes
Size of short int: 2 bytes
Size of int: 4 bytes
Size of long int: 8 bytes
Size of float: 4 bytes
Size of double: 8 bytes
Size of long double: 16 bytes
Size of long double pointer: 8 bytes

We see that, on my laptop, ints and floats use 4 bytes, short ints 2 bytes, long ints and doubles 8
bytes, and long doubles 16 bytes. Regardless of whether it points to a char or a long double, a pointer
(address) uses 8 bytes, meaning we can address a maximum of (28)% = 256° bytes of memory. Considering
that corresponds to almost 18 quintillion bytes, or 18 billion gigabytes, we should have enough available
addresses for a laptop!

Overflow. Now let’s try the program overflow.c, which demonstrates the issue of integer overflow
mentioned in Section A.3.1.

#include <stdio.h>

int main(void) {
char i = 100, j = 240, sum;
unsigned char iu = 100, ju = 240, sumu;
signed char is = 100, js = 240, sums;

sum = i+j; sumu = iut+ju; sums = is+js;

printf ("char: %d + %d = %3d or ASCII %c\n",i,j,sum,sum);
printf ("unsigned char: ¥%d + %d = %3d or ASCII Yc\n",iu,ju,sumu,sumu);
printf("signed char: %d + %d = %3d or ASCII %c\n",is,js,sums,sums);
return(0) ;
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In this program we initialize the values of some of the variables when they are defined. You might also notice
that we are assigning a signed char a value of 240, even though the range for that data type is —128 to 127.
So something fishy is going on. When I compile and run the program, I get the output

char: 100 + -16 = 84 or ASCII T
unsigned char: 100 + 240 = 84 or ASCII T
signed char: 100 + -16 = 84 or ASCII T

One thing we notice is that, with my C compiler at least, chars are the same as signed chars. Another thing
is that even though we assigned the value of 240 to js and j, they contain the value —16. This is because
the binary representation of 240 has a 1 in the 27 column, but for the two’s complement representation of a
signed char, this column indicates whether the value is positive or negative. Finally, we notice that the
unsigned char ju is successfully assigned the value 240 (since its range is 0 to 255), but the addition of iu
and ju leads to an overflow. The correct sum, 340, has a 1 in the 28 (or 256) column, but this column is not
included in the 8 bits of the unsigned char. Therefore we see only the remainder of the number, 84. The
number 84 is assigned the character T in the standard ASCII table.

Type conversion. Continuing our focus on the importance of understanding data types, we try one more
simple program that illustrates what can happen when you mix data types in a mathematical expression.
This is also our first program that uses a helper function beyond the main function. Call this program
typecast.c.

#include <stdio.h>

void printRatio(int numer, int denom) {
double ratio;

ratio = numer/denom;

printf("Ratio, %1d/%1d: %5.2f\n" ,numer ,denom,ratio) ;
ratio = numer/((double) denom);
printf ("Ratio, %1d/((double) %1d): %5.2f\n" ,numer ,denom,ratio) ;

ratio = ((double) numer)/((double) denom);
printf ("Ratio, ((double) %1d)/((double) %1d): %5.2f\n",numer,denom,ratio);
}

int main(void) {
int num = 5, den = 2;

printRatio(num,den);
return(0) ;

}

The helper function printRatio is of type void since it does not return a value. It takes two ints as input
arguments and calculates their ratio in three different ways. In the first, the two ints are divided and the
result is assigned to a double. In the second, the integer denom is typecast or cast as a double before the
division occurs, so an int is divided by a double and the result is assigned to a double.? In the third, both
the numerator and denominator are cast as doubles before the division, so two doubles are divided and the
result is assigned to a double.

The main function simply defines two variables, num and den, and passes their values to printRatio,
where those values are copied to numer and denom, respectively. The variables num and den are only available
to main, and the variables numer and denom are only available to printRatio, since they are defined inside
those functions.

Execution of any C program always begins with the main function, regardless of where it appears in the
file.

After compiling and running, we get the output

9The typecasting does not change the variable denom itself; it simply creates a temporary double version of denom which is
lost as soon as the division is complete.
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Ratio, 5/2: 2.00
Ratio, 5/((double) 2): 2.50
Ratio, ((double) 5)/((double) 2): 2.50

The first answer is “wrong,” while the other two answers are correct. Why?

The first division, numer/denom, is an integer division. When the compiler sees that there are ints on
either side of the divide sign, it assumes you want integer math and produces a result that is an int by
simply truncating any remainder (rounding toward zero). This value, 2, is then converted to the floating
point number 2.0 to be assigned to the variable ratio. On the other hand, the expression numer/ ((double)
denom), by virtue of the parentheses, first produces a double version of denom before performing the division.
The compiler recognizes that you are dividing two different data types, so it temporarily coerces the int to
a double so it can perform a floating point division. This is equivalent to the third and final division, except
that the typecast of the numerator to double is explicit in the code for the third division.

Thus we have two kinds of type conversions:

e Implicit type conversion, or coercion. This occurs, for example, when a type has to be converted to
carry out a variable assignment or to allow a mathematical operation. For example, dividing an int by
a double will cause the compiler to treat the int as a double before carrying out the division.

e Explicit type conversion. An explicit type conversion is coded using a casting operator, e.g., (double)
<expression> or (char) <expression>, where <expression> may be a variable or mathematical
expression.

Certain type conversions may result in a change of value. For example, assigning the value of a float to
an int results in truncation of the fractional portion; assigning a double to a float may result in roundoff
error; and assigning an int to a char may result in overflow. Here’s a less obvious example:

float f;
int i = 16777217;
f =i // f now has the value 16,777,216, not 16,777,217!

It turns out that 16,777,217 = 224 + 1 is the smallest positive integer that cannot be represented by a 32-bit
float. On the other hand, a 32-bit int can represent all integers in the range —23! to 23! — 1.

Some type conversions, called promotions, never result in a change of value because the new type can
represent all possible values of the original type. Examples include converting a char to an int or a float
to a long double.

We will see more on use of parentheses (Section A.4.1), the scope of variables (Section A.4.5), and defining
and calling helper functions (Section A.4.6).

A more complete example: invest.c. Until now we have been dipping our toes in the C pool. Now
let’s dive in headfirst.

Our next program is called invest.c, which takes an initial investment amount, an expected annual
return rate, and a number of years, and returns the growth of the investment over the years. After performing
one set of calculations, it prompts the user for another scenario, and continues this way until the data entered
is invalid. The data is invalid if, for example, the initial investment is negative or the number of years to
track is outside the allowed range.

The real purpose of invest.c, however, is to demonstrate the syntax and a number of useful features of
C.

Here’s an example of compiling and running the program. The only data entered by the user are the
three numbers corresponding to the initial investment, the growth rate, and the number of years.

> gcc invest.c -o invest
> invest

Enter investment, growth rate, number of yrs (up to 100): 100.00 1.05 5
Valid input? 1

RESULTS:
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Year
Year
Year
Year
Year
Year

100.00
105.00
110.25
115.76
121.55
127.63

g W N~ O

Enter investment, growth rate, number of yrs (up to 100): 100.00 1.05 200
Valid input? O
Invalid input; exiting.

>

Before we look at the full invest.c program, let’s review two principles that should be adhered to when
writing a longer program: modularity and readability.

e Modularity. You should break your program into a set of functions that perform specific, well-defined

tasks, with a small number of inputs and outputs. As a rule of thumb, no function should be longer than
about 20 lines. (Experienced programmers often break this rule of thumb, but if you are a novice and
are regularly breaking this rule, you’re likely not thinking modularly.) Almost all variables you define
should be “local” to (i.e., only recognizable by) their particular function. Global variables, which can
be accessed by all functions, should be minimized or avoided altogether, since they break modularity,
allowing one function to affect the operation of another without the information passing through the
well-defined “pipes” (input arguments to a function or its returned results). If you find yourself typing
the same (or similar) code more than once, that’s a good sign you should figure out how to write a
single function and just call that function from multiple places. Modularity makes it much easier to
develop large programs and track down the inevitable bugs.

Readability. You should use comments to help other programmers, and even yourself, understand the
purpose of the code you have written. Variable and function names should be chosen to indicate their
purpose. Be consistent in how you name variables and functions. Any “magic number” (constant)
used in your code should be given a name and defined at the beginning of the program, so if you ever
want to change this number, you can just change it at one place in the program instead of every place
it is used. Global variables and constants should be written in a way that easily distinguishes them
from more common local variables; for example, you could WRITE CONSTANTS IN UPPERCASE
and Capitalize Globals. You should use whitespace (blank lines, spaces, tabbing, etc.) consistently to
make it easy to read the program. Use a fixed-width font (e.g., Courier) so that the spacing/tabbing
is consistent. Modularity (above) also improves readability.

The program invest.c demonstrates readable modular code using the structure and syntax of a typical
C program. The line numbers to the left are not part of the program; they are there for reference. In the
program’s comments, you will see references of the form ==SecA.4.3== that indicate where you can find
more information in the review of syntax that follows the program.

/3K 3Kk ok ok ok sk o ok ok ok K ok ok ok K K ok ok ok K K 3 ok oK K K 3 ok ok K K ok ok ok K ok ok ok K K ok ok ok K K 3k ok oK K K 3 ok oK K K 3 ok ok ok K ok ok ok K ok ok ok Kk K ok

* PROGRAM COMMENTS (PURPOSE, HISTORY)
stk s ok s o o sk sk sk sk sk sk sk sk sk sk ok sk ok sk ok sk sk sk sk sk ok ko sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk koo sk ok sk sk sk sk sk sk sk ok k ok sk ok sk ok ok ok ok /

/*
* invest.c
*
* This program takes an initial investment amount, an expected annual
* return rate, and the number of years, and calculates the growth of
* the investment. The main point of this program, though, is to
* demonstrate some C syntax.
*
* References to further reading are indicated by ==SecA.B.C==
*
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15 * HISTORY:

16 * Dec 20, 2011 Created by Kevin Lynch

1w % Jan 4, 2012 Modified by Kevin Lynch (small changes, altered comments)

18 */

19

20/ kskokskokokokokok ok skl ok ok skl e ok sk ok ke sk sk sk e ksl sk ke sk sk s sk sk s sk sk s ok sk sk e sk sk sk e ok sk s ke sk sk s sk sk s sk sk s sk sk e sk sk sk e ok sk ok e ok sk ok
21 * PREPROCESSOR COMMANDS  ==SecA.4.3==

20 kskokokskokokokok