MII—P S

TECHNOLOGIES

MIPS32® 4K™
Processor Core Family
Software User’'s Manual

Document Number: MD00016
Revision 01.18
November 15, 2004

MIPS Technologies, Inc.
1225 Charleston Road
Mountain View, CA 94043-1353

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Copyright © 2000-2002 MIPS Technologies, Inc. All rights reserved.

Unpublished rights (if any) are reserved under the Copyright Laws of the United States of America.

If this document is provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format), then
its use and distribution is subject to a written agreement with MIPS Technologies, Inc. ("MIPS Technologies"). UNDER NO

CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY
WITHOUT THE EXPRESS WRITTEN CONSENT OF MIPS TECHNOLOGIES.

This document contains information that is proprietary to MIPS Technologies. Any copying, reproducing, modifying, ol
this information (in whole or in part) which is not expressly permitted in writing by MIPS Technologies or a
contractually-authorized third party is strictly prohibited. At a minimum, this information is protected under unfair comp
and copyright laws. Violations thereof may result in criminal penalties and fines.

MIPS Technologies or any contractually-authorized third party reserves the right to change the information containe
document to improve function, design or otherwise. MIPS Technologies does not assume any liability arising out of
application or use of this information, or of any error of omission in such information. Any warranties, whether expre
statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a pat
purpose, are excluded. Any license under patent rights or any other intellectual property rights owned by MIPS Tecl
or third parties shall be conveyed by MIPS Technologies or any contractually-authorized third party in a separate lic
agreement between the parties.

The information contained in this document shall not be exported or transferred for the purpose of reexporting in vic
any U.S. or non-U.S. regulation, treaty, Executive Order, law, statute, amendment or supplement thereto.

The information contained in this document constitutes one or more of the following: commercial computer software
commercial computer software documentation or other commercial items. If the user of this information, or any rela
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of tt
States government (“Government”), the use, duplication, reproduction, release, modification, disclosure, or transfer
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulatior
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The u
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or a
contract terms and conditions covering this information from MIPS Technologies or any contractually-authorized thir

MIPS®, R300, R400&, R5008 and R10008 are among the registered trademarks of MIPS Technologies, Inc. in tt
United States and certain other countries, and MIPS16™, MIPS16e™, MIPS32™, MIPS64™, MIPS-3D™, MIPS-b:
MIPS I™, MIPS [I™, MIPS lII™ MIPS IV™, MIPS V™ MDMX™, MIPSsim™, MIPSsimCA™, MIPSsimIA™,
QuickMIPS™, SmartMIPS™, MIPS Technologies logo, 4K™, 4Kc™, 4AKm™, 4Kp™, 4KE™, 4KEc™, 4KEm™, 4KE
4AKS™ 4KSc™, M4K™ B5K™ 5Kc™, 5Kf™, 20K™, 20Kc™, 25Kf™ R4300™, ASMACRO™, ATLAS™, BusBridge’
CoreFPGA™, CoreLV™, EC™, JALGO™, MALTA™, MGB™, PDtrace™, SEAD™, SEAD-2™, SOC-it™, The Pipelin
and YAMON™ are among the trademarks of MIPS Technologies, Inc.

All other trademarks referred to herein are the property of their respective owners.

Template: B1.06Build with Conditional Tags: 2B JADE MIPS32 PROC
MIPS32® 4K™ Processor Core Family Software User's Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

w wn

References to Product Names

This manual encompasses the 4Kc™, 4Km™ & 4Kp™ processor cores. The three products are similar in design, hence
the majority of information contained in this manual refers to all three cores.

Throughout this manual the terms “the core” or “the processor” refers to the 4Kc™, 4AKm™, and 4Kp™ devices. Some
information in this manual, specifically in Chapters 2 and 4, is specific to one or more of the cores, but not all three. This
information is called out in the text wherever necessary. For example, the section dealing with the TLB is denoted as

being 4Kc™ core specific, whereas the section dealing with the BAT is denoted as being 4Km™ and 4Kp™ core
specific.

Product Differentiation

The three products contained in this manual are similar in design. The main differences are in memory management and
the multiply-divide unit. In general the differences are as follows:

4Kc™ processor: Contains pipelined multiplier and translation lookaside buffer (TLB).
4Km™ processor: Contains pipelined multiplier and block address translator (BAT).

4Kp™ processor: Contains non-pipelined multiplier and block address translator (BAT).

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 iii

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Table of Contents

Chapter 1 Introduction to the MIPS32 4K™ Processor Core Family ... 1
L1 FRALUIES ...ttt e oo oo oo e e e e e e e e e ettt ettt et e e e eebe ke b e e b a oo oo o4 e e ee e e e e e aaaaeeaeaeeeeeeeeeeeaeaeeeeeeeeeennnrnrrn 2
I =TT QI TV | = U s o 3
1.3 Required LOGIC BIOCKSttt ettt e e emmmmmmmmemeea s b be b et e e e e e e e e e e e aans 4

L1.3.1 EXECULION UNIE .ttt ettt e e e oo e s e bbbttt e e e e e e e s e e eaaaannnsebeeeeeeeaeeeesaaannnes 4
1.3.2 Multiply/Divide UNit (IMDU)euiiiiiiiiiieeeii ettt e e e e e e s e bbbt et e e e e smmmmmmme e s aseb e e es 5
1.3.3 System Control CoproCeSSOr (CPO)eiiiiiiieiiiiiiie et e e e e e 5
1.3.4 Memory Management Unit (MMU)uuuiiiiiiie et s s e e e e e e e aaaaeeeeeeeeenns 5
R R OF= ol s [O] gl 1 (0] | =] £ TR PP UTT P T PTPPPPPP 7
1.3.6 Bus Interface Unit (BIU)
S T o =T Y P T g =T =T g1 o PP 7
1.4 OptioNal LOGIC BIOCKS ...ttt e e e oo e s ettt et Smmmmmmmmmm bbb e e et e e e e e e e e e ann 8
L1.4.1 INSTFUCHION CACKNE ...ttt ettt ettt e e e e e e s e bbb bttt et meeeeeeeeaaaae e e s e aannbnbneeeeeas 8
L1.4.2 DAta CaACRE ...ttt e et et e smmmmmmnne—————— e e e e e e b e bee e 8
143 EJTAG CONIOIBT ...ttt et e e e oo e e ettt e e e e e e e s e e s e nnnneebeeeeeaaaeeeaeaanns 8

L0 g T o (] g2 T o= 1T TP UTP TP
P I o T= [T Lo TS] = Vo [PPSR
2.1.1 | Stage: INSIUCHION FEICN ..ot e e s s e e e annee s
P I S v To [=T ol Ui) o SRR
2.1.3 M Stage: MEMOIY FEICN ..ottt e e s e e s snnneee s
2.1.4 A Stage: AlIGN/ACCUMUIALEoiiiiiiiiii ettt e et e e smme e e e e e e e e e e neee
2. 1.5 W Stage: WHEEDACKeeiiiiiiiiieiie ettt e e mm e e e e eesmne e e e e s nnreeeas
2.2 INSErUCHION CACNE IMISS ...ttt e e st bt e e s a b bt emmmmeaemmmnee et e e s asbneeeesannneeas
2.3 Data@ CACRE MISS ...ttt e bt e et b et e et et e e e e etk b e mmneneeenan s Eee e e e e e anbreeee e e
2.4 MURIPIY/DIVIAE OPEIALIONS ...ciitiiiieiiiiie ettt ettt ekt e e s kb b e et e s et b e et e e s s b b e e e e annne e e s annbneeeesannnreeens
2.5 MDU Pipeline (4Kc and 4KmM COIES)ccuuuiiiiiiiiiie ittt
2.5.1 32x16 Multiply (4Kc and 4Km Cores)
2.5.2 32x32 Multiply (4Kc and 4Km Cores)
2.5.3 Divide (AKC aNnd 4KIM COIES) .uuiiiiieiiiiiiie ettt ettt e et e e e e s an b e et e e+ sr— 1
2.6 MDU Pipeline (4Kp Core Only)
2.6.1 MUIIPIY (4K COI) ettt ettt ettt et e skttt e s skttt e e s ke e et e s s anne e e e e annbeeeeeaannrneeas
2.6.2 Multiply ACCUMUIALE (AKP COIE) .eeeiiiiiieeiii ittt e e e e e e e et e e e e s emmmmmmmmmeees e e e e
2.6.3 Divide (4Kp Core)
2.7 BranCR DEIAYueeeeieeiitiite ettt e ekt e e e h bt e e 4 a et ¢ cm———— 1144411 b et e e e nnr e
2.8 DAt BYPASSING .ueeeeieeiitiiieei ittt e e sttt e ettt ek e s e b et e e s b e et e e o b b e et e e Rn e e e e aane e e e e e nnre e e e s nnreee s
P S T I I - To [=1 - YO PPPRURPR
2.8.2 Move from HI/LO and CPO DEIAYcoeiiiiiiiiiiiiiiiiiiiie ettt e e et e s semmmmmmmmmnn e
AN N (01 (T (o Tod [F= T To | T o OO PRTRPR
P2 OIS 11 J O o] o To 11T o - PP PP P PPPPPPON
2,11 INSEIUCHION INLEITOCKS ..ieiiieee ittt e e e ekt e e e st e e e e e ane e e e e e e b be e e e e anbreeeeennnneas
2.12 INSTIUCHION HAZAIASeeeiieiiiiiiee ettt e e et e e e e bt e e e e e eamm e e e e e eamm s be e e e e enbr e e e e annnreas

Chapter 3 MemOry ManNAQgEMENLuuuiiieiiiieeeeesis ittt e e e e eee e s s s ssssaateeaereteeeeessasassnsesteees ammmmsmeeeeeneseeeeeesssssanssnsnnes 31

I [o To (1T i o T o N PSP PSPPI 31

G720V, T To [T o1 @] o 1T - 4o] o SRRSO 32
3.2.1 Virtual MEMOIY SEOMENLS ...eiiiiiiiiiiiiiieiie e e e e e e e e s ss e e e e ae e e s e s ss e et eereeeeeeeesassss memnmmmmmmmmn s ssseseees 33

K U L=< g /[To 1= PO PPPRPPPPR 35

e B (=T 1 1 1= 1Y/ o T L= TSP 36

G0 B 1= o 18 o 1/ o T [P 38
3.3 Translation Lookaside Buffer (4Kc Core ONIY)ueiiiiiiiiee i e e e s smmmmeeeeeeenne e e 40

iv MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All right reserved.

G TR 10 AN Lo A I 1 = S TR OOPTPTPPPPI
3.3.2 INSIIUCHON TLB ...eieiiiieiiiiie ettt e e e e e e e e
TR IR B - = I I = ST P TP POPTPUPPPPTPTRN
3.4 Virtual to Physical Address Translation (4KC COFE)uuuuuuuiiiiiiieiiieieeeeeeeee e e et eeeeeeeeenenensanas
3.4.1 Hits, Misses, and MUltiple MAtChES ... e e e e e e e
3.4.2 Page Sizes and Replacement AlgOrithm ... e
3.4.3 TLB INSIIUCLIONS ..eeiiiiiiiiiiiit ettt ettt et e e e e e e oo bbbttt e e e e e e e e s s aabb bt e s ammmmmmmmmenbebeeeeeaaeeeeaan
3.5 Fixed Mapping MMU (4KM & 4K COIBS) .cciiiiiiiiiieiiteeee e e ettt e e e e e e s ettt e e e e e e e e e s ammeneeeeeeeseees
3.6 System Control Coprocessor

(O aF=T o) (=T g O (ot =T o] (T 1 OO P PP POPPPPPTPPPPPPT
4.1 EXCeption CONAItIONSeiviiiiiiiiieiiiiiie ettt e st e e e s snbe e e e e e aaes
4.2 EXCEPLON PIIOMLY ..veeeiiiiiiiiet ettt ettt e e st e e s e
4.3 EXCeption VECIOr LOCALIONSeeiiiiiiiiieeiitiiiee ettt ettt e et e e et e et e e e e aes e
4.4 General Exception Processing
4.5 Debug Exception Processing

4.6 EXCOPLIONS ...ttt ettt ettt ettt e ke e e e ookt e e e okt e e 4o R b et e e+t ¢ ——— 111444111 r e e e e e nnre s
4.6.1 RESEE EXCEOPLION .ttt et et e e e e s e s s bbbttt e e et e e e e smmmmmemeeeeeeteteeeeeaaaee e e s
4.6.2 SOft RESEE EXCEPLION .ottt ettt e e e e e e s e et e e e e ee s mmmmmm s e e e
4.6.3 Debug Single Step EXCEPLION ui ittt e e e et oo e 58
4.6.4 Debug INLErrupt EXCEPLIONoiiiiiiiiiie ittt meeeeeemmn e e e e e eanneas 59
4.6.5 Non-Maskable Interrupt (NMI) EXCEPLION ...ccoiuiiiiieiiiiiie ettt e e s ennneee s 59
4.6.6 Machine Check EXCeption (4KC COI) ..ooiiiiiiiiiiiieiiieee ettt e e e e e e e s mmmmmeeeees 60
4.6.7 INTEITUPE EXCEPLION ..eeiiiiiiiii ettt ettt e e e e e e s e ettt et e e ee e e e e s s ammeemeeeeeeesseeeeeaaeeessaanns 60
4.6.8 Debug INStruction Break EXCEPLIONcuueiiiiiiiiiieeiiiiiee ettt e ettt e e et e e e s snneeeessannneeesanes 60
4.6.9 Watch Exception — Instruction Fetch or Data ACCESS coocviiieiiiiiieeeiie et emeeeas 6l....
4.6.10 Address Error Exception — Instruction FetCh/Data ACCESScoovcuveieeiiiiiiieeeiiiieee e e e 61.......
4.6.11 TLB Refill Exception — Instruction Fetch or Data ACCESS (4KC COME)uvviveiriiiiiieiiiiiiiee e 62
4.6.12 TLB Invalid Exception — Instruction Fetch or Data ACCeSS (4KC COMNe)ccvvverviiiiiieeiiiiiiee e 63
4.6.13 Bus Error Exception — Instruction Fetch or Data ACCESSocvveieeiiiiiieeeiiiiiee e rireee e eeenee 63......
4.6.14 Debug Software Breakpoint EXCEPLION cccuviiiiiiiiiiieiiiiiiee et s O
4.6.15 Execution Exception — System Callccooiiiiiiiiiii e e mmeee e 64
4.6.16 Execution Exception — Breakpointeeiiiiiiiiioiiiicee e e e ee e 64
4.6.17 Execution Exception — Reserved INStrUCHIONc..oviiiiiiiiieiiiiii et eeee e 64
4.6.18 Execution Exception — Coprocessor Unusable ... e 65...
4.6.19 Execution Exception — Integer OVErflOWccceeiiiiiiiiiiiiiii e DD
4.6.20 EXECULION EXCEPLION —— TIAP .etieiiieiiieiiiiiite e ittt e e sttt e sttt e s sttt e e s ibb e e s e bt e e e eeeanmneeeae s ennnes 65
4.6.21 Debug Data Break EXCEPLIONcccoiiiiiiiiiieie ettt e e e e e e e s mmmeemeemeenn e e 66
4.6.22 TLB Modified Exception — Data ACCESS (4KC COIB)iiiiiuiiiiiiiiiiiiie it] 66.....

4.7 Exception Handling and Servicing FIOWChAISooiiiiiiiiiii e e e 67

O gT= T o (T T O O I =T 1] (=] RS 73

5.1 CPO REQISIEr SUMIMAIY ...iiiiieiiieiieeieeeeeessesstteteeeeeeeeeesssssaasasbasaeeeeeeaeeesssaasssssseseees ammmmmmmmeemenneeeeeeeesessnnnsnns 73

LI O o O I =T 1] (T PP 75
5.2.1IndexRegister (CPO Register 0, SEIECt 0)ccceviiiiiiiiiiiiiiie e e e e e e s e e e e e e e e nnanns 76...
5.2.2RandomRegister (CP0 Register 1, SEIECt 0)ueviiiiieeiiiiiiiiiiieie e e e r e e e e e e ee e 77........
5.2.3EntryLoQ EntryLo1(CPO Registers 2 and 3, SEIECt 0) ...ouiiviieiiiiiiiir e 78
5.2.4ContextRegister (CPO Register 4, SeleCt 0)ccciviiiiiiiiie e r e e e e e e e nnenes 8a0.......
5.2.5PageMaskRegister (CPO Register 5, SEIECt 0) ..uuviiiiiieiiiiiiiiiieer e 81........
5.2.6Wired Register (CPO Register 6, SEIECt Q)ccuiiiiiiiiieie e eeeeees 82....
5.2.7BadVAddrRegister (CPO Register 8, SEIECt 0) ...uuiiiiiieeiiiiiiiiiiee e 83..........
5.2.8CountRegister (CPO Register 9, SeleCt 0) ...occuiiiiiiiiiee e 84....
5.2.9EntryHi Register (CPO Register 10, SEIECt 0)uuviiiiiiiiieeeeie e e e e s ss s e e e e e e e e s enenes 85........
5.2.10 CompareRegister (CPO Register 11, SEIECt 0)cccoiiiiiiiiiiiiiiiiee e s eese e e e e e e e s s s e e e e e e e e e e e s annnenes
5.2.11StatusRegister (CPO Register 12, SElECt 0) ...ccceviiiiiiiiiiieirieee e r e e e e r e e e e e eeaan 87.......
5.2.12CauseRegister (CPO Register 13, SEIECt 0) ...cccoiiiiiiiiiiiieiiiieee e e e al.......

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 v

Copyright © 2000-2002 MIPS Technologies Inc. All right reserved.

5.2.13 Exception Program Counter (CPO Register 14, SeleCt 0)ccieiiiiiiiiiiiiiiiiiieeeee e s 93......

5.2.14 Processor ldentification (CPO Register 15, SeleCt 0)ocooeeeieeiiiiiiiieeeeee e e 94
5.2.15ConfigRegister (CPO Register 16, SeleCt 0)covvviviiiiiiiiiiiiiiieie e e e e e eee e e
5.2.16ConfiglRegister (CPO Register 16, SEIECE 1)uuuiiiiiiiiiiii i
5.2.17 Load Linked Address (CPO Register 17, Select 0)
5.2.18WatchLoRegister (CPO REQISIEr 18)coovviiiiiiiiiiiiiiiiiiiis s e e s e s e e e e e e e e e e et et e e e e e e eeaera e e o
5.2.19WatchHiRegister (CPO ReQISIEr 19)civiiiiiiiiiiiiieiiiiirs s e e e e e e e e e e e e e e e e e e e ae e e o
5.2.20DebugRegister (CPO REQISLEI 23) ...cevviviiiiiiiiiiiiiiiiisae i e e s e e e e e e e e e ee e e e et e e e eeeeaeaeaneserar s
5.2.21 Debug Exception Program Counter Register (CP0O RegiSter 24)cccccoeeiiiiiiiiiiiieeiiiieeeeene B, 10
5.2.22ErrCtl Register (CPO Register 26, SeleCt 0)ovvvvviiiiiiiiiiiiii i 106........
5.2.23TagLoRegister (CPO Register 28, SeleCt 0)oovvvviiiiiiiiiiiiiiiiie e 106........
5.2.24DataloRegister (CPO Register 28, SEIECE 1)uuuuiiiiiiiiii i 08......... 1
5.2.25ErrorEPC (CPO Register 30, SEIECL 0) ...oooiiiiiiiiieiceeeeeeeeee s e aaaaaee 109.........
5.2.26DeSaveRegister (CPO REQISIE 3L) ..uuuiiiiiiiiii i ittt s e e e e e e e e e e e e e e e e e e oo 110....
Chapter 6 Hardware and Software INitIaliZationooooiiiiiiiiiii e 111
6.1 Hardware Initialized ProCESSOr StALEuiiiiiiiiieiiiiiiiieii et e e e e e e s s mmeeae e e e eeeaee e s 111
6.1.1 COPIrOCESSOI ZEID STAIE ...eeiiiiiitiiiiiee oo e ettt ettt ettt e s e e e e e e e e s s e e eeeeeeeens s ssannnns 111
6.1.2 TLB Initialization (4Kc core only) reneenen 112
6.1.3 BUS State MaCKhINES ... e e e e e e e et e e 112
6.1.4 Static Configuration INPULSuuiiiiiiiiie e re e e e e e e e e e e bbb e mmmmmmmms e e e 112
Lo T = (od I AN (o [=TSP EURR PR 112
6.2 Software Initialized ProCeSSOr STALE coiiiiiiiiiiiiiiiiii e e e e ememmmmmm e 112
B.2.1 REGISIET FlE ...ttt e e et e o4t ¢ cm— 1241 112
6.2.2 TLB (4Kc Core Only) wneveeennennn 112
R N 0= Tod 1 PP PP PPPRRPPRR 112
6.2.4 COPIrOCESSOI ZEID STALEuiiiiii ittt e e e e e e e e e e e e e e e e e et et s eaeaeaenanannnnnseeeeaeaeaas 113
(O g o] 1= A O Tod 1T PSSP 115
4% 1 1 o To (1T i o T o RO RP PR 115
A A O Yot TN o (] 1o Tod o] PP TP PRP 116
7.2.1 CaChe OrganiZatiONcoiiccuuiiieiiieiee e e e e s e s st e e e e e e e e e s s s st eeereaeeeeesesannss s emmmmmmm——————nnsteeneees 116
7.2.2 Cacheability AfHDULESeiiiieiiiiiiee e e e e e e s e e e e e e e e snsnnrrrrreeeeeeees 117
AR =T o] = Vot =Y g 1= T | Al o o3 PSSR 117
7.3 INSLIUCHON CACNE ...ttt e e sttt e e s et emmmmeeeeemmm s be e e e s enbbeeeeeannreas 117
A DT - O T oL PRSPPI 117
7.5 MeMOrY CONEIENCE ISSUESuviiiiiiiiieeeii i ittt et e e e e e e s s s s e e e e e eeeessasaaattateeeeee s s smmmmmmmmeemeenesssseeeeeeeees 118
Chapter 8 POWEr ManN@AQEIMENTooiiiiiiiiie ittt e e e e et e et e e e e e e s e e s e b s e e eeeeaaanmmmn s e s s s sassbbbbeeeeeeas 119
8.1 Register-Controlled PoOwer ManagemMENtccciiiiiiiiiiie e et e nennnnnn e aas 119
8.2 Instruction-Controlled Power Managementooovviviiviiiiiiiiiiiiiieisieieeeeeeeeeaeaesseseeesessss s oo o2 L20
Chapter 9 EJTAG DEDUQG SUPPOIT ...uueeiiiiiiiieeei ittt e e sttt et e e e e e e s s s s an b be et e e e e e s mmmmmmmmmmmeeen s eeeeeaaeeeeasanns 121
9.1 DebUQY CONIOI REQISTENeiiiiiiiiiiee ettt e et e e skt e e e st et e e e s bbb e e e e s sanseeeeesansreeeesanbeeeeeaans 122
9.2 Hardware Bre@kPOINTSoiiieiiiiiiiiiiee ettt ettt ettt e sttt e e s st et e e s s bbb et e e s sne e e e sanneeeesannnneeeeannnneeas 124
9.2.1 Features of INStruction BreakpPOiNtcooiiiiiii e eme e e e e emne e 124
9.2.2 Features of Data BreakpOintc..uuueeiiiiiieei it e et e e e e e e e e e s s s memeeemennnmnn s 124
9.2.3 Overview of Registers for Instruction BreakpointScccoiieiiiiiiiiiiniiiie e 125
9.2.4 Registers for Data Breakpoint SETUDoiiiiiiiiiieiiiie ettt
9.2.5 Conditions for Matching BreakpointScccceeiiiiiiieiiiiiiie e .
9.2.6 Debug Exceptions from BreakpointSccceeeiiiiiiiieiiiiieee it
9.2.7 Breakpoint used as TrggerPOINToiueireeiiiiiie et e s e
9.2.8 Instruction Breakpoint REJISIEIScccoiiiiiiiiiiiiiiie it
9.2.9 Data Breakpoint REGISIEISciiiiiiiiiieiiiii ittt
9.3 TESE ACCESS PO (TAP) eeeiiiiiitti ettt ettt e e s bbbt e e e sk bbbt e e s s bne e e e s e sse e e e s annbneeeeannnneeas
9.3.1 EJTAG Internal and EXternal INtErfaCeScueiiiiiiiiiiiiiiiiiiiie e s
9.3.2 TeSt ACCESS POIt OPEIAtiONcciiiiiiiiiiiiiiii ettt ettt et e e s et e e e e e e snee e e e e e nnnneas
vi MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All right reserved.

9.3.3 Test Access Port (TAP) INSIIUCLIONSoooiiiiiieieeeeeeeere s e e e e e e e e e e eemnmnns s
LS I I G AN e =T o 1Y (=] SRR

LS IR 1S3 0 o 1o T T =0] (=] R

9.4.2 Data ReQiSters OVEIVIEWcevviviiiiiiiiiiiiiiiaisieieeeeeeeaeaeeeeeeeeeeeaeaesesrnrnnnn s

9.4.3 Processor Access AdAress REQISIEIoovvvviiiiiiiiiiiiiiieis e e e e e e e e e e e e e e e e eeeeaaanns

9.4.4 Fastdata Register (TAP Instruction FASTDATA)
0.5 PrOCES SO ACCESSES ..iiiiiieiee ettt ettt a e oo e e et e e e e e e e et e ee ettt ettt e eesebe bt mmmmmmmmmmmmmmmn e e e e e e e e e et eeees

9.5.1 Fetch/Load and Store from/to the EJTAG Probe through dmsegccccoooeieiiiiiis 0 R 16

Chapter 10 INSIIUCHION SEE OVEIVIEWviiiiiiiiiiite ettt e ettt ettt e e st bt e e e e e b bt e e s aab b e e e s e annreeeseabbeeeesansbneeeeannnes
10.1 CPU INSIrUCLION FOIMMALS iiiiiiiiiiieiitiei ettt ettt e et e e e e e e e seanee
10.2 Load and Store INSIUCLIONS cciiiiiiieeiiiiiee ettt e e ee e
10.2.1 Scheduling a Load Delay Slot
10.2.2 DefiNING ACCESS TYPES ..eeeiiiiiiiiee ittt e ettt ettt e e ettt e e s et e e e s b bt e e s e ab b e e e e s anneeeeeenanneeesennnneas
10.3 Computational INSLIUCLIONS ...ttt e e e et e et e e e e e e s e s s et b st amemmmmmmmmme e sbeeeeeaaeeeeeean
10.3.1 Cycle Timing for Multiply and Divide INSrUCLIONScoooiiiiiiiiiiiiiiie e o 165
10.4 Jump and BranCh INSIIUCHIONSoiiiiiiiiiiiiiii et eemmmmeeeesmm e e e e
10.4.1 Overview of Jump Instructions
10.4.2 Overview of Branch Instructions

10.5 CONIOI INSIIUCTIONSeiiieeeiiiie ettt ettt ettt e e ekt e e e e e st b et e e e sk be et e e s smeeeeaaaameeessabeneeeeabbneeeesanes

10.6 COPrOCESSON INSIFUCLIONSeiiiiiiiitiitee ettt ettt e et e e e ettt e e e et bt e e e et b et e e+ s s s s— 2222

10.7 Enhancements t0 the MIPS ArChItECIUIEocoiiiiiiiiiiiie et ee e e e eeere s 166
10.7.1 CLO - CoUNt LEAAING ONES ...ciiiiiiiiiiiiiiieie e ettt e e e e e e s e e sttt e e e ae e e e e e s nse s s e e 167
10.7.2 CLZ - COUNE LEAAING ZEIOS ...cciuiiiiieiiiitiee e ettt ettt a bt e e et e e e e b e e 2eeeemneeeaee s annnes 167
10.7.3 MADD - MUltiply @and Add WOooiiiiiiiiiie ettt s 167
10.7.4 MADDU - Multiply and Add Unsigned WOrdcoooouiiiiiiiiiiieeiiiieee e 167.
10.7.5 MSUB - Multiply and SUBLract WOrdeeieiiiiiiieeiiiei et s seeesmmmneeas 167
10.7.6 MSUBU - Multiply and Subtract Unsigned WOrdccoeeiiiiiiiiiiiieie e e 167...
10.7.7 MUL - MUIIPIY WOET ..ottt ettt e e ettt e e et e e eeemeeeesnbreeeeeaas 168
10.7.8 SSNOP- Superscalar INNIDIt NOP ooiiiiiiiiiiiei e eeeemeeeeeeans 168

Chapter 11 MIPS32 4K Processor Core INStIUCLIONScccvviviiiiiiieee e iisciiiiiieeeeeee e e e e s s s s « 1100000 LOD
11.1 Understanding the Instruction Descriptions
11.2 CPU Opcode Map

0 B T 13 {0 a1 T T SRR
APPENIX A REVISION HISTOMY ...ttt ettt e e e e e et e e et e e e e+ smmmmmmmneeems e e e e e e e e e e e ababbeeeees 205
MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 vii

Copyright © 2000-2002 MIPS Technologies Inc. All right reserved.

viii

List

Figure 1-1:
Figure 1-2:
Figure 1-3:
Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 2-8:
Figure 2-9:

Figure 2-10:
Figure 2-11:
Figure 2-12:
Figure 2-13:
Figure 2-14:
Figure 2-15:
Figure 2-16:
Figure 2-17:
Figure 2-18:
Figure 2-19:
Figure 2-20:
Figure 2-21:
Figure 2-22:
Figure 2-23:

Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:
Figure 3-8:
Figure 3-9:

Figure 3-10:
Figure 3-11:
Figure 3-12:

Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 5-1:
Figure 7-1:
Figure 9-1:
Figure 9-2:
Figure 9-3:
Figure 9-4:
Figure 9-5:

of Figures

4K Processor Core Block Diagram .. e a e e e e e e e e e s emm— 111111 e e e e e ns D
Address Translation during a Cache Access in the 4Kc Core S o
Address Translation during a Cache Access in the 4Km and 4Kp COrescccccevvvviviviiveeeeeeneeeeee s
AKC COre PIPEIINE STAGESeeeiiieieiiiii ettt s S mmmmeen et e e e e e e e e e e e annn 12
AKIM COre PIPElING StAQES ... oottt ettt ettt e e e e e e e s mmmmeeeemamnnn e o1 e bebbeeeees 12
AKP COre PIPEIING STAQESeeeiiiiiiiiiiiit ettt et e e e e e ettt s Smmmmmmmmmmeen e e et e e e e e e e e e aaannes 12
Instruction Cache Miss TimiNg (AKC COIE)cvvviiiiiiieieeiiiiiieie e e e e e e e e e e s .14
Instruction Cache Miss Timing (4Km and 4KpP COIES)......uuuuiiiiiiaiiiiiiiiiiiiieeee e ee e 15
Load/Store Cache MiSS TimMING (AKC COI).....uuuuuuuuiuiiiiiiiiiieie i e e e e e e e e e eeeee e e e et eeeeevessts s eaeansnsmnmnmnsesessrnnes 15
Load/Store Cache Miss Timing (4Km and 4KP COIES)cuiiiiiiiiiiiiiiiiiiiitie e e e e e e e e e 16
MDU Pipeline Behavior during Multiply Operations (4Kc and 4Km proCessors)ccccvvvveeeeereeenn B 1
MDU Pipeline Flow During a 32x16 Multiply OPerationccccouuiiiiiiiiiiiiieie e e e e e 19
MDU Pipeline Flow During a 32x32 Multiply Operationcoouiuuiiiiieiieieeeeee i ceesmmmmeees 19
MDU Pipeline Flow During an 8-bit Divide (DIV) OPerationccccceeuiiiiiiiiiieiieree e ceeeeeecaee 20
MDU Pipeline Flow During a 16-bit Divide (DIV) OpPerationccccceeviiiiiiiiiiiiieeee e ceeeeeecaee 20
MDU Pipeline Flow During a 24-bit Divide (DIV) OPerationccccceeviiiiiiiiiiieieeee e seeeeeecaee 20
MDU Pipeline Flow During a 32-bit Divide (DIV) OpPerationcccccoeiiniiiiiiiiiiieeee e ceeeeeecaee 20
4Kp MDU Pipeline Flow During a Multiply Operation.............ccoouiiiiiiiiiiiiieeeeee i eeeeeeeeeee e 22
4Kp MDU Pipeline Flow During a Multiply Accumulate Operationccccuuveeeeieieeeiniiiniiiieeas 22...
4Kp MDU Pipeline Flow During a Divide (DIV) Operationuuueeeiieieeaaieiiiiiiiieeeee e e e e eeeeeeeeeas 22
U PIpeling BranCh DEIAYeeeiiiiiiieiiiee ettt e bbb e e e e e e e as 23
U PIPEliNg DAt@ BYPASScoicieiiiiiiiiteeee ettt ettt e e e e e e s e e nbe e e e e e e e e e e e s s e annbbrsneeeeaaaeeas 24
U PIPeling M 10 B DYPASSeeiiiiiiiiiiie ettt e bt 24
U PIpeling A t0 E DAt@ BYPASSueeeiiiieiiiiiiiiiiie ettt ettt e ek e emmne e e e s e e e e e e e e e e e e 25
U Pipeling Slip after MEHI ...t e e e e e eee e e e e e e e e e e e s aanees 25
INSErUCION CACHE IMISS SHP...ciiiiiiieiiiii e emmmmmmmmm bbb e e e e e e e e e as 26
Address Translation During a Cache Access in the 4KC COreuuvuiiiiiiiiiiiii e eeeeeeeeeeeees 32
Address Translation During a Cache Access in the 4Km and 4Kp COresccoceevvieeiiiniiiiiinnenne 32.....
4K Processor Core Virtual MEMOIY IMaP.....ccoui ittt e meene e e e eeaaaeeas 34
User Mode Virtual AQArESS SPACEccoiiiiiiiiiiiiiiie ittt e e e e meeem e mmmmn bbb 35
Kernel Mode Virtual AQArESS SPACEuuuuiiiiiiieeaii ittt e e emmmmmmeeeeeeess e ee e e e e e e e s 37
Debug Mode Virtual ADArESS SPACEuuiiiiiiiiiiiee ittt e s eneeeeeeeeaeae s e e e ennnene 39
JTLB ENntry (Tag and Data)ccceoe it e e e e e e e e mememememmmmnn e e e e e e e e e e aeeas 41
Overview of a Virtual-to-Physical Address Translation in the 4Kc Core.........ccccevvvvvvvvvvvvnvnrnnnnnnnnn 44
32-bit Virtual ADdress TranSIAtioNcoeii oo e e e e e e e s aebe e 45
TLB Address Translation Flow in the 4Kc ProCeSSOr COIEuueiiiiiieeiiiiiiiiiiiiieeee e 46
FM Memory Map (ERL=0) in the 4Km and 4Kp ProcesSor COIeScccveeeriiiiiiuuiinnieeeeaaeeennas 48.......
FM Memory Map (ERL=1) in the 4Km and 4Kp ProcesSor COIeSccccceeeeriiiiiiiuuriiieeeeeaaeeennas 49.......
General Exception HANAIEr (HW)cooiiieee et e e e e e e e s

General Exception Servicing Guidelines (SW)
TLB Miss Exception Handler (HW) — 4Kc Core only
TLB Exception Servicing Guidelines (SW) — 4Kc COore ONlY........cooviiiiiiiiiiiiiiiiiee s eeeemaeees 71

Reset, Soft Reset and NMI Exception Handling and Servicing Guidelines..............ccccccceeeeinnnneecn 2.

Wired and Random EntrieS iN the TLB ..ot 82
LOF= ol o TSI N 1 = YA o] 1 1 =1 116
Instruction Hardware Breakpoint Overview (4KC COre)........ooiiuuuiiiiiiiiieaee et mmeeneeeeeens 124
Instruction Hardware Breakpoint Overview (4Km and 4Kp COore).........oocccvviiiieeiiiieeeiiniiiiie e 124.
Data Hardware Breakpoint OVervieW (AKC COrE)uuuuiiieiiiiieeiiaiiiiiie et e et e e eee s s 125
Data Hardware Breakpoint Overview (AKM/AKP COr€)c.ouiiiiiiiiiiiiiiieieiee e 125
TAP Controller State DIAQIAIMuuuuiiiuiiiiiaiaee e e e e e e e e e e e e ee ettt et e e ereeeeeaere e —————————————n e eeeeeeeeeeeees 146

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All right reserved.

Figure 9-6: Concatenation of the EJTAG Address, Data and Control RegiSterscccooeveveieiiiieiiiiiiiieiii e 150...

Figure 9-7: TDI to TDO Path when in Shift-DR State and FASTDATA Instruction is Selectedccccceeeveiiiinnnnnnn. 150
Figure 9-8: Endian Formats fOr tREAD REQISIENcciii i e s e e e e e e e e e e et et e e e e e e e ae e rerrnraeaaaaaaas 158
Figure 10-1: INSrUCLION FOMMALS........uuuiiiiiiiiiiiis i e e e e e e e e ettt s mmmmmmmmm———— e e e seeesssesensnsnnnnnn 164
Figure 11-1: Usage of Address Fields to Select Index and Wayuuuuuiiiiiiiiinioieieeeeeeeeee e eeeeeeeeeeeeeennnnns 178
MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 iX

Copyright © 2000-2002 MIPS Technologies Inc. All right reserved.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All right reserved.

List of Tables

Table 2-1: 4Kc and 4Km Core INStrUCLION LAENCIESciiiiiiiiiiiiiiiiiiiieie ettt smmmmmsmnmnn 11 17
Table 2-2: 4Kc and 4Km Core Instruction Repeat Rates — .18
Table 2-3: 4Kp Core INSLrUCLION LAENCIES ...ttt et e e e e e e e e e s s anenreneeeeeeaaeeeeaaannns 21
Table 2-4: PIPEliNg INTEIIOCKSuu ittt s e mmmmmee e bbb b et e e e e e e e e e e e aannnes 25
Table 2-5: INStrUCLION INTEIIOCKSt e e e e e e e e e e s e s aanbb bbb e e eeaeaeeeeaan 27
Table 2-6: INSIIUCLION HAZAIAS uiiiiiiiiiie ittt e e e ettt e e e eeeeeeaaaaaea s e e asnnbbsbeeeeaaaaeeeaan 28
Table 3-1: USEr MOUE SEOMENTSuuiiiiiiiiiiiiiiaieie i et e e e e e e e eeee e et et et eteeaeaee e e aesaseeaeeeeseaaaaaaasaeeeeeeeeeesememsrnrnnns 36
Table 3-2: Kernel MOOe SEOMENTScccc i e e e e e e e e e e e e e e e e et et e et e e ee s memememem———————a e s eaeeeaeeaaeaeees 37
Table 3-3: Physical Address and Cache Attributes for dseg, dmseg, and drseg Address Spaces.................. 39..............
Table 3-4: CPU Access to drseg AdAreSS RANGEccovviiiiiiiieeeeeeeeirs s e e e e e e e e e e e e e o s 2222200000 OO
Table 3-5: CPU Access to dmSeg AdAreSS RANQE.uuuuuiiiiiiiiiiiiie e ie i e e e e e e e e e ae e e et ee e e eeeeeas s eeeememmmmmm————n e e eeeees 40
Table 3-6: TLB Tag ENtry FIEIASooeeeeeiiiieeiee s sttt re e e e e e e eeaaeeeaeeeeseseasesssnnnrnnes 41
Table 3-7: TLB Data ENtry FIEIASuueiiie i s e et e e e e e e e e e e e e e aaaaeaaeteeeeeeeeeeeaasesrnrnne 42
TabIle 3-8: TLB INSIIUCHIONSueeiieiiieieei ettt e e e e e e bbbt e et e e et e e e e mmmeneemeeaeeeeeesasaanbbbbaeneeeaaaaaeas 47
Table 3-9: Cache CoherenCy AMIDULESuuiiiiieii e mmmmmmmmmmmmmam e e e e e e e eeeeeeeeanes 47
Table 3-10: Cacheability of Segments with Block Address Translationoooviviiiiiiiiiiiiicciee e e e eeeeeeees 47

Table 4-1: Priority of Exceptions
Table 4-2: EXception Vector BASe AGUIESSESuuiiiiiiiieiee ettt et s—— e
Table 4-3: EXCePUiON VECIOr OffSELSooi ittt e e e s mmmmmeeeeeeen et e e e e e e e e e annbbeeeees
LI o L= A (ot =T o] (o] B =T ot (o] £ P TOUP PP PPPUPPPPN
Table 4-5: Debug EXCeption VECIOr AQUIESSESccooeiiiiiiiiitiie ittt e e bbb ee e e e e e e mmmnne e e e e e annnne
Table 4-6: Register States an INterrupt EXCEPLION.......cui ittt rmmmemeeeeeeeeee e e e e e e e e e e e annns
Table 4-7: Register States on a WatCh EXCEPLIONoooiiiiiiiiiiiiee e mm e e
Table 4-8: CPO Register States on an Address EXCepPiON EITOrcooiiiiiiiiiiiiiiieee e smmmmmmmmmmmeee e
Table 4-9: CPO Register States on a TLB Refill EXCEPLIONuuiviiiiiiiiiiiiiieeieee e e e
Table 4-10: CPO Register States on a TLB Invalid EXCEPLONuuuiiiiiiiiieeiii it e e e e e
Table 4-11: Register States on a Coprocessor Unusable Exception
Table 4-12: Register States on a TLB Modified EXCEPLIONeeiiiiiiiiiiiiiiiiiiiiiiee e s 2221
Table 5-1: CPO REQISIEIS .. .cciiiiiiiiiiieee ettt e s s e s e e e e e e e e e e e e e e et et et e eeaeeeseteste s et ss s s mmm—— 11 e 1 e a e e e e aeaaeaeees
Table 5-2: CPO Register Field Types

Table 5-3: Index Register Field DeSCIIPLIONSu i ittt e e e e e e e e e rsnsr e e e e e e e e e s e e annbbnbeeeeeeas
Table 5-4:RandomRegister Field DESCIPLIONScoo.uuiiiiiiiiiie et e e e e e e e e e s e eeb b e e s mmmnmmmnmnes
Table 5-5:EntryLoQ EntryLol1Register Field DESCIPLIONScuiiiiiiiiiiiiiieie ettt e e e e e e e e e e e e e aanes 78
Table 5-6: Cache CoherenCy AMIDULESuuuiieiiiii e mmmmmmmmmmmmmam e e e e e e e eeeeeeeeaees 78
Table 5-7:ContextRegister Field DeSCIIPUIONSc.cuii ittt e bbb e e e e e e e e s mmmmmeneennnn 80
Table 5-8:PageMaskRegister Field DESCHIPLONScc..uuiiiiiiieiee et e e e e e e e e e 81
Table 5-9: Values for the Mask Field of tRageMaSKREQISIENccooiiiiiiiiieeeere e e e e e 81
Table 5-10: Wired Register Field DESCHPHONSuuiiiiiiieeeiie ittt ettt e e e e e e s e e e ee e e e e e e e e e anaes 82
Table 5-11BadVAddrRegister Field DEeSCIIPLIONcciiiii ittt e e a e e e e e e s ceeeeeenn 83.
Table 5-12.CountRegister Field DEeSCIPLION........cii ittt e e e e e e e e e e e e s s emeennnmmnnne s 84
Table 5-13EntryHi Register Field DeSCIPLIONSuiiiiiiia ittt et e e e e e e s e e e e e e e s mmmmmmmmnne 85
Table 5-14CompareRegister Field DESCIIPLIONcooiiiiiiiiiiii e e e e e e e emennna 86
Table 5-15StatusRegister Field DESCHPLIONScuiii ittt e e e e e e e e e e e e e e e s mmmmmeneennn 88
Table 5-16:CauseRegister Field DESCHPLIONSc.cuii ittt e e e e e e e e e s mmmmmeeeenn 91
Table 5-17: Cause Register ExcCode Field DESCIPLONSc..uvuiiiiiiiiieiiiiiiiiiiiiee e mmneee e e e e e eaa e 92
Table 5-18EPCRegiSter Field DESCIPLIONuutieiiiiiieeeee ittt re e e e e e e e e s s bbb e e e e e e e e s emmmmmmmmmeeees e 93
Table 5-19PRIdRegister Field DeSCIIPLIONS.ccuii ittt e e e e e e e e e e e e e e s s e eneenn oo 94
Table 5-20Config Register Field DeSCIPLIONScco.uuiiiiiiiiiie et e e e e e e e e e s e eeb b e e s s 95
Table 5-21: Cache CoherenCy AMIDULESuuuieiiiieiei e e e e e e e e e nemmam s s e e e e e e e eeeeas 96
Table 5-22ConfiglRegister Field Descriptions — SeIECE 1ociiiiiiiiiiiiiieee e as.......
MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 Xi

Copyright © 2000-2002 MIPS Technologies Inc. All right reserved.

Xii

Table 5-231 LAddr Register Field DESCIPLIONSe ittt e e e e e e e e e s e e e e e e e s mmmmmmmmnee 99

Table 5-24WatchLoRegister Field DeSCHPLIONSuuuiieiiiiieeee ettt e e e e e e e e e ebb b e e e e e 100
Table 5-25WatchHiRegister Field DeSCIIPLONSuuuiiiiiiiiiiiiiiiie ettt e e e e e s e s 101
Table 5-26DebugRegister Field DESCIPLIONSc.ueiiiiiiiieiie ettt e e e e e e e e e e e s s s saaeb b e e e e e e 102
Table 5-27DEPC REQISIEr FOMMIALS........ccc ee e et e eeeeaaaetereera s s s an e eas 105
Table 5-28ErrCtl Register Field DEeSCHPUONSccoiiiiiiiiiiieeeie et e e e e e e e e e eeeennnns 106
Table 5-29TagLoRegister Field DEeSCHPUONSccoiiiiiiiiiiiiiiie ettt e e e e e e e e e eeeennnns 107
Table 5-30DatalLoRegister Field DESCHPLIONooiiiiiiiiiieei ettt e e e e e e e e e e e bbb e s e 108
Table 5-31ErrorEPC Register Field DeSCHPLIONuuiiiiiiiiiae ettt e e e e e e e e e et e e s e 109
Table 5-32DeSaveRegister Field DeSCHPLIONooiiiiiiiiiiiecie et e e e e e e e e e s e s e 110

Table 7-1: Instruction and Data Cache AHDULESooiveiiii e esssssnn e s s v ees LD
Table 7-2: Instruction and Data Cache Sizes

Table 9-1:Debug Control RegiStaField DESCIPLIONSuuiiiiiiiiieei ittt e e e e e e e s e e bbb e e e e e e e e e e e s annees

Table 9-2: Overview of Status Register for Instruction Breakpoints ... e 125
Table 9-3: Overview of Registers for each Instruction Breakpointccccccoiiiiiiiiiiiiiiiiee i ceeenccmmnnnm . 125
Table 9-4: Overview of Status Register for Data BreakpointS..........cooiiiiiiiiiiiiiiee e e eeee e 126
Table 9-5: Overview of Registers for each Data Breakpointccooiiiiiiiiiiiiiiiiiiieee e eeeeee e e e e e e e 126
Table 9-6: Addresses for Instruction Breakpoint REJISIEISooiiiiiiiiiiiieie e e e 130
Table 9-7:1BSRegister Field DESCIPLIONSuuuiiiiiiiieee ittt e e e e e e e s s e bbb e e e e e e e e s smmmmmmmmmnen e e 131
Table 9-8:1BAN Register Field DESCHPLONS.oiiiiiiieiii ettt e e e e e e e e meemennnnnnnnn e+ 132
Table 9-9:1BMn Register Field DeSCIIPLIONSuutiiiiiiiee ittt e e e e e e e e e e s aeeb e e e e e e s cmmmmmmmmmmenn o 133
Table 9-101BASIDNRegister Field DeSCHPLIONSuuiiiiiiiiieeei ettt e e e e e e e e e et e e e e e mmmmmmnes 134
Table 9-111BCn Register Field DESCHPLIONScc..eiiiiiiiiiie ettt e e e e e e e e e e s s nb b e e e e 135
Table 9-12: Addresses for Data Breakpoint REQISEISuuiiiiiiiiieiiiiiiiie et s mmmmmmn e 136
Table 9-13DBSRegister Field DESCHPLIONSciiiiiiiiiiiiie ittt e e s e e e e e e e e e s mmmeeeeeeennnn 137
Table 9-14DBANRegiSter Field DESCIPLIONSuuiiiiiiiiaeeee ittt e et e et e e e e e e s e abbb b e e e e e e s ammmmmmmmmnnas 138
Table 9-15DBMn Register Field DESCIPLIONScciiiiiiiiiiiiite ettt e e e e e e e e e e e e e s mmeeeeeennnns 139
Table 9-16 DBASIDNRegiSter Field DESCHPLONSuuiiiiiiiieeiii ittt e e e s ammmmnes 140
Table 9-17DBCnRegister Field DESCHPLONSccooiiiiiiiiiiiieiet et e e e e e e e e e mmeeeeeennnns
Table 9-18DBVnRegister Field DESCIPLIONSuuuiiiiiiieaeii ittt e e et e e e e e e e e e s e aabbb b e e e e e e s ammmmmmmmmnnas
Table 9-19: EJTAG INtEITACE PINScciiiiiiiiii ittt e e e e e e e s s e e e e e s asrr e e e e s annneeeenans
Table 9-20: Implemented EJTAG INSIIUCTIONScoiiiiiiiiiiiiiitiiieeee et e e bbb e e e e s e s e eeemee e e e e e e e e an
Table 9-21: Device IdentifiCation REQISIENuuu i s 2222 e e e e e e aeeeeees
Table 9-221implementatiorRegiSter DeSCHPLIONSciiiiiiiiiiie ittt e e e e e e e e e e
Table 9-23EJTAG ControlRegiSter DESCIPLIONSuuiiiiiiiiiieeei ittt e e e e e e e e s e e sbbbbeereeeeaaeeeas
Table 9-24: Fastdata Register Field DESCIPLIONcooiiiiiiiiiiiiie et ee e e e e e e e e e e e s e eee s
Table 9-25: Operation Of the FASTDATA GCCESSuuttiitiiiaiieiiiiiitiite et e e e e e e s aabebre et et e e e e e e s s reemeennm———— e enes
Table 10-1: Byte ACCESS WIthin @ WOIG..........uuuiiiiiiiiiiie et e e e ettt mmmmmmmmmmmmmm e e e e e e e e eeeeeenees
Table 11-1: Encoding Of the OPCOAE FI@IAcoiiiiiiiii e s e e e e
Table 11-2: Special Opcode Encoding of FUNCLION Fieldouviiiiiiiiii e
Table 11-3: Spedial2 Opcode Encoding of Function Field
Table 11-4: Reglmm Encoding of rt Fieldoovviiiiiiiiiiicciiie e
Table 11-5: COPO Encoding Of IS Fieldcccooiiiiiiiii s a e
Table 11-6: COPO Encoding of Function Field When rs=CO
Table 11-7: INSIUCION SToociiiiiiii e
Table 11-8: Usage of Effective AAAreSSooevvvviiiiiiiiiiiiiiiiiiis i
Table 11-9: Encoding of Bits[17:16] of CACHE Instruction ..

Table 11-10: Encoding of Bits [20:18] of the CACHE Instructlon ErrCtI[WST SPR] Cleared

Table 11-11: Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl]WST] Set. ErrCti[SPR] Cleared..................
Table 11-12: Encoding of Bits [20:18] of the CACHE Instruction, ErrCtl[SPR] Set............oooiiiiiiiiiiiiiiiinins 182.

Table 11-13: Values of thant Field for the PREF INSITUCTIONuuuiiiii et e e e e

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All right reserved.

Chapter 1

|

Introduction to the MIPS32 4K™ Processor Core Family

The MIPS32™ 4K™ processor cores from MIPS® Technologies are is a high-performance, low-power, 32-bit MIPS
RISC cores intended for custom system-on-silicon applications. The cores are is designed for semiconductor
manufacturing companies, ASIC developers, and system OEMs who want to rapidly integrate their own custom logic
and peripherals with a high-performance RISC processor. The cores are is fully synthesizable to allow maximum
flexibility; they are itis highly portable across processes and can be easily integrated into full system-on-silicon designs,
allowing developers to focus their attention on end-user products.

The cores are is ideally positioned to support new products for emerging segments of the digital consumer, network,
systems, and information management markets, enabling new tailored solutions for embedded applications.

The 4K family has three members: the 4Kc™, 4Km™, and 4Kp™ cores. The cores incorporates aspects of both the
MIPS Technologies R3000® and R4000® processors. It The three devices differ mainly in the type of multiply-divide
unit (MDU) and the memory management unit (MMU).

» The 4Kc core contains a fully-associative translation lookaside buffer (TLB) based MMU and a pipelined MDU.

* The 4Km core contains a fixed mapping (FM) mechanism in the MMU, that is smaller and simpler than the
TLB-based implementation used in the 4Kc core, and a pipelined MDU (as in the 4Kc core) is used.

* The 4Kp core contains a fixed mapping (FM) mechanism in the MMU (like the 4Km core), and a smaller
non-pipelined iterative MDU.

Optional instruction and data caches are fully programmable from O - 16 Kbytes in size. In addition, each cache can be
organized as direct-mapped, 2-way, 3-way, or 4-way set associative. On a cache miss, loads are blocked only until the
first critical word becomes available. The pipeline resumes execution while the remaining words are being written to the
cache. Both caches are virtually indexed and physically tagged. Virtual indexing allows the cache to be indexed in the
same clock in which the address is generated rather than waiting for the virtual-to-physical address translation in the
Memory Management Unit (MMU).

All The cores executes the MIPS32 instruction set architecture (ISA). The MIPS32 ISA contains all MIPS Il instructions
as well as special multiply-accumulate, conditional move, prefetch, wait, and zero/one detect instructions. The
R4000-style memory management unit of the 4Kc core contains a 3-entry instruction TLB (ITLB), a 3-entry data
TLB(DTLB), and a 16 dual-entry joint TLB (JTLB) with variable page sizes. The 4Km and 4Kp processor cores contain

a simplified fixed mapping (FM) mechanism where the mapping of address spaces is determined through bits in the CPO
Config (select 0) register.

The 4Kc and 4Km multiply-divide unit (MDU) supports a maximum issue rate of one 32x16 multiply
(MUL/MULT/MULTU), multiply-add (MADD/MADDU), or multiply-subtract (MSUB/MSUBU) operation per clock,

or one 32x32 MUL, MADD, or MSUB every other clock. The basic Enhanced JTAG (EJTAG) features provide CPU run
control with stop, single stepping and re-start, and with software breakpoints through the SDBBP instruction. In
addition, optional instruction and data virtual address hardware breakpoints, and optional connection to an external
EJTAG probe through the Test Access Port (TAP) may be included.

This chapter provides an overview of the MIPS32 4K processor cores and consists of the following sections:

» Section 1.1, "Features"

» Section 1.2, "Block Diagram"

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 1

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 1 Introduction to the MIPS32 4K™ Processor Core Family

» Section 1.3, "Required Logic Blocks"
» Section 1.4, "Optional Logic Blocks"

1.1 Features
» 32-bit Address and Data Paths
* MIPS32 compatible instruction set
— All MIPSII™ instructions
— Multiply-add and multiply-subtract instructions (MADD, MADDU, MSUB, MSUBU)
— Targeted multiply instruction (MUL)
— Zero and one detect instructions (CLZ, CLO)
— Wait instruction (WAIT)
— Conditional move instructions (MOVZ, MOVN)
— Prefetch instruction (PREF)
» Programmable Cache Sizes
— Individually configurable instruction and data caches
— Sizes from 0 up to 16-Kbyte
— Direct mapped, 2-, 3-, or 4-Way set associative
— Loads that miss in the cache are blocked only until critical word is available
— Write-through, no write-allocate
— 128 bit (16-byte) cache line size, word sectored - suitable for standard 32-bit wide single-port SRAM
— Virtually indexed, physically tagged
— Cache line locking support
— Non-blocking prefetches
» ScratchPad RAM support
— Replace one way of I-Cache and/or D-Cache
— Max 20-bit index (1M address)
— Memory mapped registers attached to scratchpad port can be used as a co-processor interface
» R4000 Style Privileged Resource Architecture
— Count/compare registers for real-time timer interrupts
— Instruction and data watch registers for software breakpoints
— Separate interrupt exception vector
» Programmable Memory Management Unit (4Kc core only)
— 16 dual-entry R4000 style JTLB with variable page sizes
— 3-entry instruction TLB
— 3-entry data TLB

2 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

1.2 Block Diagram

» Programmable Memory Management Unit (4Km and 4Kp cores only)
— fixed mapping (no JTLB, ITLB, or DTLB)
— Address spaces mapped using register bits
» Simple Bus Interface Unit (BIU)
— All'l/Os fully registered
— Separate unidirectional 32-bit address and data buses

— Two 16-byte collapsing write buffers

Multiply-Divide Unit (4Kc and 4Km cores)
— Max issue rate of one 32x16 multiply per clock
— Max issue rate of one 32x32 multiply every other clock

— Early in divide control. Minimum 11, maximum 34 clock latency on divide

Multiply-Divide Unit (4Kp cores)

— lterative multiply and divide. 32 or more cycles for each instruction.
» Power Control

— No minimum frequency

— Power-down mode (triggered by WAIT instruction)

— Support for software-controlled clock divider

EJTAG Debug Support

— CPU control with start, stop and single stepping
— Software breakpoints via the SDBBP instruction

— Optional hardware breakpoints on virtual addresses; 4 instruction and 2 data breakpoints, 2 instruction and 1 data
breakpoint, or no breakpoints

— Test Access Port (TAP) facilitates high speed download of application code

1.2 Block Diagram

All cores contain both required and optional blocks. Required blocks are the lightly shaded areas of the block diagram
and must be implemented to remain MIPS-compliant. Optional blocks can be added to the cores based on the needs of
the implementation. The required blocks are as follows:

» Execution Unit

* Multiply-Divide Unit (MDU)

» System Control Coprocessor (CPO0)
* Memory Management Unit (MMU)
» Cache Controller

* Bus Interface Unit (BIU)

* Power Management

Optional blocks include:

* Instruction Cache (I-Cache)

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 3

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 1 Introduction to the MIPS32 4K™ Processor Core Family

Data Cache (D-Cache)
Enhanced JTAG (EJTAG) Controller

Figure 1-1shows a block diagram of a 4K core. The MMU can be implemented using either a translation lookaside
buffer (TLB) in the case of the 4Kc core, or a fixed mapping (FM) in the case of the 4Km and 4Kp cores. Rxfapter
3, “Memory Management,” on page &iIr more information.

EJTAG
Off-Chip
MPY ncache TAP | <> Debug IIF
] _
. ()
Execution L @
Core Cache = o
i At -~ > BIU c -~
(RF/ALU/Shift Controller = 2
" 0
! ! 5
System)
Coprocessor TLB or FM D-Cache E’Ac;vr\]/qetr
Fixed/Required Optional

Figure 1-1 4K Processor Core Block Diagram

1.3 Required Logic Blocks

The following subsections describe the various required logic blocks of the 4K processor cores.

1.3.1 Execution Unit

The core execution unit implements a load-store architecture with single-cycle Arithmetic Logic Unit (ALU) operations
(logical, shift, add, subtract) and an autonomous multiply-divide unit. The core contains thirty-two 32-bit
general-purpose registers used for scalar integer operations and address calculation. The register file consists of two read
ports and one write port and is fully bypassed to minimize operation latency in the pipeline.

The execution unit includes:

32-bit adder used for calculating the data address

Address unit for calculating the next instruction address

Logic for branch determination and branch target address calculation
Load aligner

Bypass multiplexers used to avoid stalls when executing instruction streams where data-producing instructions are
followed closely by consumers of their results

Zero/One detect unit for implementing the CLZ and CLO instructions

ALU for performing bitwise logical operations

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

1.3 Required Logic Blocks

 Shifter and Store aligner

1.3.2 Multiply/Divide Unit (MDU)

The Multiply/Divide unit performs multiply and divide operations. In the 4Kc and 4Km processors, the MDU consists
of a 32x16 booth-encoded multiplier, result-accumulation registers (HI and LO), a divide state machine, and all
multiplexers and control logic required to perform these functions. This pipelined MDU supports execution of a 16x16
or 32x16 multiply operation every clock cycle; 32x32 multiply operations can be issued every other clock cycle.
Appropriate interlocks are implemented to stall the issue of back-to-back 32x32 multiply operations. Divide operations
are implemented with a simple 1 bit per clock iterative algorithm and require 35 clock cycles in worst case to complete.
Early-in to the algorithm detects sign extension of the dividend, if it is actual size is 24, 16 or 8 bit. the divider will skip
7, 15 or 23 of the 32 iterations. An attempt to issue a subsequent MDU instruction while a divide is still active causes a
pipeline stall until the divide operation is completed.

In the 4Kp processor, the non-pipelined MDU consists of a 32-bit full-adder, result-accumulation registers (HI and LO),
a combined multiply/divide state machine, and all multiplexers and control logic required to perform these functions. It
performs any multiply using 32 cycles in an iterative 1 bit per clock algorithm. Divide operations are also implemented
with a simple 1 bit per clock iterative algorithm (no early-in) and require 35 clock cycles to complete. An attempt to
issue a subsequent MDU instruction while a multiply/divide is still active causes a pipeline stall until the operation is
completed.

An additional multiply instruction, MUL is implemented, which specifies that the lower 32 bits of the multiply result be
placed in the register file instead of the HI/LO register pair. By avoiding the explicit move from LO (MFLO) instruction,
required when using the LO register, and by supporting multiple destination registers, the throughput of
multiply-intensive operations is increased.

Two instructions, multiply-add (MADD/MADDU) and multiply-subtract (MSUB/MSUBU), are used to perform the
multiply-add and multiply-subtract operations. The MADD instruction multiplies two numbers and then adds the
product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and
then subtracts the product from the HI and LO registers. The MADD/MADDU and MSUB/MSUBU operations are
commonly used in Digital Signal Processor (DSP) algorithms.

1.3.3 System Control Coprocessor (CPO0)

In the MIPS architecture, CPO is responsible for the virtual-to-physical address translation, cache protocols, the
exception control system, the processor’s diagnostics capability, operating mode selection (kernel vs. user mode), and
the enabling/disabling of interrupts. Configuration information such as cache size, set associativity, and EJTAG debug
features are available by accessing the CPO registers. R€feapter 5, “CPO Registers,” on pagef@Bmore

information on the CPO registers. RefeCioapter 9, “EJTAG Debug Support,” on page i&Imore information on

EJTAG debug registers.

1.3.4 Memory Management Unit (MMU)

Each The core contains an MMU that interfaces between the execution unit and the cache controllerFsgoren in
1-1. Although the 4Kc core implements a 32-bit architecture, the Memory Management Unit (MMU) is modeled after
the MMU found in the 64-bit R4000 family, as defined by the MIPS32 architecture.

The 4Kc core implements an MMU based on a Translation Lookaside Buffer (TLB). The TLB actually consists of three
translation buffers: a 16 dual-entry fully associative Joint TLB (JTLB), a 3-entry fully associative Instruction TLB
(ITLB) and a 3-entry fully associative data TLB(DTLB). The ITLB and DTLB, also referred to as the micro TLBs, are
managed by the hardware and are not software visible. The micro TLBs contain subsets of the JTLB. When translating
addresses, the corresponding micro TLB (I or D) is accessed first. If there is not a matching entry, the JTLB is used to

MIPS32® 4K™ Processor Core Family Software User’s Manual, Revision 01.18 5

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 1 Introduction to the MIPS32 4K™ Processor Core Family

translate the address and refill the micro TLB. If the entry is not found in the JTLB, an exception is taken. To minimize
the micro TLB miss penalty, the JTLB is looked up in parallel with the DTLB for data references. This results ina 1

cycle stall for a DTLB miss and a 2 cycle stall for an ITLB miss.

The 4Km and 4Kp cores implement an FM-based MMU instead of a TLB-based MMU. The FM replaces both the JTLB,
ITLB and DTLB in the 4Kc core. The FM performs a simple translation to get the physical address from the virtual
address. Refer t8hapter 3, “Memory Management,” on pagef@lmore information on the FM.

Figure 1-2shows how the ITLB, DTLB and JTLB are used in the 4Kc cétigure 1-3show how the FM is used in the

4Km and 4Kp cores.

Virtual Address I-Cache
Instruction ¢
Address ITLB Comparator
Calculator
IVA Entry
JTLB
Entry
Data
Address DTLB Comparator
Calculator 4

Virtual Address

> D-Cache

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Instruction
Hit/Miss

Data

l—b Hit/Miss

Figure 1-2 Address Translation during a Cache Access in the 4Kc Core

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

1.3 Required Logic Blocks

Virtual Address I-Cache
Instruction ¢
Address Comparator
Calculator Instruction
Hit/Miss
FM
Data
l—» Hit/Miss
Data
Comparator
Address P
Calculator
Virtual Address
> D-Cache

Figure 1-3 Address Translation during a Cache Access in the 4Km and 4Kp Cores

1.3.5 Cache Controllers

The data and instruction cache controllers support caches of various sizes, organizations, and set associativity. For
example, the data cache can be 2 Kbytes in size and 2-way set associative, while the instruction cache can be 8 Kbytes
in size and 4-way set associative. There are separate cache controllers for the I-Cache and D-Cache.

Each cache controller contains and manages a one-line fill buffer. Besides accumulating data to be written to the cache,
the fill buffer is accessed in parallel with the cache and data can be bypassed back to the core.

Refer toChapter 7, “Caches,” on page 1fbb more information on the instruction and data cache controllers.

1.3.6 Bus Interface Unit (BIU)

The Bus Interface Unit (BIU) controls the external interface signals. Additionally, it contains the implementation of a
32-byte collapsing write-buffer. The purpose of this buffer is to hold and combine write transactions before issuing them
to the external interface. Since the data caches for all cores follow a write-through cache policy, the write-buffer
significantly reduces the number of write transactions on the external interface as well as reducing the amount of stalling
in the core due to issuance of multiple writes in a short period of time.

The write-buffer is organized as two 16-byte buffers. Each buffer contains data from a single 16-byte aligned block of

memory. One buffer contains the data currently being transferred on the external interface, while the other buffer
contains accumulating data from the core.

1.3.7 Power Management
The core offers a number of power management features, including low-power design, active power management, and

power-down modes of operation. The core is a static design that supports a WAIT instruction designed to signal the rest

MIPS32® 4K™ Processor Core Family Software User’s Manual, Revision 01.18 7

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 1 Introduction to the MIPS32 4K™ Processor Core Family

of the device that execution and clocking should be halted, hence reducing system power consumption during idle
periods.

The core provides two mechanisms for system-level, low-power support:
» Register-controlled power management

* Instruction-controlled power management

In register controlled power management mode the core provides three bits in the CPO Status register for software control
of the power management function and allows interrupts to be serviced even when the core is in power-down mode. In
instruction controlled power-down mode execution of the WAIT instruction is used to invoke low-power mode.

Refer toChapter 8, “Power Management,” on page fikdmore information on power management.

1.4 Optional Logic Blocks

The core consists of the following optional logic blocks as shown in the block diagFaguie 1-1

1.4.1 Instruction Cache

The instruction cache is an optional on-chip memory array of up to 16 Kbytes. The cache is virtually indexed and
physically tagged, allowing the virtual-to-physical address translation to occur in parallel with the cache access rather
than having to wait for the physical address translation. The tag holds 22 bits of the physical address, 4 valid bits, a lock
bit, and the LRF (Least Recently Filled) replacement bit.

All cores supportinstruction cache-locking. Cache locking allows critical code to be locked into the cache on a “per-line”
basis, enabling the system designer to maximize the efficiency of the system cache. Cache locking is always available
on all instruction cache entries. Entries can be marked as locked or unlocked (by setting or clearing the lock-bit) on a
per-entry basis using the CACHE instruction.

1.4.2 Data Cache
The data cache is an optional on-chip memory array of up to 16-Kbytes. The cache is virtually indexed and physically
tagged, allowing the virtual-to-physical address translation to occur in parallel with the cache access. The tag holds 22
bits of the physical address, 4 valid bits, a lock bit, and the LRF replacement bit.
In addition to instruction cache locking, all cores also support a data cache locking mechanism identical to the instruction
cache, with critical data segments to be locked into the cache on a “per-line” basis. The locked contents cannot be
selected for replacement on a cache miss, but can be updated on a store hit.

Cache locking is always available on all data cache entries. Entries can be marked as locked or unlocked on a per-entry
basis using the CACHE instruction.

The physical data cache memory must be byte writable to support non-word store operations.

1.4.3 EJTAG Controller

All cores provide basic EJTAG support with debug mode, run control, single step and software breakpoint instruction
(SDBBP) as part of the core. These features allow for the basic software debug of user and kernel code.

8 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

1.4 Optional Logic Blocks

Optional EJTAG features include hardware breakpoints. A 4K core may have four instruction breakpoints and two data
breakpoints, two instruction breakpoints and one data breakpoint, or no breakpoints. The hardware instruction
breakpoints can be configured to generate a debug exception when an instruction is executed anywhere in the virtual
address space. Bit mask and address space identifier (ASID) values may apply in the address compare. These breakpoints
are not limited to code in RAM like the software instruction breakpoint (SDBBP). The data breakpoints can be
configured to generate a debug exception on a data transaction. The data transaction may be qualified with both virtual
address, data value, size and load/store transaction type. Bit mask and ASID values may apply in the address compare,
and byte mask may apply in the value compare.

Refer toChapter 9, “EJTAG Debug Support,” on page i&Imore information on hardware breakpoints.
An optional Test Access Port (TAP) provides for the communication from an EJTAG probe to the CPU through a
dedicated port, may also be applied to the core. This provides the possibility for debugging without debug code in the

application, and for download of application code to the system.

Refer toChapter 9, “EJTAG Debug Support,” on page i&Imore information on the EJTAG features.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 9

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 1 Introduction to the MIPS32 4K™ Processor Core Family

10 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 2

Pipeline

The MIPS32 4K processor cores implements a 5-stage pipeline similar to the original R3000 pipeline. The pipeline
allows the processor to achieve high frequency while minimizing device complexity, reducing both cost and power
consumption. This chapter contains the following sections:

» Section 2.1, "Pipeline Stages"

» Section 2.2, "Instruction Cache Miss"

+ Section 2.3, "Data Cache Miss"

» Section 2.4, "Multiply/Divide Operations"

» Section 2.5, "MDU Pipeline (4Kc and 4Km Cores)"
» Section 2.6, "MDU Pipeline (4Kp Core Only)"
» Section 2.7, "Branch Delay"

» Section 2.8, "Data Bypassing"

» Section 2.9, "Interlock Handling"

» Section 2.10, "Slip Conditions"

» Section 2.11, "Instruction Interlocks"

» Section 2.12, "Instruction Hazards"

2.1 Pipeline Stages

The pipeline consists of five stages:
* Instruction (I stage)

» Execution (E stage)

* Memory (M stage)
 Align/Accumulate (A stage)
Writeback (W stage)

All three cores implement a “Bypass” mechanism that allows the result of an operation to be sent directly to the
instruction that needs it without having to write the result to the register and then read it back.

Figure 2-1shows the operations performed in each pipeline stage of the 4Kc processor.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 11

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 2 Pipeline

| | \ \ | rcache | - 1$ Tag and Data read
! ' e | : I-TLB Look-up
[+ [€ M_ | A [w | Ibec | : Instruction Decode
| \ HRES ass | : | regrd| - Register file read _
' . \ | [raci[racz | : Instruction Address Calculation stage 1 and 2
cache [Regrd ALuop | - , auop | : Arithmetic Logic and Shift operations
76 | 1Dec| D-aC | D-Gache | Align | [Regw] | g oac | : Data Address Calculation
I 018 ' '] bcache | - D$ Tag and Data read
al :
! AC? | : | g oris| : D-TLB Look-up
, | WL AEBms 2 aign | : Load data aligner _
. \ [moc Y | Regw | . regw| - Register file write or HI/LO write) _
| \ \ T X o muL | : The MUL instruction. Uses MDU-Pipeline write Reg file
: | [Muit, Mace 16x16,32x1] cPa | Regw] Till cPA : Carry Propagate Adder
! ! | & muir, mace | - Multiply and Multiply Accumulate instructions
| /L Q) i e 4 .
. | [Mutvace //52x3] cpa | reaw] [2 owae | : Divide instructions ~ _
| | T 3! [signadust | : Last stage of Divide is a sign adjustment
| | |Divide // | Sign Adjust | Regwl ! .
| | — | | // : One or more stall cycles.

Figure 2-1 4Kc Core Pipeline Stages

Figure 2-2shows the operations performed in each pipeline stage of the 4Km processor core.

| | N
| , !
! ! E | v | A | w icacne_| 1 I$ Tag and Data read
[| e [| Ibec | : Instruction Decode
' ' I reord| | Register file read
- | . .
| I-Cache | RegRd ALL|J op | o) i | m: ract | 1acz | - Instruction Address Calculation stage 1 and 2
, Lroee e | preame | Alan pReoW] | £ auop | - Arithmetic Logic and Shift operations
! ! g § : Data Add Calculati
| | 8 b-ac | : Data ress Calculation
| ! ! 2 bcache | : D$ Tag and Data read
| = .
| | | 3 : : aign | - Load data aligner _
\ ! [moL 7/ | [Reaw] | regw | . Register file write or HI/LO write
\ : ' T | \ vuL | : The MUL instruction. Uses MDU-Pipeline write Reg file
| | [Muit, Macc 16x16, 32x1] carry Prop. Add Regw | 2 cPA : Carry Propagate Adder))
' l | . : 8 [mur mace | - Multiply and Multiply Accumulate instructions
' ' [Mut, Mace] / 32x33 Carry Prop. Add Regw| [3 Divide : Divide instructions _ _
I . /1 2 : Last st f Divid djustment
, | : s \ 8 [sinaqust | - Laststage of Divide is a sign adjustmen
| \ [Divide J[| sianadust [regw] | / / : One or more stall cycles.
' ! ! | | '

Figure 2-2 4Km Core Pipeline Stages

Figure 2-3shows the operations performed in each pipeline stage of the 4Kp processor core.

N |
|]
. [A w ! icache | ¢ I1$ Tag and Data read
e US| \ \ ibec | - INstruction Decode
! | | regrd| - Register file read
-cache |megrd ALuop | L I [act | racz | ¢ Instruction Address Calculation stage 1 and 2
LTL8 1Dec | D-AC| D-Cache ! ign | Regw| g auop | - Arithmetic Logic and Shift operations
| o-Tie | \ \ g o-ac | : Data Address Calculation
\ bac | 1acz | l |) bcache | : D$ Tag and Data read
| | W AEBes | ! Bl aign | - Load data aligner
! | [muL // [| [Reaw| 2 regw | . Register file write or HI/LO write
: ! 1 T \ X g muL | : The MUL instruction. Uses MDU-Pipeline, write Reg file
! | / | & i wide | - Multiply, Multiply Accumulate and Divide instructions
: \ |Multiply. Divide// | Reng 8: Multiply, Divide ply ply
| ' — . s // + One or more stall cycles.
N ! | | 1 N
Figure 2-3 4Kp Core Pipeline Stages
12 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

2.1 Pipeline Stages

2.1.1 | Stage: Instruction Fetch

During the Instruction fetch stage:

An instruction is fetched from the instruction cache.

The I-TLB performs a virtual-to-physical address translation (4Kc core only).

2.1.2 E Stage: Execution

During the Execution stage:

Operands are fetched from the register file.

Operands from M and A stage are bypassed to this stage.

The Arithmetic Logic Unit (ALU) begins the arithmetic or logical operation for register-to-register instructions.
The ALU calculates the data virtual address for load and store instructions.

The ALU determines whether the branch condition is true and calculates the virtual branch target address for branch
instructions.

Instruction logic selects an instruction address

All multiply and divide operations begin in this stage.

2.1.3 M Stage: Memory Fetch

During the Memory Fetch stage:

The arithmetic or logic ALU operation completes.
The data cache fetch and the data virtual-to-physical address translation are performed for load and store instructions.
Data TLB (4Kc core only) and data cache lookup are performed and a hit/miss determination is made.

A 16x16 or 32x16 MUL operation completes in the array and stalls for one clock in the M stage to complete the
carry-propagate-add in the M stage (4Kc and 4Km cores).

A 32x32 MUL operation stalls for two clocks in the M stage to complete second cycle of the array and the
carry-propagate-add in the M stage (4Kc and 4Km cores).

A 16x16 or 32x16 MULT/MADD/MSUB operation completes in the array (4Kc and 4Km cores).

A 32x32 MULT/MADD/MSUB operation stalls for one clock in thg ¥, stage of the MDU pipeline to complete
second cycle in the array (4Kc and 4Km cores).

A divide operation stalls for a maximum of 32 clocks in thgyM, stage of the MDU pipeline (4Kc and 4Km cores).
A multiply operation stalls for 31 clocks in\h stage (4Kp core only).
A multiply-accumulate operation stalls for 33 clocks igM, stage (4Kp core only).

A divide operation stalls for 32 clocks in thg M, stage (4Kp core only).

2.1.4 A Stage: Align/Accumulate

During the Align/Accumulate stage:

A separate aligner aligns loaded data with its word boundary.

MIPS32® 4K™ Processor Core Family Software User’s Manual, Revision 01.18 13

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 2 Pipeline

» A MUL operation makes the result available for writeback. The actual register writeback is performed in the W stage
(all 4K cores).

* A MULT/MADD/MSUB operation performs the carry-propagate-add. This includes the accumulate step for the
MADD/MSUB operations. The actual register writeback to HI and LO is performed in the W stage (4Kc and 4Km
cores).

» A divide operation perform the final Sign-Adjust. The actual register writeback to HI and LO is performed in the W
stage (4Kc and 4Km cores).

» A multiply/divide operation writes to HI/LO registers (4Kp core only).

2.1.5 W Stage: Writeback

« For register-to-register or load instructions, the result is written back to the register file during the W stage.

2.2 Instruction Cache Miss

14

When the instruction cache is indexed, the instruction address is translated to determine if the required instruction resides
in the cache. An instruction cache miss occurs when the requested instruction address does not reside in the instruction
cache. When a cache miss is detected in the | stage, the core transitions to the E stage. The pipeline stalls in the E stage
until the miss is resolved. The bus interface unit must select the address from multiple sources. If the address bus is busy,
the request will remain in this arbitration stage (B-ASdFigure 2-4andFigure 2-5 until the bus is available. The core

drives the selected address onto the bus. The number of clocks required to access the bus is determined by the access
time of the array that contains the data. The number of clocks required to return the data once the bus is accessed is also
determined by the access time of the array.

Once the data is returned to the core, the critical word is written to the instruction register forimmediate use. The bypass
mechanism allows the core to use the data once it becomes available, as opposed to having the entire cache line written
to the instruction cache, then reading out the required word.

Figure 2-4shows a timing diagram of an instruction cache miss for the 4Kc €agere 2-5shows a timing diagram of
an instruction cache miss for the 4Km and 4Kp cores.

| \
| i E
: .

|

|I-Cache

L RegRd ALU Op |
I-TLB | FTLB | B-ASel \\
\ \ U

Bus* ‘\‘\ IC-Bypass | Dec
S AL | A2 |

\
\
\
\
\
| \ |
1 ' ! . 1
* Contains all of the cycles that address and data are utilizing the bus.

Figure 2-4 Instruction Cache Miss Timing (4Kc core)

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18
Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

2.3 Data Cache Miss

| | . |

I I E E I E |

I | SR |

| o L . RegRd ALUOp |
[I-Cache B-ASel \\ | Bus* \\ IC-Bypass | Dec

| \ i \ \ ' I-Al 1-A2 |

| |

* Contains all of the cycles that address and data are utilizing the bus.

Figure 2-5 Instruction Cache Miss Timing (4Km and 4Kp cores)

2.3 Data Cache Miss

When the data cache is indexed, the data address is translated to determine if the required data resides in the cache. A
data cache miss occurs when the requested data address does not reside in the data cache.

When a data cache miss is detected in the M stage (D-TLB), the core transitions to the A stage. The pipeline stalls in the

A stage until the miss is resolved (requested data is returned). The bus interface unit arbitrates between multiple requests
and selects the correct address to be driven onto the bus (B-ASglie 2-6andFigure 2-7. The core drives the

selected address onto the bus. The number of clocks required to access the bus is determined by the access time of the
array containing the data. The number of clocks required to return the data once the bus is accessed is also determined
by the access time of the array.

Once the data is returned to the core, the critical word of data passes through the aligner before being forwarded to the
execution unit and register file. The bypass mechanism allows the core to use the data once it becomes available, as
opposed to having the entire cache line written to the data cache, then reading out the required word.

Figure 2-6shows a timing diagram of a data cache miss for the 4Kc éageire 2-7shows a timing diagram of a data
cache miss for the 4Km and 4Kp cores.

| | I I I I I I I I I I I
\			\	
E	M	A	A	A n A : w
			\ :	
I	\ I \ I			
[Regr [ALUL D-Cache				
.	D-TL8	. : . : .		
I				
\ \ N				
B-ASel Bus* DC Bypass	Align	RegW		
:	\u \U [R] T			
I I				
l				
	.			

P

* Contains all of the time that address and data are utilizing the bus.

Figure 2-6 Load/Store Cache Miss Timing (4Kc core)

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 15

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 2 Pipeline

| | | | | | | | | | | | [S
| X | X 1 N |
I E M [A A t A | A : w__]
i
| | | |
| : | : | : |
[RegR]ALUL| D-Cache | | | | |
| : | : | : |
| \\ PN |
l : B-ASel \\ | Bus* \\ | DCBypass | Align | | RegW
l ANAY \ ‘7| |
l | |
|
! :

1
* Contains all of the time that address and data are utilizing the bus.

Figure 2-7 Load/Store Cache Miss Timing (4Km and 4Kp cores)

2.4 Multiply/Divide Operations

All three cores implement the standard MIPS II™ multiply and divide instructions. Additionally, several new
instructions were added for enhanced performance.

The targeted multiply instruction, MUL, specifies that multiply results be placed in the general purpose register file
instead of the HI/LO register pair. By avoiding the explicit MFLO instruction, required when using the LO register, and
by supporting multiple destination registers, the throughput of multiply-intensive operations is increased.

Four instructions, multiply-add (MADD), multiply-add-unsigned (MADDU) multiply-subtract (MSUB), and
multiply-subtract-unsigned (MSUBU), are used to perform the multiply-accumulate and multiply-subtract operations.
The MADD/MADDU instruction multiplies two numbers and then adds the product to the current contents of the HlI
and LO registers. Similarly, the MSUB/MSUBU instruction multiplies two operands and then subtracts the product from
the Hl and LO registers. The MADD/MADDU and MSUB/MSUBU operations are commonly used in DSP algorithms.

All multiply operations (except the MUL instruction) write to the HI/LO register pair. All integer operations write to the
general purpose registers (GPR). Because MDU operations write to different registers than integer operations, following
integer instructions can execute before the MDU operation has completed. The MFLO and MFHI instructions are used
to move data from the HI/LO register pair to the GPR file. If a MFLO or MFHI instruction is issued before the MDU
operation completes, it will stall to wait for the data.

2.5 MDU Pipeline (4Kc and 4Km Cores)

16

The 4Kc and 4Km processor cores contain an autonomous multiply/divide unit (MDU) with a separate pipeline for
multiply and divide operations. This pipeline operates in parallel with the integer unit (IU) pipeline and does not stall
when the U pipeline stalls. This allows long-running MDU operations, such as a divide, to be partially masked by
system stalls and/or other integer unit instructions.

The MDU consists of a 32x16 booth encoded multiplier, result/accumulation registers (HI and LO), a divide state
machine, and all necessary multiplexers and control logic. The first number shown (‘32’ of 32x16) repregents the
operand. The second number (‘16’ of 32x16) represents thigerand. The core only checks the laft€roperand value

to determine how many times the operation must pass through the multiplier. The 16x16 and 32x16 operations pass
through the multiplier once. A 32x32 operation passes through the multiplier twice.

The MDU supports execution of a 16x16 or 32x16 multiply operation every clock cycle; 32x32 multiply operations can
be issued every other clock cycle. Appropriate interlocks are implemented to stall the issue of back-to-back 32x32
multiply operations. Multiply operand size is automatically determined by logic built into the MDU. Divide operations
are implemented with a simple 1 bit per clock iterative algorithm with an early in detection of sign extension on the

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

2.5 MDU Pipeline (4Kc and 4Km Cores)

dividend(rs). Any attempt to issue a subsequent MDU instruction while a divide is still active causes an IU pipeline stall
until the divide operation is completed.

Table 2-1lists the latencies (number of cycles until a result is available) for multiply and divide instructions. The
latencies are listed in terms of pipeline clocks. In this table ‘latency’ refers to the number of cycles necessary for the first
instruction to produce the result needed by the second instruction.

Table 2-1 4Kc and 4Km Core Instruction Latencies

] Instruction Sequence
Size of operand Latency
1st Instruction!1] 1st Instruction 2nd instruction clocks
MULT/MULTU, MADD/MADDU,
16 bit MADD/MADDU, or MSUB/MSUBU, or 1
MSUB/MSUBU MFHI/MFLO
MULT/MULTU, MADD/MADDU,
32 bit MADD/MADDU, or MSUB/MSUBU, or 2
MSUB/MSUBU MFHI/MFLO
16 bit MUL Integer operatidfl 283
32 bit MUL Integer operatidfl 213
8 bit DIVU MFHI/MFLO 9
16 bit DIVU MFHI/MFLO 17
24 bit DIVU MFHI/MFLO 25
32 bit DIVU MFHI/MFLO 33
8 bit DIV MFHI/MFLO 104
16 bit DIV MFHI/MFLO 18[4]
24 bit DIV MFHI/MFLO 264
32 bit DIV MFHI/MFLO 344
any MFHI/MFLO Integer operatid?iI 2
any MTHI/MTLO o OF 1
Note: [1] For multiply operations this is tieoperand. For divide operations this is th@perand.
Note: [2] Integer Operation refers to any integer instruction that uses the result of a previous MDU operation.
Note: [3] This does not include the 1 or 2 IU pipeline stalls (16 bit or 32 bit) that MUL operation causes irrespective of
the following instruction.These stalls do not add to the latency of 2.
Note: [4] If both operands are positive the Sign Adjust stage is bypassed. Latency is then the same as for DIVU.

In Table 2-1a latency of one means that the first and second instruction can be issued back to back in the code without
the MDU causing any stalls in the 1U pipeline. A latency of two means that if issued back to back, the 1U pipeline will
be stalled for one cycle. MUL operations are special because it needs to stall the 1U pipeline in order to maintain its
register file write slot. Consequently the MUL 16x16 or 32x16 operation will always force a one cycle stall of the 1U
pipeline, and the MUL 32x32 will force a two cycle stall. If the integer instruction immediately following the MUL
operation uses its result, an additional stall is forced on the U pipeline.

Table 2-2lists the repeat rates (peak issue rate of cycles until the operation can be reissued) for multiply
accumulate/subtract instructions. The repeat rates are listed in terms of pipeline clocks. In this table ‘repeat rate’ refers
to the case where the first MDU instruction (in the table below) if back to back with the second instruction.

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

17

Chapter 2 Pipeline

18

Table 2-2 4Kc and 4Km Core Instruction Repeat Rates

_ Instruction Sequence
Operand Size of Repeat
1st Instruction 1st Instruction 2nd instruction Rate
_ MULT/MULTU, MADD/MADDU,
16 bit MADD/MADDU, MSUB/MSUBU !
MSUB/MSUBU
_ MULT/MULTU, MADD/MADDU,
32 bit MADD/MADDU, MSUB/MSUBU 2
MSUB/MSUBU

Figure 2-8below shows the pipeline flow for the following sequence:
1. 32x16 multiply (Muly)

2. Add

3. 32x32 multiply (Mulp)

4. Sub

The 32x16 multiply operation requires one clock of each pipeline stage to complete. The 32x32 requires two clocks in
the Mypu pipe-stage. The MDU pipeline is shown as the shaded ardzgwfe 2-8and always starts a computation in

the final phase of the E stage. As shown in the figure, thglylpipe-stage of the MDU pipeline occurs in parallel with

the M stage of the U pipeline, theyfy stage occurs in parallel with the A stage, and thgd{f stage occurs in parallel

with the W stage. However in case the instruction in the MDU pipeline needs multiple passes through the same MDU
stage, this parallel behavior will be skewed by one or more clocks. This is not a problem because results in the MDU
pipeline are written to HI and LO registers, while the integer pipeline results are written to the register file.

| cycle 1 | cycle 2 | cycle 3 | cycle 4 | cycle 5 | cycle 6 | cycle 7 | cycle 8 |
ro:r - = -7 I °—/ L/ 1
| | | | | | : | |
t |
Multy | [E [Muou | Ambu Wby | \ :
\)
Add | | [| E | WM™ A W | :
| \ !
Muitz | \ ! | E Mmbu Mvou | Ampu ! Wwmbu
Sub, | : I E | M | A [w
N T
| | | |

Figure 2-8 MDU Pipeline Behavior during Multiply Operations (4Kc and 4Km processors)

The following is a cycle-by-cycle analysisffjure 2-8
1. The first 32x16 multiply operation (MyJtenters the | stage and is fetched from the instruction cache.

2. An Add operation enters the | stage. The Mulperation enters the E stage. The integer and MDU pipelines share
the | and E pipeline stages. At the end of the E stage in cycle 2, the multiply operatighi€vhassed to the
MDU pipeline.

3. Incycle 3 a 32x32 multiply operation (Myjtenters the | stage and is fetched from the instruction cache. Since the
Add operation has not yet reached the M stage by cycle 3, there is no activity in the M stage of the integer pipeline
at this time.

4. Incycle 4 the Sub instruction enters | stage. The second multiply operation)®uiers the E stage. And the Add
operation enters M stage of the integer pipe. Since the khuiltiply is a 32x16 operation, only one clock is
required for the Npy Stage, hence the Mylperation passes to thg,A stage of the MDU pipeline.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

2.5 MDU Pipeline (4Kc and 4Km Cores)

5. Incycle 5 the Sub instruction enters E stage. The Muliltiply enters the N,py stage. The Add operation enters
the A stage of the integer pipeline. The Mubiperation completes and is written back in to the HI/LO register pair
in the W,py Stage.

6. Since a 32x32 multiply requires two passes through the multiplier, with each pass requiring one clock, the 32x32
Mult, remains in the \py stage in cycle 6. The Sub instruction enters M stage in the integer pipeline. The Add
operation completes and is written to the register file in the W stage of the integer pipeline.

7. The Mult, multiply operation progresses to thg#y, stage, and the Sub instruction progress to A stage.

8. The Mul, operation completes and is written to the HI/LO registers pair fhg¥tage, while the Sub
instruction write to the register file in W stage.

2.5.1 32x16 Multiply (4Kc and 4Km Cores)

The 32x16 multiply operation begins in the last phase of the E stage, which is shared between the integer and MDU
pipelines. In the latter phase of the E stage,rthendrt operands arrive and the booth recoding function occurs at this
time. The multiply calculation requires one clock and occurs in thgVstage. In the §p stage, the

carry-propagate-add function occurs and the operation is completed. The result is written back to the HI/LO register pair
in the first half of the W stage.

Figure 2-9shows a diagram of a 32x16 multiply operation.

Clock 1 2 3 4
€ E >l¢ Mypy D€ Aypy P|E Wypy P

] | I B

[Booth [Amay | CPA [RegWR]

Figure 2-9 MDU Pipeline Flow During a 32x16 Multiply Operation

2.5.2 32x32 Multiply (4Kc and 4Km Cores)

The 32x32 multiply operation begins in the last phase of the E stage, which is shared between the integer and MDU
pipelines. In the latter phase or the E stage rtrendrt operands arrive and the booth recoding function occurs at this
time. The multiply calculation requires two clocks and occurs in thglMstage. In the §py Stage, the

carry-propagate-add (CPA) function occurs and the operation is completed. The result is written back to the HI/LO
register pair in the first half of the)} stage.

Figure 2-10shows a diagram of a 32x32 multiply operation.

Clock 1 2 3 4 5
€ E D¢ Mypy PlE€ Mypy PlE€ Ay PlE€ Wypy P

| Booth | Array Array | CPA |Reg WR|

Booth

Figure 2-10 MDU Pipeline Flow During a 32x32 Multiply Operation

2.5.3 Divide (4Kc and 4Km Cores)

Divide operations are implemented using a simple non-restoring division algorithm. This algorithm works only for
positive operands, hence the first cycle of thg lvstage is used to negate thoperand (RS Adjust) if needed. Note
MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 19

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 2 Pipeline

that this cycle is executed even if the adjustment is not necessary. At maximum the next 32 clocks (3-34) execute an
iterative add/subtract function. In cycle 3 an early in detection is performed in parallel with the add/subtract. The
adjusteds operand is detected to be zero extended on the upper most 8, 16 or 24 bits. If this is the case the following 7,
15 or 23 cycles of the add/subtract iterations are skipped.

The remainder adjust (Rem Adjust) cycle is required if the remainder was negative. Note that this cycle is taken even if
the remainder was positive. A sign adjust is performed on the quotient and/or remainder if necessary. Note that the sign
adjust cycle is skipped if both operands are positive. In this case the Rem Adjust is moved,tp ttadge.

Figure 2-11Figure 2-12Figure 2-13andFigure 2-14show the latency for 8, 16, 24 and 32-bit divide operations,
respectively. The repeat rate is either 11, 19, 27 or 35 cycles (one lessigintlagljuststage is skipped) as a second
divide can be in thS Adjusstage when the first divide is in tReg WRstage.

Clock 1 2 3 4-10 11 12 13
|4- E Stage >4~ Mypy StageP>| 4= Mypy StageP>| €= Mypy Stage{ € Mypy Stage{ € Aypy Stage-P < Wypy Stage—}l
| RS Adjust Add/Subtract Add/Subtract | Rem Adjust | Sign Adjust | Reg WR|
Early In
Figure 2-11 MDU Pipeline Flow During an 8-bit Divide (DIV) Operation
Clock 1 2 3 4-18 19 20 21
|4- E Stage |4 Mypy Stage-P>| € Mypy Stage>| € Mypy Stage-{ € Mypy Stage>| € Aypy Stage-P{ € Wypy Stage—}l
| RS Adjust Add/Subtract Add/Subtract | Rem Adjust | Sign Adjust | Reg WR|
Early In
Figure 2-12 MDU Pipeline Flow During a 16-bit Divide (DIV) Operation
Clock 1 2 3 4-26 27 28 29
|4‘ E Stage |4 Mypy Stage-P>| € Mypy StageP>| € Mypy Stage-P| € Mypy StageP| € Aypy Stage-P[€ Wiypy Stage—}l
| RS Adjust Add/Subtract Add/Subtract | Rem Adjust | Sign Adjust | Reg WRl
Early In
Figure 2-13 MDU Pipeline Flow During a 24-bit Divide (DIV) Operation
Clock 1 2 3 4-34 35 36 37
|4- E Stage >4~ Mypy StageP>| € Mypy Stage>| € Mypy Stage € Mypy Stage{ € Aypy Stage- <€ Wypy Stage-}l
| RS Adjust Add/Subtract Add/Subtract | Rem Adjust | Sign Adjust | Reg WR|
Early In

20

Figure 2-14 MDU Pipeline Flow During a 32-bit Divide (DIV) Operation

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

2.6 MDU Pipeline (4Kp Core Only)

2.6 MDU Pipeline (4Kp Core Only)

The multiply/divide unit (MDU) is a separate autonomous block for multiply and divide operations. The MDU is not
pipelined, but rather performed the computations iteratively in parallel with the integer unit (IU) pipeline. It does not
stall when the U pipeline stalls. This allows the long-running MDU operations to be partially masked by system stalls
and/or other integer unit instructions.

The MDU consists of one 32-bit adder result-accumulate registers (HI and LO), a combined multiply/divide state
machine and all multiplexers and control logic. A simple 1-bit per clock recursive algorithm is used for both multiply
and divide operations. Using booth’s algorithm all multiply operations complete in 32 clocks. Two extra clocks are
needed for multiply-accumulate. The non-restoring algorithm used for divide operations will not work with negative
numbers. Adjustment before and after are thus required depending on the sign of the operands. All divide operations
complete in 33 to 35 clocks.

Table 2-3lists the latencies (number of cycles until a result is available) for multiply and divide instructions. The
latencies are listed in terms of pipeline clocks. In this table ‘latency’ refers to the number of cycles necessary for the
second instruction to use the results of the first.

Table 2-3 4Kp Core Instruction Latencies

Operand Signs of Instruction Sequence
1st Instruction Latency
(Rs,Rt) 1st Instruction 2nd instruction clocks
MADD/MADDU,
any, any MULT/MULTU MSUB/MSUBU, or 32
MFHI/MFLO
MADD/MADDU,
any, any MADDIMADDU. MSUB/MSUBU, or 34
MFHI/MFLO
any, any MUL Integer operatin 32
any, any DIVU MFHI/MFLO 33
pos, pos DIV MFHI/MFLO 33
any, neg DIV MFHI/MFLO 34
neg, pos DIV MFHI/MFLO 35
any, any MFHI/MFLO Integer operatiHr}n 2
MADD/MADDU,
any, any MTHI/MTLO MSUB/MSUBU 1
Note: [1] Integer Operation refers to any integer instruction that uses the result of a previous MDU operation.

2.6.1 Multiply (4Kp Core)

Multiply operations implement a simple iterative multiply algorithm. Using Booth’s approach, this algorithm works for
both positive and negative operands. The operation uses 32 cyclggindthge to complete a multiplication. The
register writeback to Hl and LO are done in the A stage. For MUL operations, the register file writeback is done in the
Wypu Stage.

Figure 2-15shows the latency for a multiply operation. The repeat rate is 33 cycles as a second multiply can be in the
first Mypy stage when the first multiply is iy stage.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 21

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 2 Pipeline

Clock 1 2-33 34 35
|4— E-Stage —P|€-Mypy-Stage > | € Aypy-Stage | fWMDU-Stage—}l

o | |

| Add/sub-shift | HI/LO Write |RegWR|

Figure 2-15 4Kp MDU Pipeline Flow During a Multiply Operation

2.6.2 Multiply Accumulate (4Kp Core)

Multiply-accumulate operations use the same multiply machine as used for multiply only. Two extra stages are needed
to perform the addition/subtraction. The operations uses 34 cycleg i Mtage to complete the multiply-accumulate.
The register writeback to HI and LO are done in the A stage.

Figure 2-16shows the latency for a multiply-accumulate operation. The repeat rate is 35 cycles as a second
multiply-accumulate can be in the E stage when the first multiply is in the |asg [¢tage.

Clock 1 2-33 34 35 36 37
|4— E Stage P& Mypy StageP> | € Mypy Stage-P| € Mypy StageP| € Aypu Stage—}l{— Wypy Stagep>

| Add/Subtract Shiftl Accumulate/LO | Accumulate/H! | HI/LO Write |

Figure 2-16 4Kp MDU Pipeline Flow During a Multiply Accumulate Operation

2.6.3 Divide (4Kp Core)

Divide operations also implement a simple non-restoring algorithm. This algorithm works only for positive operands,
hence the first cycle of the\, stage is used to negate the rs operand (RS Adjust) if needed. Note that this cycle is
executed even if negation is not needed. The next 32 cycle (3-34) executes an interactive add/subtract-shift function.

Two sign adjust (Sign Adjust 1/2) cycles are used to change the sign of one or both the quotient and the remainder. Note
that one or both of these cycles are skipped if they are not needed. The rule is, if both operands were positive or if this
is an unsigned division; both of the sign adjust cycles are skipped. téthygerand was negative, one of the sign adjust
cycles is skipped. If only thes operand was negative, none of the sign adjust cycles are skipped. Register writeback to
HI and LO are done in the A stage.

Figure 2-17shows the latency for a divide operation. The repeat rate is either 34, 35 or 36 cycles (depending on how
many sign adjust cycles are skipped) as a second divide can be in the E stage when the first divide is ifythe last M
stage.

Clock 1 2 3-34 35 36 37 38

|4- E Stage P|[€-Mypy Stagep | €4-Mypy Stagep|€-Mypy Stagep| €-Mypy Stagep|4-Aypy Staged|€-Wypy Stagep
| | | | | | |

| RS Adjust | Add/Subtract | Sign Adjust 1 | Sign Adjust 2 | HI/LO Write |

Figure 2-17 4Kp MDU Pipeline Flow During a Divide (DIV) Operation

22 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

2.7 Branch Delay

2.7 Branch Delay

The pipeline has a branch delay of one cycle. The one-cycle branch delay is a result of the branch decision logic
operating during the E pipeline stage. This allows the branch target address calculated in the previous stage to be used
for the instruction access in the following E stage. The branch delay slot means that no bubbles are injected into the
pipeline on branch instructions. The address calculation and branch condition check are both performed in the E stage.
The target PC is used for the next instruction in the | stage (2nd instruction after the branch).

The pipeline begins the fetch of either the branch path or the fall-through path in the cycle following the delay slot. After
the branch decision is made, the processor continues with the fetch of either the branch path (for a taken branch) or the
fall-through path (for the non-taken branch).

The branch delay means that the instruction immediately following a branch is always executed, regardless of the branch
direction. If no useful instruction can be placed after the branch, then the compiler or assembler must insert a NOP
instruction in the delay slot.

Figure 2-18llustrates the branch delay.

One Cycle | One Cycle | One Cycle | One Cycle | One Cycle | One Cycle
Jump or Branch —p | E M A w
Delay Slot Instructon ——» | / E M A W
Jump Target Instruction (:‘ E M A
One Clock
Branch
Delay

Figure 2-18 IU Pipeline Branch Delay

2.8 Data Bypassing

Most MIPS32 instructions use one or two register values as source operands for the execution. These operands are
fetched from the register file in the first part of E stage. The ALU straddles the E to M boundary, and can present the
result early in M stage. however the result is not written in the register file until W stage. This leaves following
instructions unable to use the result for 3 cycles. To overcome this problem Data bypassing is used.

Between the register file and the ALU a data bypass multiplexer is placed on both operaFfigsi(see19. This

enables the 4K core to forward data from preceding instructions which have the target register of the first instruction as
one of the source operands. An M to E bypass and an A to E bypass feed the bypass multiplexers. A W to E bypass is
not needed, as the register file is capable of making an internal bypass of Rd write data directly to the Rs and Rt read
ports.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 23

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 2 Pipeline

| stage

Instruction

Rd Write
' Rt Read

' A stage . W stage

E stage . M stage
Ato E bypass .
M to E bypass ! :
Rs Addr -
Rs Read
Rt Addr ALU
Reg File M stage

Bypass

multiplexers

Figure 2-19 IU Pipeline Data Bypass

Load data, HI/LO Data
or CPO data

Figure 2-20shows the Data bypass for an Addstruction followed by a Supand another Adglinstruction. The Sup
instruction uses the output from the Addstruction as one of the operands, and thus the M to E bypass is used. The
following Adds uses the result from both the first Agidistruction and the Sylinstruction. Since the Adddata is now

in A stage, the A to E bypass is used, and the M to E bypass is used to bypass tlaaSolthe Adglinstruction.

One Cycle | One Cycle | One Cycle | One Cycle | One Cycle | One Cycle
ADD; — | E M A w
R3=R2+R1 21" 1o E byphss \ Ato E bypass
suB, — » | E / M A w
R4=R3-R7

M to E bypass g

ADD4 > I E M A
R5=R3+R4

2.8.1 Load Delay

Figure 2-20 1U Pipeline M to E bypass

Load delay refers to the fact, that data fetched by a load instruction is not available in the integer pipeline until after the
load aligner in A stage. All instructions need the source operands available in E stage. An instruction immediately
following a load instruction will, if it has the same source register as was the target of the load, cause an instruction
interlock pipeline slip in E stage (sBection 2.11, "Instruction Interlocks" on pagg.2¥not the first, but the second
instruction after the load, use the data from the load, the A to E bypasEi(pae 2-19 exists to provide for stall free
operation. An instruction flow of this shownFhigure 2-21

24

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

2.9 Interlock Handling

One Cycle | One Cycle | One Cycle | One Cycle | One Cycle | One Cycle
Load Instruction —p | E M A w
\ Data bypass from A|to E
. | E / M A W
Consumer of Load Data Instruction-—————p E M A

One Clock
Load Delay

Figure 2-21 1U Pipeline A to E Data Bypass

2.8.2 Move from HI/LO and CPO Delay

As indicated irFigure 2-19 not only load data, but also data from a move from the HI or LO register instruction
(MFHI/MFLO) and a move from CPO (MFCO) enter the IU-Pipeline in A stage. That is, data is not available in the
integer pipeline until early in the A stage. The A to E bypass is available for this data. But as for Loads the instruction
immediately after one of these instructions, can not use this data right away. If it does it will cause an instruction interlock
slip in E stage (se®ection 2.11, "Instruction Interlocks" on pagg.2&h interlock slip after an MFHI is illustrated in

Figure 2-22

MFHI (to R3) —p |

One Cycle | One Cycle | One Cycle | One Cycle | One Cycle | One Cycle | One Cycle
E M A w
ZData bypass from Ato E
| slip E M A

ADD (R4=R3+R5) —»

Figure 2-22 IU Pipeline Slip after MFHI

2.9 Interlock Handling

Smooth pipeline flow is interrupted when cache misses occur or when data dependencies are detected. Interruptions
handled using hardware, such as cache misses, are referrédtéolasks At each cycle, interlock conditions are

checked for all active instructions.

Table 2-4lists the types of pipeline interlocks for the 4K processor cores.

Table 2-4 Pipeline Interlocks

Interlock Type Sources Slip Stage
ITLB Miss (4Kc core) Instruction TLB | Stage
ICache Miss Instruction cache E Stage
Producer-consumer hazards E/M Stage
Instruction
Hardware Dependencies (MDU/TLB) E Stage

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

25

Chapter 2 Pipeline

Table 2-4 Pipeline Interlocks (Continued)

EJTAG breakpoint on store

VA match needing data value comparis

olp}

Store hitting in fill buffer

Interlock Type Sources Slip Stage
DTLB Miss (4Kc core) Data TLB M Stage
Load that misses in data cache
Multi-cycle cache Op
Sync
Data Cache Miss Store when write thru buffer full W Stage

In general, MIPS processors support two types of hardware interlocks:

+ Stalls, which are resolved by halting the pipeline

* Slips, which allow one part of the pipeline to advance while another part of the pipeline is held static

In the 4K processor cores, all interlocks are handled as slips.

2.10 Slip Conditions

On every clock internal logic determines whether each pipe stage is allowed to advance. These slip conditions propagate
backwards down the pipe. For example, if the M stage does not advance, neither will the E or | stages.

Slipped instructions are retried on subsequent cycles until they issue. The back end of the pipeline advances normally
during slips in an attempt to resolve the conflict. NOPS are inserted into the bubble in the pijgrliee2-23shows

an instruction cache miss.

Clock

Stage
|

26

1 2 3 4 5 6
@ @ O
v v v
Lt J e s Jus [ts] 16]
S S D
[ufefufo]ofu]
Lo] fu]of o]

(@ Cache miss detected
(2) critical word received

(®) Execute E-stage

Figure 2-23 Instruction Cache Miss Slip

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

2.11 Instruction Interlocks

2.11

Figure 2-23%hows a diagram of a two-cycle slip. In the first clock cycle, the pipeline is full and the cache miss is detected.
Instruction 10 is in the A stage, instruction 11 is in the M stage, instruction 12 is in the E stage, and instruction 13 is in the
| stage. The cache miss occurs in clock 2 when the |4 instruction fetch is attempted. 14 advances to the E-stage and waits

for the instruction to be fetched from main memory. In this example it takes two clocks (3 and 4) to fetch the 14

instruction from memory. Once the cache miss is resolved in clock 4 and the instruction is bypassed to the cache, the
pipeline is restarted, causing the 14 instruction to finally execute it's E-stage operations.

Instruction Interlocks

Most instructions can be issued at a rate of one per clock cycle. In some cases, in order to ensure a sequential
programming model, the issue of an instruction is delayed to ensure that the results of a prior instruction will be
available.Table 2-5details the instruction interactions that delay the issuance of an instruction into the processor

pipeline.

Table 2-5 Instruction Interlocks

Instruction Interlocks

Issue Delay (in

First Instruction Second Instruction Clock Cycles) Slip Stage

LB/LBU/LH/LHU/LL/LW/LWL/LWR Consumer of load data 1 E stage
Consumer of destination

MFCO register 1 E stage

MULT/MADD/MSUB 16bx32b 0 M stage
MFLO/MFHI

(4Kc and 4Km cores) 32bx32b 1 M stage

MUL 16bx32b 2 E stage
Consumer of target data

(4Kc and 4Km cores) 32bx32b 9 3 E stage

MUL 16bx32b 1 E stage
Non-Consumer of target datg

(4Kc and 4Km cores) 32bx32b u 9 2 E stage

MFHI/MFLO Consumer of target data 1 E stage

MULT/MADD/MSUB 16bx32b | \uLT/MUL/MADDIMSUB 0 E stage

(4Kc and 4Km cores) 32bx32b MTHI/MTLO/DIV 1 E stage
MULT/MUL/MADD/MSUB Until DIV

DIV IMTHI/MTLO/MFHI/MFL completes E stage
o/DIV P
MULT/MUL/MADD/MSUB :

MULT/MUL/MADD/MSUB/MTHI/MTLO/ Until 1st MDU op

MFHI/MFLO/DIV (4Kp core) M THIMTLOMFHIMFL completes E stage

MUL (4Kp core) Any Instruction Légmg)\fgés E stage

MFCO Consumer of target data 1 E stage

TLBWR/TLBWI (4Kc core) Load/Store/PREF/CACHE/ 2 E stage

TLBR (4Kc core) Cop0 op 1 E stage

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

27

Chapter 2 Pipeline

2.12 Instruction Hazards

In general, the core ensures that instructions are executed following a fully sequential program model. Each instruction
in the program sees the results of the previous instruction. There are some exceptions to this model. These exceptions
are referred to asstruction hazards

The following table shows the instruction hazards that exist in the core. The first and second instruction fields indicate
the combination of instructions that do not ensure a sequential programming model. The Spacing field indicates the
number of unrelated instructions (such as NOPs or SSNOPs) that should be placed between the first and second
instructions of the hazard in order to ensure that the effects of the first instruction are seen by the second instruction.
Entries in the table that are listed as 0 are traditional MIPS hazards which are not hazards on the 4K cores. (MT Compare
to Timer Interrupt cleared is system dependent since Timer Interrupt is an output of the core that can be returned to the
core on one of the SI_Int pins. This number is the minimum time due to going through the core’s I/O registers. Typical
implementations will not add any latency to this).

Table 2-6 Instruction Hazards

Instruction Hazards
Spacing
First Instruction Second Instruction (Instructions)
Instruction Fetch Matching Watch Register 2
Watch Register Write Load/Store Reference Matching Watch 0
Register
Instruction fetch affected by new page 3
mapping
TLBWITLBWR (4Kc core) Load/Store affected by new page mapping 0
TLBP/TLBR 0
TLBR (4Kc core) Move from Coprocessor Zero Register 0
Move to EntryHi (4Kc core) TLBWR/TLBWI/TLBP 1
Move to EntryLoO or EntryLol (4Kc core TLBWR/TLBWI 0
Move to EntryHi (4Kc core) Load/Store affected by new ASID 1
Move to EntryHi (4Kc core) Instruction fetch affected by new ASID 3
TLBP (4Kc core) Move from Coprocessor Zero Register 0
Move to Index Register TLBR/TLBWI (4Kc core) 1
Change to CU Bits in Status Register Coprocessor Instruction 1
Move to EPC, ErrorPC or DEPC ERET 1
Move to Status Register ERET 0
Set of IP in Cause Register Interrupted Instruction 3
Any Other Move to Coprocessor 0 Registgrs Instruction Affected by Change 2
CACHE instruction operating on 1$ Instruction fetch seeing new cache state 3
LL Move From LLAddr 1
Move to Compare Instruction not seeing TimerInterrupt 14
28 MIPS32® 4K™ Processor Core Family Software User’s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

2.12 Instruction Hazards

1. Thisis the minimum value. Actual value is system-dependent since it is a function of the sequential logic between the SI_TimerInt output
and the external logic which feeds SI_Timerint back into one of the SI_Int inputs.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 29

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 2 Pipeline

30 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 3

Memory Management

The MIPS32 4K processor cores contain a Memory Management Unit (MMU) that interfaces between the execution unit
and the cache controller. The MIPS32 4Kc cores contain a Translation Lookaside Buffer (TLB), while the MIPS32 4Km
and MIPS32 4Kp cores implement a simpler Fixed Mapping (FM) style MMU.

This chapter contains the following sections:

» Section 3.1, "Introduction”

» Section 3.2, "Modes of Operation"

» Section 3.3, "Translation Lookaside Buffer (4Kc Core Only)"

» Section 3.4, "Virtual to Physical Address Translation (4Kc Core)"

Section 3.5, "Fixed Mapping MMU (4Km & 4Kp Cores)"

Section 3.6, "System Control Coprocessor"

3.1 Introduction

The MMU in a 4K processor core will translate any virtual address to a physical address before a request is sent to the
cache controllers for tag comparison or to the bus interface unit for an external memory reference. This translation is a
very useful feature for operating systems when trying to manage physical memory to accommodate multiple tasks active
in the same memory, possibly on the same virtual address but of course in different locations in physical memory (4Kc
core only). Other features handled by the MMU are protection of memory areas and defining the cache protocol.

In the 4Kc processor core, the MMU is TLB based. The TLB consists of three address translation buffers: a 16 dual-entry
fully associative Joint TLB (JTLB), a 3-entry instruction micro TLB (ITLB), and a 3-entry data micro TLB (DTLB).
When an address is translated, the appropriate micro TLB (ITLB or DTLB) is accessed first. If the translation is not
found in the micro TLB, the JTLB is accessed. If there is a miss in the JTLB, an exception is taken.

Inthe 4Km and 4Kp processor cores, the MMU is based on a simple algorithm to translate virtual addresses into physical
addresses via a Fixed Mapping (FM) mechanism. These translations are different for various regions of the virtual
address space (useg/kuseg, kseg0, ksegl, kseg2/3).

Figure 3-1shows how the memory management unit interacts with cache accesses in the 4Kc cdreguhiie 2
shows how the memory management unit interacts with caches accesses for the 4Km and 4Kp cores. In the 4Km and
4Kp cores, note that the FM MMU replaces the ITLB, DTLB and JTLB found in the 4Kc core.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 31

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 3 Memory Management

Instruction
Tag (IPA
Cache g (IPA)
RAM Instruction
Physical
Instruction Address
Virtual Address q ITLB (IPA) C
> omparator
(IVA) P
VA A Entry Instruction
Hit/Miss
JTLB
Data
Entry Physical Data
Data Address l—’ Hit/Miss
Virtual Address (DPA)
(DVA) ——> DTLB Comparator
A

Data Tag (DPA)

Cache

RAM

Figure 3-1 Address Translation During a Cache Access in the 4Kc Core

Instruction
Tag (IPA
Cache g (IPA)
RAM Instruction
Physical
Instruction Address
Virtual Address . (IPA)
> Comparator
(IVA) P
Instruction
Hit/Miss
FM MMU
Data
Physical Dgta _
Data Address |—>Hlt/Mlss
Virtual Address (DPA)
(DVA) —e Comparator
Data Tag (DPA)
Cache
RAM

Figure 3-2 Address Translation During a Cache Access in the 4Km and 4Kp cores

3.2 Modes of Operation

All The 4K processor cores supports three modes of operation:

32 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

3.2 Modes of Operation

» User mode

» Kernel mode

* Debug mode

User mode is most often used for application programs. Kernel mode is typically used for handling exceptions and

privileged operating system functions, including CPO management and I/O device accesses. Debug mode is used for
software debugging and most likely occurs within a software development tool.

The address translation performed by the MMU depends on the mode in which the processor is operating.

3.2.1 Virtual Memory Segments

The Virtual memory segments are different depending on the mode of opeFitjare 3-3shows the segmentation for
the 4 GByte (22 bytes) virtual memory space addressed by a 32-bit virtual address, for the three modes of operation.

The core enters Kernel mode both at reset and when an exception is recognized. While in Kernel mode, software has
access to the entire address space, as well as all CPO registers. User mode accesses are limited to a subset of the virtual
address space (0x0000_0000 to 0x7FFF_FFFF) and can be inhibited from accessing CPO functions. In User mode,
virtual addresses 0x8000_ 0000 to OxFFFF_FFFF are invalid and cause an exception if accessed.

Debug mode is entered on a debug exception. While in Debug mode, the debug software has access to the same address
space and CPO registers as for Kernel mode. In addition, while in Debug mode the core has access to the debug segment
dseg. This area overlays part of the kernel segment kseg3. dseg access in Debug mode can be turned on or off, allowing
full access to the entire kseg3 in Debug mode, if so desired.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 33

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 3 Memory Management

34

Virtual Address User Mode Kernel Mode Debug Mode
OXFFFF_FFFF =
0xF400 0000 . ..-=-=="""7"°°° ---
OXFSFF_FFFF emme kseg3 ey dseg

- PR kseg3
0XF200.0000 .7t et
OXF1FF_FFFF e
OxEQ0_0000 ___.-" kseg2 kseg2
OXDFFF_FFFF .
0xC000 0000 _.-="""

OXBFFF_FFFF ksegl ksegl
0xA000_0000----""7"77°77 T
OX9FFF_FFFF
kseg0 kseg0
0x8000_0000 __
OX7FFF_FFFF
useg kuseg kuseg
0x0000,0000, __ A ...

Figure 3-3 4K Processor Core Virtual Memory Map

Each of the segments showrFigure 3-3is either mapped or unmapped. The following two subsections explain the
distinction. TherSection 3.2.2, "User ModeSection 3.2.3, "Kernel ModedndSection 3.2.4, "Debug Modespecify
which segments are actually mapped and unmapped.

3.2.1.1 Unmapped Segments

An unmapped segment does not use the TLB (4Kc core) or the FM (4Km and 4Kp cores) to translate from virtual to
physical address. Especially after reset it is important to have unmapped memory segments, because the TLB is not yet
programmed to perform the translation.

Unmapped segments have a fixed simple translation from virtual to physical address. This is much like the translations
the FM provides for the 4Km and 4Kp cores, but we will still make the distinction.

Except for kseg0, unmapped segments are always uncached. The cacheability of ksegO is set in the KO field of the CPO
registerConfig(seeSection 5.2.15, "Config Register (CPO Register 16, Select 0)"

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

3.2 Modes of Operation

3.2.1.2 Mapped Segments

A mapped segment does use the TLB (4Kc core) or the FM (4Km and 4Kp cores) to translate from virtual to physical
address.

For the 4Kc core, the translation of mapped segments is handled on a per-page basis. Included in this translation is
information defining whether the page is cacheable or not, and the protection attributes that apply to the page.

For the 4Km and 4Kp cores, the mapped segments have a fixed translation from virtual to physical address. The

cacheability of the segment is defined in the CPO register Config, fields K23 and K3¢¢tee 5.2.15, "Config
Register (CPO Register 16, Select)0Write protection of segments is not possible during FM translation.

3.2.2 User Mode

In user mode, a single 2 GByte’ tdytes) uniform virtual address space called the user segment (useg) is available.
Figure 3-4shows the location of user mode virtual address space.

32 hit
OxFFFF_FFFF
Address
Error
0x8000_0000
OX7FFF_FFFF
2GB
Mapped useg
0x0000_0000

Figure 3-4 User Mode Virtual Address Space

The user segment starts at address 0x0000_0000 and ends at address Ox7FFF_FFFF. Accesses to all other addresses
cause an address error exception.

The processor operates in User mode wheiStatisregister contains the following bit values:

s UM=1
*« EXL=0
*« ERL=0

In addition to the above values, the DM bit in Bebugregister must be 0.

Table 3-1lists the characteristics of the useg User mode segments.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 35

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 3 Memory Management

36

Table 3-1 User Mode Segments

Status Register
Bit Value Segment
Address ¢
Bit Value EXL | ERL | UM Name Address Range Segment Size|
32-hit 0x0000_0000 -->
— 2 GByte
0 0 1 useg 31
A(31)=0 OX7FFF_FFFF (2°" bytes)

All valid user mode virtual addresses have their most-significant bit cleared to 0, indicating that user mode can only
access the lower half of the virtual memory map. Any attempt to reference an address with the most-significant bit set
while in user mode causes an address error exception.

The system maps all referencesuisegthrough the TLB (4Kc core) or FM (4Km and 4Kp cores). For the 4Kc core, the
The virtual address is extended with the contents of the 8-bit ASID field to form a unique virtual address before
translation. Bit settings within the TLB entry for the page determine the cacheability of a reference. For the 4Km and
4Kp cores, the cacheability is set via the KU field of the CBidfigregister.

3.2.3 Kernel Mode

The processor operates in Kernel mode when the DM bit ilD@lgugregister is 0 and th8tatusregister contains one
or more of the following values:

s UM=0
* ERL=1
s EXL=1

When a non-debug exception is detected, EXL or ERL will be set and the processor will enter Kernel mode. At the end
of the exception handler routine, an Exception Return (ERET) instruction is generally executed. The ERET instruction
jumps to the Exception PC, clears ERL, and clears EXL if ERL=0. This may return the processor to User mode.

Kernel mode virtual address space is divided into regions differentiated by the high-order bits of the virtual address, as
shown inFigure 3-5 Also, Table 3-2lists the characteristics of the Kernel mode segments.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

3.2 Modes of Operation

OXFFFF_FFFF

O0xE000_0000

Kernel virtual address space
Mapped, 512MB

kseg3

OXDFFF_FFFF

0xC000_0000

Kernel virtual address space
Mapped, 512MB

kseg2

OXBFFF_FFFF

0XA000_0000
OX9FFF_FFFF

Kernel virtual address space
Unmapped, Uncached, 512MB

ksegl

0x8000_0000

Kernel virtual address space
Unmapped, 512MB

kseg0

OX7FFF_FFFF

0x0000_0000

Mapped, 2048MB

kuseg

Figure 3-5 Kernel Mode Virtual Address Space

Table 3-2 Kernel Mode Segments

Status Register Is
One of These Values

Address Bit Segment Segment
Values UM | EXL |ERL Name Address Range Size
0x0000_0000
A(BL) =0 kuseg through (%S?Eyttgss)
OX7FFF_FFFF y
(UM=0 0x8000_0000 512 MBvtes
A(31:29) = 109 or kseg0 through (229 b és)
OX9FFF_FFFF y
BXL=1 0xA000_0000
X,
A(31:29) = 10% or ksegl through 5(%%9'\653256)3
OXBFFF_FFFF Y
ERL = 1)
0xC000_0000
A(31:29) = 119 and kseg2 through 5&%9'\883/;;5
_ OXDFFF_FFFF Y
DM =0 -
OxE000_0000
A(31:29) = 113 kseg3 through %%J‘g?g’e‘g)s

OXFFFF_FFFF

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

37

Chapter 3 Memory Management

38

3.2.3.1 Kernel Mode, User Space (kuseg)

In Kernel mode, when the most-significant bit of the virtual address (A31) is cleared, the 32-bit kuseg virtual address
space is selected and covers the fili¥tes (2 GByte) of the current user address space mapped to addresses
0x0000_0000 - 0x7FFF_FFFF. For the 4Kc core, the virtual address is extended with the contents of the 8-bit ASID field
to form a unique virtual address.

When ER. = 1 in theStatugegister, the user address region becomés-agte unmapped and uncached address space.
While in this setting, the kuseg virtual address maps directly to the same physical address, and does notinclude the ASID
field.

3.2.3.2 Kernel Mode, Kernel Space 0 (kseg0)

In Kernel mode, when the most-significant three bits of the virtual address age3MDit ksegO virtual address space

is selected; it is theZQ—byte (512-MByte) kernel virtual space located at addresses 0x8000_0000 - Ox9FFF_FFFF.
References to kseg0 are unmapped; the physical address selected is defined by subtracting 0x8000_0000 from the virtual
address. The KO field of ti@onfigregister controls cacheability.

3.2.3.3 Kernel Mode, Kernel Space 1 (ksegl)

In Kernel mode, when the most-significant three bits of the 32-bit virtual address g5e8PMit kseg1l virtual address

space is selected. kseg1l is tﬁ%ﬁyte (512-MByte) kernel virtual space located at addresses 0XxA000_0000 -
OxBFFF_FFFF. References to ksegl are unmapped; the physical address selected is defined by subtracting
0xA000_0000 from the virtual address. Caches are disabled for accesses to these addresses, and physical memory (or
memory-mapped I/O device registers) are accessed directly.

3.2.3.4 Kernel Mode, Kernel Space 2 (kseg2)

In Kernel mode, when UM =0, ERL = 1, or EXL = 1 in ®&tusregister, and DM = 0 in theebugregister, and the
most-significant three bits of the 32-bit virtual address arg, BEbit kseg?2 virtual address space is selected. This
229-byte (512-MByte) kernel virtual space is located at physical addresses 0xC000_0000 - OxXDFFF_FFFF in the 4Km
and 4Kp processor cores. This space is mapped through the TLB in the 4Kc processor core.

3.2.3.5 Kernel Mode, Kernel Space 3 (kseg3)

In Kernel mode, when the most-significant three bits of the 32-bit virtual address arthé Kseg3 virtual address
space is selected. Thi§92byte (512-MByte) kernel virtual space is located at physical addresses 0xEO00_0000 -
OXFFFF_FFFF in the 4Km and 4Kp processor cores. This space is mapped through the TLB in the 4Kc processor core.

3.2.4 Debug Mode

Debug mode address space is identical to Kernel mode address space with respect to mapped and unmapped areas,
except for kseg3. In kseg3, a debug segment dseg co-exists in the virtual address range 0xFF20_0000 to OxFF3F_FFFF.
The layout is shown ifigure 3-6

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

3.2 Modes of Operation

OXFFFF_FFFF
O0xFF40_0000 _

OxFF20_0000 _ | 9sed

ksegl

kseg0 Unmapped

Mapped if mapped in Kernel Mode

0x0000_0000

Figure 3-6 Debug Mode Virtual Address Space

The dseg is sub-divided into the dmseg segment at 0xFF20_0000 to OxFF2F_FFFF which is used when the probe
services the memory segment, and the drseg segment at 0OxFF30_0000 to OxFF3F_FFFF which is used when memory
mapped debug registers are accessed. The subdivision and attributes for the segments aréatfiev@a3dn

Accesses to memory that would normally cause an exception if tried from kernel mode cause the core to re-enter debug
mode via a debug mode exception. This includes accesses usually causing a TLB exception (4Kc core only), with the
result that such accesses are not handled by the usual memory management routines.

The unmapped kseg0 and ksegl segments from kernel mode address space are available from debug mode, which allows
the debug handler to be executed from uncached and unmapped memory.

Table 3-3 Physical Address and Cache Attributes for dseg, dmseg, and drseg Address Spaces

Segment | Sub-Segment Cache
Name Name Virtual Address | Generates Physical Address Attribute

O0xFF20_0000

dmseg maps to addresses
0x0_0000-0xF_FFFFin EJTAG
OXFF2F FFFF probe memory space.
dseg - Uncached
O0xFF30_0000

dmseg through

drseg maps to the breakpoint]
drseg through registers Ox0_0000 - OxF_FFFF

OXFF3F_FFFF

3.2.4.1 Conditions and Behavior for Access to drseg, EJTAG Registers

The behavior of CPU access to the drseg address range at 0xFF30_0000 to OxFF3F_FFFF is determined as shown in

Table 3-4
Table 3-4 CPU Access to drseg Address Range
LSNM bitin Debug
Transaction register Access
Load / Store 1 Kernel mode address space (kseg3)
Fetch Don't care
drseg, see comments below
Load / Store 0
MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 39

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 3 Memory Management

Debug software is expected to read the debug control register (DCR) to determine which other memory mapped registers
exist in drseg. The value returned in response to a read of any unimplemented memory mapped register is unpredictable,
and writes are ignored to any unimplemented register in the drseg. R€feapiier 9, “EJTAG Debug Support,” on page

121 for more information on the DCR.

The allowed access size is limited for the drseg. Only word size transactions are allowed. Operation of the processor is
undefined for other transaction sizes.

3.2.4.2 Conditions and Behavior for Access to dmseg, EJTAG Memory
The behavior of CPU access to the dmseg address range at OxFF20_0000 to OxFF2F_FFFF is deteTaine 5/

Table 3-5 CPU Access to dmseg Address Range

ProbEn bit in LSNM bit in
Transaction DCR register Debug register Access
Load / Store Don't care 1 Kernel mode address space (kseg3)
Fetch 1 Don't care
dmseg
Load / Store 1 0
Fetch 0 Don't care
See comments below
Load / Store 0 0

The case with access to the dmseg when the ProbEn bit in the DCR register is 0 is not expected to happen. Debug
software is expected to check the state of the ProbEn bit in DCR register before attempting to reference dmseg. If such

a reference does happen, the reference hangs until it is satisfied by the probe. The probe can not assume that there will
never be a reference to dmseg if the ProbEn bit in the DCR register is 0 because there is an inherent race between the
debug software sampling the ProbEn bit as 1 and the probe clearing it to O.

3.3 Translation Lookaside Buffer (4Kc Core Only)

40

The following subsections discuss the TLB memory management scheme used in the 4Kc processor core. The TLB
consists of one joint and two micro address translation buffers:

16 dual-entry fully associative Joint TLB (JTLB)
» 3-entry fully associative Instruction micro TLB (ITLB)

 3-entry fully associative Data micro TLB (DTLB)

3.3.1 Joint TLB

The 4Kc core implements a 16 dual-entry, fully associative Joint TLB that maps 32 virtual pages to their corresponding
physical addresses. The JTLB is organized as 16 pairs of even and odd entries containing pages that range in size from
4-KBytes to 16-MBytes into the 4-GByte physical address space. The purpose of the TLB is to translate virtual addresses
and their corresponding Address Space ldentifier (ASID) into a physical memory address. The translation is performed
by comparing the upper bits of the virtual address (along with the ASID bits) against each of the entri¢sgptnton

of the JTLB structure. Because this structure is used to translate both instruction and data virtual addresses, it is referred
to as a “joint” TLB.

The JTLB is organized in page pairs to minimize its overall size. Each vidgaintry corresponds to two physical data
entries, an even page entry and an odd page entry. The highest order virtual address bit not participating in the tag

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

3.3 Translation Lookaside Buffer (4Kc Core Only)

comparison is used to determine which of the two data entries is used. Since page size can vary on a page-pair basis, the
determination of which address bits participate in the comparison and which bit is used to make the even-odd
determination must be determined dynamically during the TLB lookup.

Figure 3-7show the contents of one of the 16 dual-entries in the JTLB.

PageMask[24:13]

Tag Entry —
VPN2[31:13] G ASID[7:0]
19 1 8
PFNO[31:12] C0[2:0] E
Data Entries
PFN1[31:12] C1[2:0] V1
20 3 1 1

Figure 3-7 JTLB Entry (Tag and Data)

Table 3-6andTable 3-7explain each of the fields in a JTLB entry.

Table 3-6 TLB Tag Entry Fields

Field Name Description

Page Mask Value. The Page Mask defines the page size by masking the
appropriate VPN2 bits from being involved in a comparison. It is also used to

determine which address bit is used to make the even-odd page (PFNO-HFN1)
determination. See the table below.

PageMask[11:0] Page Size Even/Odd Bank
Select Bit
0000_0000_0000 4KB VAddr[12]
0000_0000_0011 16KB VAddr[14]
PageMask[24:13] 0000_0000_1111 64KB VAddI[16]
0000_0011_1111 256KB VAddr[18]
0000_1111_1111 iMB VAddr[20]
0011_1111_ 1111 4MB VAddr[22]
1111 1111 1111 16MB VAddr{24]

The PageMask column above show all the legal values for PageMask. Be¢ause
each pair of bits can only have the same value, the physical entry in the JTLB
will only save a compressed version of the PageMask using only 6 bits. This is

however transparent to software, which will always work with a 12 bit field.

Virtual Page Number divided by 2. This field contains the upper bits of the
VPN2[31:13] virtual page number. Because it represents a pair of TLB pages, itis dividgd by

' 2. Bits 31:25 are always included in the TLB lookup comparison. Bits 24113
are included depending on the page size, defined by PageMask.

G Global Bit. When set, indicates that this entry is global to all processes and/or
threads and thus disables inclusion of the ASID in the comparison.

ASID[7:0] Address Space Identifier. Identifies which process or thread this TLB entry is
) associated with.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 41
Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 3 Memory Management

Table 3-7 TLB Data Entry Fields

Field Name Description

Physical Frame Number. Defines the upper bits of the physical address.
For page sizes larger than 4 KBytes, only a subset of these bits is actually
used.

PFNO[31:12],
PFN1[31:12]

Cacheability. Contains an encoded value of the cacheability attributeg and
determines whether the page should be placed in the cache or not. The field
is encoded as follows:

C[2:0] Coherency Attribute
000 Maps to entry 011b*
001 Maps to entry 011b*
010 Uncached

CO0[2:0],
Cl[[Z:O]] 011 Cacheable, noncoherent, write-through,
no write allocated

100 Maps to entry 011b*
101 Maps to entry 011b*
110 Maps to entry 011b*
111 Maps to entry 010b*

Note: * These mappings are not used on the 4K prqces-
sor cores but do have meaning in other M|PS

“Dirty” or Write-enable Bit. Indicates that the page has been written,
and/or is writable. If this bit is set, stores to the page are permitted. If the
bit is cleared, stores to the page cause a TLB Modified exception.

Do,
D1

Valid Bit. Indicates that the TLB entry and, thus, the virtual page mappjing
are valid. If this bit is set, accesses to the page are permitted. If the bit is
cleared, accesses to the page cause a TLB Invalid exception.

Vo,
V1

In order to fill an entry in the JTLB, software executes a TLBWI or TLBWR instructiong8et@n 3.4.3, "TLB
Instructions" on page 4.7Prior to invoking one of these instructions, several CPO registers must be updated with the
information to be written to a TLB entry.

» PageMask is set in the CPPAgeMaskegister.

* VPN2 and ASID are set in the CEDtryHi register.

* PFNO, CO0, DO, VO and G bit are set in the @&P@ryLoOregister.

* PFN1, C1, D1, V1 and G bit are set in the @&P@ryLolregister.

Note that the global bit “G” is part of botintryLoOandEntryLol The resulting “G” bit in the JTLB entry is the logical

AND between the two fields iBntryLoOandEntryLol Please refer tG€hapter 5, “CP0O Registers,” on pagef@
further details.

The address space identifier (ASID) helps to reduce the frequency of TLB flushing on a context switch. The existence

of the ASID allows multiple processes to exist in both the TLB and instruction caches. The ASID value is stored in the
EntryHi register and is compared to the ASID value of each entry.

3.3.2 Instruction TLB

The ITLB is a small 3-entry, fully associative TLB dedicated to performing translations for the instruction stream. The
ITLB only maps 4-Kbyte pages/sub-pages.

42 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

3.4 Virtual to Physical Address Translation (4Kc Core)

The ITLB is managed by hardware and is transparent to software. If a fetch address cannot be translated by the ITLB,
the JTLB is accessed to attempt to translate it in the following clock cycle. If successful, the translation information is
copied into the ITLB. The ITLB is then re-accessed and the address will be successfully translated. This results in an
ITLB miss penalty of at least 2 cycles (if the JTLB is busy with other operations, it may take additional cycles).

3.3.3 Data TLB

The DTLB is a small 3-entry, fully associative TLB which provides a faster translation for Load/Store addresses than is
possible with the JTLB. The DTLB only maps 4-Kbyte pages/sub-pages.

Like the ITLB, the DTLB is managed by hardware and is transparent to software. Unlike the ITLB, when translating
Load/Store addresses, the JTLB is accessed in parallel with the DTLB. If there is a DTLB miss and a JTLB hit, the DTLB
can be reloaded that cycle. The DTLB is then re-accessed and the translation will be successful. This parallel access
reduces the DTLB miss penalty to 1 cycle.

3.4 Virtual to Physical Address Translation (4Kc Core)

Converting a virtual address to a physical address begins by comparing the virtual address from the processor with the
virtual addresses in the TLB. There is a match when the virtual page number (VPN) of the address is the same as the
VPN field of the entry, and either:

» The Global (G) bit of both the even and odd pages of the TLB entry are set, or
» The ASID field of the virtual address is the same as the ASID field of the TLB entry

This match is referred to as a TL#!. If there is no match, a TLBnissexception is taken by the processor and software
is allowed to refill the TLB from a page table of virtual/physical addresses in memory.

Figure 3-8shows the logical translation of a virtual address into a physical address.
In this figure the virtual address is extended with an 8-bit address-space identifier (ASID), which reduces the frequency

of TLB flushing during a context switch. This 8-bit ASID contains the number assigned to that process and is stored in
the CPCENtryHi register.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 43

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 3 Memory Management

44

Virtual Address
1.Virtual address (VA) represented by

the virtual page number (VPN) is G ASID VPN Offset
compared with tag in TLB.

2. Ifthere is a match, the page frame ASID VPN2
number (PFNO or PFN1)
representing the upper bits of the
physical address (PA) is output from
the TLB.

TLB
Entry

3. The Offset, which does not pass
through the TLB, is then concatenated PFN | Offset I
with the PFN.

Physical Address

Figure 3-8 Overview of a Virtual-to-Physical Address Translation in the 4Kc Core

If there is a virtual address match in the TLB, the physical frame number (PFN) is output from the TLB and concatenated
with the Offset to form the physical address. Thdfsetrepresents an address within the page frame space. As shown in
Figure 3-8 theOffsetdoes not pass through the TLB.

Figure 3-%hows a flow diagram of the 4Kc core address translation process. The top portion of the figure shows a virtual
address for a 4-KByte page size. The width of@fésetis defined by the page size. The remaining 20 bits of the address
represent the virtual page number (VPN), that index the 1M-entry page table.

The bottom portion oFigure 3-9shows the virtual address for a 16-MByte page size. The remaining 8 bits of the address
represent the VPN, that index the 256-entry page table.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

3.4 Virtual to Physical Address Translation (4Kc Core)

Virtual address with 1M (22°) 4-KByte pages

39 32 31 20 bits = 1M pages 12 11 0
ASID VPN Offset
AL J
Virtual-to-physical Offset passed unchanged
translation in TLB to physical memory.
Bit 31 of the virtual address
selects user and kernel Y 32-bit Physical Address
address spaces. 31 0
| PFNO/1 | Offset I
Virtuelil-to-physical Offset passed unchanged
translation in TLB to physical memory.
A e ’
A A
A\l ™
-~
39 32 31 24 23 0
ASID VPN Offset

8 bits = 256 pages
Virtual Address with 256 (28)16-MByte pages

Figure 3-9 32-bit Virtual Address Translation

3.4.1 Hits, Misses, and Multiple Matches

Each JTLB entry contains a tag and two data fields. If a match is found, the upper bits of the virtual address are replaced
with the page frame number (PFN) stored in the corresponding entry in the data array of the JTLB. The granularity of
JTLB mappings is defined in terms of TLB pages. The 4Kc core JTLB supports pages of different sizes ranging from
4-KB to 16-MB in powers of 4. If a match is found, but the entry is invalid (i.e., the V bit in the data field is 0), a TLB
Invalid exception is taken.

If no match occurs (TLB miss), an exception is taken and software refills the TLB from the page table resident in
memory.Figure 3-10show the translation and exception flow of the TLB.

Software can write over a selected TLB entry or use a hardware mechanism to write into a random emgndd a
register selects which TLB entry to use on a TLBWR. This register decrements almost every cycle, wrapping to the
maximum once it’s value is equal to thiéredregister. Thus, TLB entries below théiredvalue cannot be replaced by

a TLBWR allowing important mappings to be preserved. In order to reduce the possibility for a livelock situation, the
Randonregister includes a 10b LFSR that introduces a pseudo-random perturbation into the decrementing.

The 4Kc core implements a TLB write-compare mechanism to ensure that multiple TLB matches do not occur. On the
TLB write operation, the VPN2 field to be written is compared with all other entries in the TLB. If a match occurs, the
4Kc core takes a machine-check exception, sets the TS bit in th&@RGregister, and aborts the write operation. For
further details on exceptions, please refeCtmpter 4, “Exceptions,” on page Sthere is a hidden bitin each TLB entry

that is cleared on a ColdReset. This bit is set once the TLB entry is written and is included in the match detection.
Therefore, uninitialized TLB entries will not cause a TLB shutdown.

Note: This hidden initialization bit leaves the entire JTLB invalid after a ColdReset, eliminating the need to flush the
TLB. But, to be compatible with other MIPS processors, it is recommended that software initialize all TLB entries with
unique tag values and V bits cleared before the first access to a mapped location.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 45
Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 3 Memory Management

3.4.2 Page Sizes and Replacement Algorithm

To assist in controlling both the amount of mapped space and the replacement characteristics of various memory regions,
the 4Kc core provides two mechanisms. First, the page size can be configured, on a per entry basis, to map page sizes
ranging from 4 KByte to 16 MByte (in multiples of 4). The CP0O PageMask register is loaded with the desired page size,
which is then entered into the TLB when a new entry is written. Thus, operating systems can provide special-purpose
maps. For example, a typical frame buffer can be memory mapped with only one TLB entry.

The second mechanism controls the replacement algorithm when a TLB miss occurs. To select a TLB entry to be written
with a new mapping, the 4Kc core provides a random replacement algorithm. However, the processor also provides a
mechanism whereby a programmable number of mappings can be locked into the TLB via the CPO Wired register, thus
avoiding random replacement. Please refe3¢ation 5.2.6, "Wired Register (CPO Register 6, Select 0)" on pafm 82
further details.

For valid address Virtual Address (Input)

space, see the section
describing Modes of

operation in this
chapter.

User No

Address? ~

Unmapped\ Ye
Address

No

Exception

ksegO/kseg
Address

No

<
-

Y

VP
Match?

Yes+ Global

\J

No

Y

ves Y Y

Noncacheable TLB TLB
Invalid Refill

/

TLB
Modified

Access
Cache

Physical Address (Output).

Figure 3-10 TLB Address Translation Flow in the 4Kc Processor Core

46 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

3.5 Fixed Mapping MMU (4Km & 4Kp Cores)

3.4.3 TLB Instructions

Table 3-8lists the 4Kc core’s TLB-related instructions. RefeGbapter 11, “MIPS32 4K Processor Core Instructions,”
on page 16%r more information on these instructions.

Table 3-8 TLB Instructions

Op Code Description of Instruction
TLBP Translation Lookaside Buffer Probe
TLBR Translation Lookaside Buffer Read

TLBWI Translation Lookaside Buffer Write Index

TLBWR Translation Lookaside Buffer Write Random

3.5 Fixed Mapping MMU (4Km & 4Kp Cores)

The 4Km and 4Kp cores implement a simple Fixed Mapping (FM) memory management unit that is smaller than the
4Kc TLB and more easily synthesized. Like the 4Kc TLB, the FM performs virtual-to-physical address translation and
provides attributes for the different memory segments. Those memory segments which are unmapped in the 4Kc TLB
implementation (kseg0 and ksegl) are translated identically by the FM in the 4Km and 4Kp MMU.

The FM also determines the cacheability of each segment. These attributes are controlled via btsnfigregister.
Table 3-9shows the encoding for the K23 (bits 30:28), KU (bits 27:25) and KO (bits 2:0) Gbtifegregister.

Table 3-9 Cache Coherency Attributes

Config Register Fields
K23, KU, and KO Cache Coherency Attribute
0,1,3,4,5,6 Cacheable, noncoherent, write through, no write allocate
2,7 Uncached

In the 4Km and 4Kp cores, no translation exceptions can be taken, although address errors are still possible.

Table 3-10 Cacheability of Segments with Block Address Translation

Virtual Address
Segment Range Cacheability

0x0000_0000- Controlled by the KU field (bits 27:25) of théonfigregister. Refer to

useg/kuseg OX7FFF_FFFF Table 3-9for the encoding.

0x8000_0000- Controlled by the KO field (bits 2:0) of tl@onfigregister. Se@able

ksegO :
9 OX9FFF_FFFF 3-9for the encoding.

0xA000_0000-
ksegl Always uncacheable
OxBFFF_FFFF

kseq? 0xC000_0000- Controlled by the K23 field (bits 30:28) of tionfigregister. Refer to
d OXDFFF_FFFF Table 3-9for the encoding.
MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 47

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 3 Memory Management

Table 3-10 Cacheability of Segments with Block Address Translation

Segment

Virtual Address

Cacheability

kseg3

0XE000_0000-
OXFFFF_FFFF

Controlled by K23 field (bits 30:28) of tlgonfigregister. Refer to
Table 3-9for the encoding.

The FM performs a simple translation to map from virtual addresses to physical addresses. This mapping is shown in
Figure 3-11When ERL=1, useg and kuseg become unmapped and uncached. The ERL behavior is the same as if there

was a JTLB. The ERL mapping is showrFigure 3-12

The ERL bitis usually never asserted by software. Itis asserted by hardware after a Reset, SoftReset or NMI. Please see

Section 4.6, "Exceptions” on page 68 further information on exceptions.

Virtual Address

Physical Address

kseg3 kseg3
0XxE000_0000 > 0OXE000_0000
kseg2 kseg2
0xC000_0000 > 0xC000_0000
ksegl
0XA000_0000
kseg0
0x8000_0000
useg/kuseg
useg/kuseg 0x4000_0000
reserved
0x2000_0000
kseg0O/ksegl
0x0000_0000 0x0000_0000

Figure 3-11 FM Memory Map (ERL=0) in the 4Km and 4Kp Processor Cores

48

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

3.6 System Control Coprocessor

Virtual Address Physical Address

kseg3 kseg3

OXEO0O 0000 OxE000_0000
= -

kseg2 kseg2
0xC000_0000 > 0xC000_0000

ksegl
0xA000_0000 T

kseg0
0x8000_0000 0x8000_0000

useg/kuseg useg/kuseg

0x2000_0000

ksegO/ksegl
0x0000_0000

0x0000_0000 o

Figure 3-12 FM Memory Map (ERL=1) in the 4Km and 4Kp Processor Cores

3.6 System Control Coprocessor

The System Control Coprocessor (CP0) is implemented as an integral part of the 4K processor cores and supports
memory management, address translation, exception handling, and other privileged operations. Certain CPO registers are
used to support memory management. Ref€@tapter 5, “CP0 Registers,” on pageféBmore information on the CP0

register set.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 49
Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 3 Memory Management

50 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 4

Exceptions

All The MIPS32 4K processor cores receives exceptions from a number of sources, including translation lookaside
buffer (TLB) misses (4Kc core only), arithmetic overflows, I/O interrupts, and system calls. When the CPU detects one
of these exceptions, the normal sequence of instruction execution is suspended and the processor enters kernel mode.

In kernel mode, the core disables interrupts and forces execution of a software exception processor (called a handler)
located at a fixed address. The handler saves the context of the processor, including the contents of the program counter,
the current operating mode, and the status of the interrupts (enabled or disabled). This context is saved so it can be
restored when the exception has been serviced.

When an exception occurs, the core load€theeption Program Count€dEPC) register with a location where

execution can restart after the exception has been serviced. The restart locatidBRCttegister is the address of the
instruction that caused the exception or, if the instruction was executing in a branch delay slot, the address of the branch
instruction immediately preceding the delay slot. To distinguish between the two, software must read the BD bit in the
CPOCauseregister.

This chapter contains the following sections:

» Section 4.1, "Exception Conditions"

» Section 4.2, "Exception Priority"

» Section 4.3, "Exception Vector Locations"

» Section 4.4, "General Exception Processing"

* Section 4.5, "Debug Exception Processing"

» Section 4.6, "Exceptions"

» Section 4.7, "Exception Handling and Servicing Flowcharts"

4.1 Exception Conditions

When an exception condition occurs, the relevant instruction and all those that follow it in the pipeline are cancelled.
Accordingly, any stall conditions and any later exception conditions that may have referenced this instruction are
inhibited; there is no benefit in servicing stalls for a cancelled instruction.

When an exception condition is detected on an instruction fetch, the core aborts that instruction and all instructions that
follow. When this instruction reaches the W stage, the exception flag causes it to write various CPO registers with the
exception state, change the current program counter (PC) to the appropriate exception vector address, and clear the
exception bits of earlier pipeline stages.

This implementation allows all preceding instructions to complete execution and prevents all subsequent instructions
from completing. Thus, the value in tB#>C (ErrorEPCfor errors oiDEPCfor debug exceptions) is sufficient to restart
execution. It also ensures that exceptions are taken in the order of execution; an instruction taking an exception may itself
be killed by an instruction further down the pipeline that takes an exception in a later cycle.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 51

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions

4.2 Exception Priority

Table 4-1lists all possible exceptions and the relative priority of each, highest to lowest. Several of these exceptions can
happen simultaneously, in that event the exception with the highest priority is the one taken.

Table 4-1 Priority of Exceptions

Exception Description
Reset Assertion of SI_ColdReset signal.
Soft Reset Assertion of SI_Reset signal.
DSS EJTAG Debug Single Step.
DINT EJTAG Debug Interrupt. Caused by the assertion of the external EJ_DINT
input, or by setting the EjtagBrk bit in tB&CRregister.
NMI Asserting edge of SI_NMI signal.
Machine Check TLB write that conflicts with an existing entry (4Kc core).
Interrupt Assertion of unmasked HW or SW interrupt signal.
Deferred Watch Deferred Watch (unmasked by K|DM->!(K|DM) transition).
DIB EJTAG debug hardware instruction break matched.
WATCH A reference to an address in one of the watch registers (fetch).
Fetch address alignment error.
AdEL
User mode fetch reference to kernel address.
Fetch TLB miss (4Kc core).
TLBL _ _
Fetch TLB hit to page with V=0 (4Kc core).
IBE Instruction fetch bus error.
DBp EJTAG Breakpoint (execution of SDBBP instruction).
Sys Execution of SYSCALL instruction.
Bp Execution of BREAK instruction.
CpuU Execution of a coprocessor instruction for a coprocessor that is not enabled.
RI Execution of a Reserved Instruction.
Ov Execution of an arithmetic instruction that overflowed.
Tr Execution of a trap (when trap condition is true).
EJTAG Data Address Break (address only) or EJTAG Data Value Break|on
DDBL / DDBS Store (address and value).
WATCH A reference to an address in one of the watch registers (data).
Load address alignment error.
AdEL
User mode load reference to kernel address.
Store address alignment error.
AdES
User mode store to kernel address.
52 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

4.3 Exception Vector Locations

Table 4-1 Priority of Exceptions (Continued)

Exception Description
Load TLB miss (4Kc core).
TLBL
Load TLB hit to page with V=0 (4Kc core).
Store TLB miss (4Kc core).
TLBS
Store TLB hit to page with V=0 (4Kc core).
TLB Mod Store to TLB page with D=0 (4Kc core).
DBE Load or store bus error.
DDBL EJTAG data hardware breakpoint matched in load data compare.

4.3 Exception Vector Locations

The Reset, Soft Reset, and NMI exceptions are always vectored to location OxBFCO_0000. Debug exceptions are
vectored to location 0XBFCO_0480 or to location OxFF20_0200 if the ProbTrap bit is 0 or 1, respectiveEIdTA@
Control registeECR). Addresses for all other exceptions are a combination of a vector offset and a base addiess.
4-2 gives the base address as a function of the exception and whether the BEV bit is s&tattlsegister.Table 4-3
gives the offsets from the base address as a function of the excefehia.4-4combines these two tables into one that
contains all possible vector addresses as a function of the state that can affect the vector selection.

Table 4-2 Exception Vector Base Addresses

Statuggy
Exception 0 1
Reset, Soft Reset, NMI OxBFCO_0000
Debug (with ProbTrap = 0 in tHECR) 0xBFCO0_0480

Debug (with ProbTrap = 1 in tHECR

OXFF20_0200

(in dmseg handled by probe, and not system mem

ory)

Other

0x8000_0000

OXBFCO_0200

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

53

Chapter 4 Exceptions

Table 4-3 Exception Vector Offsets

Exception Vector Offset
TLB refill, EXL = 0 (4Kc core) 0x000
Reset, Soft Reset, NMI 0x000 (uses reset base address)
General Exception 0x180
Interrupt,Causg, = 1 0x200

Table 4-4 Exception Vectors

EJTAG

Exception BEV | EXL | IV ProbTrap Vector
Reset, Soft Reset, NMI X X X X 0xBFCO0_0000
Debug X X X 0 0xBFCO0_0480
Debug X X X 1 0xFF20_0200 (in dmseg)
TLB Refill (4Kc core) 0 0 X X 0x8000_0000
TLB Refill (4Kc core) 0 1 X X 0x8000_0180
TLB Refill (4Kc core) 1 0 X X 0xBFCO0_0200
TLB Refill (4Kc core) 1 1 X X 0xBFCO0_0380
Interrupt 0 0 0 X 0x8000_0180
Interrupt 0 0 1 X 0x8000_0200
Interrupt 1 0 0 X 0xBFCO0O_0380
Interrupt 1 0 1 X 0xBFCO0_0400
All others 0 X X X 0x8000_0180
All others 1 X X X OxBFCO0_0380
Note: ‘X’ denotes don't care

4.4 General Exception Processing

With the exception of Reset, Soft Reset, NMI, and Debug exceptions, which have their own special processing as
described below, exceptions have the same basic processing flow:

« If the EXL bit in theStatusregister is cleared, tHePCregister is loaded with the PC at which execution will be
restarted and the BD bit is set appropriately in@eaiseregister. If the instruction is not in the delay slot of a branch,
the BD bit inCausewill be cleared and the value loaded into BRC register is the current PC. If the instruction is
in the delay slot of a branch, the BD bitGauseis set andEPCis loaded with PC-4. If the EXL bit in tt&tatus
register is set, thEPC register is not loaded and the BD bit is not changed i€ #useregister.

» The CE and ExcCode fields of tBauseregisters are loaded with the values appropriate to the exception. The CE
field is loaded, but not defined, for any exception type other than a coprocessor unusable exception.

» The EXL bit is set in th&tatusregister.

54 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

4.5 Debug Exception Processing

» The processor is started at the exception vector.

The value loaded intB PCrepresents the restart address for the exception and need not be modified by exception handler
software in the normal case. Software need not look at the BD bit @etleregister unless is wishes to identify the
address of the instruction that actually caused the exception.

Note that individual exception types may load additional information into other registers. This is noted in the description
of each exception type below.

Operation:

if Status ~ gx. =0 then
if InstructionIinBranchDelaySlot then
EPC<-PC-4
Causegp<-1
else
EPC <- PC
Causegp<-0
endif
if ExceptionType = TLBREfill then
vectorOffset <- 0x000
elseif (ExceptionType = Interrupt) and
(Cause ;y =1) then
vectorOffset <- 0x200
else
vectorOffset <- 0x180
endif
else
vectorOffset <- 0x180
endif
Cause g <- FaultingCoprocessorNumber
Cause gyccode <- ExceptionType
Status gy <-1
if Status ggy= 1 then
PC <- OxBFCO0_0200 + vectorOffset
else
PC <- 0x8000_0000 + vectorOffset
endif

4.5 Debug Exception Processing

All debug exceptions have the same basic processing flow:

» TheDEPCregister is loaded with the program counter (PC) value at which execution will be restarted and the DBD
bit is set appropriately in tHeebugregister. The value loaded into th&EPCregister is the current PC if the
instruction is not in the delay slot of a branch, or the PC-4 of the branch if the instruction is in the delay slot of a
branch.

» The DSS, DBp, DDBL, DDBS, DIB and DINT bits (D* bits at [5:0]) in thgebugregister are updated appropriately
depending on the debug exception type.

» Halt and Doze bits in thBebugregister are updated appropriately.
» DM bit in theDebugregister is set to 1.

» The processor is started at the debug exception vector.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 55
Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions

The value loaded intDEPCrepresents the restart address for the debug exception and need not be modified by the debug
exception handler software in the usual case. Debug software need not look at the DBD bdé@btigeegister unless
it wishes to identify the address of the instruction that actually caused the debug exception.

A unique debug exception is indicated through the DSS, DBp, DDBL, DDBS, DIB and DINT bits (D* bits at [5:0]) in
the Debugregister.

No other CPO registers or fields are changed due to the debug exception, thus no additional state is saved.

Operation:

if InstructionIinBranchDelaySlot then
DEPC <- PC-4
Debugpgp<- 1
else
DEPC <- PC
Debug DBD<- 0
endif
Debugp« pits at at [5:0] <- DebugExceptionType
Debugp,s <- HaltStatusAtDebugException
Debugpgze <- DozeStatusAtDebugException
Debugpy<- 1
if EJTAGControlRegister ProbTrap = 1 then
PC <- 0xFF20_0200
else
PC <- 0xBFCO0_0480
endif

The same debug exception vector location is used for all debug exceptions. The location is determined by the ProbTrap
bit in the EJTAG Control register (ECR), as showiiable 4-5

Table 4-5 Debug Exception Vector Addresses

ProbTrap bit in
ECR Register Debug Exception Vector Address
0 OxBFCO0_0480
1 0xFF20_0200 in dmseg

4.6 Exceptions

56

The following subsections describe each of the exceptions listed in the same sequence asTsibbsva-ih

4.6.1 Reset Exception

A reset exception occurs when Bk ColdResegignal is asserted to the processor. This exception is not maskable.

When a Reset exception occurs, the processor performs a full reset initialization, including aborting state machines,
establishing critical state, and generally placing the processor in a state in which it can execute instructions from
uncached, unmapped address space. On a Reset exception, the state of the processor in not defined, with the following
exceptions:

» TheRandonregister is initialized to the number of TLB entries - 1 (4Kc core).
» TheWiredregister is initialized to zero (4Kc core).

» TheConfigregister is initialized with its boot state.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

4.6 Exceptions

The RP, BEV, TS, SR, NMI, and ERL fields of thmtusregister are initialized to a specified state.
* The I, R, and W fields of thé&/atchLoregister are initialized to 0.

TheErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an instruction
in the delay slot of a branch. Otherwise, EreorEPC register is loaded with PC. Note that this value may or may
not be predictable.

PC is loaded with 0xBFCO_0000.

CauseRegister ExcCode Value:
None

Additional State Saved:
None

Entry Vector Used:
Reset (0xBFCO_0000)

Operation:

Random <- TLBEntries - 1

Wired <- 0

Config <- ConfigurationState

Status RP<- 0

Status ggy<-1

Status 1g<-0

Status gr<-0

Status py <-0

Status ERL <- 1

WatchLo| <-0

WatchLo g <- 0

WatchLo y<-0

if InstructionInBranchDelaySlot then
ErrorEPC <- PC - 4

else
ErrorEPC <- PC

endif

PC <- 0xBFC0_0000

4.6.2 Soft Reset Exception

A soft reset exception occurs when e Resesignal is asserted to the processor. This exception is not maskable. When

a soft reset exception occurs, the processor performs a subset of the full reset initialization. Although a soft reset
exception does not unnecessarily change the state of the processor, it may be forced to do so in order to place the
processor in a state in which it can execute instructions from uncached, unmapped address space. Since bus, cache, or
other operations may be interrupted, portions of the cache, memory, or other processor state may be inconsistent. In
addition to any hardware initialization required, the following state is established on a soft reset exception:

e The BEV, TS, SR, NMI, and ERL fields of tB¢atusregister are initialized to a specified state.

e TheErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an instruction
in the delay slot of a branch. Otherwise, ErerEPC register is loaded with PC. Note that this value may or may
not be predictable.

» PCis loaded with 0XBFCO_0000.
CauseRegister ExcCode Value:
None
MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 57

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions

58

Additional State Saved:
None

Entry Vector Used:
Reset (0OxBFCO0_0000)

Operation:

Status gpy<-1
Status TS <- 0
Status SR<- 1
Status NMI <- 0
Status gg <-1
if InstructionInBranchDelaySlot then
ErrorEPC <- PC - 4
else
ErrorEPC <- PC
endif
PC <- 0xBFC0_0000

4.6.3 Debug Single Step Exception

A debug single step exception occurs after the CPU has executed one/two instructions in non-debug mode, when
returning to non-debug mode after debug mode. One instruction is allowed to execute when returning to a non
jump/branch instruction, otherwise two instructions are allowed to execute since the jump/branch and the instruction in
the delay slot are executed as one step. Debug single step exceptions are enabled by the SSt bit in the Debug register,
and are always disabled for the first one/two instructions after a DERET.

The DEPC register points to the instruction on which the debug single step exception occurred, which is also the next
instruction to single step or execute when returning from debug mode. So the DEPC will not point to the instruction
which has just been single stepped, but rather the following instruction. The DBD bit in the Debug register is never set
for a debug single step exception, since the jump/branch and the instruction in the delay slot is executed in one step.

Exceptions occurring on the instruction(s) executed with debug single step exception enabled are taken even though
debug single step was enabled. For a normal exception (other than reset), a debug single step exception is then taken on
the firstinstruction in the normal exception handler. Debug exceptions are unaffected by single step mode, e.g. returning
to a SDBBP instruction with debug single step exceptions enabled causes a debug software breakpoint exception, and
the DEPC will point to the SDBBP instruction. However, returning to an instruction (not jump/branch) just before the
SDBBP instruction, causes a debug single step exception with the DEPC pointing to the SDBBP instruction.

To ensure proper functionality of single step, the debug single step exception has priority over all other exceptions,
except reset and soft reset.

Debug Register Debug Status Bit Set
DSS

Additional State Saved
None

Entry Vector Used
Debug exception vector

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

4.6 Exceptions

4.6.4 Debug Interrupt Exception

A debug interrupt exception is either caused by the EjtagBrk bit BIRAG Control registe¢controlled through the
TAP), or caused by the debug interrupt request signal to the CPU.

The debug interrupt exception is an asynchronous debug exception which is taken as soon as possible, but with no
specific relation to the executed instructions. TiePCregister is set to the instruction where execution should continue
after the debug handler is through. The DBD bit is set based on whether the interrupted instruction was executing in the
delay slot of a branch.

Debug Register Debug Status Bit Set

DINT

Additional State Saved
None

Entry Vector Used
Debug exception vector

4.6.5 Non-Maskable Interrupt (NMI) Exception

A non-maskable interrupt exception occurs whershélMisignal is asserted to the procesSér.NMlis an edge

sensitive signal - only one NMI exception will be taken each time it is asserted. An NMI exception occurs only at
instruction boundaries, so it does not cause any reset or other hardware initialization. The state of the cache, memory,
and other processor states are consistent and all registers are preserved, with the following exceptions:

» The BEV, TS, SR, NMI, and ERL fields of tBe¢atusregister are initialized to a specified state.

» TheErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an instruction
in the delay slot of a branch. Otherwise, EreorEPC register is loaded with PC.

» PC is loaded with OxBFCO_0000.

CauseRegister ExcCode Value:
None

Additional State Saved:
None

Entry Vector Used:
Reset (OxBFCO_0000)

Operation:

Status BEV <- 1
Status 1g<-0
Status gr<-0
Status v <-1
Status gg . <-1
if InstructionInBranchDelaySlot then
ErrorEPC <- PC - 4
else
ErrorEPC <- PC
endif
PC <- 0xBFCO0_0000

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 59
Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions

60

4.6.6 Machine Check Exception (4Kc core)

A machine check exception occurs when the processor detects an internal inconsistency. The following condition causes
a machine check exception;

» The detection of multiple matching entries in the TLB in a TLB-based MMU. The core detects this condition on a

TLB write and prevents the write from being completed. The TS bit iStdeisregister is set to indicate this

condition. This bit is only a status flag and does not affect the operation of the device. Software clears this bit at the
appropriate time. This condition is resolved by flushing the conflicting TLB entries. The TLB write can then be
completed.

CauseRegister ExcCode Value:

MCheck

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

4.6.7 Interrupt Exception

The interrupt exception occurs when one or more of the eight interrupt requests is enable8tayubegister and the
interrupt input is asserted. The delay from assertion of an unmasked interrupt to fetch of the first instructions at the
exception vector is a minimum of 5 clock cycles. More may be needed if a committed instruction has to complete before
the exception can be taken. A SYNC instruction which has already started flushing the cache and write buffers must wait
until this is completed before the interrupt exception can be taken.

Register ExcCode Value:

Int

Additional State Saved:

Table 4-6 Register States an Interrupt Exception

Register State Value

Causgp indicates the interrupts that are pending.

Entry Vector Used:

General exception vector (offset 0x180) if the 1V bit in @suseregister is 0;
interrupt vector (offset 0x200) if the IV bit in tli&auseregister is 1.

4.6.8 Debug Instruction Break Exception

A debug instruction break exception occurs when an instruction hardware breakpoint matches an executed instruction.
The DEPCregister and DBD bit in thBebugregister indicates the instruction that caused the instruction hardware
breakpoint to match. This exception can only occur if instruction hardware breakpoints are implemented.

Debug Register Debug Status Bit Set:
DIB

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

4.6 Exceptions

Additional State Saved:
None

Entry Vector Used:
Debug exception vector

4.6.9 Watch Exception — Instruction Fetch or Data Access

The Watch facility provides a software debugging vehicle by initiating a watch exception when an instruction or data
reference matches the address information stored WahehHiandWatchLoregisters. A Watch exception is taken
immediately if the EXL and ERL bits of tt&tatusregister are both zero and the DM bit of Bebugis also zero. If

any of those bits is a one at the time that a watch exception would normally be taken, the WP b am#esegister is

set, and the exception is deferred until both all three bits are zero. Software may use the WP I@liaing&egister to
determine if theePCregister points at the instruction that caused the watch exception, or if the exception actually
occurred while in kernel mode.

The Watch exception can occur on either an instruction fetch or a data access. Watch exceptions that occur on an
instruction fetch have a higher priority than watch exceptions that occur on a data access.

Register ExcCode Value:
WATCH

Additional State Saved:

Table 4-7 Register States on a Watch Exception

Register State Value

Indicates that the watch exception was deferred until ajter
Statugy, , Statugg,, and Debugy, were zero. This bit
directly causes a watch exception, so software must clear
this bit as part of the exception handler to prevent a watch
exception loop at the end of the current handler
execution.

Causgyp

Entry Vector Used:
General exception vector (offset 0x180)

4.6.10 Address Error Exception — Instruction Fetch/Data Access
An address error exception occurs on an instruction or data access when an attempt is made to execute one of the
following:
» Fetch an instruction, load a word, or store a word that is not aligned on a word boundary
» Load or store a halfword that is not aligned on a halfword boundary
» Reference the kernel address space from user mode
Note that in the case of an instruction fetch that is not aligned on a word boundary, PC is updated before the condition
is detected. Therefore, both EPC and BadVAddr point to the unaligned instruction address. In the case of a data access

the exception is taken if either an unaligned address or an address that was inaccessible in the current processor mode
was referenced by a load or store instruction.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 61

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions

CauseRegister ExcCode Value:
ADEL: Reference was a load or an instruction fetch
ADES: Reference was a store

Additional State Saved:
Table 4-8 CPO Register States on an Address Exception Error

Register State Value

BadVAddr failing address

Contex{/pn, | UNPREDICTABLE

EntryHiypn2 UNPREDICTABLE (4Kc core)

EntryLoO UNPREDICTABLE (4Kc core)

EntryLol UNPREDICTABLE (4Kc core)

Entry Vector Used:

General exception vector (offset 0x180)

4.6.11 TLB Refill Exception — Instruction Fetch or Data Access (4Kc core)

During an instruction fetch or data access, a TLB refill exception occurs when no TLB entry in a TLB-based MMU
matches a reference to a mapped address space and the EXL bit is Giattiseegister. Note that this is distinct from
the case in which an entry matches but has the valid bit off. In that case, a TLB Invalid exception occurs.

CauseRegister ExcCode Value:
TLBL: Reference was a load or an instruction fetch
TLBS: Reference was a store

Additional State Saved:

Table 4-9 CPO Register States on a TLB Refill Exception

Register State Value

BadVAddr failing address

The BadVPNZ2 fields contains (A, 30f the failing
Context address

The VPN2 field contains V4 .,30f the failing address;

EntryHi the ASID field contains the ASID of the reference that
missed

EntryLoO UNPREDICTABLE

EntryLol UNPREDICTABLE

Entry Vector Used:
TLB refill vector (offset 0x000) if Statgg, = O at the time of exception;

general exception vector (offset 0x180) if Statys= 1 at the time of exception

62 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18
Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

4.6 Exceptions

4.6.12 TLB Invalid Exception — Instruction Fetch or Data Access (4Kc core)

During an instruction fetch or data access, a TLB invalid exception occurs in one of the following cases:

* No TLB entry in a TLB-based MMU matches a reference to a mapped address space; and the EXL bitis 1 in the
Statusregister.

» ATLB entry in a TLB-based MMU matches a reference to a mapped address space, but the matched entry has the
valid bit off.

» The virtual address is greater than or equal to the bounds address in a FM-based MMU.

CauseRegister ExcCode Value:
TLBL: Reference was a load or an instruction fetch
TLBS: Reference was a store

Additional State Saved:

Table 4-10 CPO Register States on a TLB Invalid Exception

Register State Value

Bad\VAddr failing address

The BadVPN2 field contains .13 0f the failing

Context address

The VPN2 field contains 4\ .,30f the failing address;
EntryHi the ASID field contains the ASID of the reference that
missed

EntryLoO UNPREDICTABLE

EntryLol UNPREDICTABLE

Entry Vector Used:
General exception vector (offset 0x180)

4.6.13 Bus Error Exception — Instruction Fetch or Data Access

A bus error exception occurs when an instruction or data access makes a bus request (due to a cache miss or an
uncacheable reference) and that request terminates in an error. The bus error exception can occur on either an instruction
fetch or a data access. Bus error exceptions that occur on an instruction fetch have a higher priority than bus error
exceptions that occur on a data access.

Bus errors taken on the requested (critical) word of an instruction fetch or data load are precise. Other bus errors, such
as stores or non-critical words of a burst read, can be imprecise. These errors are taken when the EB_RBErr or
EB_WABETrr signals are asserted and may occur on an instruction that was not the source of the offending bus cycle.

CauseRegister ExcCode Value:
IBE: Error on an instruction reference
DBE: Error on a data reference

Additional State Saved:
None

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 63

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions

Entry Vector Used:
General exception vector (offset 0x180)

4.6.14 Debug Software Breakpoint Exception

A debug software breakpoint exception occurs when an SDBBP instruction is executB&PiGieegister and DBD
bit in theDebugregister will indicate the SDBBP instruction that caused the debug exception.

Debug Register Debug Status Bit Set:
DBp

Additional State Saved:
None

Entry Vector Used:
Debug exception vector

4.6.15 Execution Exception — System Call

The system call exception is one of the six execution exceptions. All of these exceptions have the same priority. A system
call exception occurs when a SYSCALL instruction is executed.

CauseRegister ExcCode Value:
Sys

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

4.6.16 Execution Exception — Breakpoint

The breakpoint exception is one of the six execution exceptions. All of these exceptions have the same priority. A
breakpoint exception occurs when a BREAK instruction is executed.

CauseRegister ExcCode Value:
Bp

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

4.6.17 Execution Exception — Reserved Instruction

The reserved instruction exception is one of the six execution exceptions. All of these exceptions have the same priority.
A reserved instruction exception occurs when a reserved or undefined major opcode or function field is executed.

64 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

4.6 Exceptions

CauseRegister ExcCode Value:
RI

Additional State Saved:

None

Entry Vector Used:
General exception vector (offset 0x180)

4.6.18 Execution Exception — Coprocessor Unusable

The coprocessor unusable exception is one of the six execution exceptions. All of these exceptions have the same
priority. A coprocessor unusable exception occurs when an attempt is made to execute a coprocessor instruction for one
of the following:

 a corresponding coprocessor unit that has not been marked usable by setting its CU Bthiustegister

» CPO instructions, when the unit has not been marked usable, and the processor is executing in user mode

CauseRegister ExcCode Value:
CpuU

Additional State Saved:

Table 4-11 Register States on a Coprocessor Unusable Exception

Register State Value

Causeg unit number of the coprocessor being referenced

Entry Vector Used:
General exception vector (offset 0x180)

4.6.19 Execution Exception — Integer Overflow

The integer overflow exception is one of the six execution exceptions. All of these exceptions have the same priority. An
integer overflow exception occurs when selected integer instructions result in a 2's complement overflow.

CauseRegister ExcCode Value:
Ov

Additional State Saved:

None

Entry Vector Used:
General exception vector (offset 0x180)

4.6.20 Execution Exception — Trap

The trap exception is one of the six execution exceptions. All of these exceptions have the same priority. A trap exception
occurs when a trap instruction results in a TRUE value.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 65
Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions

66

CauseRegister ExcCode Value:
Tr

Additional State Saved:
None

Entry Vector Used:
General exception vector (offset 0x180)

4.6.21 Debug Data Break Exception

A debug data break exception occurs when a data hardware breakpoint matches the load/store transaction of an executed

load/store instruction. THBEPCregister and DBD bit in th®ebugregister will indicate the load/store instruction that

caused the data hardware breakpoint to match. The load/store instruction that caused the debug exception has not

completed e.g. not updated the register file, and the instruction can be re-executed after returning from the debug handler.
Debug Register Debug Status Bit Set:

DDBL for a load instruction or DDBS for a store instruction

Additional State Saved:
None

Entry Vector Used:
Debug exception vector

4.6.22 TLB Modified Exception — Data Access (4Kc core)

During a data access, a TLB modified exception occurs on a store reference to a mapped address if the following
condition is true:

» The matching TLB entry in a TLB-based MMU is valid, but not dirty.

CauseRegister ExcCode Value:
Mod

Additional State Saved:

Table 4-12 Register States on a TLB Modified Exception

Register State Value

BadVAddr failing address

The BadVPN2 field contains .13 0f the failing

Context address.

The VPN2 field contains V4 .,30f the failing address;
EntryHi the ASID field contains the ASID of the reference that
missed.

EntryLoO UNPREDICTABLE

EntryLol UNPREDICTABLE

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

4.7 Exception Handling and Servicing Flowcharts

Entry Vector Used:

General exception vector (offset 0x180)

4.7 Exception Handling and Servicing Flowcharts

The remainder of this chapter contains flowcharts for the following exceptions and guidelines for their handlers:

» General exceptions and their exception handler

» TLB miss exceptions and their exception handler (4Kc core)

* Reset, soft reset and NMI exceptions, and a guideline to their handler

» Debug exceptions

Generally speaking, the exceptions are handled by hardware (HW); the exceptions are then serviced by software (SW).
Note that unexpected debug exceptions to the debug exception vector at OxBFC0_0200 may be viewed as a reserved
instruction since uncontrolled execution of a SDBBP instruction caused the exception. The DERET instruction must be

used at return from the debug exception handler, in order to leave debug mode and return to non-debug mode. The
DERET instruction returns to the address inDegPCregister.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 67

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions

Exceptions other than Reset, Soft Reset, NMI, or first-level TLB miss
(4Kc core only). Note: Interrupts can be masked by IE or IMs, and

Watch is masked if EXL = 1. Comments
EntryHi <- VPN2, ASID EntryHi and Context are set only for
Context <- VPN2 TLB Invalid, Modified, & Refill
Set Cause EXCCode,CE | exceptions (4Kc core only). BadVA
BadVA <- VA is set only for TLB Invalid, Modified,
and Refill exceptions (4Kc core
only). Note: not set on Bus Errors.

Check if exception within

another exception =1
EPC<- (PC - 4) £PC <. PC
Cause.BD <-1 Cause.BD <- 0

EXL<-1 -

Processor forced to Kernel
Mode & interrupt disabled

To General Exception Servicing Guidelines

=0 (normal) =1 (bootstrap)

PC <- 0x8000_0000 + 180 PC <- 0xBFCO0_0200 + 180
(unmapped, cached) (unmapped, uncached)

I - I
>

To General Exception £ervicing Guidelines

Figure 4-1 General Exception Handler (HW)

68 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

4.7 Exception Handling and Servicing Flowcharts

MFCO -
Context, EPC, Status, Cause

Y
MTCO -
Set Status bits:
UM <- 0, EXL <-0,
IE<-1

Y

Check Cause value & Jump to
appropriate Service Code

MTCO -
EPC,STATUS

ERET

Comments

* Unmapped vector so TLBMod, TLBInv, or TLB
Refill exceptions not possible (4Kc core only)

* EXL=1 so Watch, Interrupt exceptions disabled

* OS/System to avoid all other exceptions

* Only Reset, Soft Reset, NMI exceptions possible

AL

(Optional - only to enable Interrupts while keeping

Kernel Mode)

* After EXL=0, all exceptions allowed.
(except interrupt if masked by IE)

* ERET is not allowed in the branch delay slot of

another Jump Instruction
* Processor does not execute the instruction

which is in the ERET’s branch delay slot
*PC<- EPC, EXL<-0
*LLbit<-0

Figure 4-2 General Exception Servicing Guidelines (SW)

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

69

Chapter 4 Exceptions

f

EntryHi <- VPN2, ASID
Context <- VPN2
Set Cause EXCCode,CE
BadVA <- VA

no

l Check if exception within

=1 another exception
EXL

Instr. in
Br.Dly. Slot?

=0
EPC<-(PC-4) CEPC <B-DPC .
Cause.BD <- 1 ause.BD <-
[

\
Vec. Off. = 0x180

Vec. Off. = 0x000

Points to General Exception

A

Processor forced to Kernel
Mode & interrupt disabled

EXL<-1

= 0 (normal) = 1 (bootstrap)

Y
PC <- 0x8000_0000 +
Vec.Off.(unmapped. cached)

[

\
PC <- 0xBFCO0_0200 +
Vec.Off.(unmapped. uncached)

. |
»

To TLB Exception Servicing Guidelines

Figure 4-3 TLB Miss Exception Handler (HW) — 4Kc Core only

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18
Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

4.7 Exception Handling and Servicing Flowcharts

MFCO -CONTEXT

Service Code

ERET

Comments

* Unmapped vector so TLBMod, TLBInv, or TLB
Refill exceptions not possible

* EXL=1 so Watch, Interrupt exceptions disabled

* OS/System to avoid all other exceptions

* Only Reset, Soft Reset, NMI exceptions possible

* Load the mapping of the virtual address in Context
Reg. Move it to EntryLo and write into the TLB

* There could be a TLB miss again during the
mapping of the data or instruction address. The
processor will jump to the general exception vector
since the EXL is 1. (Option to complete the first level
refill in the general exception handler or ERET to the
original instruction and take the exception again)

* ERET is not allowed in the branch delay slot of
another Jump Instruction

* Processor does not execute the instruction which is
in the ERET’s branch delay slot

*PC <- EPC; EXL<-0

* LLbit<-0

Figure 4-4 TLB Exception Servicing Guidelines (SW) — 4Kc Core only

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 71

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 4 Exceptions

Reset Exception

Random <- TLBENTRIES - 1 (4Kc core only)
. Wired <- 0 (4Kc core only)
Soft Reset or NMI Exception Config <- Reset state
Status: Status:
BEV <- 1 RP <-0
TS<-0 BEV <- 1
SR <-1/0 TS<-0
NMI <- 0/1 SR<-0
ERL <1 NMI <- 0
ERL<-1
WatchLo:
ILRW<-0

Y
A

ErrorEPC <- PC

PC <- 0OxBFCO0_0000

Reset, Soft Reset & NMI Exception Handling (HW)

Status.NMI

jo))

£

o

=

Q

0

==

Z0

2¢ 0 =0

oc | \

$T ' NMI Service Code Status.SR

x2 | \

- > | |

5O ____________ B

z '

o y = X X
a ERET ! Soft Reset Service Code | |, Reset Service Code |
o

(Optional)

Figure 4-5 Reset, Soft Reset and NMI Exception Handling and Servicing Guidelines

72 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 5

CPO Registers

The System Control Coprocessor (CPO0) provides the register interface to the MIPS32 4K processor cores and supports
memory management, address translation, exception handling, and other privileged operations. Each CPO register has a
unigue number that identifies it; this number is referred to asgtister numberor instance, thBageMaskegister is

register number 5. For more information on the EJTAG registers, refdraoter 9, “EJTAG Debug Support.”

After updating a CPO register, there is a hazard period of zero or more instructions from the update instruction (MTCO)
and until the effect of the update has taken place in the core. Please @Hapter 2, “Pipeline for further detail on

CPO hazards.

The current chapter contains the following sections:

» Section 5.1, "CPO Register Summary"

» Section 5.2, "CPO0 Registers"

5.1 CPO Register Summary

Table 5-1lists the CPO registers in numerical order. The individual registers are described throughout this chapter.

Table 5-1 CPO Registers

Register
Number Register Name Function

0 Indest Index into the TLB array (4Kc core). This register is reserved in
the 4Kp and 4Km cores.

1 Randond Randomly generated index into the TLB array (4Kc core). This
register is reserved in the 4Kp and 4Km cores.
Low-order portion of the TLB entry for even-numbered virtugl

2 EntryLo0" pages (4Kc core). This register is reserved in the 4Kp and 4Km
cores.
Low-order portion of the TLB entry for odd-numbered virtugl

3 EntryLoL pages (4Kc core). This register is reserved in the 4Kp and 4Km
cores.

4 Contex? Pointer to page table entry in memory (4Kc core). This register
is reserved in the 4Kp and 4Km cores.
Controls the variable page sizes in TLB entries (4Kc core). This

5 PageMask register is reserved in the 4Kp and 4Km cores.

6 Wired: Controls the number of fixed (“wired”) TLB entries (4Kc core).
This register is reserved in the 4Kp and 4Km cores.

7 Reserved Reserved
Reports the address for the most recent address-related

8 BadVAddr exception

9 Count Processor cycle count

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

73

Chapter 5 CPO Registers

Table 5-1 CPO Registers (Continued)

Register
Number Register Name Function
10 EntryHFl High-order portion of the TLB entry (4Kc core). This register |s
reserved in the 4Kp and 4Km cores.
11 Comparé Timer interrupt control
12 Statu$ Processor status and control
13 Causé Cause of last exception
14 EPC Program counter at last exception
15 PRId Processor identification and revision
16 Config/Configl Configuration registers
17 LLAddr Load linked address
18 WatchLd Watchpoint address (low order)
19 WatchHf Watchpoint address (high order) and mask
20-22 Reserved Reserved
23 Debu& Debug control and exception status
24 DEPC Program counter at last debug exception
25 Reserved Reserved
26 Errctl I(ag{]rtlgg{% ﬁccess to data and SPRAM arrays for CACHE
27 Reserved Reserved
28 TagLo/DatalLo Low-order portion of cache tag interface
29 Reserved Reserved
30 ErrorEPG Program counter at last error
31 DESAVE Debug handler scratchpad register
1. Registers used in memory management.
2. Registers used in exception processing.
3. Registers used in debug.
74 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

5.2 CPO Registers

5.2 CPO Registers

The CPO registers provide the interface between the ISA and the architecture. Each register is discussed below, with the
registers presented in numerical order, first by register number, then by select field number.

For each register described below, field descriptions include the read/write properties of the field, and the reset state of
the field. For the read/write properties of the field, the following notation is used:

Table 5-2 CPO Register Field Types

Read/Write
Notation Hardware Interpretation Software Interpretation
A field in which all bits are readable and writable by software and, potentially, by hardware.
Hardware updates of this field are visible by software read. Software updates of this field jare
visible by hardware read.
R/W
If the reset state of this field is “Undefined,” either software or hardware must initialize the yalue
before the first read will return a predictable value. This should not be confused with the fprmal
definition of UNDEFINED behavior.
ﬁﬁrglv‘\jlt?at is either static or is updated only by A fie|q to which the value written by software
araware. is ignored by hardware. Software may write
‘< fiald e ai wry any value to this field without affecting
!.ggesg?sﬁériﬁgeoifﬂgiglileeelg tlr?ise |ft|2(|adr tg Zc;r o hardware behavior. Software reads of this figld
R or to the appropriate state, respectively, on return the last value updated by hardware.
powerup. If the Reset State of this field is “Undefined,
If the Reset State of this field is “Undefined”} SCftware reads of this field result in an
hardware updates this field only under those EggvlsaErzlg&éﬁéﬁgﬁéuﬁn%gﬁﬁtea&eg dailtions
gglr:fnmns specified in the description of the specified in the description of the field.
A field to which the value written by software
must be zero. Software writes of non-zero
values to this field may resultin UNDEFINED
] behavior of the hardware. Software reads o
0 A field that hardware does not update, and fothis field return zero as long as all previous
which hardware can assume a zero value. | software writes are zero.
If the Reset State of this field is “Undefined,
software must write this field with zero beforg
it is guaranteed to read as zero.
MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 75

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers

76

5.2.1 Index Register (CPO Register 0, Select 0)

Thelndexregister is a 32-bit read/write register that contains the index used to access the TLB for TLBP, TLBR, and
TLBWI instructions. The width of the index field is implementation-dependent as a function of the number of TLB
entries that are implemented. The minimum value for TLB-based MMUOsiisg(Log(TLBENtries))

The operation of the processor is UNDEFINED if a value greater than or equal to the number of TLB entries is written
to thelndexregister.

This register is only valid with the TLB (4Kc core). It is reserved if the FM is implemented (4Km and 4Kp).

Index Register Format

31 30 4 3 0
P 0 | Index
Table 5-3 Index Register Field Descriptions
Fields
Read/
Name Bit(s) Description Write Reset State
Probe Failure. Set to 1 when the previous TLBProbe .
P sl (TLBP) instruction failed to find a match in the TLB. R Undefined
0 30:4 Must be written as zero; returns zero on read. 0 0
. Index to the TLB entry affected by the TLBRead and .
Index 30 TLBWrite instructions. RIW Undefined

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

5.2 CPO Registers

5.2.2 RandomRegister (CPO Register 1, Select 0)

TheRandonregister is a read-only register whose value is used to index the TLB during a TLBWR instruction. The
width of the Random field is calculated in the same manner as that describedridetegister above.

The value of the register varies between an upper and lower bound as follow:

* Alower bound is set by the number of TLB entries reserved for exclusive use by the operating system (the contents
of theWiredregister). The entry indexed by théiredregister is the first entry available to be written by a TLB Write
Random operation.

» An upper bound is set by the total number of TLB entries minus 1.
TheRandonregister is decremented by one almost every clock wrapping after the valuéifirdtregister is reached.

To enhance the level of randomness and reduce the possibility of a live lock condition, an LFSR register is used that
prevents the decrement pseudo-randomly.

The processor initializes thiRandonregister to the upper bound on a Reset exception and whéhrdtregister is
written.

This register is only valid with the TLB (4Kc core). It is reserved if the FM is implemented (4Km and 4Kp).

Random Register Format
31 4 3 0
0 | Random

Table 5-4RandomRegister Field Descriptions

Fields
Read/
Name Bit(s) Description Write Reset State
0 31:4 Must be written as zero; returns zero on read. D 0
Random 3.0 TLB Random Index R TLB Entries -]
MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 77

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers

78

5.2.3 EntryLo0, EntryLol (CPO Registers 2 and 3, Select 0)

The pair ofEntryLoregisters act as the interface between the TLB and the TLBR, TLBWI, and TLBWR instructions.
For a TLB-based MMUEnNtryLoOholds the entries for even pages &miryLolholds the entries for odd pages.

The contents of thEntryLoOandEntryLolregisters are undefined after an address error, TLB invalid, TLB modified,
or TLB refill exceptions.

These registers are only valid with the TLB (4Kc core). They are reserved if the FM is implemented (4Km and 4Kp).

EntryLoO , EntryLol Register Format

31 30 29 26 25 6 5 321090
R 0 PFN | ¢ |fVvg
Table 5-5EntryLo0, EntryLol Register Field Descriptions
Fields
Read/
Name Bit(s) Description Write Reset State
R 31:30 Reserved. Should be ignored on writes; returns zero on fead. R 0
These 4 bits are normally part of the PFN. However, since the
0 29:06 | coresupports only 32-bits of physical address, the PFN is gnly RIW 0
) 20-bits wide. Therefore, bits 29:26 of this register must be
written with zeros.
. Page Frame Number. Corresponds to bits 31:12 of the .
PFN 25:6 physical address. R/W Undefined
C 5:3 Coherency attribute of the page. $able 5-6 R/W Undefined

“Dirty” or write-enable bit, indicating that the page has begn
written, and/or is writable. If this bitis a one, stores to the pgge)

D 2 are permitted. If this bit is a zero, stores to the page causg a RIW Undefined
TLB Modified exception.

Valid bit, indicating that the TLB entry, and thus the virtual
page mapping are valid. If this bitis a one, accesses to the pag .

v 1 are permitted. If this bit is a zero, accesses to the page cay sei\wW Undefined
TLB Invalid exception.

Global bit. On a TLB write, the logical AND of the G bits ip
both the EntryLo0 and EntryLo1l registers become the G bi
the TLB entry. If the TLB entry G bit is a one, ASID

comparisons are ignored during TLB matches. On aread fjom
a TLB entry, the G bits of both EntryLo0 and EntryLo1 reflep
the state of the TLB G hit.

n
R/W Undefined

Table 5-6lists the encoding of the C field of thentryLoOandEntryLolregisters and the KO field of tH@onfigregister.

Table 5-6 Cache Coherency Attributes

C(5:3) Value Cache Coherency Attribute
0,1,3%4,5,6 Cacheable, noncoherent, write through, no write allocate
2% 7 Uncached

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

5.2 CPO Registers

Table 5-6 Cache Coherency Attributes

C(5:3) Value Cache Coherency Attribute

Note: * These two values are required by the MIPS32 architecture. All other values are not used. For example, values 0, 1, 4, 5 and
6 are not used and are mapped to 3. The value 7 is not used and is mapped to 2. Note that these values do have mearfing in other
MIPS Technologies processor implementations. Refer to the MIPS32 specification for more information.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 79

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers

80

5.2.4 ContextRegister (CPO Register 4, Select 0)

The Contextregister is a read/write register containing a pointer to an entry in the page table entry (PTE) array. This
array is an operating system data structure that stores virtual-to-physical translations. During a TLB miss, the operating
system loads the TLB with the missing translation from the PTE arrayCaihiextregister duplicates some of the
information provided in thBadVAddrregister but is organized in such a way that the operating system can directly
reference an 8-byte page table entry (PTE) in memory.

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits M4 30f the virtual address to be written
into the BadVPNZ2 field of th€ontextregister. The PTEBase field is written and used by the operating system.

The BadVPN2 field of th€ontextregister is not defined after an address error exception.

This register is only valid with the TLB (4Kc core). It is reserved if the FM is implemented (4Km and 4Kp).

Context Register Format

31 23 22 4 3 q
PTEBase BadVPN2 | 0
Table 5-7ContextRegister Field Descriptions
Fields
Read/
Name Bit(s) Description Write Reset State
This field is for use by the operating system and is
. normally written with a value that allows the operating '
PTEBase 3l2s system to use th@ontextRegister as a pointer into the RIW Undefined
current PTE array in memory.
This field is written by hardware on a TLB miss for the
BadVPN2 22:4 | 4Kc core. It contains bits V4y.130f the virtual address R Undefined
that missed.
0 3.0 Must be written as zero; returns zero on read. 0 0

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

5.2 CPO Registers

5.2.5 PageMaskRegister (CPO Register 5, Select 0)

ThePageMaskegister is a read/write register used for reading from and writing to the TLB. It holds a comparison mask
that sets the variable page size for each TLB entry as shotablie 5-9 Behavior iSUNDEFINED if a value other
than those listed is used.

This register is only valid with the TLB (4Kc core). It is reserved if the FM is implemented (4Km and 4Kp).

PageMask Register Format
31 25 24 13 12 (0

0 Mask 0

Table 5-8PageMaskRegister Field Descriptions

Fields
Read/

Name Bit(s) Description Write | Reset State

The Mask field is a bit mask in which a “1” indicates that
Mask 24:13 | the corresponding bit of the virtual address should not R/W Undefined
participate in the TLB match.

3112253 Must be written as zero; returns zero on read. 0 0

Table 5-9 Values for the Mask Field of thdPageMaskRegister

Bit
Page Size 24 23 22 21 20 19 18 17 16 19 14 1B
4 KBytes 0 0 0 0 0 0 0 0 0 0 0 0
16 KBytes 0 0 0 0 0 0 0 0 0 0 1 1
64 KBytes 0 0 0 0 0 0 0 0 1 1 1 1
256 KBytes 0 0 0 0 0 0 1 1 1 1 1 1
1 MByte 0 0 0 0 1 1 1 1 1 1 1 1
4 MByte 0 0 1 1 1 1 1 1 1 1 1 1
16 Mbyte 1 1 1 1 1 1 1 1 1 1 1 1
MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 81

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers

5.2.6 Wired Register (CP0O Register 6, Select 0)

TheWiredregister is a read/write register that specifies the boundary between the wired and random entries in the TLB
as shown irFigure 5-1 The width of the Wired field is calculated in the same manner as that describedridethe

register above. Wired entries are fixed, non-replaceable entries that are not overwritten by a TLBWR instruction. Wired
entries can be overwritten by a TLBWI instruction.

TheWiredregister is set to zero by a Reset exception. Writingihedregister causes thieandonregister to reset to
its upper bound.

The operation of the processor is undefined if a value greater than or equal to the number of TLB entries is written to the
Wiredregister.

This register is only valid with a TLB (4Kc core). It is reserved if the FM is implemented (4Km and 4Kp cores).

Entry n-1

I £
, o

=]
' c
) <
' 14

Wired Register —» Enwry10 v
! kel
X o
! =
Entry O

Figure 5-1 Wired and Random Entries in the TLB

Wired Register Format
31 4 3 0

0 Wired

Table 5-10 Wired Register Field Descriptions

Fields
Read/
Name Bit(s) Description Write | Reset State
0 314 Must be written as zero; returns zero on read. (0
Wired 3:0 TLB wired boundary. R/W 0
82 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

5.2 CPO Registers

5.2.7 BadVAddrRegister (CP0O Register 8, Select 0)
TheBadVAddrregister is a read-only register that captures the most recent virtual address that caused one of the
following exceptions:
» Address error (AdEL or AdES)
* TLB Refill (4Kc core)
* TLB Invalid (4Kc core)
* TLB Modified (4Kc core)

TheBadVAddrregister does not capture address information for cache or bus errors, since neither is an addressing error.

BadVAddr Register Format
31 0

BadVAddr

Table 5-11BadVAddrRegister Field Description

Fields
Read/
Name Bits Description Write | Reset State
BadVAddr 31:0 Bad virtual address R Undefine(|i
MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 83

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers

84

5.2.8 Count Register (CP0O Register 9, Select 0)

TheCountregister acts as a timer, incrementing at a constant rate, whether or not an instruction is executed, retired, or

any forward progress is made through the pipeline. The counter increments every other clock.

The Countregister can be written for functional or diagnostic purposes, including at reset or to synchronize processors.

Whether theCountregister continues incrementing while the processor is in debug mode is determined by the CountDM

bit in theDebugregister (se&ection 5.2.20, "Debug Register (CPO Register 23)" on page 102

Count Register Format

31 0
Count
Table 5-12Count Register Field Description
Fields
Read/
Name Bits Description Write | Reset State
Count 31:0 Interval counter. R/W Undefined

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

5.2 CPO Registers

5.2.9 EntryHi Register (CP0O Register 10, Select 0)
TheEntryHi register contains the virtual address match information used for TLB read, write, and access operations.
A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits M 30f the virtual address to be written
into the VPN2 field of th&ntryHi register. The ASID field is written by software with the current address space
identifier value and is used during the TLB comparison process to determine TLB match.
The VPNZ2 field of th&ntryHi register is not defined after an address error exception.

This register is only valid with the TLB (4Kc core). It is reserved if the FM is implemented (4Km and 4Kp cores).

EntryHi Register Format
31 13 12 8 7 0

VPN2 0 ASID

Table 5-13EntryHi Register Field Descriptions

Fields
Read/

Name Bit(s) Description Write | Reset State

VA 3,.130f the virtual address (virtual page number/ Z).
. This field is written by hardware on a TLB exception or "

VPN2 31:13 onaTLBread, and is written by software before a TL{B RIW Undefined

write.
0 12:8 Must be written as zero; returns zero on read. @ 0

Address space identifier. This field is written by
hardware on a TLB read and by software to establish

ASID 7:0 the current ASID value for TLB write and against R/W Undefined
which TLB references match each entry’s TLB ASID
field.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 85

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers

86

5.2.10 CompareRegister (CPO Register 11, Select 0)

TheCompareregister acts in conjunction with tif@ountregister to implement a timer and timer interrupt function. The
timer interrupt is an output of the cores. TBempareregister maintains a stable value and does not change on its own.

When the value of th€ountregister equals the value of t®mpareregister, the SI_TimerInt pin is asserted. This pin

will remain asserted until thEompareregister is written. The SI_TimerInt pin can be fed back into the core on one of
the interrupt pins to generate an interrupt. Traditionally, this has been done by multiplexing it with hardware interrupt 5
to set interrupt bit IP(7) in th@auseregister.

For diagnostic purposes, tRmmpareregister is a read/write register. In normal use, howeve€ dhgpareregister is
write-only. Writing a value to th€Eompareregister, as a side effect, clears the timer interrupt.

Compare Register Format

31 0
Compare
Table 5-14CompareRegister Field Description
Fields
Read/
Name Bit(s) Description Write | Reset State
Compare 31:0 Interval count compare value R/W Undefingd

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

5.2 CPO Registers

5.2.11 StatusRegister (CPO Register 12, Select 0)

The Statugegister (SR) is a read/write register that contains the operating mode, interrupt enabling, and the diagnostic
states of the processor. Fields of this register combine to create operating modes for the processor, as follows:

Interrupt Enable : Interrupts are enabled when all of the following conditions are true:

* [E=1
* EXL=0
* ERL=0
* DM =0

If these conditions are met, the settings of the IM and IE bits enable the interrupt.

Operating Modes If the DM bit in the Debug register is 1, the processor is in debug mode. Otherwise the processor is
in either kernel or user mode. The following CPU Status register bit settings determine user or kernel mode.

e User mode: UM =1, EXL=0,and ERL=0
» Kernel mode: UM =0,0orEXL=1,0orERL=1

Coprocessor AccessibilityTheStatugegister CU bits control coprocessor accessibility. If any coprocessor is unusable,
an instruction that accesses it generates an exception.

Coprocessor 0 is always enabled in kernel mode, regardless of the setting of the CUO bit.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 87

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers

Status Register Format
31 28 27 26 25 2423 22 21 20 19 18 17 16 15 87 5 4 3 2 0

CU3-CUO| R H RE 0| BEY TSSRNMI © O] IM7-iM0 | R| UMR EAL E>4|_ |

Table 5-15StatusRegister Field Descriptions

T

Fields
Read/

Name Bit(s) Description Write | Reset State

Controls access to coprocessors 3, 2, 1, and 0,
respectively:

0: access not allowed
1: access allowed

Coprocessor 0 is always usable when the processar is
CU3-CuU0 31:28 | running in kernel mode, independent of the state of the R/W Undefined
CUO bit.

The core does not support coprocessors 1-3, but CU3:1
can still be set. However, processor behavior is
unpredictable if a coprocessor instruction to

coprocessors 1-3 is attempted with the correspond|ng
CU3:1 bit set.

Enables reduced power mode. The state of the RP hjt iSR/W 0 for Cold

RP 21 available on the bus interface as the SI_RP signal. Reset only.

R 26 This bit must be ignored on writes and read as zer. R 0

Used to enable reverse-endian memory references|
while the processor is running in user mode:

0: User mode uses configured endianness .
RE 25 1: User mode uses reversed endianness RIW Undefined

Kernel or debug mode references are not affected by
the state of this bit.

0 24:23 This bit must be written as zero; returns zero on refad. R 0

Controls the location of exception vectors:

BEV 22 R/W 1

0: Normal
1. Bootstrap

TLB shutdown. This bit is set if a TLBWI or TLBWR

instruction is issued that would cause a TLB shutdo

condition if allowed to complete. This bit is only use

TS 21 in the 4Kc processor and is reserved in the 4Kp an
4Km processors.

1= <
Q'S

R/W 0

Software can only write a 0 to this bit to clear it and
cannot force a 0-1 transition.

Indicates that the entry through the reset exception|
vector was due to a Soft Reset:

1 for Soft
Reset; 0
otherwise

0: Not Soft Reset (NMI or hard reset)
SR 20 1. Soft Reset RIW

Software can only write a 0 to this bit to clear it and
cannot force a 0-1 transition.

88 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

5.2 CPO Registers

Table 5-15StatusRegister Field Descriptions (Continued)

Fields
Read/
Name Bit(s) Description Write | Reset State
Indicates that the entry through the reset exception|
vector was due to an NMI.
0: Not NMI (soft or hard reset) 1 for NMI; 0
NMI 19 1: NMI RIW otherwise
Software can only write a 0 to this bit to clear it and
cannot force a 0-1 transition.
0 18 Must be written as zero; returns zero on read. R 0
R 17:16 Reserved. Must be ignored on write and read as zgero. R 0

Interrupt Mask: Controls the enabling of each of the
external, internal, and software interrupts. An interrypt
is taken if interrupts are enabled and the corresponding
bits are set in both the Interrupt Mask field of the Status
IM[7:0] 15:8 register and the Interrupt Pending field of the Cause R/W Undefined
register and the IE bit is set in the Status register.

0: Interrupt request disabled
1: Interrupt request enabled

R 75 Reserved. Must be ignored on write and read as zéro. R 0

Indicates that the processor is operating in user mqde:

0: processor is operating in kernel mode
UM 4 1: processor is operating in user mode RIW Undefined

Note that the processor can also be in kernel modg if
EXR or ERL are set. This condition does not affect the
state of the UM bhit.

R 3 Reserved. Must be ignored on write and read as zero. R 0

Error Level. Set by the processor when a Reset, Soft
Reset, or NMI exception is taken.

0: normal level
1. error level

When ERL is set:

The processor is running in kernel mode.
ERL 2) R/W 1
Interrupts are disabled.

The ERET instruction uses the return address held|in
ErrorEPC instead of EPC.

kuseg is treated as an unmapped and uncached region.
This allows main memory to be accessed in the
presence of cache errors. Behaviod SDEFINED if

ERL is set while executing code in useg/kuseg.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 89

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers

Table 5-15StatusRegister Field Descriptions (Continued)

Fields
Read/

Name Bit(s) Description Write | Reset State

Exception Level. Set by the processor when any
exception other than a Reset, Soft Reset, or NMI
exception is taken.

0: normal level
1: exception level

When EXL is set:
EXL 1 R/W Undefined
The processor is running in kernel mode.
Interrupts are disabled.

In the 4Kc core, TLB refill exceptions use the general
exception vector instead of the TLB refill vector.

EPC is not updated if another exception is taken.

Interrupt Enable. Acts as the master enable for softwpre
and hardware interrupts:
IE 0 R/W Undefined
0: disables interrupts
1. enables interrupts

920 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

5.2 CPO Registers

5.2.12 CauseRegister (CPO Register 13, Select 0)

The Causeregister primarily describes the cause of the most recent exception. In addition, fields also control software
interrupt requests and the vector through which interrupts are dispatched. With the exception of the IP[1:0], IV, and WP
fields, all fields in the Cause register are read-only.

Cause Register Format
31 30 29 28 27 24 23 22 21 16 15 10 9 8 765 4 3 2 1 0

BD|0| CE| 0 ||v| WP| 0 | IP[7:2] | IP[l:O]‘ ¢ Exc Code 0

Table 5-16CauseRegister Field Descriptions

Fields
Read/
Name Bit(s) Description Write | Reset State

Indicates whether the last exception taken occurred in a brgnch
delay slot:
0: Not in delay slot :

BD 31 1 In delay slot R Undefined
Note that the BD bit is not updated on a new exception if the
EXL bit is set.
Coprocessor unit number referenced when a Coprocesso

CE 29:28 Unusable exception is taken. This field is loaded by hardware R Undefined

on every exception but is unpredictable for all exceptions
except for Coprocessor Unusable.

Indicates whether an interrupt exception uses the general
exception vector or a special interrupt vector:

v 23 R/W Undefined
0: Use the general exception vector (0x180)
1: Use the special interrupt vector (0x200)

Indicates that a watch exception was deferred because
Statugy, or Statugg, were a one at the time the watch
exception was detected. This bit both indicates that the watch
exception was deferred and causes the exception to be initipted
onceStatu andStatu are both zero. As such, software S
we 22 must clear%t)r(\%s bit as pa‘SrEtRldf the watch exception handler tp RIW Undefined
prevent a watch exception loop.

Software can only write a 0 to this bit to clear it and cannot
force a 0-1 transition.

Indicates an external interrupt is pending:

15: Hardware interrupt 5 or timer interrupt
. . 14: Hardware interrupt 4
IP[7:2] 15:10 13: Hardware interrupt 3
12: Hardware interrupt 2
11: Hardware interrupt 1
10: Hardware interrupt O

R Undefined

Controls the request for software interrupts:

IP[1:0] 9:8 9: Request software interrupt 1 RIW Undefined
8: Request software interrupt O
Exc Code 6:2 Exception code — sEable 5-17 R Undefined
MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 91

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers

92

Table 5-16CauseRegister Field Descriptions (Continued)

Fields
Read/
Name Bit(s) Description Write | Reset State
30,
0 2?1247 Must be written as zero; returns zero on read. R 0
1:0
Table 5-17 Cause Register ExcCode Field Descriptions
Exception
Code Value Mnemonic Description

0 Int Interrupt
1 Mod TLB modification exception (4Kc core) or Reserved (4Km and 4Kp cores)
2 TLBL TLB exception (load or instruction fetch) (4Kc core) or Reserved (4Km and 4Kp cd
3 TLBS TLB exception (store) (4Kc core) or Reserved (4Km and 4Kp cores)
4 AdEL Address error exception (load or instruction fetch)
5 AdES Address error exception (store)
6 IBE Bus error exception (instruction fetch)
7 DBE Bus error exception (data reference: load or store)
8 Sys Syscall exception
9 Bp Breakpoint exception
10 RI Reserved instruction exception
11 CpuU Coprocessor Unusable exception
12 Ov Integer Overflow exception
13 Tr Trap exception

14-22 - Reserved
23 WATCH Reference to WatchHi/WatchLo address
24 MCheck Machine check (4Kc core) or Reserved (4Km and 4Kp cores)

25-31 - Reserved

res)

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

5.2 CPO Registers

5.2.13 Exception Program Counter (CPO Register 14, Select 0)

The Exception Program Count&RC) is a read/write register that contains the address at which processing resumes

after an exception has been serviced. All bits oBRE register are significant and must be writable.

For synchronous (precise) exceptions,ERE contains one of the following:

» The virtual address of the instruction that was the direct cause of the exception

* The virtual address of the immediately preceding branch or jump instruction, when the exception causing instruction
is in a branch delay slot and tBeanch Delaybit in theCauseregister is set.

On new exceptions, the processor does not write tERt@register when the EXL bit in tHétatusregister is set.
However, the register can still be written via the MTCO instruction.

EPC Register Format
31 0

EPC

Table 5-18EPC Register Field Description

Fields
Read/
Name Bit(s) Description Write Reset State
EPC 31:0 Exception Program Counter. R/W, Undefined
MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 93

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers

5.2.14 Processor Identification (CPO Register 15, Select 0)

The Processor IdentificatioRRId) register is a 32-bit read-only register that contains information identifying the
manufacturer, manufacturer options, processor identification, and revision level of the processor.

PRId Register Format
31 24 23 16 15 8 7

R Company ID Processor ID Revision

Table 5-19PRId Register Field Descriptions

Fields
Read/
Name Bit(s) Description Write | Reset State
R 31:24 Reserved. Must be ignored on write and read as zerp R 0
Combpan Identifies the company that designed or manufactured|the
IDp y 23:16 processor. In all three cores this field contains a valu¢ of R 1
1 to indicate MIPS Technologies, Inc.
Identifies the type of processor. This field allows softwgre 4Kc
Processor to distinguish between the various types of MIPS core - 0x80
D 15:8 Technologies processors. This field contains a value pf R
0x80 for the 4Kc processor. The value is 0x83 for the 4Kp 4Km & 4Kp
and 4Km processors. cores - 0x83
Specifies the revision number of the processor. This field
allows software to distinguish between one revision gnd
another of the same processor type. Current values:
0x1: 1.1-2.2
0x2: 2.3-2.4
0x3: 2.5-2.6
Revision 7:0 0x4: 3.0 R Preset
0x5: 3.1
0x6: 3.2
0x7: 3.3
0x8: 3.4
0x9: 3.5
Oxa: 3.6
Oxb: 3.7
94 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

5.2 CPO Registers

5.2.15 Config Register (CPO Register 16, Select 0)

The Configregister specifies various configuration and capabilities information. Most of the fieldsQottiigregister
are initialized by hardware during the Reset exception process, or are constant. One field, KO, must be initialized by
software in the Reset exception handler.

Config Register Format — Select 0
3130 2827 2524 232221 20 19 18 17 16 15 14 13 12 10 9 7 6 3 2 0

M| K23| KU ||SP|DS|1>q sq; MDLll R| MM| B|v| BEt AT| AR | MT | 0 KO

Table 5-20Config Register Field Descriptions

Fields
Read/
Name Bit(s) Description Write Reset State
M 31 This bit is hardwired to ‘1’ to indicate the presence of the R 1
Configl register.
This field controls the cacheability of the kseg2 and ks€g3
address segments in FM implementations. This field i$. .
K23 30:2g | validinthe 4Kp and 4Km processor and is reserved in hEM: RIW FM: 010
) 4Kc processor (must be written as O; returns 0 on read)). 1 g. o TLB: 000
Refer toTable 5-21for the field encoding.
This field controls the cacheability of the kuseg and useg
address segments in FM implementations. This field i$) .
KU 27:25 valid in the 4Kp and 4Km processor and is reserved in hEM: RIW FM: 010
: 4Kc processor (must be written as 0; returns 0 on readl). 1 g: o TLB: 000
Refer toTable 5-21for the field encoding.
This field indicates the presence of an I-side scratchpad
ISP 24 RAM R Preset
This field indicates the presence of a D-side scratchpad
DSP 23 RAM R Preset
0 22 Must be written as 0. Returns 0 on read. 0 0

Indicates whether SimpleBE bus mode is enabled. Set|via
SI_SimpleBE[0] input pin
SB 21 R Externally Set
0 = No reserved byte enables on EC interface

1 = Only simple byte enables allowed on EC interface

This bit indicates the MDU type.

MDU 20 R Preset

0 = Fast Multiplier Array (4Kc and 4Km cores)
1 = Iterative multiplier (4Kp cores)

0 19 Must be written as 0. Returns 0 on read. 0 0

This field contains the merge mode for the 32-byte
collapsing write buffer:

MM 18:17 00 = No Merging R Externally Set
01 = SysAD Valid merging
10 = Full merging

11 = Reserved

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 95

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers

96

Table 5-20Config Register Field Descriptions (Continued)

Fields
Read/
Name Bit(s) Description Write Reset State

Burst order.

BM 16 0: Sequential R Externally Set
1: SubBlock
Indicates the endian mode in which the processor is
running:

BE 15 R Externally Set
0: Little endian
1: Big endian

. Architecture type implemented by the processor. This field

AT 14:13 is always 00 to indicate MIPS32. R 00
Architecture revision level. This field is always 000 to
indicate revision 1.

AR 12:10 R 000
0: Revision 1
1-7: Reserved
MMU Type:

MT 9:7 1: Standard TLB (4Kc core) R Preset
3: Fixed Mapping (4Kp, 4Km cores)
All other values: Reserved

0 6:3 Must be written as zero; returns zero on read. 0

. KsegO coherency algorithm. Referfable 5-21for the
KO 20 field encoding. RIW 010
Table 5-21 Cache Coherency Attributes
C(2:0) Value Cache Coherency Attribute
0,1,3*4,5,6 Cacheable, noncoherent, write-through, no write allocate
2% 7 Uncached

Note: * These two values are required by the MIPS32 architecture. In the 4K processor cores, all other values are not use
ample, values 0, 1, 4, 5 and 6 are not used and are mapped to 3. The value 7 is not used and is mapped to 2. Notg
values do have meaning in other MIPS Technologies processor implementations. Refer to the MIPS32 specification

information.

d. For ex-
that these
for more

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

5.2 CPO Registers

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 97

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers

5.2.16 Configl Register (CPO Register 16, Select 1)

TheConfiglregister is an adjunct to tf@onfigregister and encodes additional capabilities information. All fields in the
Configlregister are read-only.

The instruction and data cache configuration parameters include encodings for the number of sets per way, the line size,
and the associativity. The total cache size for a cache is therefore:

Associativity * Line Size * Sets Per Way
If the line size is zero, there is no cache implemented.

Configl Register Format — Select 1
31 30 25 24 2221 19 18 16 15 13 12 10 9 765 4 3 2 10

M| MMU Size | IS | IL | IA | DS | DL | DA |o |PC|WR|CA|EF|’FI

1%

Table 5-22Configl Register Field Descriptions — Select 1

Fields
Read/
Name Bit(s) Description Write Reset State
M 31 This bit is hardwired to ‘0’ to indicate the absence of the R 0

Config2 register.

This field contains the number of entries in the TLB minys
MMU Size 30:25 | one. The field is read as 15 decimal in the 4Kc processor R Preset
and as 0 decimal in the 4Kp and 4Km processors.

This field contains the number of instruction cache sets per
way. Three options are available. All others values are
reserved:

IS 24:22 0x0: 64 R Preset

Ox1: 128
0x2: 256
0x3 - 0x7: Reserved

This field contains the instruction cache line size. If an
instruction cache is present, it must contain a fixed line size
of 16 bytes.
IL 21:19 R Preset
0x0: No Icache present

0x3: 16 bytes

0x1, Ox2, 0x4 - Ox7: Reserved

This field contains the level of instruction cache
associativity.

. 0x0: Direct mapped
1A 18:16 0x1: 2-way
0x2: 3-way
0x3: 4-way
0x4 - 0x7: Reserved

R Preset

This field contains the number of data cache sets per way:

. 0x0: 64
DS 15:13 Ox1: 128 R Preset

0x2: 256
0x3 - Ox7: Reserved

98 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

5.2 CPO Registers

Table 5-22Configl Register Field Descriptions — Select 1 (Continued)

Fields
Read/
Name Bit(s) Description Write Reset State

This field contains the data cache line size. If a data caghe
is present, it must contain a line size of 16 bytes.

DL 12:10 | 0x0: No Dcache present R Preset
0x3: 16 bytes
0x1, 0x2, 0x4 - Ox7: Reserved
This field contains the type of set associativity for the data
cache:

DA o7 | O S_'\C\‘fg;, mapped R Preset
0x2: 3-way
0x3: 4-way
0x4 - Ox7: Reserved

0 6:5 Must be written as zero; returns zero on read. 0 0

PC 4 Performance Counter registers implemented. Always & 0 R 0
since the cores do not implement any.

WR 3 Watch registers implemented. This bit always reads ag 1 R 1
since the cores each contain one pair of Watch registefrs.

CA 2 Code compression (MIPS16™) implemented. This bit R 0
always reads as 0 because MIPS16 is not supported.

EP 1 EJTAG present: This bit is always set to indicate that the R 1
core implements EJTAG.

Fp 0 FPU implemented. This bit is always zero since the core R 0
does not contain a floating-point unit.

5.2.17 Load Linked Address (CPO Register 17, Select 0)

TheLLAddrregister contains the physical address read by the most recent Load Linked (LL) instruction. This register
is for diagnostic purposes only, and serves no function during normal operation.

LLAddr Register Format
31 28 27 0

0 PAddr[31:4]

Table 5-23LLAddr Register Field Descriptions

Fields
Read/
Name Bit(s) Description Write Reset State
0 31:28 Must be written as zero; returns zero on read. q 0
. . This field encodes the physical address read by the most "
PAddr[31:4] 270 recent Load Linked instruction. R Undefined
MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 99

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers

5.2.18 WatchLo Register (CPO Register 18)

TheWatchLoandWatchHiregisters together provide the interface to a watchpoint debug facility that initiates a watch
exception if an instruction or data access matches the address specified in the registers. As such, they duplicate some
functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits are zerStimtise

register. If either bit is a one, the WP bit is set inGheseregister, and the watch exception is deferred until both the

EXL and ERL bits are zero.

TheWatchLoregister specifies the base virtual address and the type of reference (instruction fetch, load, store) to match.

WatchLo Register Format
31 3 2 10

VAddr | | |R|W

Table 5-24WatchLo Register Field Descriptions

Fields
Read/

Name Bits Description Write Reset State

This field specifies the virtual address to match. Note that
VAddr 31:3 this is a doubleword address, since bits [2:0] are used|to R/W Undefined
control the type of match.

| 2 If this bit is set, watch exceptions are enabled for R/W 0 for Cold
instruction fetches that match the address. Reset only.
R 1 If this bit is set, watch exceptions are enabled for loads that RIW 0 for Cold
match the address. Reset only.
W 0 If this bitis set, watch exceptions are enabled for stores that RIW 0 for Cold
match the address. Reset only.
100 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

5.2 CPO Registers

5.2.19 WatchHi Register (CP0O Register 19)

TheWatchLoandWatchHiregisters together provide the interface to a watchpoint debug facility that initiates a watch
exception if an instruction or data access matches the address specified in the registers. As such, they duplicate some

functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits are zerStimtise

register. If either bit is a one, the WP bit is set inGheseregister, and the watch exception is deferred until both the

EXL and ERL bits are zero.

TheWatchHiregister contains information that qualifies the virtual address specified WatehLoregister: an ASID,

a Global (G) bit, and an optional address mask. If the G bitis 1, any virtual address reference that matches the specified
address will cause a watch exception. If the G bitis a 0, only those virtual address references for which the ASID value
in theWatchHiregister matches the ASID value in tRatryHiregister cause a watch exception. The optional mask field

provides address masking to qualify the address specifisédtchLo

WatchHi Register Format

31 30 29 24 23 16 15 12 11 3 2 0
0| g | ASID 0 MASK 0
Table 5-25WatchHi Register Field Descriptions
Fields
Name Bit(s) Description Read/Write Reset State
0 31 Must be written as zero; returns zero on read. 0 0
4Kc core: If this bit is one, any address that matches that
specified in th&VatchLoregister causes a watch exception.|If
this bit is zero, the ASID field of thé&fatchHiregister must 4Kc core: R/IW .
G 30 match the ASID field of th&ntryHi register to cause a watch Undefined
exception. 4Km/4Kp cores: 0
4Km/4Kp cores: Must be written as zero; returns zero on read.
0 29:24 Must be written as zero; returns zero on read. 0 0
4Kc core: ASID value which is required to match that in the .
ASID 23:16 EntryHi register if the G bit is zero in thMdatchHiregister. 4Ke core: RIW Undefined
4Km/4Kp cores: Must be written as zero; returns zero on re aél_(m/4Kp cores: 0
0 15:12 Must be written as zero; returns zero on read. 0 0
Bit mask that qualifies the address in iWatchLaregister. Any
Mask 11:3 bit in this field that is a set inhibits the corresponding addrgss R/W Undefined
bit from participating in the address match.
0 2:0 Must be written as zero; returns zero on read. 0 0
MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 101

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers

102

5.2.20 DebugRegister (CP0O Register 23)

The Debugregister is used to control the debug exception and provide information about the cause of the debug
exception and when re-entering at the debug exception vector due to a normal exception in debug mode. The read-only
information bits are updated every time the debug exception is taken or when a normal exception is taken when already
in debug mode.

Only the DM bit and the EJTAGver field are valid when read from non-debug mode; the value of all other bits and fields
is UNPREDICTABLE. Operation of the processor is UNDEFINED if Blebugregister is written from non-debug

mode.

Some of the bits and fields are only updated on debug exceptions and/or exceptions in debug mode, as shown below:
» DSS, DBp, DDBL, DDBS, DIB, DINT are updated on both debug exceptions and on exceptions in debug modes

» DExcCode is updated on exceptions in debug mode, and is undefined after a debug exception

» Halt and Doze are updated on a debug exception, and is undefined after an exception in debug mode

» DBD is updated on both debug and on exceptions in debug modes

All bits and fields are undefined when read from normal mode, except those explicitly described to be defined, e.g.
EJTAGver and DM.

Debug Register Format
31 30 29 28 27 26 25 24 23 22 21 20 19

DBD| DM | NoDCR | LSNM|Doz¢ Half CountDM IBusEP MCheckP CachgEP DBUSEP |EXI DDBS|mpr

18 |17 15 14 0 9 8 76 5 4 3 2 1 D
DDBLImpr| Ver | DExcCode | NoSSf Sst R| DINTD|B DDBS DDEL DEp D

192)
"

Table 5-26DebugRegister Field Descriptions

Fields

_ Read/
Name Bit(s) Description Write | Reset State

Indicates whether the last debug exception or exception
in debug mode, occurred in a branch delay slot:
DBD 31 R Undefined
0: Not in delay slot
1: In delay slot

Indicates that the processor is operating in debug mode:

DM 30 0: Processor is operating in non-debug mode

1: Processor is operating in debug mode

Indicates whether the dseg memory segment is pregent:

NoDCR 29 | 0: dseg is present

1: No dseg present

Controls access of load/store between dseg and mai
memory:

n

LSNM 28 R/W 0

0: Load/stores in dseg address range goes to dseg
1: Load/stores in dseg address range goes to main
memory.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

5.2 CPO Registers

Table 5-26DebugRegister Field Descriptions (Continued)

Fields

Name

Bit(s)

Description

Read/
Write

Reset State

Doze

27

Indicates that the processor was in any kind of low
power mode when a debug exception occurred:

0: Processor not in low power mode when debug
exception occurred

1: Processor in low power mode when debug except
occurred

Undefined

Halt

26

Indicates that the internal system bus clock was stop
when the debug exception occurred:

0: Internal system bus clock stopped
1: Internal system bus clock running

Undefined

CountDM

25

Indicates the Count register behavior in debug mod
Encoding of the bit is:

0: Count register stopped in debug mode
1: Count register increments in debug mode

o

R/W

IBUseP

24

Instruction fetch Bus Error exception Pending. Set

when an instruction fetch bus error event occurs or i
1 is written to the bit by software.Cleared when a B
Error exception on instruction fetch is taken by the

processor, and by reset. If IBUSEP is set when IEX
cleared, a Bus Error exception on instruction fetch

taken by the processor, and IBUSEP is cleared.

fa

us
R/W1

S

S

MCheckP

23

Indicates that an imprecise Machine Check expcept|
is pending. All Machine Check exceptions are prec
on the 4K processors so this bit will always read ag

on
se R
0.

CacheEP

22

Indicates that an imprecise Cache Error is pending
Cache Errors cannot be taken by the 4K cores so thig
will always read as 0

bit R

DBuUsEP

21

Data access Bus Error exception Pending.Covers
imprecise bus errors on data access, similar to beha

of IBUSEP for imprecise bus errors on an instructiof

fetch.

VioR w1

IEXI

20

Imprecise Error eXception Inhibit controls exceptiofns

taken due to imprecise error indications. Set when
processor takes a debug exception or exception in
debug mode. Cleared by execution of the DERET
instruction. Otherwise modifiable by debug mode
software. When IEXI is set then the imprecise error
exceptions from bus error on instruction fetch or da
access, cache error or machine check are inhibited
deferred until the bit is cleared.

he

R/W

ta
and

DDBSImpr

19

Indicates that an imprecise Debug Data Break Stor|
exception was taken. All data breaks are precise on
4K cores, so this bit will always read as O.

[¢]

the R

DDBLImpr

18

Indicates that an imprecise Debug Data Break Loa
exception was taken. All data breaks are precise on
4K cores, so this bit will always read as 0.

)
the R

Ver

17:15

EJTAG version

0x2

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

103

Chapter 5 CPO Registers

Table 5-26DebugRegister Field Descriptions (Continued)

Fields
_ Read/
Name Bit(s) Description Write | Reset State
Indicates the cause of the latest exception in debug
mode. The field is encoded as the ExcCode field in the

. Cause register for those normal exceptions that mgy)
DExcCode 14:10 occur in debug mode. R Undefined

Value is undefined after a debug exception.

Indicates whether the single-step feature controllable
by the SSt bit is available in this implementation:
NoSST 9 R 0
0: Single-step feature available

1: No single-step feature available

Controls if debug single step exception is enabled:

Sst 8 0: No debug single step exception enabled RIW 0
1: Debug single step exception enabled
R 7:6 Reserved. Must be written as zero; returns zero on read. R 0

Indicates that a debug interrupt exception occurred
Cleared on exception in debug mode.

DINT 5 R/W Undefined
0: No debug interrupt exception
1: Debug interrupt exception

Indicates that a debug instruction break exception
occurred. Cleared on exception in debug mode.
DIB 4 R Undefined
0: No debug instruction exception
1: Debug instruction exception

Indicates that a debug data break exception occurred on
a store. Cleared on exception in debug mode.
DDBS 3 R Undefined
0: No debug data exception on a store

1: Debug instruction exception on a store

Indicates that a debug data break exception occurred on
a load. Cleared on exception in debug mode.
DDBL 2 R Undefined
0: No debug data exception on a load

1: Debug instruction exception on a load

Indicates that a debug software breakpoint exception
occurred. Cleared on exception in debug mode.
DBp 1 R Undefined
0: No debug software breakpoint exception
1: Debug software breakpoint exception

Indicates that a debug single step exception occurred.
Cleared on exception in debug mode.
DSS 0 R Undefined
0: No debug single step exception
1: Debug single step exception

104 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

5.2 CPO Registers

5.2.21 Debug Exception Program Counter Register (CPO Register 24)

The Debug Exception Program CounteEQC) register is a read/write register that contains the address at which

processing resumes after a debug exception or debug mode exception has been serviced.

For synchronous (precise) debug and debug mode exceptiobd; Bigcontains either:

» The virtual address of the instruction that was the direct cause of the debug exception, or

» The virtual address of the immediately preceding branch or jump instruction, when the debug exception causing
instruction is in a branch delay slot, and the Debug Branch Delay (BDB) bit ethegregister is set.

For asynchronous debug exceptions (debug interrupth EfRC contains the virtual address of the instruction where
execution should resume after the debug handler code is executed.

DEPC Register Format
31 0

DEPC

Table 5-27DEPC Register Formats

Fields
Read/

Name Bit(s) Description Write Reset

TheDEPCregister is updated with the virtual address |of
the instruction that caused the debug exception. If the
instruction is in the branch delay slot, the virtual address
DEPC 31:0 of the immediately preceding branch or jump instructipn RIW Undefined

is placed in this register.

(@]

Execution of the DERET instruction causes a jump to the
address in thBEPC.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 105

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers

5.2.22 ErrCtl Register (CPO Register 26, Select 0)

The ErrCtl register provides a mechanism for enabling software testing of the way-select and data RAM arrays for both
the ICache and DCache. The way-selection RAM test mode is enabled by setting the WST bit. It modifies the
functionality of the CACHE Index Load Tag and Index Store Tag operations so that they modify the way-selection RAM
and leave the Tag RAMs untouched. When this bit is set, the lower 6 bits of the PA field in the TagLo register are used
as the source and destination for Index Load Tag and Index Store Tag CACHE operations.

The WST bit also enables the data RAM test mode. When this bit is set, the Index Store Data CACHE instruction is
enabled. This CACHE operation writes the contents of the DatalLo register to the word in the data array that is indicated
by the index and byte address.

The SPR bit enables CACHE accesses to the optional Scratchpad RAMs. When this bit is set, Index Load Tag, Index
Store Tag, and Index Store Data CACHE instructions will send reads or writes to the Scratchpad RAM port. The effects
of these operations are dependent on the particular Scratchpad implementation.

This register was added to version 3.5 of the core. It is reserved in earlier versions.

ErrCtl Register Format
3130 29 28 27 0

| R |wsﬂ spd R

Table 5-28ErrCtl Register Field Descriptions

Fields
Read/

Name Bit(s) Description Write Reset State

Indicates whether the tag array or the way-select arra
should be read/written on Index Load/Store Tag CACHE

WST 29 instructions. R/W 0

Also enables the Index Store Data CACHE instruction
which writes the contents of DatalLo to the data array.

Forces indexed CACHE instructions to operate on the
SPR 28 ScratchPad RAM instead of the cache RIW 0
R 31:30, Must b i . d 0 0
>7:0 ust be written as zero; returns zero on reads.

5.2.23 TagLo Register (CPO Register 28, Select 0)
TheTagLoregister acts as the interface to the cache tag array. The Index Store Tag and Index Load Tag operations of the
CACHE instruction use th€agLoregister as the source of tag information, respectively. Note that the 4K cores does not
implement theTagHi register.

TagLo Register Format

31 109 8 7 6 5 4 3 2 1 (
PA | R | vaid | R|L[LRA R
106 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

5.2 CPO Registers

Table 5-29TagLo Register Field Descriptions

Fields
Read/
Name Bit(s) Description Write Reset State

. This field contains the physical address of the cache line)
PA 31:10 being stored. R/W Undefined
R 9:8 Must be written as zero; returns zero on read. 0 0

; . This field indicates whether the corresponding word in the "
Valid 74 cache line is valid in the cache. RIW Undefined
R 3 Must be written as zero; returns zero on read. 0 0

Specifies the lock bit for the cache tag. When this bit is get,
L 2 the corresponding cache line should not be replaced by|theR/W Undefined
cache replacement algorithm.

LRF. One bit of the LRF bits for the set this cache lineiga
LRF 1 part of. This bit is inverted every time a new cache ling is R/'W Undefined
filled in the cache entry.

R 0 Must be written as zero; returns zero on read. 0 0

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 107

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

108

Chapter 5 CPO Registers

5.2.24 DatalLo Register (CPO Register 28, Select 1)

TheDatalLoregister acts as the interface to the cache data array. The Index Load Tag operation of the CACHE instruction
reads the corresponding data values intdthilLoregister. This register was made writeable on revision 3.5 and the

Index Store Data operation of the CACHE instruction was added. This operation will write the cache data array with the
value of this register. Note that the 4K cores does not implement the DataHi register.

Datalo Register Format

31 0
DATA
Table 5-30Datal.o Register Field Description
Fields
Read/ Reset
Name Bit(s) Description Write State
DATA 31:0 Low-order data read from the cache data array. RV Undefined

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

5.2 CPO Registers

5.2.25 ErrorEPC (CPO Register 30, Select 0)

TheErrorEPC register is a read-write register, similar to BRRC register, except th&rrorEPC is used on error
exceptions. All bits of th&rrorEPC register are significant and must be writable. It is also used to store the program
counter on Reset, Soft Reset, and non-maskable interrupt (NMI) exceptions.

TheErrorEPCregister contains the virtual address at which instruction processing can resume after servicing an error.

This address can be:

» The virtual address of the instruction that caused the exception

* The virtual address of the immediately preceding branch or jump instruction when the error causing instruction is in
a branch delay slot

Unlike theEPC register, there is no corresponding branch delay slot indication farthwe&EPC register.

ErrorEPC Register Format
31 0

ErrorEPC

Table 5-31ErrorEPC Register Field Description

Fields
Read/
Name Bit(s) Description Write Reset State
ErrorEPC 310 Error Exception Program Counter R/W Undefingd
MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 109

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 5 CPO Registers

5.2.26 DeSaveRegister (CPO Register 31)

The Debug Exception SavBéSavgregister is a read/write register that functions as a simple memory location. This
register is used by the debug exception handler to save one of the GPRs that is then used to save the rest of the contex
to a pre-determined memory area (such as in the EJTAG Probe). This register allows the safe debugging of exception
handlers and other types of code where the existence of a valid stack for context saving cannot be assumed.

DeSave Register Format

31 0
DESAVE
Table 5-32DeSaveRegister Field Description
Fields
_ Read/
Name Bit(s) Description Write | Reset State
DESAVE 31:.0 Debug exception save contents. R/W Undefingd

110 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 6

Hardware and Software Initialization

The MIPS32 4K processor cores have has only a minimal amount of hardware initialization and rely relies on software
to fully initialize the device.

This chapter contains the following sections:

» Section 6.1, "Hardware Initialized Processor State"

» Section 6.2, "Software Initialized Processor State"

6.1 Hardware Initialized Processor State

The 4K processor cores, like most MIPS processors, are is not fully initialized by reset. Only a minimal subset of the
processor state is cleared. This is enough to bring the core up while running in unmapped and uncached code space. All
other processor states can then be initialized by soft®ar€oldReset asserted after power-up to bring the device

into a known state. Soft reset can be forced by assertir®) tResepin. This can be used when the device is already

up and running and does not need as much initialization.

6.1.1 Coprocessor Zero State

Much of the hardware initialization occurs in Coprocessor Zero.

* Random(4Kc core only) - set to maximum value on Reset

» Wired (4Kc core only) - set to 0 on Reset

+ Statuggy - set to 1 on Reset/SoftReset

» Statugg- cleared to 0 on Reset/SoftReset

+ Statugr- cleared to 0 on Reset, set to 1 on SoftReset

* Statugyy, - cleared to 0 on Reset/SoftReset

» Statugg - set to 1 on Reset/SoftReset

+ Statugp - cleared to O on Reset

» WatchLgg \y- cleared to 0 on Reset

» Configfields related to static inputs - set to input value by Reset

» Configcg - set to 010 (uncached) on Reset

» Confige - set to 010 (uncached) on Reset (4Km and 4Kp cores only)
» Configcoz - set to 010 (uncached) on Reset (4Km and 4Kp cores only)

» DebugDM- cleared to 0 on Reset/SoftReset (unless EJTAGBOOT option is used to boot into DebugMode, see
Chapter 9, “EJTAG Debug Supportgr details)

» Debug g\ - cleared to 0 on Reset/SoftReset
» Debugg,sep- Cleared to 0 on Reset/SoftReset

» Debugygsgp- Cleared to 0 on Reset/SoftReset

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 111

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 6 Hardware and Software Initialization

* Debuggy, - cleared to O on Reset/SoftReset
* Debugsst cleared to 0 on Reset/SoftReset
6.1.2 TLB Initialization (4Kc core only)

Each 4Kc TLB entry has a “hidden” state bit which is set by Reset/SoftReset and is cleared when the TLB entry is
written. This bit disables matches and prevents “TLB Shutdown” conditions from being generated by the power-up
values in the TLB array (when two or more TLB entries match on a single address). This bit is not visible to software.

6.1.3 Bus State Machines

All pending bus transactions are aborted and the state machines in the bus interface unit are reset when a Reset or
SoftReset exception is taken.

6.1.4 Static Configuration Inputs

All static configuration inputs (defining the bus mode and cache size for example) should only be changed during Reset.

6.1.5 Fetch Address

Upon Reset/SoftReset, unless the EJTAGBOOT option is used, the fetch is directed to VA 0xBFC00000 (PA
0x1FC00000). This address is in ksegl,which is unmapped and uncached, so that the TLB and caches do not require

hardware unitization.
6.2 Software Initialized Processor State

Software is required to initialize the following parts of the device.

6.2.1 Register File

The register file powers up in an unknown state with the exception of rO which is always 0. Initializing the rest of the
register file is not required for proper operation. Good code will generally not read a register before writing to it, but the
boot code can initialize the register file for added safety.

6.2.2 TLB (4Kc Core Only)

Because of the hidden bit indicating initialization, the 4Kc core does not require TLB initialization upon ColdReset. This
is an implementation specific feature of the 4Kc core and cannot be relied upon if writing generic code for MIPS32/64
processors. When initializing the TLB, care must be taken to avoid creating a “TLB Shutdown” condition where two
TLB entries could match on a single address. Unique virtual addresses should be written to each TLB entry to avoid this.

6.2.3 Caches

The cache tag and data arrays power up to an unknown state and are not affected by reset. Every tag in the cache arrays
should be initialized to an invalid state using the CACHE instruction (typically the Index Invalidate function). This can
be a long process, especially since the instruction cache initialization needs to be run in an uncached address region.

112 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18
Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

6.2 Software Initialized Processor State

6.2.4 Coprocessor Zero state

Miscellaneous Cop0 states need to be initialized prior to leaving the boot code. There are various exceptions that are
blocked by ERL=1 or EXL=1 and that are not cleared by Reset. These can be cleared to avoid taking spurious exceptions
when leaving the boot code.

» Cause WP (Watch Pending), SWO0/1 (Software Interrupts) should be cleared.
» Config KO should be set to the desired Cache Coherency Algorithm (CCA) prior to accessing ksegO.

» Config (4Km and 4Kp cores only) KU and K23 should be set to the desired CCA for useg/kuseg and kseg2/3
respectively prior to accessing those regions.

» Count Should be set to a known value if Timer Interrupts are used.

» Compare Should be set to a known value if Timer Interrupts are used. The write to compare will also clear any
pending Timer Interrupts (Thu€ountshould be set befo@ompareto avoid any unexpected interrupts).

» Status Desired state of the device should be set.

» Other Cop0 state: Other registers should be written before they are read. Some registers are not explicitly writable,
and are only updated as a by-product of instruction execution or a taken exception. Uninitialized bits should be
masked off after reading these registers.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 113

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 6 Hardware and Software Initialization

114 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 7

Caches

This chapter describes the caches present in a MIPS32 4K processor core. It contains the following sections:

» Section 7.1, "Introduction”

Section 7.2, "Cache Protocols"

Section 7.3, "Instruction Cache"

Section 7.4, "Data Cache"

Section 7.5, "Memory Coherence Issues"

7.1 Introduction

A 4K processor core supports separate instruction and data caches which may be flexibly configured at build time for
various sizes, organizations and set-associativities. The use of separate caches allows instruction and data references to
proceed simultaneously. Both caches are virtually indexed and physically tagged, allowing cache access to occur in
parallel with virtual-to-physical address translation.

The instruction and data caches are independently configured. For example, the data cache can be 2 KBytes in size and
2-way set associative, while the instruction cache can be 8 KBytes in size and 4-way set associative. Each cache is
accessed in a single processor cycle.

Cache refills are performed using a 4-word fill buffer, which holds data returned from memory during a 4-beat burst
transaction. The critical miss word is always returned first. The caches are blocking until the critical word is returned,
but the pipeline may proceed while the other 3 beats of the burst are still active on the bus.

Table 7-1lists the instruction and data cache attributes:

Table 7-1 Instruction and Data Cache Attributes

Parameter Instruction Data
Size 0 - 16 KBytes 0 - 16 KBytes
Number of Cache Sets 0, 64, 128 and 256 0, 64, 128 and 256
Lines Per Set (Associativity) 1 - 4 way set associative 1 - 4 way set associatiye
Line Size 16 Bytes 16 Bytes
Read Unit 32-bits 32-bits
Write Policy N/A Writ(\?\;’r[iktléc_)gﬁ]glc\g/tiéhout
Miss restart after transfer of miss word miss word
Cache Locking per line per line

Table 7-2shows the cache size and organization options; note that the same total cache size may be achieved with several
different set-associativities. Software can identify the instruction or data cache configuration on a 4K core by reading
the appropriate bits of tHéonfiglregister; se&ection 5.2.16, "Configl Register (CPO Register 16, Select 1)"

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 115

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 7 Caches

Table 7-2 Instruction and Data Cache Sizes

Cache Size (bytes) Way Organization Options
0K No cache
1K One 1K way
One 2K way
2K
Two 1K ways
3K Three 1K ways
One 4K way
4K Two 2K ways

Four 1K ways

6K Three 2K ways
Two 4K ways
8K
Four 2K ways
12K Three 4K ways
16K Four 4K ways

7.2 Cache Protocols

7.2.1 Cache Organization

The instruction and data caches each consist of two arrays: a tag array and a data array. The caches are virtually indexed,
since a virtual address is used to select the appropriate line within both the tag and data arrays. The caches are physically
tagged, as the tag array contains a physical, not virtual, address.

The tag and data arrays haldvays of information per line, corresponding to th&ay set associativity of the cache,
wheren can be between 1 and 4 for a cache in a 4K &agere 7-1shows the format of each line of the tag and data
arrays for each way. A tag entry consists of the upper 22 bits of the physical address (bits [31:10]), 4 valid bits (one for
each data word in the line), a lock bit and a LRF bit. A data entry contains the four 32-bit words in the line, for a total
of 16 bytes. Not every word need be present in the data array, hence the per-word validity information stored with the
tag. A word is the minimum valid quanta, so it is not possible to hold a partially valid subword. Once a valid word is
resident in the cache, byte, halfword or tri-byte stores can update a portion of the word.

22 4 1 1
32 32 32 32
Data: Word3 Word2 Word1 WordO

Figure 7-1 Cache Array Formats

116 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

7.3 Instruction Cache

7.2.2 Cacheability Attributes

All the The 4K cores supports the following cacheability attributes:

» Uncached Addresses in a memory area indicated as uncached are not read from the cache. Stores to such addresses
are written directly to main memory, without changing cache contents.

» Write-through : Loads and instruction fetches first search the cache, reading main memory only if the desired data
does not reside in the cache. On data store operations, the cache is first searched to see if the target address is cache
resident. If it is resident, the cache contents are updated, and main memory is also written. If the cache lookup misses
on a store, only main memory is written. Hence, the allocation policy on a cache miss is read-allocate only.

Some segments of memory employ a fixed caching policy; for example the kseg1 is always uncacheable. Other segments
of memory allow the caching policy to be selected by software. Generally, the cache policy for these programmable
regions is defined by a cacheability attribute field associated with that region of mem&iapes 3, “Memory
Management,” on page 3ar further details.

7.2.3 Replacement Policy

The replacement policy refers to how a way is chosen to hold an incoming cache line on a miss which will result in a
cache fill, when a cache is at least two-way set associative. In a direct mapped cache (one-way set associative), the
replacement policy is irrelevant since there is only one way available. The replacement policy is least recently filled
(LRF), first considering invalid ways and excluding any locked ways. On a cache miss, the valid, lock and LRF bits for
each tag entry of the selected line may be used to determine the way which will be chosen. The number of tag entries
which are looked at depends on the set associativity of the cache.

First the valid bits are inspected. If an invalid way is available, as determined by all 4 of the valid bits in a tag being zero,
then that way will be selected. If more than one invalid way is available, then the first one found starting from wayO will
be selected.

If all ways are valid, then any locked ways will be excluded from consideration for replacement. If all ways are locked,
then no replacement can occur to that line. For the unlocked ways, the LRF bits from each tag are used to identify the
way which has been filled least recently, and that way is selected for replacement. When the new tag is written during
the line fill, its LRF bit is modified to indicate that way is no longer the least recently filled.

7.3 Instruction Cache

The instruction cache is an optional on-chip memory block of up to 16 KBytes. The virtually indexed, physically tagged
cache allows the virtual-to-physical address translation to occur in parallel with the cache access rather than having to
wait for the physical address translation.

All of the cores support instruction cache-locking. Cache locking allows critical code or data segments to be locked into
the cache on a “per-line” basis, enabling the system programmer to maximize the efficiency of the system cache.

The cache locking function is always enabled on all instruction cache entries. Entries can then be marked as locked or
unlocked on a per entry basis using the CACHE instruction.

7.4 Data Cache

The data cache is an optional on-chip memory block of up to 16 KBytes. The virtually indexed, physically tagged cache
allows the virtual-to-physical address translation to occur in parallel with the cache access rather than having to wait for
the physical address translation.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 117

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 7 Caches

The core also supports a data cache locking mechanism identical to the instruction cache. Critical data segments to be
locked into the cache on a “per-line” basis. The locked contents can be updated on a store hit, but cannot be selected for
replacement on a miss.

The cache locking function is always enabled on all data cache entries. Entries can then be marked as locked or unlocked
on a per entry basis using the CACHE instruction.

7.5 Memory Coherence Issues

118

A cache presents coherency issues within the memory hierarchy which must be considered in the system design. Since
a cache holds a copy of memory data, it is possible for another memory master to modify a memory location, thus
making other copies of that location stale if those copies are still in use. A detailed discussion of memory coherence is
beyond the scope of this document, but following are a few related comments.

A 4K processor contains no direct hardware support for managing coherency with respect to its caches, so it must be
handled via system design or software. The 4K caches are write-through, so all data writes will eventually be sent to
memory. Due to write buffers, however, there could be a delay in how long it takes for the write to memory to actually
occur. If another memory master updates cacheable memory which could also be in the 4K caches, then those locations
may need to be flushed from the cache. The only way to accomplish this invalidation is by use of the CACHE instruction.

The SYNC instruction may also be useful to software enforcing memory coherence, as it flushes the 4K processor’s write
buffers.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 8

Power Management

The MIPS32 4K processor cores offers a number of power management features, including low-power design, active
power management and power-down modes of operation. The core is a static design that supports a WAIT instruction
designed to signal the rest of the device that execution and clocking should be halted, reducing system power
consumption during idle periods.

The core provides two mechanisms for system level low power support discussed in the following sections.

» Section 8.1, "Register-Controlled Power Management"

» Section 8.2, "Instruction-Controlled Power Management"

8.1 Register-Controlled Power Management

The RP bit in the CP&tatusregister a standard software mechanism for placing the system into a low power state. The
state of the RP bit is available externally via e RPsignal. Three additional pinS|_EX_, SI_ERL andEJ_DebugM

support the power management function by allowing the user to change the power state if an exception or error occurs
while the core is in a low power state.

Setting the RP bit of the CP&tatugegister causes the core to asser3heRPsignal. The external agent can then decide
whether to reduce the clock frequency and place the core into power down mode.

If an interrupt is taken while the device is in power down mode, that interrupt may need to be serviced depending on the
needs of the application. The interrupt causes an exception which in turn causes the EXL bit to be set. The setting of the
EXL bit causes the assertion of tBe EXLsignal on the external bus, indicating to the external agent that an interrupt
has occurred. At this time the external agent can choose to either speed up the clocks and service the interrupt or let it
be serviced at the lower clock speed.

The setting of the ERL bit causes the assertion o&hd=RLsignal on the external bus, indicating to the external agent
that an error has occurred. At this time the external agent can choose to either speed up the clocks and service the error
or let it be serviced at the lower clock speed.

Similarly, theEJ_DebugMsignal indicates that the processor is in debug mode. Debug mode is entered when the
processor takes a debug exception. If fast handling of this is desired, the external agent can speed up the clocks.

The core provides four power down signals that are part of the system interface. Three of the pins change state as the
corresponding bits in the CPatusregister are set or cleared. The fourth pin indicates that the processor is in debug
mode.

» TheSI_RPsignal represents the state of the RP bit (27) in theST&Qsregister.
» TheSI_EXLsignal represents the state of the EXL bit (1) in the Safusregister.
» TheSI_ERLsignal represents the state of the ERL bit (2) in the &Risregister.

» TheEJ_DebugMsignal indicates that the processor has entered debug mode.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 119

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 8 Power Management

8.2 Instruction-Controlled Power Management

120

The second mechanism for invoking power down mode is through execution of the WAIT instruction. If the bus is idle
at the time the WAIT instruction reaches the M stage of the pipeline, the internal clocks are suspended and the pipeline
is frozen. However, the internal timer and some of the input Binsn{5:0], SI_NM|, SI_ResetSI_ColdResetand

EJ_DINT) continue to run. If the bus is not idle at the time the WAIT instruction reaches the M stage, the pipeline stalls
until the bus becomes idle, at which time the clocks are stopped. Once the CPU is in instruction controlled power
management mode, any enabled interrupt, NMI, debug interrupt, or reset condition causes the CPU to exit this mode and
resume normal operation. While the part is in this low-power mod&|tigl EERsignal is asserted to indicate to

external agents what the state of the chip is.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18
Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 9

EJTAG Debug Support

The EJTAG debug logic in the MIPS32 4K processor cores provides two optional modules: one for hardware
breakpoints, and the other is a Test Access Port (TAP) for a dedicated connection to a debug host.

This chapter contains the following sections.

» Section 9.1, "Debug Control Register"

Section 9.2, "Hardware Breakpoints"
Section 9.3, "Test Access Port (TAP)"
Section 9.4, "EJTAG TAP Registers"

Section 9.5, "Processor Accesses"

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 121

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support

9.1 Debug Control Register

122

The Debug Control RegisteDCR) register controls and provides information about debug issues, and is always
provided with the CPU core. The register is memory mapped in drseg at offset 0x0.

The DataBrk and InstBrk bits indicates if hardware breakpoints are included in the implementation, and debug software
is expected to read hardware breakpoint registers for additional information.

Hardware and software interrupts are maskable for non-debug mode with the INTE bit, which works in addition to the
other mechanisms for interrupt masking and enabling. NMI is maskable in non-debug mode with the NMIE bit, and a
pending NMI is indicated through the NMIP bit.

The SRE bit allows implementation dependent masking of none, some or all sources for soft reset. The soft reset masking
may only be applied to a soft reset source, if that source can be efficiently masked in the system, thus resulting on no
reset at all. If that is not possible, then that soft reset source should not be masked, since a “half”’ soft reset may cause
the system to fail or hang. There is no automatic indication of whether the SRE is effective, but the user must consult
system documentation.

The PE bit reflects the ProbEn bit from the EJTAG Control regigi€@R), whereby the probe can indicate to the debug
software running on the CPU if the probe expects to service dmseg accesses. The reset value in the table below takes
effect on both hard and soft reset.

Debug Control Register
31 30 29 28 18 17 16 15 5 4 3 2 1 D

Res | ENI\.{I Res | DE‘K nj Res | INTF NMIF NMI|P SF{E P

m

Table 9-1Debug Control RegisteField Descriptions

Fields
Read/
Name Bit(s) Description Write Reset State
Res 31:30 reserved R 0
Endianess in Kernel and Debug mode. This bit indicates
the endianess in Kernel and Debug mode.
ENM 29 R Preset
0: Little Endian
1: Big Endian
Res 28:18 reserved R 0

Data Break Implemented. This bit indicates if the Datg
Break feature is implemented.
DB 17 R Preset
0: No Data Break feature implemented
1: Data Break feature is implemented

Instruction Break Implemented. This bit indicates if the
Instruction Break feature is implemented.
B 16 R Preset
0: No Instruction Break feature implemented
1: Instruction Break feature is implemented

Res 15:5 reserved R 0

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

9.1 Debug Control Register

Table 9-1Debug Control RegisteField Descriptions (Continued)

Fields

Name

Bit(s)

Description

Read/
Write

Reset State

INTE

Interrupt Enable in Normal Mode. This bit provides the
hardware and software interrupt enable for non-debug
mode, in addition to other masking mechanisms:

0: Interrupt disabled.
1: Interrupts enabled (depending on other enabling
mechanisms).

R/W

NMIE

Non-Maskable Interrupt Enable for non-debug mode.

0: NMI disabled.
1: NMI enabled.

R/W

NMIP

NMI Pending Indication.

0: No NMI pending.
1: NMI pending.

SRE

Soft Reset Enable.

This bit allows the system to mask soft resets. The co
does not internally mask soft reset. Rather the state of
bit appears on theJ_SRstEexternal output signal,
allowing the system to mask soft resets if desired.

re
his RIW

PE

Probe Enable.

This bit reflects the ProbEn bit in the EJTAG Control
register.

0: No accesses to dmseg allowed1: EJTAG probe servi
accesses to dmseg

ces

Same value as
ProbEn in ECR

(seeTable 9-23

MIPS32® 4K™ Processor Core Family Software User’s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

123

Chapter 9 EJTAG Debug Support

9.2 Hardware Breakpoints

Hardware breakpoints provide for the comparison by hardware of executed instructions and data load/store transactions.
It is possible to set instruction breakpoints on addresses even in ROM area, and set data breakpoints to cause a debug
exception on a specific data transaction. Instruction and data hardware breakpoints are alike for may aspects, and are
thus described in parallel in the following. The term hardware is not applied to breakpoint, unless required to distinguish

it from software breakpoint.

There are two types of simple hardware breakpoints implemented in the 4K cores: Instruction breakpoints and Data
breakpoints.

Each core can be configured with the following breakpoint options:

» No data or instruction breakpoints

» Two instruction and one data breakpoint

 Four instruction and two data breakpoints

9.2.1 Features of Instruction Breakpoint

Instruction breaks occur on instruction fetch operations and the break is set on the virtual address on the bus between the
CPU and the instruction cache. Instruction breaks can also be made on the ASID value used by the MMU (4Kc core
only). Finally, a mask can be applied to the virtual address to set breakpoints on a range of instructions.

Instruction breakpoints compare the virtual address of the executed instructions (PC) and the ASID, with the registers
for each instruction breakpoint including masking of address and ASID. An overview is shéiguire 9-landFigure

9-2.
PC Instruction Debug Exception >
_— P
Hardware . L
ASID Breakpoint Trigger Indication >

Figure 9-1 Instruction Hardware Breakpoint Overview (4Kc Core)

Instruction Debug Exception
PC—» Hardware] T -
Breakpoint Trigger Indication

Figure 9-2 Instruction Hardware Breakpoint Overview (4Km and 4Kp Core)

When ainstruction breakpoint matches, a debug exception and/or a trigger is generated. An internal bit in the instruction
breakpoint registers is set to indicate that the match occurred.

9.2.2 Features of Data Breakpoint

Data breakpoints occur on load/store transactions. Breakpoints are set on virtual address and ASID values, similar to the
Instruction breakpoint. Data breakpoints can be set on a load, a store or both. Data breakpoints can also be set based on
the value of the load/store operation. Finally, masks can be applied to both the virtual address and the load/store value.

124 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

9.2 Hardware Breakpoints

Data breakpoints compare the transaction type (TYPE), which may be load or store, the virtual address of the transaction
(ADDR), the ASID, accessed bytes (BYTELANE) and data value (DATA), with the registers for each data breakpoint
including masking or qualification on the transaction properties. An overview is shé&igune 9-3andFigure 9-4

TYPE
—>

ADDR
B A e o
Data

ASID
—>

BYTELANE
—>

DATA
—>

Hardware
Breakpoint

Debug Exception

Trigger Indication

Figure 9-3 Data Hardware Breakpoint Overview (4Kc Core)

TYPE
—>

ADDR Data
—>
Hardware

—>BYTELANE Breakpoint

DATA
—>

Debug Exception

y

Trigger Indication

Figure 9-4 Data Hardware Breakpoint Overview (4Km/4Kp Core)

When a data breakpoint matches, a debug exception and/or a trigger is generated, and an internal bit in the data
breakpoint registers is set to indicate that the match occurred. The match is either precise whereby the debug exception
or trigger occurs on the instruction that caused the breakpoint to match, or it is imprecise whereby the debug exception

or trigger occurs later in the program flow.

9.2.3 Overview of Registers for Instruction Breakpoints

The register with implementation indication and status for instruction breakpoints in general is shala 82

Table 9-2 Overview of Status Register for Instruction Breakpoints

Register Mnemonic

Register Name and Description

IBS Instruction Breakpoint Status

The four instruction breakpoints are numbered 0 to 3 for registers and breakpoints, and the number is indicated by n. The

registers for each breakpoint are showiidble 9-3

Table 9-3 Overview of Registers for each Instruction Breakpoint

Register Mnemonic

Register Name and Description

IBAN Instruction Breakpoint Address n
IBMn Instruction Breakpoint Address Mask n
IBASIDnN Instruction Breakpoint ASID n (4Kc core)
IBCn Instruction Breakpoint Control n
MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 125

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support

9.2.4 Registers for Data Breakpoint Setup

The register with implementation indication and status for data breakpoints in general is shalla 4

Table 9-4 Overview of Status Register for Data Breakpoints

Register Mnemonic Register Name and Description

DBS Data Breakpoint Status

The two data breakpoints are numbered 0 and 1 for registers and breakpoints, and the number is indicated by n. The
registers for each breakpoint are showiidable 9-5

Table 9-5 Overview of Registers for each Data Breakpoint

Register Mnemonic Register Name and Description
DBAnN Data Breakpoint Address n
DBMn Data Breakpoint Address Mask n
DBASIDn Data Breakpoint ASID n (4Kc core)
DBCn Data Breakpoint Control n
DBVn Data Breakpoint Value n

9.2.5 Conditions for Matching Breakpoints

126

A number of conditions must be fulfilled in order for a breakpoint to match on an executed instruction or a data
transaction, and the conditions for matching instruction and data breakpoints are described below. The breakpoints only
match for instructions executed in non-debug mode, thus never on instructions executed in debug mode.

The match of an enabled breakpoint can either generate a debug exception or a trigger indication. The BE and/or TE bits
in theIBCn or DBCnregisters are used to enable the breakpoints.

Debug software should not configure breakpoints to compare on ASID value, unless a TLB is present in the
implementation (4Kc core only).

9.2.5.1 Conditions for Matching Instruction Breakpoint

When an instruction breakpoint is enabled, that breakpoint is evaluated for the address of every executed instruction in
non-debug mode, including execution of instructions at an address causing an address error on instruction fetch. The
breakpoint is not evaluated on instructions from speculative fetch or execution, nor for addresses which are unaligned
with an executed instruction.

Match of the breakpoint depends on the virtual address of the executed instruction (PC) which can be masked at bit level,
and match may also include optional compare of ASID value. The registers for each instruction breakpoint have the
values and mask used in the compare, and the equation that determines the match is shown below in C-like notation.

IB_match =
(! lBC”ASlDUSQ II (ASID == IBASIDn ASID)) &&
(<all 1's> == IBMn|BM | ~ (PC~ IBAn IBA))

The match indication for instruction breakpoints is always precise, i.e. indicated on the instruction causing the IB_match

to be true.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

9.2 Hardware Breakpoints

9.2.5.2 Conditions for Matching Data Breakpoints

When a data breakpoint is enabled, that breakpoint is evaluated for every data transaction due to a load/store instruction
executed in non-debug mode, including load/store for coprocessor, and transactions causing an address error on data
access. The breakpoint is not evaluated due to PREF instruction or other transactions which are not part of explicit
load/store transactions in the execution flow, nor for addresses which are not the explicit load/store source or destination
address.

Match of the breakpoint depends on the transaction type (TYPE) as load or store, the address, and optionally the data
value of a transaction. The registers for each data breakpoint has the values and mask used in the compare, and the
equations that determine the match are shown below in C-like notation.

The overall match equation is DB_match:

DB_match =
(((TYPE == load) && ! DBCRo18) Il
((TYPE == store) && ! DBChRyosg)) &&
DB_addr_match && (DB_no_value_compare || DB_value_match)

Match on the address part, DB_addr_match, depends on virtual address of the transaction (ADDR), the ASID value, and
the accessed bytes (BYTELANE) where BYTELANE[O] is 1 only if the byte at bits [7:0] on the bus is accessed, and
BYTELANE[1] is 1 only if byte at bits [15:8] is accessed, etc. The DB_addr_match is shown below.

DB_addr_match =
(! DBChsipuse Il (ASID == DBASIDmgp)) &&
(<all 1's> == DBMpgyl ~ (ADDR” DBAmga))) &&
(<all 0's> 1= (~ BAI & BYTELANE))

The size oDBCngp and BYTELANE is 4 bits.

Data value compare is included in the match condition for the data breakpoint depending on the bytes (BYTELANE as
described above) accessed by the transaction, and the contents of breakpoint registers. The DB_no_value_compare is
shown below.

DB_no_value_compare =
(<all 's> == DBCrg | DBCrgp | ~ BYTELANE))
The size oDBCrg) \y, DBCrgy, and BYTELANE is 4 bits.

In case data value compare is required, DB_no_value_compare is false, then the data value from the data bus (DATA) is
compared and masked with the registers for the data breakpoint. The endianess is not considered in these match
equations for value, as the compare uses the data bus value directly, thus debug software is responsible for setup of the
breakpoint corresponding with endianess.

DB_value_match =

((DATA[7:0] == DBVipgyprop) Il ! BYTELANEO] || DBCy v | DBCoapg) &&

((DATA[15:8] == DBVibgypise) Il ! BYTELANE[] | DBCiyypy | DBCleapy) &&
((DATA[23:16] == DBvrbBV[23:lG]) || ' BYTELANE[2] || DBC’ELM[Z] Il DBCIEN[Z])&&
((DATA[31:24] == DBVibgy31:24)) |l ' BYTELANE[3] || DBCrgi vz I DBCrgayz;)

The match for a data breakpoint is always precise, since the match expression is fully evaluated at the time the load/store
instruction is executed. A true DB_match can thereby be indicated on the very same instruction causing the DB_match
to be true.

9.2.6 Debug Exceptions from Breakpoints

Instruction and data breakpoints may be set up to generate a debug exception when the match condition is true, as
described below.
MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 127

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support

128

9.2.6.1 Debug Exception by Instruction Breakpoint

If the breakpoint is enabled by BE in thBCnregister, then a debug instruction break exception occurs if the IB_match
equation is true. The corresponding BS[n] bit inlB8register is set when the breakpoint generates the debug
exception.

The debug instruction break exception is always precise, d0BERCregister and DBD bit in th®ebugregister points
to the instruction that caused the IB_match equation to be true.

The instruction receiving the debug exception does not update any registers due to the instruction, nor does any load or
store by that instruction occur. Thus a debug exception from a data breakpoint can not occur for instructions receiving a
debug instruction break exception.

The debug handler usually returns to the instruction causing the debug instruction break exception, whereby the
instruction is executed. Debug software is responsible for disabling the breakpoint when returning to the instruction,
otherwise the debug instruction break exception reoccurs.

9.2.6.2 Debug Exception by Data Breakpoint

If the breakpoint is enabled by BE in th8Cnregister, then a debug exception occurs when the DB_match condition
is true. The corresponding BS[n] bit in tb8Sregister is set when the breakpoint generates the debug exception.

A debug data break exception occurs when a data breakpoint indicates a match. In this D&$&CGhegister and DBD
bit in theDebugregister points to the instruction that caused the DB_match equation to be true.

The instruction causing the debug data break exception does not update any registers due to the instruction, and the
following applies to the load or store transaction causing the debug exception:
A store transaction is not allowed to complete the store to the memory system.

» A load transaction with no data value compare, i.e. where the DB_no_value_compare is true for the match, is not
allowed to complete the load.

» A load transaction for a breakpoint with data value compare must occur from the memory system, since the value is
required in order to evaluate the breakpoint.

The result of this is that the load or store instruction causing the debug data break exception appears as not executed,
with the exception that a load from the memory system do occur for a breakpoint with data value compare, but the result
of this load is discarded since the register file is not updated by the load.

If both data breakpoints without and with data value compare would match the same transaction and generate a debug
exception, then the following rules apply with respect to updating the BS[n] bits.

» On both a load and store the BS[n] bits are required to be set for all matching breakpoints without data value
compare.

» On a store then BSJ[n] bits are allowed but not required to be set for all matching breakpoints with data value
compare, but either all or none of the BS[n] bits must be set for these breakpoints.

» On a load then no of the BS[n] bits are allowed to be set, since the load is not allowed to occur due to the debug
exception from a breakpoint without data value compare, and a valid data value is therefore not returned.

Any BS[n] bit set prior to the match and debug exception are kept set, since BS[n] bits are only cleared by debug
software.

The debug handler usually returns to the instruction causing the debug data break exception, whereby the instruction is
re-executed. This re-execution may result in a repeated load from system memory, since the load may have occurred
previously in order to evaluate the breakpoint as described above. I/0 devices with side effects on load must be able to

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

9.2 Hardware Breakpoints

allow such reloads, or debug software should alternatively avoid setting data breakpoint with data value compare on such
I/O devices. Debug software is responsible for disabling breakpoints when returning to the instruction, otherwise the
debug data break exception will reoccur.

9.2.7 Breakpoint used as Triggerpoint

Both instruction and data hardware breakpoints may be set up by software so a matching breakpoint does not generate
a debug exception, but only an indications through the BS[n] bit. The TE bit itBBa or DBCnregister controls if a
instruction respectively data breakpoint is used as a so-called triggerpoint. The triggerpoints are, like breakpoints, only
compared for instructions executed in non-debug mode.

The BS[n] bit in thdBS or DBSregister is set when the respective IB_match or DB_match bit is true.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 129
Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support

9.2.8 Instruction Breakpoint Registers

The registers for instruction breakpoints are described below. These registers have implementation information and are
used to set up the instruction breakpoints. All registers are in drseg, and the addresses arelabtad+-&

Table 9-6 Addresses for Instruction Breakpoint Registers

Register
Offset in drseg Mnemonic Register Name and Description
0x1000 IBS Instruction Breakpoint Status
0x1100 + n * 0x100 IBAN Instruction Breakpoint Address n
0x1108 + n * 0x100 IBMn Instruction Breakpoint Address Mask n
0x1110 + n * 0x100 IBASIDn Instruction Breakpoint ASID n (4Kc core)
0x1118 + n * 0x100 IBCn Instruction Breakpoint Control n
Note: n is breakpoint number in range 0 to 3 (or 0 to 1, depending on the implemented hardware)

An example of some of the registeliBAQ is at offset 0x1100 an@C2 is at offset 0x1318.

130 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

9.2 Hardware Breakpoints

9.2.8.1 Instruction Breakpoint Status (BS) Register

Compliance Level:Implemented only if any instruction breakpoints.

The Instruction Breakpoint Statu8§) register holds implementation and status information about the instruction

breakpoints.

The ASID applies to all the instruction breakpoints for the 4K core.

IBS Register Format

31 30 29 28 27 24 23 4 3 0
Reg ASID Res BCN Res BS
sup
Table 9-71BS Register Field Descriptions
Fields
Name Bit(s) Description Read/Write Reset State
Res 31 Must be written as zero; returns zero on read. 0 0
This bit indicates that ASID compare is supported in) g
ASIDsUp 30 instruction breakpoints (4Kc core). 4Kc cores: R 4Ke core- 1
Must be written as zero; returns zero on read (4Km/4Kp cores‘}.KmMKp cores: 0| 4Km/4Kp cores 0
Res 29:28 Must be written as zero; returns zero on read. 0 0
BCN 27:24 Number of instruction breakpoints implemented R £or 2
Res 23:4 Must be written as zero; returns zero on read. 0 0
Break status for breakpoint n is at BS[n], with n as 0oThe
BS 3.0 bit is set to 1 when the condition for the corresponding R/W Undefined
breakpoint has matched.
Note: [a] Based on actual hardware implemented.
Note: [b] In case of only 2 Instruction breakpoints, bit 2 and 3 become reserved.
MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 131

Copyright © 2000-2002 MIPS Technologies Inc. All righ

ts reserved.

Chapter 9 EJTAG Debug Support

9.2.8.2 Instruction Breakpoint Address n [BAn) Register
Compliance Level:Implemented only for implemented instruction breakpoints.
The Instruction Breakpoint Address BBAN) register has the address used in the condition for instruction breakpoint n.

IBAn Register Format
31 0

IBA

Table 9-8I1BAn Register Field Descriptions

Fields
Read/
Name Bit(s) Description Write Reset State
IBA 31:.0 Instruction breakpoint address for condition R/ Undefined
132 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

9.2 Hardware Breakpoints

9.2.8.3 Instruction Breakpoint Address Mask n [BMn) Register
Compliance Level:Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint Address MaskIB{n) register has the mask for address compare used in the condition for
instruction breakpoint n.

IBMn Register Format
31 0

IBM

Table 9-91BMn Register Field Descriptions

Fields
Read/
Name Bit(s) Description Write Reset State
Instruction breakpoint address mask for condition:
IBM 31:0 0: Corresponding address bit not masked R/W Undefined
1: Corresponding address bit masked
MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 133

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support

134

9.2.8.4 Instruction Breakpoint ASID n (BASIDn) Register

Compliance Level:Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint ASID hBASIDn) register has the ASID value used in the compare for instruction
breakpoint n. The number of bits in the ASID field is 8, to match the ASID size in the TLB.

This register is only valid for the 4Kc core.

IBASIDn Register Format

31 8 7 0
Res ASID
Table 9-10IBASIDn Register Field Descriptions
Fields
Read/

Name Bit(s) Description Write Reset State

Res 31:8 Must be written as zero; returns zero on read. 0 0
ASID 7:0 Instruction breakpoint ASID value for compare: R/W Undefined

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

9.2 Hardware Breakpoints

9.2.8.5 Instruction Breakpoint Control n (IBCn) Register

Compliance Level:Implemented only for implemented instruction breakpoints.

The Instruction Breakpoint Control iBCn) register controls setup of instruction breakpoint n.

IBCn Register Format

31 24 23 22 3 2 1 (
Res ASIL Res TH Rgs BE
use

Table 9-111BCn Register Field Descriptions

Fields
Read/
Name Bits Description Write Reset State

Res 31:24 Must be written as zero; returns zero on read. 0 0
Use ASID value in compare for instruction breakpoint n (4Kc
core):

ASIDuse 23 0: Don't use ASID value in compare 4Kc core- RIW Undefined

1: Use ASID value in compare 4Km/4Kp cores - 0
Must be written as zero; returns zero on read (4Km/4Kp cores).

Res 22:3 Must be written as zero; returns zero on read. 0 0
Use instruction breakpoint n as triggerpoint:

TE 2 0: Don't use it as triggerpoint R/W 0
1: Use it as triggerpoint

Res 1 Must be written as zero; returns zero on read. 0 0
Use instruction breakpoint n as breakpoint:

BE 0 0: Don't use it as breakpoint R/W 0
1: Use it as breakpoint

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 135

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support

9.2.9 Data Breakpoint Registers

The registers for data breakpoints are described below. These registers have implementation information and are used to
set up the data breakpoints. All registers are in drseg, and the addresses are shown Tialslec8iei?

Table 9-12 Addresses for Data Breakpoint Registers

Register
Offset in drseg Mnemonic Register Name and Description
0x2000 DBS Data Breakpoint Status
0x2100 + 0x100 * n DBAN Data Breakpoint Address n
0x2108 + 0x100 * n DBMn Data Breakpoint Address Mask n
0x2110 + 0x100 * n DBASIDn Data Breakpoint ASID n (4K core)
0x2118 + 0x100 * n DBCn Data Breakpoint Control n
0x2120 + 0x100 * n DBVn Data Breakpoint Value n
Note: n is breakpoint number as 0 or 1 (or just 0, depending on the implemented hardware)

An example of some of the registeBMO is at offset 0x2108 andBV1is at offset 0x2220.

136 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

9.2 Hardware Breakpoints

9.2.9.1 Data Breakpoint StatusPBS) Register

Compliance Level:Implemented only if any data breakpoints.

The Data Breakpoint StatuBBS register holds implementation and status information about the data breakpoints.
The ASID applies to all the data breakpoints for the 4Kc core.

DBS Register Format

31 30 29 28 27 24 23 210
Reg ASID Res BCN Res BS
sup

Table 9-13DBS Register Field Descriptions

Fields
Read/
Name Bit(s) Description Write Reset State
Res 31 Must be written as zero; returns zero on read. 0 0
4Kc core: Indicates that ASID compare is supported|in
data breakpoints. 4Kc core: R 4Kc core - 1
ASIDsup 30)
4Km/4Kp cores: Must be written as zero; returns zerdKm/4Kp cores: 0| 4Km/4Kp cores - 0
on read.
Res 29:28 Must be written as zero; returns zero on read. 0 0
BCN 27:24 Number of data breakpoints implemented R For1
Res 23:2 Must be written as zero; returns zero on read. 0 0
Break status for breakpoint n is at BS[n], with n as Ofto
BS 1:0 1P. The bit is set to 1 when the condition for the R/WO Undefined
corresponding breakpoint has matched.
Note: [a] Based on actual hardware implemented.
Note: [b] In case of only 1 data breakpoint bit 1 become reserved.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 137

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support

138

9.2.9.2 Data Breakpoint Address n[PBANn) Register

Compliance Level:Implemented only for implemented data breakpoints.

The Data Breakpoint Address DEAN) register has the address used in the condition for data breakpoint n.

DBAn Register Format

31 0
DBA
Table 9-14DBAnN Register Field Descriptions
Fields
Read/
Name Bit(s) Description Write Reset State
DBA 31:.0 Data breakpoint address for condition R/M Undefined

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

9.2 Hardware Breakpoints

9.2.9.3 Data Breakpoint Address Mask nlIBMn) Register
Compliance Level:Implemented only for implemented data breakpoints.

The Data Breakpoint Address MaskDEMn) register has the mask for address compare used in the condition for data
breakpoint n.

DBMn Register Format
31 0

DBM

Table 9-15DBMn Register Field Descriptions

Fields
Read/
Name Bit(s) Description Write Reset State
Data breakpoint address mask for condition:
DBM 31:0 0: Corresponding address bit not masked R/W Undefined
1: Corresponding address bit masked
MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 139

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support

9.2.9.4 Data Breakpoint ASID n DPBASIDn) Register

Compliance Level:Implemented only for implemented data breakpoints.

The Data Breakpoint ASID miDBASIDn register has the ASID value used in the compare for data breakpoint n.
This register is only valid in the 4Kc core.

DBASIDn Register Format
31 8 7 0

Res ASID

Table 9-16DBASIDn Register Field Descriptions

Fields
Read/
Name Bit(s) Description Write Reset State
Res 31:8 Must be written as zero; returns zero on read. D 0
ASID 7:0 Data breakpoint ASID value for compare: R/W Undefined
140 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

9.2 Hardware Breakpoints

9.2.9.5 Data Breakpoint Control n DBCn) Register
Compliance Level:Implemented only for implemented data breakpoints.
The Data Breakpoint Control DBCn) register controls setup of data breakpoint n.

DBCn Register Format

31 24 23 22 18 17 14 13 12 11 8 7 4 3 2 1|0
Re ASID Res BAI NoSB NoLB Res BLM Ras TE Res BE
use

Table 9-17DBCn Register Field Descriptions

Fields

Name Bits Description Read/Write Reset State

Res 31:24 Must be written as zero; returns zero on read. 0 0

Use ASID value in compare for data breakpoint n (4Kc core):

0: Don't use ASID value in compare 4Ke core - RIW defined

ASIDuse 23 Undefine
1: Use ASID value in compare t'grnelsl(g

Must be written as zero; returns zero on read (4Km/4Kp corgs).

Res 22:18 Must be written as zero; returns zero on read. 0 0

Byte access ignore controls ignore of access to specific byte.
BAI[0] ignores access to byte at bits [7:0] of the data bus,

BAI[1] ignores access to byte at bits [15:8], etc.:
BAI 17:14 R/W Undefined

0: Condition depends on access to corresponding byte

1: Access for corresponding byte is ignored

Controls if condition for data breakpoint is never fulfilled on|a
store transaction:

NoSB 13 R/W Undefined

0: Condition may be fulfilled on store transaction

1: Condition is never fulfilled on store transaction

Controls if condition for data breakpoint is never fulfilled on|a
load transaction:

NolLB 12 R/W Undefined

0: Condition may be fulfilled on load transaction

1: Condition is never fulfilled on load transaction

Res 11:8 Must be written as zero; returns zero on read. 0 0

Byte lane mask for value compare on data breakpoint. BLM[O]
masks byte at bits [7:0] of the data bus, BLM[1] masks byte| at

bits [15:8], etc.:
BLM 7:4 R/W Undefined

0: Compare corresponding byte lane

1: Mask corresponding byte lane

Res 3 Must be written as zero; returns zero on read. 0 0

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 141
Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support

Table 9-17DBCn Register Field Descriptions (Continued)

Fields
Name Bits Description Read/Write Reset State

Use data breakpoint n as triggerpoint:

TE 2 0: Don't use it as triggerpoint R/W 0
1: Use it as triggerpoint

Res 1 Must be written as zero; returns zero on read. 0 0
Use data breakpoint n as breakpoint:

BE 0 0: Don't use it as breakpoint R/W 0
1: Use it as breakpoint

142 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

9.2 Hardware Breakpoints

9.2.9.6 Data Breakpoint Value n[DBVn) Register

Compliance Level:Implemented only for implemented data breakpoints.

The Data Breakpoint Value DBVn) register has the value used in the condition for data breakpoint n.

DBVn Register Format

31 0
DBV
Table 9-18DBVn Register Field Descriptions
Fields
Read/
Name Bit(s) Description Write Reset State
DBV 31:.0 Data breakpoint value for condition R/W Undefined

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

143

Chapter 9 EJTAG Debug Support

9.3 Test Access Port (TAP)

The following main features are supported by the TAP module:

* 5-pinindustry standard JTAG Test Access POEK, TMS TDI, TDO, TRST_Ninterface, which is compatible with
IEEE Std. 1149.1.

 Target chip and EJTAG feature identification available through the Test Access Port (TAP) controller.

» The processor can access external memory on the EJTAG Probe serially through the EJTAG pins. This is achieved
through so-called Processor Access (PA), and is used to eliminate the use of the user’s system memory for debug
routines.

» Support for both ROM based debugger and debugging both through TAP.

9.3.1 EJTAG Internal and External Interfaces

The external interface of the EJTAG Module consists of the 5 signals defined by the IEEE standard.
Table 9-19 EJTAG Interface Pins

Pin Type Description

Test Clock Input

Input clock used to shift data into or out of the Instruction or data
registers. Th@CK clock is independent of the processor clock, so th

[©]

TCK I EJTAG probe can drivECK independently of the processor clock
frequency.
The core signal for this is callé]_TCK
Test Mode Select Input

™S | The TMSinput signal is decoded by the TAP controller to control test

operationTMSis sampled on the rising edgeTa@@K.
The core signal for this is callé&l _TMS

Test Data Input

Serial input dataT(DI) is shifted into the Instruction register or data
TDI | registers on the rising edge of fi€K clock, depending on the TAP
controller state.

The core signal for this is callél_TDI

Test Data Output

Serial output data is shifted from the Instruction or data register to the
TDOpin at the falling edge of thECK clock. When no data is shifted out,

TDO o theTDO is 3-stated.
The core signal for this is call&l_TDOwith output enable control by
EJ _TDOzstate
144 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

9.3 Test Access Port (TAP)

Table 9-19 EJTAG Interface Pins (Continued)

Pin Type Description

Test Reset Input (Optional pin)

The TRST_Npin is an active-low signal for asynchronous reset of th
TAP controller and instruction in the TAP module, independent of th
processor logic. The processor is not reset by the asserfl&?S3_N

TRST_N ! The core signal for this is callé]_TRST_N

D

This signal is optional, but power-on reset must apply a low pulse on this
is signal at power-on and then leave it high, in case the signal is not
available as a pin on the chip. If available on the chip, then it must be low

on the board when the EJTAG debug features are unused by the pllobe.

9.3.2 Test Access Port Operation

The TAP controller is controlled by the Test Clo@iCK) and Test Mode Select1S inputs. These two inputs
determine whether an the Instruction register scan or data register scan is performed. The TAP consists of a small
controller, driven by th& CKinput, which responds to tiHEMSinput as shown in the state diagramFigure 9-5 The

TAP uses both clock edgesDEK. TMSandTDI are sampled on the rising edgel@K, while TDO changes on the
falling edge ofTCK

At power-up the TAP is forced into tfAest-Logic-Resedither by low value oMRST_NThe TAP instruction register
is thereby reset to IDCODE. No other parts of the EJTAG hardware are reset throlgst-hegic-Resedtate.

When test access is required, a protocol is applied vigdNt&andTCK inputs, causing the TAP to exit the
Test-Logic-Resettate and move through the appropriate states. FroRuheTest/IdIestate, an Instruction register scan
or a data register scan can be issued to transition the TAP through the appropriate states-soreroid

The states of the data and instruction register scan blocks are mirror images of each other adding symmetry to the
protocol sequences. The first action that occurs when either block is entered is a capture operation. For the data registers,
the Capture-DRstate is used to capture (or parallel load) the data into the selected serial data path. In the Instruction
register, theCapture-IRstate is used to capture status information into the Instruction register.

From theCapturestates, the TAP transitions to either 8teft or Exitl states. Normally th8hiftstate follows the
Capturestate so that test data or status information can be shifted out for inspection and new data shifted in. Following
the Shiftstate, the TAP either returns to tRein-Test/Idlestate via théExitl andUpdatestates or enters tHeéausestate

via Exitl. The reason for entering tRausestate is to temporarily suspend the shifting of data through either the Data
or Instruction Register while a required operation, such as refilling a host memory buffer, is performed. From the Pause
state shifting can resume by re-entering#éftstate via thdxit2 state or terminated by entering tRen-Test/IdIstate

via theExit2 andUpdatestates.

Upon entering the data or Instruction register scan blocks, shadow latches in the selected scan path are forced to hold
their present state during the Capture and Shift operations. The data being shifted into the selected scan path is not output
through the shadow latch until the TAP entersipelate-DRor Update-IRstate. TheéJpdatestate causes the shadow

latches to update (or parallel load) with the new data that has been shifted into the selected scan path.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 145

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support

146

Figure 9-5 TAP Controller State Diagram

9.3.2.1 Test-Logic-Reset State

In theTest-Logic-Resedtate the boundary scan test logic is disabled. The test logic entéestii@gic-Resedtate
when theTMSinput is held HIGH for at least five rising edgesT@K. The BYPASS instruction is forced into the
instruction register output latches during this state. The controller remains Testd.ogic-Resettate as long aEMS
is HIGH.

9.3.2.2 Run-Test/Idle State

The controller enters tHeun-Test/Idlestate between scan operations. The controller remains in this state as Tii§as
is held LOW. The instruction register and all test data registers retain their previous state. The instruction cannot change
when the TAP controller is in this state.

WhenTMSis sampled HIGH at the rising edgeTa@K, the controller transitions to tlgelect_DRstate.

9.3.2.3 Select DR_Scan State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previous
state. IfTMSis sampled LOW at the rising edge BE€K, the controller transitions to tHéapture_DFRstate. A HIGH on
TMScauses the controller to transition to tBelect IRstate. The instruction cannot change while the TAP controller is

in this state.

9.3.2.4 Select IR_Scan State

This is atemporary controller state in which all test data registers selected by the current instruction retain their previous
state. IfFTMSis sampled LOW at the rising edge €K, the controller transitions to théapture _IRstate. A HIGH on
TMScauses the controller to transition to Trest-Reset-Logistate. The instruction cannot change while the TAP
controller is in this state.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

9.3 Test Access Port (TAP)

9.3.2.5 Capture_DR State

In this state the boundary scan register captures value of the register addressed by the Instruction register, and the value
is then shifted out in th8hift_DR If TMSis sampled LOW at the rising edgeTdEK, the controller transitions to the
Shift_DRstate. A HIGH onTMScauses the controller to transition to theitl DRstate. The instruction cannot change

while the TAP controller is in this state.

9.3.2.6 Shift_DR State

In this state the test data register connected betWeeandTDO as a result of the current instruction shifts data one
stage toward its serial output on the rising edgé®©K. If TMSis sampled LOW at the rising edge DEK, the controller
remains in the&shift_DRstate. A HIGH oriTMScauses the controller to transition to theitl DRstate. The instruction
cannot change while the TAP controller is in this state.

9.3.2.7 Exitl_DR State

This is a temporary controller state in which all test data registers selected by the current instruction retain their previous
state. IfTMSis sampled LOW at the rising edgeTdEK, the controller transitions to tiRause_DRstate. A HIGH on
TMScauses the controller to transition to tgdate_DRstate which terminates the scanning process. The instruction
cannot change while the TAP controller is in this state.

9.3.2.8 Pause_DR State

ThePause_DHRtate allows the controller to temporarily halt the shifting of data through the test data register in the serial
path betwee DI andTDO. All test data registers selected by the current instruction retain their previous sTaus If

is sampled LOW at the rising edgeTd@K, the controller remains in tliRause_DRstate. A HIGH ormTMScauses the
controller to transition to thExit2_DRstate. The instruction cannot change while the TAP controller is in this state.

9.3.2.9 Exit2_DR State

This is atemporary controller state in which all test data registers selected by the current instruction retain their previous
state. IfTMSis sampled LOW at the rising edge DEK, the controller transitions to tHghift DRstate to allow another

serial shift of data. A HIGH omMScauses the controller to transition to Wgdate DRstate which terminates the
scanning process. The instruction cannot change while the TAP controller is in this state.

9.3.2.10 Update_DR State

When the TAP controller is in this state the value shifted in durin§hife DRstate takes effect at the rising edge of
the TCK for the register indicated by the Instruction register.

If TMSis sampled LOW at the rising edge BEK, the controller transitions to tHeun-Test/Idlstate. A HIGH onTMS

causes the controller to transition to tBelect DR_Scastate. The instruction cannot change while the TAP controller

is in this state and all shift register stages in the test data registers selected by the current instruction retain their previous
state.

9.3.2.11 Capture_IR State

In this state the shift register contained in the Instruction register loads a fixed patter)(660@B rising edge of
TCK. The data registers selected by the current instruction retain their previous state.

If TMSis sampled LOW at the rising edge DEK, the controller transitions to tt&hift_IRstate. A HIGH onifTMScauses
the controller to transition to thexitl_IRstate. The instruction cannot change while the TAP controller is in this state.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 147

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support

9.3.2.12 Shift_IR State

In this state the instruction register is connected betWiddrandTDO and shifts data one stage toward its serial output
on the rising edge ofCK. If TMSis sampled LOW at the rising edge DEK, the controller remains in thghift_IRstate.
A HIGH on TMScauses the controller to transition to Eratl [IRstate.

9.3.2.13 Exitl_IR State

This is atemporary controller state in which all registers retain their previous statSis sampled LOW at the rising

edge ofTCK, the controller transitions to tHeause_IRstate. A HIGH onTMScauses the controller to transition to the
Update_|Rstate which terminates the scanning process. The instruction cannot change while the TAP controller is in
this state and the instruction register retains its previous state.

9.3.2.14 Pause_IR State

ThePause_|Rstate allows the controller to temporarily halt the shifting of data through the instruction register in the
serial path betweefiDl andTDO. If TMSis sampled LOW at the rising edgeTaK, the controller remains in the
Pause_|Rstate. A HIGH onTMScauses the controller to transition to theit2_IRstate. The instruction cannot change
while the TAP controller is in this state.

9.3.2.15 Exit2_IR State
This is a temporary controller state in which the instruction register retains its previous 3tsigidfsampled LOW
at the rising edge of CK, the controller transitions to tHghift _IRstate to allow another serial shift of data. A HIGH on

TMScauses the controller to transition to thedate IRstate which terminates the scanning process. The instruction
cannot change while the TAP controller is in this state.

9.3.2.16 Update_IR State
The instruction shifted into the instruction register takes effect on the rising etigéof
If TMSis sampled LOW at the rising edge BEK, the controller transitions to tHeun-Test/Idlestate. A HIGH onTMS
causes the controller to transition to 8elect DR_Scastate.

9.3.3 Test Access Port (TAP) Instructions
The TAP Instruction register allows instructions to be serially input into the device when TAP controller iSimithER
state. Instructions are decoded and define the serial test data register path that is used to shift databieanwd€@bDO

during data register scanning.

The Instruction register is a 5-bit register. In the current EJTAG implementation only some instructions have been
decoded; the unused instructions are set default to the BYPASS instruction.

Table 9-20 Implemented EJTAG Instructions

Value Instruction Function
0x01 IDCODE Select Chip Identification data register
0x03 IMPCODE Select Implementation Register
0x08 ADDRESS Select Address register
0x09 DATA Select Data register
148 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

9.3 Test Access Port (TAP)

Table 9-20 Implemented EJTAG Instructions

Value Instruction Function

O0x0A CONTROL Select EJTAG Control register

0x0B ALL Select the Address, Data and EJTAG Control registers
0x0C EJTAGBOOT Set EjtagBrk, ProbEn and ProbTrap to 1 as reset value
0x0D NORMALBOOT Set EjtagBrk, ProbEn and ProbTrap to O as reset value
Ox0E FASTDATA Selects the Data and Fastdata registers

Ox1F BYPASS Bypass mode

9.3.3.1 BYPASS Instruction
The required BYPASS instruction allows the processor to remain in a functional mode and selects the Bypass register to
be connected betwediDl andTDO. The BYPASS instruction allows serial data to be transferred through the processor

from TDI to TDO without affecting its operation. The bit code of this instruction is defined to be all ones by the IEEE
1149.1 standard. Any unused instruction is defaulted to the BYPASS instruction.

9.3.3.2 IDCODE Instruction

The IDCODE instruction allows the processor in its functional mode and selects the Device Identification (ID) register
to be connected betwed@il andTDO. The Device ID register is a 32-bit shift register containing information regarding
the IC manufacturer, device type, and version code. Accessing the Identification Register does not interfere with the

operation of the processor. Also, access to the Identification Register is immediately available, via a TAP data scan
operation, after power-up when the TAP has been reset with on-chip power-on or through theTip8anapin.

9.3.3.3 IMPCODE Instruction

This instruction selects the Implementation register for output, which is always 32 bits.

9.3.3.4 ADDRESS Instruction

This instruction is used to select the Address register to be connected bEMee TDO. The EJTAG Probe shifts
32 bits through th@&DI pin into the Address register and shifts out the captured address ViaGhan.

9.3.3.5 DATA Instruction

This instruction is used to select the Data register to be connected b&leamdTDO. The EJTAG Probe shifts 32
bits of TDI data into the Data register and shifts out the captured data vi@@ein.

9.3.3.6 CONTROL Instruction

This instruction is used to select the EJTAG Control register to be connected bétideandTDO. The EJTAG Probe
shifts 32 bits off DI data into the EJTAG Control register and shifts out the EJTAG Control register bild®ia

9.3.3.7 ALL Instruction

This instruction is used to select the concatenation of the Address and Data register, and the EJTAG Control register
betweenTDI andTDO. It can be used in particular if switching instructions in the instruction register takes too many
TCK cycles. The first bit shifted out is bit 0.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 149

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support

TDI —p|Address 0 }_‘

—>| Data 0 }—‘

L»{EJTAG Control 0}—— TDO

Figure 9-6 Concatenation of the EJTAG Address, Data and Control Registers

9.3.3.8 EJTAGBOOT Instruction

When the EJTAGBOOT instruction is given and Update-IR state is left, then the reset value of the ProbTrap, ProbEn and
EjtagBrk bits in the EJTAG Control register are set to 1 after hard or soft reset.

This EJTAGBOOT indication is effective until NORMALBOOT instruction is givaiRST_Ns asserted or rising edge
of TCK occurs when TAP controller is in Test-Logic-Reset state.

Itis thereby possible to make the CPU go into debug mode just after hard or soft reset, without fetching or executing any
instructions from the normal memory area. This can be used for download of code to a system which have no code in
ROM.

The Bypass register is selected when the EJTAGBOOQOT instruction is given.

9.3.3.9 NORMALBOOT Instruction

When the NORMALBOOT instruction is given and Update-IR state is left, then the reset value of the ProbTrap, ProbEn
and EjtagBrk bits in the EJTAG Control register are set to 0 after hard or soft reset.

The Bypass register is selected when the NORMALBOOT instruction is given.

9.3.3.10 FASTDATA Instruction

This selects the Data and the Fastdata registers at once, as skagumard-7 This TAP instruction was added to
version 3.5 of the core. In previous versions, this instruction would act as a bypass. This is also indicated by the change
from EJTAG version 2.5 to 2.6 in th@plementationregister.

7Dl —] Data 0| Fastdata—» TDO

Figure 9-7 TDI to TDO Path when in Shift-DR State and FASTDATA Instruction is Selected

9.4 EJTAG TAP Registers

The EJTAG TAP Module has one Instruction register and a number of data registers, all accessible through the TAP:

9.4.1 Instruction Register

150

The Instruction register is accessed when the TAP receives an Instruction register scan protocol. During an Instruction
register scan operation the TAP controller selects the output of the Instruction register to Ai¥® fir. The shift
register consists of a series of bits arranged to form a single scan path BEDk@adTDO. During an Instruction

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

9.4 EJTAG TAP Registers

register scan operations, the TAP controls the register to capture status information and shift da tmwiDO. Both

the capture and shift operations occur on the rising ed@€#t However, the data shifted out from tR®O occurs on

the falling edge of CK. In the Test-Logic-Reset ai@hpture-IRstate, the instruction shift register is set to 0g08%

for IDCODE instruction. This forces the device into the functional mode and selects the Device ID register. The
Instruction register is 5 bits wide. The instruction shifted in takes effect for the following data register scan operation. A
list of the implemented instructions are listed@ble 9-20 on page 148

9.4.2 Data Registers Overview

The EJTAG uses several data registers, which are arranged in parallel from the pBMnaput to the primaryfDO

output. The Instruction register supplies the address that allows one of the data registers to be accessed during a data
register scan operation. During a data register scan operation, the addressed scan register receives TAP control signals
to capture the register and shift data fr@iml to TDO. During a data register scan operation, the TAP selects the output

of the data register to drive tAi®O pin. The register is updated in thedate-DRstate with respect to write bits.

This description applies in general to the following data registers:

» Bypass Register

 Device Identification Register

» Implementation Register

» EJTAG Control Register (ECR)

» Processor Access Address Register

» Processor Access Data Register

» FastData Register

9.4.2.1 Bypass Register

TheBypasgegister consists of a single scan register bit. When selected, the Bypass register provides a single bit scan
path betweef DI andTDO. The Bypass register allows abbreviating the scan path through devices that are not involved

in the test. The Bypass register is selected when the Instruction register is loaded with a pattern of all ones to satisfy the
IEEE 1149.1 Bypass instruction requirement.

9.4.2.2 Device ldentification ID) Register

TheDevice Identificatiomegister is defined by IEEE 1149.1, to identify the device's manufacturer, part number, revision,
and other device-specific informatidrable 9-21shows the bit assignments defined for the read-only Device
Identification Register, and inputs to the core determine the value of these bits. These bits can be scannedDut of the
register after being selected. The register is selected when the Instruction register is loaded with the IDCODE instruction.

Device Identification Register Format
31 28 27 12 11 1 d

\ersion PartNumber ManuflD R

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 151

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support

Table 9-21 Device Identification Register

Fields
Read/
Name Bit(s) Description Write Reset State
Version (4 bits)
Version 3128 | This field identifies the version number of the R EJ_Version[3:0]

processor derivative.

Part Number (16 bits)

PartNumber 27:12 R EJ_PartNumber[15:0]

This field identifies the part number of the procesdor
derivative.

Manufacturer Identity (11 bits)

ManufID 11:1 | Accordinglyto IEEE 1149.1-1990, the manufacturer R EJ_ManufID[10:0]
identity code shall be a compressed form of the
JEDEC Publications 106-A.

R 0 reserved R 1

9.4.2.3 ImplementationRegister

This 32-bit read-only register is used to identify the features of the EJTAG implementation. Some of the reset value are
set by inputs to the core.The register is selected when the Instruction register is loaded with the IMPCODE instruction.

Implementation Register Format
31 29 28 25 24 23 21 20 15 14 13 0

EJTAGveri reserved| DINqup ASIDsi#e reserved | NoDI\/IA reserved

Table 9-22ImplementationRegister Descriptions

Fields
Read/
Name Bit(s) Description Write Reset State

EJTAG Version

EJTAGver 31:29 | 1: Version 2.5 (core revisions before 3.5) R Preset
2: Version 2.6 (core revisions 3.5 and later)

reserved 28:25| reserved R 0
DINT Signal Supported from Probe
This bit indicates if the DINT signal from the probe is

DINTsup 24 supported: R EJ_DINTsup
0: DINT signal from the probe is not supported
1: Probe can use DINT signal to make debug interrupt.
Size of ASID field in implementation:
0: No ASID in impl ion (4Km/4K) 4Ke core - 2

. . : No in implementation m/4Kp cores

ASIDsize | 2321 1. 6.hit ASID R 4Km/4Kp
2: 8-bit ASID (4Kc core) cores -0
3: Reserved

reserved 20:15| reserved R 0

NoDMA 14 No EJTAG DMA Support R 1

152 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

9.4 EJTAG TAP Registers

Table 9-22ImplementationRegister Descriptions

Fields
Read/
Name Bit(s) Description Write Reset State
reserved 13:0 reserved R 0

9.4.2.4 EJTAG Control Register

This 32-bit register controls the various operations of the TAP modules. This register is selected by shifting in the
CONTROL instruction. Bits in the EJTAG Control register can be set/cleared by shifting in data; status is read by shifting
out the contents of this register. This EJTAG Control register can only be accessed by the TAP interface.

The EJTAG Control register is not updated in thpelate-DRstate unless the Reset occurred (Rocc), bit 31, is either O
or written to 0. This is in order to ensure prober handling of processor accesses.

The value used for reset indicated in the table below takes effect on both hard and soft CPU reset, but no on TAP
controller reset by e @RST_NTCKclock is not required when the hard or soft CPU reset occurs, but the bits are still
updated to the reset value when @K applies. The first 3 CK clocks after hard or soft CPU reset may result in reset
of the bits, due to synchronization between clock domains.

EJTAG Control Register Format
31 30 29 28 23 22 21 20 19 18 17 16 15 14 13 12 11 4 3 2| 0

Rocc| Psz| Res | Do|ze H%ilt Per'?st PR|nW PI|AC(1 Res If’rRst PlrobEn Pr{)beap Res I*EjtagBrk |Re51f DM Res

Table 9-23EJTAG Control Register Descriptions

Fields
Read/

Name Bit(s) Description Write Reset State

Reset Occurred

The bit indicates if hard or soft reset has occurred:
0: No reset occurred since bit last cleared.
1: Reset occurred since bit last cleared.

The Rocc bit will keep the 1 value as long as hard or spft
Rocc 31 reset is applied. R/W 1

This bit must be cleared by the probe, to acknowledge
that the incident was detected.

The EJTAG Control register is not updated in the
Update-DRstate unless Rocc is 0, or written to 0. This|is
in order to ensure prober handling of processor accgss.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 153

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support

Table 9-23EJTAG Control Register Descriptions (Continued)

Fields
Read/
Name Bit(s) Description Write Reset State
Processor Access Transfer Size
These bits are used in combination with the lower twjo
address bits of the Address register to determine the size
of a processor access transaction. The bits are only valid
when processor access is pending.
PAA[1:0] |Psz[1:0] Transfer Size
00 00 |Byte (LE, byte 0; BE, byte 3)
01 00 |Byte (LE, byte 1; BE, byte 2)
10 00 |Byte (LE, byte 2; BE, byte 1)
Psz[1:0] | 30:29 11 | 00 [Byte (LE byte3; BE, byte 0) R Undefined
00 01 |Halfword (LE, bytes 1:0; BE, bytes 3:3)
10 01 [Halfword (LE, bytes 3:2; BE, bytes 1:Q)
00 10 |Word (LE, BE; bytes 3, 2, 1, 0)
00 11 |Triple (LE, bytes 2, 1, 0; BE, bytes 3, 2)1
01 11 |Triple (LE, bytes 3, 2, 1; BE, bytes 2, 1,0
All others Reserved
Note: LE=little endian, BE=big endian, the byte# refers
to the byte number in a 32-bit register, where byte 3=
bits 31:24; byte 2 = bits 23:16; byte 1 = hits 15:8; byfe
O=bits 7:0, independently of the endianess.
Res 28:23 reserved R 0
Doze state
The Doze bit indicates any kind of low power mode. The
value is sampled in the Capture-DR state of the TAP
controller:
Doze 22 0: CPU not in low power mode. R 0
1: CPU is in low power mode
Doze includes the Reduced Power (RP) and WAIT
power-reduction modes.
Halt state
The Halt bit indicates if the internal system bus clockl|is
Halt 21 running or stopped. The value is sampled in the R 0
Capture-DR state of the TAP controller:
0: Internal system clock is running
1: Internal system clock is stopped
154 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

9.4 EJTAG TAP Registers

Table 9-23EJTAG Control Register Descriptions (Continued)

Fields

Name

Bit(s)

Description

Read/
Write

Reset State

PerRst

20

Peripheral Reset

When the bit is set to 1, it is only guaranteed that the
peripheral reset has occurred in the system when the
value of this bitis also 1. This is to ensure that the sett
from theTCK clock domain gets effect in the CPU cloc
domain, and in peripherals.

When the bit is written to 0, then the bit must also be reg
as 0 before it is guaranteed that the indication is clea
in the CPU clock domain also.

This bit controls th&J_PerRssignal on the cote

ead
ng

K
R/W

ad
red

PRNW

19

Processor Access Read and Write

This bit indicates if the pending processor access is fq
read or write transaction, and the bit is only valid wh
PrAcc is set:

0: Read transaction

1: Write transaction

ra
le R

Undefined

PrAcc

18

Processor Access (PA)

Read value of this bit indicates if a Processor Acces
(PA) to the EJTAG memory is pending:

0: No pending processor access

1: Pending processor access

The probe’s software must clear this bit to O to indicg
the end of the PA. Write of 1 is ignored.

A pending PA is cleared when Rocc is set, but another
may occur just after the reset if a debug exception occ

Finishing a PA is not accepted while the Rocc bit is g
This is to avoid that a PA occurring after the reset is

finished due to indication of a PA that occurred before

the reset.

te
R/WO

PA
urs.

et.

Res

17

reserved

PrRst

16

Processor Reset (Implementation dependent behavi

Whenthe bitis setto 1, thenitis only guaranteed that
setting has taken effectin the system when the read va
of this bitis also 1. This is to ensure that the setting frg
the TCK clock domain gets effect in the CPU clock
domain, and in peripherals.

When the bitis written to 0, then the bit must also be reg
as 0 before it is guaranteed that the indication is clea
in the CPU clock domain also.

This bit controls thé&eJ_PrRssignal. If the signal is used
in the system, then it must be ensured that both the

processor and all devices required for areset are prop
reset. Otherwise the system may fail or hang. The bi
resets itself, since the EJTAG Control register is reset]
hard or soft reset.

or)
his
alue
m

ad
red RIW

erly
by

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

155

Chapter 9 EJTAG Debug Support

Table 9-23EJTAG Control Register Descriptions (Continued)

Fields
Read/

Name Bit(s) Description Write Reset State

Probe Enable

This bit indicates to the CPU if the EJTAG memory is
handled by the probe so processor accesses are
answered:

0: The probe does not handle EJTAG memory
transactions

1: The probe does handle EJTAG memory transactigns

It is an error by the software controlling the probe if i
sets the ProbTrap to 1 but the ProbEn to 0. The operation
of the processor is UNDEFINED in this case. Oor1l

ProbEn 15 The ProbEn bit is reflected as a read-only bit in the R/W from
ProbEn bit, bit O, in the Debug Control Register (DCR).
EJTAGBOOT

The read value indicates the effective value in the DR,
due to synchronization issues betw@&@K and CPU
clock domains. However, it is ensured that change of the
ProbEn prior to setting the EjtagBrk bit will have effeft
for the debug handler executed due to the debug
exception.

The reset value of the bit depends on whether the
EJTAGBOOQT indication is given or not:

No EJTAGBOOT indication given: 0

EJTAGBOOQT indication given: 1

Probe Trap

This bit controls the location of the debug exception
vector:

0: In normal memory 0xBFC0.0480

1: In EJTAG memory at 0OxFF20.0200 in dmseg

Valid setting of the ProbTrap bit depends on the setting
of the ProbEn bit, see comment under ProbEn bit.

The ProbTrap should not be set to 1, for debug exception Oor1l
vector in EJTAG memory, unless the ProbEn bit is also
ProbTrap 14 set to 1 to indicate that the EJTAG memory may be R/W from

accessed.

EJTAGBOOT
The read value indicates the effective value to the CPU,
due to synchronization issues betw@&@K and CPU
clock domains. However, it is ensured that change of the
ProbTrap prior to setting the EjtagBrk bit will have effe¢
for the EjtagBrk.

The reset value of the bit depends on whether the
EJTAGBOOT indication is given or not:

No EJTAGBOOT indication given: 0

EJTAGBOOT indication given: 1

Res 13 reserved R 0

156 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

9.4 EJTAG TAP Registers

Table 9-23EJTAG Control Register Descriptions (Continued)

Fields

Name

Bit(s)

Description

Read/
Write

Reset State

EjtagBrk

12

EJTAG Break

Setting this bit to 1 causes a debug exception to the
processor, unless the CPU was in debug mode or ano
debug exception occurred.

When the debug exception occurs, the processor co

clock is restarted if the CPU was in low power mode
This bit is cleared by hardware when the debug
exception is taken.

The reset value of the bit depends on whether the
EJTAGBOOT indication is given or not:

No EJTAGBOOT indication given: 0

EJTAGBOOT indication given: 1

e

ther

R/W1

Oorl
from

EJTAGBOOT

Res

11:4

reserved

DM

Debug Mode

This bit indicates the debug or non-debug mode:
0: Processor is in non-debug mode
1: Processor is in debug mode

The bit is sampled in th@apture-DRstate of the TAP
controller.

Res

2:0

reserved

9.4.3 Processor Access Address Register

The Processor Access AddreBaAg) register is used to provide the address of the processor access in the dmseg, and
the register is only valid when a processor access is pending. The length of the Address register is 32 bits, and this register

is selected by shifting in the ADDRESS instruction.

9.4.3.1 Processor Access Data Register

The Processor Access DaRAD) register is used to provide data value to and from a processor access. The length of

the Data register is 32 bits, and this register is selected by shifting in the DATA instruction.

The register has the written value for a processor access write due to a CPU store to the dmseg, and the output from this
register is only valid when a processor access write is pending. The register is used to provide the data value for processor
access read due to a CPU load or fetch from the dmseg, and the register should only be updated with a new value when

a processor access write is pending.

The PAD register is 32 bits wide. Data alignment is not used for this register, so the valuBAbDtregister matches
data on the internal bus. The undefined bytes for a PA write are undefined, aRéfbread then O (zero) must be
shifted in for the unused bytes.

The organization of bytes in tHeAD register depends on the endianess of the core, as shdvigure 9-8 The endian
mode for debug/kernel mode is determined by the state &BhEndianinput at power-up.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

157

Chapter 9 EJTAG Debug Support

MSB LSB
bit 31 24 23 16 15 87 0
BicEnDan Amo=all s [e [7 | Amz=1
lAmoi=0|[1 || 2 |[3 | Am2=0

Most significant byte is at lowest address.
Word is addressed by byte address of most significant byte.

MSB LSB
bit 31 24 23 16 15 87 0
LTTLE-ENDIAN Aa=7] |6 || 5 [4 | Anze1
lAno=3]| 2 || 1 [0 | Am2e=o

Least significant byte is at lowest address.
Word is addressed by byte address of least significant byte.

Figure 9-8 Endian Formats for thePAD Register

The size of the transaction and thus the number of bytes available/required Réhregister is determined by the Psz
field in theECR

9.4.4 Fastdata Register (TAP Instruction FASTDATA)

The width of the Fastdata register is 1 bit. During a Fastdata access, the Fastdata register is written and read, i.e., a bitis
shifted in and a bit is shifted out. During a Fastdata access, the Fastdata register value shifted in specifies whether the
Fastdata access should be completed or not. The value shifted out is a flag that indicates whether the Fastdata access was
successful or not (if completion was requested).

Fastdata Register Format

0

Table 9-24 Fastdata Register Field Description

Fields
Read/ | Power-up

Name Bits Description Write State

Shifting in a zero value requests completion of the
Fastdata access. The PrAcc bit in the EJTAG Control
register is overwritten with zero when the access succegds.
(The access succeeds if PrAcc is one and the operatipn
address is in the legal dmseg Fastdata area.) When
successful, a one is shifted out. Shifting out a zero
SPrAcc 0 indicates a Fastdata access failure. R/W Undefined

Shifting in a one does not complete the Fastdata accgss
and the PrAcc bit is unchanged. Shifting out a one
indicates that the access would have been successful|if

allowed to complete and a zero indicates the access would
not have successfully completed.

The FASTDATA access is used for efficient block transfers between dmseg (on the probe) and target memory (on the
processor). An “upload” is defined as a sequence of processor loads from target memory and stores to dmseg. A
“download” is a sequence of processor loads from dmseg and stores to target memory. The “Fastdata area” specifies the
legal range of dmseg addresses (OxFF20.0000 - 0xFF20.000F) that can be used for uploads and downloads. The Data +

158 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

9.5 Processor Accesses

Fastdata registers (selected with the FASTDATA instruction) allow efficient completion of pending Fastdata area
accesses.

During Fastdata uploads and downloads, the processor will stall on accesses to the Fastdata area. The PrAcc (processor
access pending bit) will be 1 indicating the probe is required to complete the access. Both upload and download accesses
are attempted by shifting in a zero SPrAcc value (to request access completion) and shifting out SPrAcc to see if the
attempt will be successful (i.e., there was an access pending and a legal Fastdata area address was used). Downloads will
also shiftin the data to be used to satisfy the load from dmseg’s Fastdata area, while uploads will shift out the data being
stored to dmseg’s Fastdata area.

As noted above, two conditions must be true for the Fastdata access to succeed. These are:

* PrAcc must be 1, i.e., there must be a pending processor access.

» The Fastdata operation must use a valid Fastdata area address in dmseg (0xFF20.0000 to OxFF20.000F).

Table 9-25shows the values of the PrAcc and SPrAcc bits and the results of a Fastdata access.

Table 9-25 Operation of the FASTDATA access

PrAccin
Address the LSB LSB
Probe Match Control | (SPrAcc) | Action inthe PrAcc shifted Data shifted
Operation check Register | shifted in | Data Register | changes to out out
Fails X X none unchanged 0 invalid
1 1 none unchanged 1 invalid
Download
using valid
FASTDATA Passes 1 0 write data 0 (SPrAcc) 1 (previous)
data
0 X none unchanged 0 invalid
Fails X X none unchanged 0 invalid
Upload 1 1 none unchanged 1 invalid
using
FASTDATA Passes 1 0 read data 0 (SPrAcc 1 valid data
0 X none unchanged 0 invalid

There is no restriction on the contents of the Data register. It is expected that the transfer size is negotiated between the
download/upload transfer code and the probe software. Note that the most efficient transfer size is a 32-bit word.

The Rocc bit of the Control register is not used for the FASTDATA operation.

9.5 Processor Accesses

The TAP modules support handling of fetch, load and store from the CPU through the dmseg segment, whereby the TAP
module can operate like a iskave unitconnected to the on-chip bus. The core can then execute code taken from the
EJTAG Probe and it can access data (via load or store) which is located on the EJTAG Probe. This occurs in a serial way
through the EJTAG interface: the core can thus execute instructions e.g. debug monitor code, without occupying the
user's memory.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 159
Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support

Accessing the dmseg segment (EJTAG memory) can only occur when the processor accesses an address in the range
from 0xFF20.0000 to OXFF2F.FFFF, the ProbEn bit is set, and the processor is in debug mode (DM=1). In addition the
LSNM bit in the CP0O Debug register controls transactions to/from the dmseg.

When a debug exception is taken, while the ProbTrap bit is set, the processor will start fetching instructions from address
0xFF20.0200.

A pending processor access can only finish if the probe writes 0 to PrAcc or by soft or hard reset.

9.5.1 Fetch/Load and Store from/to the EJTAG Probe through dmseg

1. The internal hardware latches the requested address into the PA Address register (in case of the Debug exception:
O0xFF20_0200).

2. The internal hardware sets the following bits in the EJTAG Control register:
PrAcc = 1 (selects Processor Access operation)
PRnW = 0 (selects processor read operation)
Psz[1:0] = value depending on the transfer size

3. The EJTAG Probe selects the EJTAG Control register, shifts out this control register’s data and tests the PrAcc
status bit (Processor Access): when the PrAcc bit is found 1, it means that the requested address is available and
can be shifted out.

The EJTAG Probe checks the PRnW bit to determine the required access.
The EJTAG Probe selects the PA Address register and shifts out the requested address.

The EJTAG Probe selects the PA Data register and shifts in the instruction corresponding to this address.

N oo g &

The EJTAG Probe selects the EJTAG Control register and shifts a PrAcc = 0 bit into this register to indicate to the
processor that the instruction is available.

©

The instruction becomes available in the instruction register and the processor starts executing.
9. The processor increments the program counter and outputs an instruction read request for the next instruction. This
starts the whole sequence again.

Using the same protocol, the processor can also execute a load instruction to access the EJTAG Probe’s memory. For this
to happen, the processor must execute a load instruction (e.g. a LW, LH, LB) with the target address in the appropriate
range.

Almost the same protocol is used to execute a store instruction to the EJTAG Probe’s memory through dmseg. The store
address must be in the range: OxFF20_0000 to OxFF2F_FFFF, the ProbEn bit must be set and the processor has to be in
debug mode (DM=1). The sequence of actions is found below:

1. The internal hardware latches the requested address into the PA Address register
2. The internal hardware latches the data to be written into the PA Data register.

3. The internal hardware sets the following bits in the EJTAG Control register:
PrAcc = 1 (selects Processor Access operation)
PRnW = 1 (selects processor write operation)
Psz[1:0] = value depending on the transfer size

4. The EJTAG Probe selects the EJTAG Control register, shifts out this control register’s data and tests the PrAcc
status bit (Processor Access): when the PrAcc bit is found 1, it means that the requested address is available and
can be shifted out.

5. The EJTAG Probe checks the PRnW bit to determine the required access.
6. The EJTAG Probe selects the PA Address register and shifts out the requested address.

160 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

9.5 Processor Accesses

7. The EJTAG Probe selects the PA Data register and shifts out the data to be written.

8. The EJTAG Probe selects the EJTAG Control register and shifts a PrAcc = 0 bit into this register to indicate to the
processor that the write access is finished.

9. The EJTAG Probe writes the data to the requested address in its memory.

10. The processor detects that PrAcc bit = 0, which means that it is ready to handle a new access.

The above examples imply that no reset occurs during the operations, and that Rocc is cleared.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 161

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 9 EJTAG Debug Support

162 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 10

|

Instruction Set Overview

This chapter provides a general overview on the three CPU instruction set formats of the MIPS architecture: Immediate,
Jump, and Register. Refer@hapter 11, “MIPS32 4K Processor Core Instructions,” on pagddi@®@complete listing

and description of instructions.

This chapter discusses the following topics:

» Section 10.1, "CPU Instruction Formats"

» Section 10.2, "Load and Store Instructions"

» Section 10.3, "Computational Instructions"

» Section 10.4, "Jump and Branch Instructions"

» Section 10.5, "Control Instructions"

» Section 10.6, "Coprocessor Instructions"

» Section 10.7, "Enhancements to the MIPS Architecture"

10.1 CPU Instruction Formats

Each CPU instruction consists of a single 32-bit word, aligned on a word boundary. There are three instruction formats
immediate (I-type), jump (J-type), and register (R-type)—as showigure 10-1 The use of a small number of

instruction formats simplifies instruction decoding, allowing the compiler to synthesize more complicated (and less
frequently used) operations and addressing modes from these three formats as needed.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 163

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 10 Instruction Set Overview

I-Type (Immediate)
31 2625 2120 1615 0
op rs rt immediate

J-Type (Jump)
31 26 25 0
op target

R-Type (Register)

31 2625 2120 1615 1110 65 0
op rs rt rd sa funct
op 6-bit operation code
rs 5-bit source register specifier
rt 5-bit target (source/destination) register or branch
condition
immediate ;g;jbrgsi?g;sgli:ir\]/qaelgte, branch displacement or
target 26-bit jump target address
rd 5-bit destination register specifier
sa 5-bit shift amount
funct 6-bit function field

Figure 10-1 Instruction Formats

10.2 Load and Store Instructions

Load and store are immediate (I-type) instructions that move data between memory and the general registers. The only
addressing mode that load and store instructions directly suppagesegister plus 16-bit signed immediate aoffset

10.2.1 Scheduling a Load Delay Slot

A load instruction that does not allow its result to be used by the instruction immediately following is delikegkd
load instruction The instruction slot immediately following this delayed load instruction is referred to ésatielelay
slot

In the 4K cores, the instruction immediately following a load instruction can use the contents of the loaded register,
however, in such cases, hardware interlocks insert additional real cycles. Although not required, the scheduling of load
delay slots can be desirable, both for performance and R-Series processor compatibility.

10.2.2 Defining Access Types

164

Access typéndicates the size of a core data item to be loaded or stored, set by the load or store instruction opcode.

Regardless of access type or byte ordering (endianness), the address given specifies the low-order byte in the addressed
field. For a big-endian configuration, the low-order byte is the most-significant byte; for a little-endian configuration, the
low-order byte is the least-significant byte.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

10.3 Computational Instructions

The access type, together with the three low-order bits of the address, define the bytes accessed within the addressed
word as shown iffable 10-1 Only the combinations shown Tiable 10-lare permissible; other combinations cause
address error exceptions.

Table 10-1 Byte Access within a Word

Bytes Accessed

Low Order Big Endia Little Endian
Address Bits (Bl 0) | (31--------m-mm-mmmm-- 0)
Access Type 2 1 0 Byte Byte
Word 0 0 0 0 1 2 3 3 2 1 0
0 0 0
Triplebyte
0 0 1
0 0 0
Halfword
0 1 0
0 0 0
0 0 1
Byte
0 1 0
0 1 1

10.3 Computational Instructions

Computational instructions can be either in register (R-type) format, in which both operands are registers, or in
immediate (I-type) format, in which one operand is a 16-bit immediate.
Computational instructions perform the following operations on register values:

— Arithmetic

— Logical

— Shift

— Multiply

— Divide

These operations fit in the following four categories of computational instructions:
— ALU Immediate instructions
— Three-operand Register-type Instructions
— Shift Instructions

— Multiply And Divide Instructions

10.3.1 Cycle Timing for Multiply and Divide Instructions

Any multiply instruction in the integer pipeline is transferred to the multiplier as remaining instructions continue through
the pipeline; the product of the multiply instruction is saved in the HI and LO registers. If the multiply instruction is

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 165

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 10 Instruction Set Overview

10.4

followed by an MFHI or MFLO before the product is available, the pipeline interlocks until this product does become
available. Refer t&€hapter 2, “Pipeline,for more information on instruction latency and repeat rates.

Jump and Branch Instructions

Jump and branch instructions change the control flow of a program. All jump and branch instructions occur with a delay
of one instruction: that is, the instruction immediately following the jump or branch (this is known as the instruction in
thedelay slo} always executes while the target instruction is being fetched from storage.

10.4.1 Overview of Jump Instructions

Subroutine calls in high-level languages are usually implemented with Jump or Jump and Link instructions, both of
which are J-type instructions. In J-type format, the 26-bit target address shifts left 2 bits and combines with the
high-order 4 bits of the current program counter to form an absolute address.

Returns, dispatches, and large cross-page jumps are usually implemented with the Jump Register or Jump and Link
Register instructions. Both are R-type instructions that take the 32-bit byte address contained in one of the general
purpose registers.

For more information about jump instructions, refer to the individual instructidbsdtion 11.3, "Instruction Set"

10.4.2 Overview of Branch Instructions

10.5

10.6

10.7

166

All branch instruction target addresses are computed by adding the address of the instruction in the delay slot to the
16-bit offset(shifted left 2 bits and sign-extended to 32 hits). All branches occur with a delay of one instruction.

If a conditional branch likely is not taken, the instruction in the delay slot is nullified.

Branches, jumps, ERET, and DERET instructions should not be placed in the delay slot of a branch or jump.

Control Instructions

Control instructions allow the software to initiate traps; they are always R-type.

Coprocessor Instructions

CPO instructions perform operations on the System Control Coprocessor registers to manipulate the memory
management and exception handling facilities of the processor. Refer to iagpéer 11, “MIPS32 4K Processor
Core Instructions,” on page 1@ a listing of CPO instructions.

Enhancements to the MIPS Architecture

The core execution unit implements the MIPS32 architecture, which includes the following instructions.
* CLO - Count Leading Ones
* CLZ - Count Leading Zeros
* MADD — Multiply and Add Word
MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

10.7 Enhancements to the MIPS Architecture

MADDU — Multiply and Add Unsigned Word
MSUB — Multiply and Subtract Word

MSUBU — Multiply and Subtract Unsigned Word
MUL — Multiply Word to Register

SSNOP — Superscalar Inhibit NOP

10.7.1 CLO - Count Leading Ones

The CLO instruction counts the number of leading ones in a word. The 32-bit word in thvs SRBanned from
most-significant to least-significant bit. The number of leading ones is counted and the result is written torthe GPR
If all 32 bits are set in the GRR, the result written to the GP#& is 32.

10.7.2 CLZ - Count Leading Zeros

The CLZ instruction counts the number of leading zeros in a word. The 32-bit word in the {SRRanned from
most-significant to least-significant bit. The number of leading zeros is counted and the result is written to tide GPR
If all 32 bits are cleared in the GRR the result written to the GP# is 32.

10.7.3 MADD - Multiply and Add Word

The MADD instruction multiplies two words and adds the result to the HI/LO register pair. The 32-bit word value in the
GPRrsis multiplied by the 32-bit value in the GRR treating both operands as signed values, to produce a 64-bit result.
The product is added to the 64-bit concatenated values in the Hl and LO register pair. The resulting value is then written
back to the HI and LO registers. No arithmetic exception occurs under any circumstances.

10.7.4 MADDU - Multiply and Add Unsigned Word

The MADDU instruction multiplies two unsigned words and adds the result to the HI/LO register pair. The 32-bit word
value in the GPRs is multiplied by the 32-bit value in the GRR treating both operands as unsigned values, to produce

a 64-bit result. The product is added to the 64-bit concatenated values in the Hl and LO register pair. The resulting value
is then written back to the HIl and LO registers. No arithmetic exception occurs under any conditions.

10.7.5 MSUB - Multiply and Subtract Word

The MSUB instruction multiplies two words and subtracts the result from the HI/LO register pair. The 32-bit word value
in the GPRrsis multiplied by the 32-bit value in the GRR treating both operands as signed values, to produce a 64-bit
result. The product is subtracted from the 64-bit concatenated values in the HI and LO register pair. The resulting value
is then written back to the HI and LO registers. No arithmetic exception occurs under any circumstances.

10.7.6 MSUBU - Multiply and Subtract Unsigned Word

The MSUBU instruction multiplies two unsigned words and subtracts the result from the HI/LO register pair. The 32-bit
word value in the GPRs is multiplied by the 32-bit value in the GPRtreating both operands as unsigned values, to
produce a 64-bit result. The product is subtracted from the 64-bit concatenated values in the Hl and LO register pair. The
resulting value is then written back to the Hl and LO registers. No arithmetic exception occurs under any circumstances.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 167

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 10 Instruction Set Overview

10.7.7 MUL - Multiply Word

The MUL instruction multiplies two words and writes the result to a GPR. The 32-bit word value in the GPR
multiplied by the 32-bit value in the GRR treating both operands as signed values, to produce a 64-bit result. The
least-significant 32 bits of the product are written to the @PRhe contents of the HI and LO register pair are not
defined after the operation. No arithmetic exception occurs under any circumstances.

10.7.8 SSNOP- Superscalar Inhibit NOP

The MIPS32 4K processor cores treats this instruction as a regular NOP.

168 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 11

111

11.2

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

MIPS32 4K Processor Core Instructions

This chapter provides a detailed guide to understanding the instruction set for the MIPS32 4K processor cores, which is
a subset of the MIPS32 architecture. The chapter is divided into the following sections:

» Section 11.1, "Understanding the Instruction Descriptions" on page 169
» Section 11.2, "CPU Opcode Map" on page 169

» Section 11.3, "Instruction Set" on page 171

Understanding the Instruction Descriptions

Refer to Volume Il of the MIPS32 Architecture Reference Manual for more information about the instruction
descriptions. There is a description of the instruction fields, definition of terms, and a description function notation
available in that document.

CPU Opcode Map

Key

» CAPITALIZED text indicates an opcode mnemonic

« ltalicizedtext indicates to look at the specified opcode submap for further instruction bit decode

 Entries containing tha symbol indicate that a reserved instruction fault occurs if the core executes this instruction.

 Entries containing thf symbol indicate that a coprocessor unusable exception occurs if the core executes this
instruction

Table 11-1 Encoding of theDpcodeField

opcode | bits 28..26

0 1 2 3 4 5 6 7

bits 31..29 000 001 010 011 100 101 110 111

0| 000| Special Reglmm J JAL BEQ BNE BLEZ BGTzZ
1| 001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI
2| 010 COPO B B B BEQL BNEL BLEZL BGTZL
3| 011 a a a a Special2 a a a
4| 100 LB LH LWL LW LBU LHU LWR a
5] 101 SB SH SWL SW [of a SWR CACHE
6 | 110 LL B B PREF [of B B [of
7| 111 SC B B a a B B a

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

169

Chapter 11 MIPS32 4K Processor Core Instructions

Table 11-2SpecialOpcode Encoding of Function Field

function | bits 2..0

0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 SLL B SRL SRA SLLV a SRLV SRAV
1| 001 JR JALR MOVvzZ MOVN SYSCALL| BREAK a SYNC
2| 010 MFHI MTHI MFLO MTLO a a a a
3 (011 MULT MULTU DIV DIVU a a a a
4| 100 ADD ADDU SUB SUBU AND OR XOR NOR
51101 a a SLT SLTU a a a a
6 | 110 TGE TGEU TLT TLTU TEQ a TNE a
71111 a a a a a a a a

function | bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0| 000 MADD MADDU MUL a MSUB MSUBU a a
1| 001 a a a a a a a a
2| 010 a a a a a a a a
3 (011 a a a a a a a a
4| 100 CLz CLO a a a a a a
51101 a a a a a a a a
6 | 110 a a a o a a a a
71111 a a a a a a a SDBBP
Table 11-4ReglmmEncoding of rt Field
[1t |bhits18.16
0 1 2 3 4 5 6 7
bits 20..19 000 001 010 011 100 101 110 111
0| 00 BLTZ BGEZ BLTZL BGEZL a a a a
1] 01 TGEI TGEIU TLTI TLTIU TEQI a TNEI a
2| 10 | BLTZAL | BGEZAL | BLTZALL |BGEZALL a a a a
3| 11 a a a a a a a a
Table 11-5COPOENcoding of rs Field
rs bits 23..21
0 1 2 3 4 5 6 7
bits 25..24 000 001 010 011 100 101 110 111
0| 00 MFCO a a a MTCO o a a
1| 01 a a a a a a a
2| 10
3| 11 co
170 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

11.3 Instruction Set

Table 11-6COPOEnNcoding of Function Field When rs€0

function | bits 2..0

0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
o I 5, 5 I I B R
1001 TaL?4PK$:11}f)():) a a a a a a a
2| 010 a a a a a a a a
3] 011 ERET a a a a a a DERET
41100 WAIT a a a a a a a
51 101 a a a o a a a a
6| 110 a a a o a a o a
7] 111 a a a a a a a a

11.3 Instruction Set

This section describes the core instructiorable 11-7ists the instructions in alphabetical order, followed by a detailed
description of each instruction.

Table 11-7 Instruction Set

Instruction Description Function
ADD Integer Add Rd =Rs + Rt
ADDI Integer Add Immediate Rt = Rs + Immed
ADDIU Unsigned Integer Add Immediate Rt = Rg tmmed
ADDU Unsigned Integer Add Rd = Rg,Rt
AND Logical AND Rd =Rs & Rt
ANDI Logical AND Immediate Rt = Rs & (|| Immed)
B &nszomng:g??t;g%r?gﬁhBEQ r0, r0, offset) PC += (int)offset
BAL Branch and Link GPR[31]=PC +8
(Asembler idiom for: BGEZAL r0, offset) PC += (int)offset
BEQ Branch On Equal ifFl)Qg ::: ('?r;[t)offset
if Rs == Rt
BEQL Branch On Equal Likely eIF;(e: += (ingoffset
Ignore Next Instruction
BGEZ Branch on Greater Than or Equal To Zero if 1RS[31]

PC += (int)offset

4GPRI31] =PC +8
if IRS[31]
PC += (int)offset

BGEZAL EirnaI?Ch on Greater Than or Equal To Zero Arj

MIPS32® 4K™ Processor Core Family Software User’s Manual, Revision 01.18 171

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

172

Table 11-7 Instruction Set (Continued)

Instruction

Description

Function

BGEZALL

Branch on Greater Than or Equal To Zero An
Link Likely

GPR[31]=PC + 8
dif IRs[31]
PC += (int)offset
else
Ignore Next Instruction

BGEZL

Branch on Greater Than or Equal To Zero
Likely

if IRS[31]
PC += (int)offset
else
Ignore Next Instruction

BGTZ

Branch on Greater Than Zero

if IRs[31] && Rs =0
PC += (int)offset

BGTZL

Branch on Greater Than Zero Likely

if IRS[31] && Rs =0
PC += (int)offset

else
Ignore Next Instruction

BLEZ

Branch on Less Than or Equal to Zero

if Rs[31] || Rs ==
PC += (int)offset

BLEZL

Branch on Less Than or Equal to Zero Likel

if Rs[31] || Rs ==
PC += (int)offset
else
Ignore Next Instruction

BLTZ

Branch on Less Than Zero

if Rs[31]
PC += (int)offset

BLTZAL

Branch on Less Than Zero And Link

GPR[31]=PC + 8
if Rs[31]
PC += (int)offset

BLTZALL

Branch on Less Than Zero And Link Likely

GPR[31]=PC +8
if Rs[31]
PC += (int)offset
else
Ignore Next Instruction

BLTZL

Branch on Less Than Zero Likely

if Rs[31]
PC += (int)offset
else
Ignore Next Instruction

BNE

Branch on Not Equal

if Rs I= Rt
PC += (int)offset

BNEL

Branch on Not Equal Likely

if Rs I= Rt
PC += (int)offset
else
Ignore Next Instruction

BREAK

Breakpoint

Break Exception

CACHE

Cache Operation

See Cache Description

COPO

Coprocessor 0 Operation

See Coprocessor Description

CLO

Count Leading Ones

Rd = NumLeadingOnes(Rs)

CLZ

Count Leading Zeroes

Rd = NumLeadingZeroes(Rs)

DERET

Return from Debug Exception

PC = DEPC
Exit Debug Mode

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

11.3 Instruction Set

Table 11-7 Instruction Set (Continued)

Instruction Description Function

LO = (int)Rs / (int)Rt

DIV Divide HI = (int)Rs % (int)Rt

LO = (uns)Rs / (uns)Rt

DIVU Unsigned Divide HI = (Uns)Rs % (Uns)Rt
if SR[2]
PC = ErrorEPC
else
ERET Return from Exception PC =EPC
SR[1]=0
SR[2] =0
LL=0
J Unconditional Jump PC = PC[31:28] || offset<<2
; GPR[31]=PC + 8
JAL Jump and Link PC = PC[31:28] || offset<<2
. . Rd=PC +8
JALR Jump and Link Register PC = Rs
JR Jump Register PC =Rs
LB Load Byte Rt = (byte)Mem[Rs+offset]
LBU Unsigned Load Byte Rt = (ubyte))Mem[Rs+offset]
LH Load Halfword Rt = (half)Mem[Rs+offset]
LHU Unsigned Load Halfword Rt = (uhalf)Mem[Rs+offset]

Rt = Mem[Rs+offset]
LL Load Linked Word LL=1
LLAdr = Rs + offset

LUI Load Upper Immediate Rt = immediate << 16
LW Load Word Rt = Mem[Rs+offset]
Refer to Architecture Reference
LWL Load Word Left Manual
; Refer to Architecture Reference
LWR Load Word Right Manual
MADD Multiply-Add HI, LO += (int)Rs * (int)Rt
MADDU Multiply-Add Unsigned HI, LO += (uns)Rs * (uns)Rt
MFCO Move From Coprocessor 0 Rt = CPRI[O, n, sel] = Rt
MFHI Move From HI Rd =HI
MFLO Move From LO Rd=LO
MOVN Move Conditional on Not Zero if GPRIrt) # 0 then

GPR[rd] « GPR][rs]

if GPR[rt] = 0 then

MOVZ Move Conditional on Zero GPR[rd] — GPR([rs]
MSuUB Multiply-Subtract HI, LO -= (int)Rs * (int)Rt
MSUBU Multiply-Subtract Unsigned HI, LO -= (uns)Rs * (uns)Rt
MIPS32® 4K™ Processor Core Family Software User’s Manual, Revision 01.18 173

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

174

Table 11-7 Instruction Set (Continued)

Instruction Description Function
MTCO Move To Coprocessor 0 CPRJ[0, n] = Rt SEL
MTHI Move To HI HI =Rs
MTLO Move To LO LO =Rs
; . : ; HI | LO =Unpredictable
MUL Multiply with register write Rd =LO
MULT Integer Multiply HI'| LO = (int)Rs * (int)Rd
MULTU Unsigned Multiply HI | LO = (uns)Rs * (uns)Rd
NOP No Operation
(Asembler idiom for: SLL r0, r0, r0)
NOR Logical NOR Rd = ~(Rs | Rt)
OR Logical OR Rd =Rs | Rt
ORI Logical OR Immediate Rt =Rs | Immed
PREF Prefetch Load Specified Line into Cache
SB Store Byte (byte)Mem[Rs+offset] = Rt
if LL =1
SC Store Conditional Word mem[Rxoffs] = Rt
Rt=LL
SDBBP Software Debug Break Point Trap to SW Debug Handler
SH Store Half (half)Mem[Rs+offset] = Rt
SLL Shift Left Logical Rd = Rt<<sa
SLLV Shift Left Logical Variable Rd = Rt << Rs[4:0]
if (int)Rs < (int)Rt
SLT Set on Less Than Rd=1
else
Rd=0
if (int)Rs < (int)lImmed
SLTI Set on Less Than Immediate eEEa: 1
Rt=0
if (uns)Rs < (uns)immed
SLTIU Set on Less Than Immediate Unsigned eEte_ 1
Rt=0
if (uns)Rs < (uns)immed
SLTU Set on Less Than Unsigned ellzég =1
Rd=0
SRA Shift Right Arithmetic Rd = (int)Rt >> sa
SRAV Shift Right Arithmetic Variable Rd = (int)Rt >> Rs[4:0]
SRL Shift Right Logical Rd = (uns)Rt >> sa
SRLV Shift Right Logical Variable Rd = (uns)Rt >> Rs[4:0]

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

11.3 Instruction Set

Table 11-7 Instruction Set (Continued)

Instruction Description Function
SSNOP Superscalar Inhibit No Operation
SuUB Integer Subtract Rt = (int)Rs - (int)Rd
SUBU Unsigned Subtract Rt = (uns)Rs - (uns)Rd
SW Store Word Mem[Rs+offset] = Rt
Refer to Architecture Reference
SWL Store Word Left Manual
. Refer to Architecture Reference
SWR Store Word Right Manual
SYNC Synchronize See SYNC instruction jpage 194
SYSCALL System Call SystemCallException
. if Rs == Rt
TEQ Trap if Equal TrapException
. : if Rs == (int)lmmed
TEQI Trap if Equal Immediate TrapException
. if (int)Rs >= (int)Rt
TGE Trap if Greater Than or Equal TrapException
; ; if (int)Rs >= (int)lmmed
TGEI Trap if Greater Than or Equal Immediate TrapException
TGEIU Trap if Greater Than or Equal Immediate if (uns)Rs >= (uns)immed
Unsigned TrapException
. : if (uns)Rs >= (uns)Rt
TGEU Trap if Greater Than or Equal Unsigned TrapException
; See TLBWI instruction on
TLBWI Write Indexed TLB Entry (4K core) page 198
; See TLBWR instruction on
TLBWR Write Random TLB Entry (4K core) page 200
TLBP Probe TLB for Matching Entry (4K core) I\Sﬂgiﬁélchitecture Reference
TLBR Read Index for TLB Entry (4K core) See TLBR instructionpage 196
: if (int)Rs < (int)Rt
TLT Trap if Less Than TrapException
. . if (inf)Rs < (int)immed
TLTI Trap if Less Than Immediate TrapException
; : ; if (uns)Rs < (uns)immed
TLTIU Trap if Less Than Immediate Unsigned TrapException
: : if (uns)Rs < (uns)Rt
TLTU Trap if Less Than Unsigned TrapException
: if Rs I= Rt
TNE Trap if Not Equal TrapException
: ; if Rs != (int)lmmed
TNEI Trap if Not Equal Immediate TrapException
WAIT Wait for Interrupts Stall until interrupt occurs

MIPS32® 4K™ Processor Core Family Software User’s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

175

Chapter 11 MIPS32 4K Processor Core Instructions

Table 11-7 Instruction Set (Continued)

Instruction Description Function
XOR Exclusive OR Rd=Rs "Rt
XORI Exclusive OR Immediate Rt = Rs ” (uns)immed
176 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

11.3 Instruction Set

Perform Cache Operation CACHE

31 26 25 21 20 16 15 0

CACHE
base op offset
101111
6 5 5 16

Format: CACHE op, offset(base) MIPS32

Purpose:

To perform the cache operation specified by op.

Description:

The 16-bit offset is sign-extended and added to the contents of the base register to form an effective address. The
effective address is used in one of the following ways based on the operation to be performed and the type of cache as
described in the following table.

Table 11-8 Usage of Effective Address

Operation Type of Usage of Effective Address
Requires an Cache

The effective address is translated by the MMU to a physical address. The physical

Address Physical address is then used to address the cache

The effective address is translated by the MMU to a physical address. It is
implementation dependent whether the effective address or the translated physical
address is used to index the cache.

Assuming that the total cache size in bytes is CS, the associativity is A, and the
number of bytes per tag is BPT, the following calculations give the fields of the
address which specify the way and the index:

Index N/A OffsetBit ~ Log2(BPT)

IndexBit ~ Log2(CS/A)

WayBit ~ IndexBit + Ceiling(Log2(A))
Way ~ Addr WayBit-1..IndexBit

Index — Addr IndexBit-1..OffsetBit

For a direct-mapped cache, the Way calculation is ignored and the Index value
fully specifies the cache tag. This is shown symbolically in the figure below.

MIPS32® 4K™ Processor Core Family Software User’s Manual, Revision 01.18 177
Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

178

Perform Cache Operation CACHE

Figure 11-1 Usage of Address Fields to Select Index and Way

’._ WayBit;._ IndexBit ’._ OffsetBit
0

Unused Way Index byte index

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur on any operation. For index
operations (where the address is used to index the cache but need not match the cache tag) software should use
unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modified exceptions nor TLB
Refill exceptions with a cause code of TLBS, nor data Watch exceptions.

A Cache Error exception may occur as a byproduct of some operations performed by this instruction. For example, if
a Writeback operation detects a cache or bus error during the processing of the operation, that error is reported via a
Cache Error exception. Similarly, a Bus Error Exception may occur if a bus operation invoked by this instruction is
terminated in an error.

An address Error Exception (with cause code equal AJEL) occurs if the effective address references a portion of the
kernel address space which would normally result in such an exception.Data watch is not triggered by a cache instruc-
tion whose address matches the Watch register address match conditions.

Bits [17:16] of the instruction specify the cache on which to perform the operation, as follows:
Table 11-9 Encoding of Bits[17:16] of CACHE Instruction

Code Name Cache
2#00 | Primary Instruction

2#01 D Primary Data

2#10 T Not supported

2#11 S Not supported

Bits [20:18] of the instruction specify the operation to perform. .On Index Load Tag and Index Store Data operations,
the specific wordthat is addressed is loaded into / read from the DataLo . All other cache instructions are line-based
and the word and byte indexes will not affect their operation.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

11.3 Instruction Set

Perform Cache Operation

CACHE

Table 11-10 Encoding of Bits [20:18] of the CACHE Instruction ErrCt[WST,SPR] Cleared

Code

Caches

Name

Effective
Address
Operand

Type

Operation

Implemented?

2#000

Index Invalidate

Index

Set the state of the cache block at the specif
index to invalid.

This encoding may be used by software to
invalidate the entire instruction cache by
stepping through all valid indices.

Yes

Index Invalidate

Index

ST

Reserved

Index

Set the state of the cache block at the specif
index to invalid.

Yes

This encoding may be used by software to

invalidate the entire data cache by stepping
through all valid indices. Note that Index Stor
Tag should be used to initialize the cache at
powerup.

No

2#001

Index Load Tag

Index

Read the tag for the cache block at the specif
index into theTagLoCoprocessor 0 register.
Also read the data corresponding to the byt
index into theDatal oregister.

D

Yes

2#010

Index Store Tag

Index

Write the tag for the cache block at the
specified index from th@agLoCoprocessor 0
register.

This encoding may be used by software to
initialize the entire instruction or data cache
by stepping through all valid indices. Doing s|
requires that th@agLoandTagHi registers
associated with the cache be initialized first

°Y

O

Yes

2#011

All

Reserved

Unspecified

Executed as a no-op.

No

MIPS32® 4K™ Processor Core Family Software User’s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

179

Chapter 11 MIPS32 4K Processor Core Instructions

Table 11-10 Encoding of Bits [20:18] of the CACHE Instruction ErrCti|WST,SPR] Cleared

Code Caches Name Effective Operation Implemented?
Address
Operand
Type
I, D Hit Invalidate Address If the cache block contains the specified Yes
address, set the state of the cache block to
24100 invalid.

This encoding may be used by software to
invalidate a range of addresses from the
instruction cache by stepping through the

S, T Reserved Address address range by the line size of the cache. No
Fill the cache from the specified address.
; The cache line is refetched even if it is alreadly
I Fill Address in the cache. Yes
2#101
D Hit Invalidate Address If the cache block contains the specified Yes
address, set the state of the cache block to
invalid.
This encoding may be used by software to
invalidate a range of addresses from the dafa
cache by stepping through the address range by
S, T Reserved Address the line size of the cache. No
D Reserved Address No
2#110 Executed as a no-op.
S, T Reserved Address No

If the cache does not contain the entire line fat
the specified address, it is fetched from

memory, and the state is set to locked. If the
cache already contains the line, set the state to

2#111 1,D Fetch and Lock Address| locked. Yes

The lock state may be cleared by executing an
Index Invalidate or Hit Invalidate operation to
the locked line, or via an Index Store Tag

operation to the line that clears the lock bit.

180 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

11.3 Instruction Set

Table 11-11 Encoding of Bits [20:18] of the CACHE Instruction, ErrCti[WST] Set. ErrCtI[SPR] Cleared

Code Caches Name Effective Operation Implemented?
Address
Operand
Type
Write the DataLo Coprocessor 0 register
24011 D Index Store Data Index contents at the way and byte index specified. Yes
All All All of the other codes behave the same as when
Others ErrCti[WST] is cleared.
MIPS32® 4K™ Processor Core Family Software User’s Manual, Revision 01.18 181

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

Table 11-12 Encoding of Bits [20:18] of the CACHE Instruction, ErrCtI[SPR] Set

Code Caches Name Effective Operation Implemented?
Address
Operand
Type
24001 1D Index Load Tag Index Read the SPRAM tag at the specified index into Yes

theTagLoCoprocessor 0 register.

Update the SPRAM tag at the specified indgx

2#010 1. D Index Store Tag Index from theTagLoCoprocessor 0 register. Yes
Write the DatalLo Coprocessor 0 register

2#011 I, D Index Store Data Index | contents into the SPRAM at the word index Yes
specified.

All All All of the other codes behave the same as when
Others ErrCtl[SPR] is cleared.
182 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

11.3 Instruction Set

Perform Cache Operation (cont.) CACHE

Restrictions:
The operation of this instruction WNDEFINED for any operation/cache combination that is not implemented.
The operation of this instruction ISNDEFINED if the operaation requires an address, and that address is uncache-

able.
Operation:
vAddr ~ GPR[base] + sign_extend(offset)
(pAddr, uncached) ~ AddressTranslation(vAddr, DataReadReference)

CacheOp(op, vAddr, pAddr)

Exceptions:

TLB Refill Exception.

TLB Invalid Exception
Coprocessor Unusable Exception
Address Error Exception

Bus Error Exception

MIPS32® 4K™ Processor Core Family Software User’s Manual, Revision 01.18 183
Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

Load Linked Word LL
31 26 25 21 20 16 15 0
LL
base rt offset
110000
6 5 5 16
Format: LL rt, offset(base) MIPS32
Purpose:

184

To load a word from memory for an atomic read-modify-write

Description: it — memory[base+offset]

The LL and SC instructions provide the primitives to implement atomic read-modify-write (RMW) operations for
cached memory locations.

The 16-bit signeaffsetis added to the contents of GRRRseto form an effective address. The contents of the 32-bit
word at the memory location specified by the aligned effective address are fetched, sign-extended to the GPR register
length if necessary, and written into GRR

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per processor.
When an LL is executed it starts an active RMW sequence replacing any other sequence that was active.

The RMW sequence is completed by a subsequent SC instruction that either completes the RMW sequence atomi-
cally and succeeds, or does not and fails.

Executing LL on one processor does not cause an action that, by itself, causes an SC for the same block to fail on
another processor.

An execution of LL does not have to be followed by execution of SC; a program is free to abandon the RMW
sequence without attempting a write.

Restrictions:
The addressed location must be cached; if it is not, the result is undefined.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the effective address is
non-zero, an Address Error exception occurs.

Operation:

vAddr sign_extend(offset) + GPR[base]
ifvAddr ;o #02then
SignalException(AddressError)
endif
(pAddr, CCA) — AddressTranslation (vAddr, DATA, LOAD)
memword ~ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rf] ~ memword
LLbit <1

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

11.3 Instruction Set

Load Linked Word (cont.) LL

Exceptions:
TLB Refill, TLB Invalid, Address Error, Reserved Instruction

Programming Notes:
There is no Load Linked Word Unsigned operation corresponding to Load Word Unsigned.

MIPS32® 4K™ Processor Core Family Software User’s Manual, Revision 01.18 185
Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

Prefetch PREF

31 26 25 21 20 16 15 0

PREF
base hint offset
110011
6 5 5 16

Format: PREF hint,offset(base) MIPS32

Purpose:

186

To move data between memory and cache.

Description: prefetch_memory(base+offset)

PREF adds the 16-bit signedfsetto the contents of GPRaseto form an effective byte address. Thimt field sup-
plies information about the way that the data is expected to be used.

PREF is an advisory instruction that may change the performance of the program. Howevehifdanalues and all
effective addresses, it neither changes the architecturally visible state nor does it alter the meaning of the program.

PREF does not cause addressing-related exceptions. If the address specified would cause an addressing exception, the
exception condition is ignored and no data movement occurs. However even if no data is prefetched, some action that
is not architecturally visible, such as writeback of a dirty cache line, can take place.

PREF never generates a memory operation for a location withcathednemory access type.

If PREF results in a memory operation, the memory access type used for the operation is determined by the memory
access type of the effective address, just as it would be if the memory operation had been caused by a load or store to
the effective address.

Thehint field supplies information about the way the data is expected to be udadt ¥alue cannot cause an action
to modify architecturally visible state.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18
Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

11.3 Instruction Set

Prefetch (cont.) PREF

Any of the following conditions causes the 4K core to treat a PREF instruction as a NOP.
* Areservedint value is used
» Writeback-invalidate (25hint value is used
* The address has a translation error
» The address maps to an uncacheable page
» The data is already in the cache
» There is already another load/prefetch outstanding

In all other cases, except whaimt equals 25, execution of the PREF instruction initiates an external bus read trans-
action. PREF is a non-blocking operation and does not cause the pipeline to stall while waiting for the data to be
returned.

MIPS32® 4K™ Processor Core Family Software User’s Manual, Revision 01.18 187

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

Prefetch (cont.)

188

Table 11-13 Values of thénint Field for the PREF Instruction

PREF

Value

Name

Data Use and Desired Prefetch Action

load

Use: Prefetched data is expected to be read (not modified).

Action: Fetch data as if for a load.

store

Use: Prefetched data is expected to be stored or modified.

Action: Fetch data as if for a store.

Reserved

Reserved - treated as a NOP.

load_streamed

Use: Prefetched data is expected to be read (not modified) bu
reused extensively; it “streams” through cache.

Action: Fetch data as if for a load and place it in the cache so th
does not displace data prefetched as “retained.”

not

at it

store_streamed

Use: Prefetched data is expected to be stored or modified but
reused extensively; it “streams” through cache.

Action: Fetch data as if for a store and place it in the cache so
it does not displace data prefetched as “retained.”

not

that

load_retained

Use: Prefetched data is expected to be read (not modified) an
reused extensively; it should be “retained” in the cache.

Action: Fetch data as if for a load and place it in the cache so th
is not displaced by data prefetched as “streamed.”

at it

store_retained

Use: Prefetched data is expected to be stored or modified and r¢
extensively; it should be “retained” in the cache.

Action: Fetch data as if for a store and place it in the cache so
it is not displaced by data prefetched as “streamed.”

used

that

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

11.3 Instruction Set

Table 11-13 Values of thénint Field for the PREF Instruction

8-24 Reserved Reserved - treated as a NOP.
- writeback_invalidate Use: Data is no longer expected to be used.
(also known as “nudge” Treated as a NOP.
Implementation
26-29 Dependent Reserved - treated as a NOP.
Use: Prepare the cache for writing an entire line, without the
30 PrepareForStore overhead involved in filling the line from memory.
Reserved - treated as a NOP.
Implementation
31 Dependent Reserved - treated as a NOP.
MIPS32® 4K™ Processor Core Family Software User's Manual, Revision 01.18 189
y

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

Prefetch (cont.) PREF

190

Restrictions:
None

Operation:

vAddr ~ GPR[base] + sign_extend(offset)
(pAddr, CCA) ~ AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:
Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

Prefetch cannot prefetch data from a mapped location unless the translation for that location is present in the TLB.
Locations in memory pages that have not been accessed recently may not have translations in the TLB, so prefetch
may not be effective for such locations.

Prefetch does not cause addressing exceptions. It does not cause an exception to prefetch using an address pointer
value before the validity of a pointer is determined.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

11.3 Instruction Set

Store Conditional Word scC
31 26 25 21 20 16 15 0
SC
base rt offset
111000
6 5 5 16
Format: SC rt, offset(base) MIPS32
Purpose:

To store a word to memory to complete an atomic read-modify-write

Description: if atomic_update then memory[base+offset] —rtrt ~ lelsert <0

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations for cached
memory locations.

The 16-bit signedffsetis added to the contents of GBRseto form an effective address.

The SC completes the RMW sequence begun by the preceding LL instruction executed on the processor. To complete
the RMW sequence atomically, the following occur:

The least-significant 32-bit word of GRRis stored into memory at the location specified by the aligned effective
address.

A 1, indicating success, is written into GRR
Otherwise, memory is not modified and a 0O, indicating failure, is written intorGPR
If the following event occurs between the execution of LL and SC, the SC fails:

An exception occurs on the processor executing the LL/SC.

If either of the following events occurs between the execution of LL and SC, the SC may succeed or it may fail; the
success or failure is not predictable. Portable programs should not cause one of these events.

» A load, store, or prefetch is executed on the processor executing the LL/SC.

The instructions executed starting with the LL and ending with the SC do not lie in a 2048-byte contiguous region of
virtual memory. The region does not have to be aligned, other than the alignment required for instruction words.

The following conditions must be true or the result of the SC is undefined:

Execution of SC must have been preceded by execution of an LL instruction.

* A RMW sequence executed without intervening exceptions must use the same address in the LL and SC. The address
is the same if the virtual address, physical address, and cache-coherence algorithm are identical.

MIPS32® 4K™ Processor Core Family Software User’s Manual, Revision 01.18 191

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

Store Conditional Word (cont.) SC

192

Atomic RMW is provided only for cached memory locations. The extent to which the detection of atomicity operates
correctly depends on the system implementation and the memory access type used for the location:

MP atomicity: To provide atomic RMW among multiple processors, all accesses to the location must be made with
a memory access type cdched coherent

Uniprocessor atomicity: To provide atomic RMW on a single processor, all accesses to the location must be made
with memory access type of eitheached noncoheremr cached coherenfAll accesses must be to one or the other
access type, and they may not be mixed.

I/O System: To provide atomic RMW with a coherent 1/O system, all accesses to the location must be made with a
memory access type @fched coherentf the 1/0 system does not use coherent memory operations, then atomic
RMW cannot be provided with respect to the 1/O reads and writes.

Restrictions:

The addressed location must have a memory access typaeloéd noncoherent cached coherentf it does not, the
result is undefined.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr — sign_extend(offset) + GPR[base]
ifvAddr 1 o #0 2then
SignalException(AddressError)
endif
(pAddr, CCA) ~ AddressTranslation (vAddr, DATA, STORE)
dataword ~ GPR]rt]
if LLbit then
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
endif
GPR[rt] « 031 || LLbit

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

11.3 Instruction Set

Store Conditional Word (cont.)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Reserved Instruction

Programming Notes:
LL and SC are used to atomically update memory locations, as shown below.

L1:
LL T1, (TO) # load counter
ADDI T2,T1,1 #increment
SC T2, (TO) # try to store, checking for atomicity
BEQ T2, 0, L1 #if not atomic (0), try again
NOP # branch-delay slot

SC

Exceptions between the LL and SC cause SC to fail, so persistent exceptions must be avoided. Some examples of
these are arithmetic operations that trap, system calls, and floating point operations that trap or require software emu-

lation assistance.

LL and SC function on a single processor frached noncoheremhemory so that parallel programs can be run on

uniprocessor systems that do not suppached cohererthemory access types.

MIPS32® 4K™ Processor Core Family Software User’s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

193

Chapter 11 MIPS32 4K Processor Core Instructions

Synchronize Shared Memory SYNC
31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 SYNC
stype
000000 00 0000 0000 0000 0 001111
6 15 5 6
Format: SYNC (stype = 0 implied) MIPS32
Purpose:

194

To order loads and stores.

Description:
Simple Description:

SYNC affects onlyjuncachedndcached cohererbads and stores. The loads and stores that occur before the SYNC
must be completed before the loads and stores after the SYNC are allowed to start.

Loads are completed when the destination register is written. Stores are completed when the stored value is visible to
every other processor in the system.

SYNC is required, potentially in conjunction with SSNOP, to guarantee that memory reference results are visible
across operating mode changes. For example, a SYNC is required on some implementations on entry to and exit from
Debug Mode to guarantee that memory affects are handled correctly.

Detailed Description:

SYNC does not guarantee the order in which instruction fetches are performatydvalues 1-31 are reserved,;
they produce the same result as the value zero.

Executing the SYNC instruction causes the write-through buffer to be flushed. The SYNC instruction stalls until all
loads and stores are completed.

The innformation presented here refers to the MIPS 4K core implementation of the SYNC instruction. For a more

detailed description of the programming effects of SYNC on a generic MIPS32 processor, refer to the MIPS32
Architecture Reference Manual.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

11.3 Instruction Set

Synchronize Shared Memory (cont.) SYNC

Restrictions:

The effect of SYNC on the global order of loads and stores for memory access types otherdhemedandcached
coherentis UNPREDICTABLE .

Operation:
SyncOperation(stype)

Exceptions:
None

MIPS32® 4K™ Processor Core Family Software User’s Manual, Revision 01.18 195

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

Read Indexed TLB Entry TLBR
31 26 25 24 6 5 0
COPO CO 0 TLBR
010000 1 000 0000 0000 0000 0000 000001
6 1 19 6
Format: TLBR MIPS32

Purpose:

196

To read an entry from the TLB.

Description:

The EntryHi, EntryLoQ EntryLol, andPageMaskegisters are loaded with the contents of the TLB entry pointed to
by the Index register. Note that the value written to EwdryHi, EntryLoQ andEntryLolregisters may be different
from that originally written to the TLB via these registers in that:

e The value returned in the G bit in both thetryLoOandEntryLolregisters comes from the single G bit in the
TLB entry. Recall that this bit was set from the logical AND of the two G biEninyLoOandEntryLolwhen
the TLB was written.

e The value returned in the ASID field of tRatryHi register is zero for those chips that implement a BAT-based
MMU organization.

Restrictions:

The operation i&JNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entries in the processor.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

11.3 Instruction Set

Read Indexed TLB Entry

Operation:

i« Index
if i > (TLBEntries - 1) then
UNDEFINED
endif
PageMasKyask < TLB[i] mask
EntryHi ~
TLB[] venell
0° || TLB[] asip
EntryLol 02|
TLB[I] prna i
TLBl I TLBl pall TLB vi I TLBl ¢
EntryLo0 0 2|

TLB[i] penoll
TLB[i] coll TLBI] po |l TLBI[] vo || TLBI[i] G

Exceptions:
Coprocessor Unusable

MIPS32® 4K™ Processor Core Family Software User’s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

TLBR

197

Chapter 11 MIPS32 4K Processor Core Instructions

198

Write Indexed TLB Entry TLBWI
31 26 25 24 0
COPO CcO 0 TLBWI
010000 1 000 0000 0000 0000 0000 000010
6 1 19 6

Format: TLBWI MIPS32

Purpose:

To write a TLB entry indexed by tHedexregister.

Description:

The TLB entry pointed to by the Index register is written from the contents cEttigyHi, EntryLoQ EntryLol, and
PageMaskegisters. The information written to the TLB entry may be different from that irEtheyHi, EntryLoQ
andEntryLolregisters, in that:

» The single G bit in the TLB entry is set from the logical AND of the G bits ifttiieyLoOandEntryLol
registers.

Restrictions:

The operation i9JNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entries in the processor.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

11.3 Instruction Set

Write Indexed TLB Entry

Operation:

i« Index

TLBIi]
TLBIi]
TLBI]
TLBI]
TLBI]
TLBI]
TLBI]
TLBIi]
TLBI]
TLBI]
TLBI]
TLBI]

Mask — PageMaskpask

venz < EntryHi ypnp
Asip < EntryHi agp
6 « EntryLol gand EntryLoO
prn1 — Entrylol pey
c1 < EntryLol

p1 « EntryLol p

vi1 « EntryLol
prno — EntryLoO pey
co « EntryLo0

po « EntryLo0 p

vo < EntryLo0

Exceptions:

Coprocessor Unusable

MIPS32® 4K™ Processor Core Family Software User’s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

G

TLBWI

199

Chapter 11 MIPS32 4K Processor Core Instructions

Write Random TLB Entry TLBWR
31 26 25 24 6 5 0
COPO CO 0 TLBWR
010000 1 000 0000 0000 0000 0000 000110
6 1 19 6
Format: TLBWR MIPS32
Purpose:

200

To write a TLB entry indexed by tiiRandonregister.

Description:

The TLB entry pointed to by thRandonregister is written from the contents of thmtryHi, EntryLoQ EntryLo],
and PageMaskregisters. The information written to the TLB entry may be different from that inBEh&ryHi,
EntryLoQ andEntryLolregisters, in that:

e The value returned in the G bit in both thetryLoOandEntryLolregisters comes from the single G bit in the
TLB entry. Recall that this bit was set from the logical AND of the two G biEninyLoOandEntryLolwhen
the TLB was written.

Restrictions:

The operation i&JNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entries in the processor.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

11.3 Instruction

Set

Write Random TLB Entry

Operation:

i < Random

TLBIi]
TLBI]
TLBIi]
TLBI]
TLBI]
TLBI]
TLBI]
TLBI]
TLBIi]
TLBI]
TLBI]
TLBI]

Mask < PageMaskyask

venz < EntryHi - ypn
asip < EntryHi asp
g « EntryLol gand EntryLoO
prN1 < EntryLol pey
c1 < EntryLol

p1 < EntryLol p

Vi < EntryLol \Vi
prno — EntryLoO pey
co « EntryLo0

po « EntryLo0 p

vo < EntryLo0

Exceptions:

Coprocessor Unusable

MIPS32® 4K™ Processor Core Family Software User’s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

G

TLBWR

201

Chapter 11 MIPS32 4K Processor Core Instructions

202

Enter Standby Mode WAIT
31 26 25 24 0
COPO CO WAIT
Implementation-Dependent Code
010000 1 100000
6 1 19 6
Format: WAIT MIPS32
Purpose:

Wait for Event

Description:

The WAIT instruction forces the core into low power mode. The pipeline is stalled and when all external requests are
completed, the processor’s main clock is stopped. The processor will restart when reset (SI_Reset ro SI_ColdReset) is
signaled, or a non-masked interrupt is taken (SI_NMI, SI_Int, or EJ_DINT). Note that the 4Kc, 4Kp & 4Km cores do
not use the code field in this instruction.

Restrictions:

The operation of the processorUlNDEFINED if a WAIT instruction is placed in the delay slot of a branch or a

jump.

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

11.3 Instruction Set

Enter Standby Mode (cont.) WAIT
Operation:
Enter lower power mode

Exceptions:
Coprocessor Unusable Exception

MIPS32® 4K™ Processor Core Family Software User’s Manual, Revision 01.18 203

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Chapter 11 MIPS32 4K Processor Core Instructions

204 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All rights reserved.

Appendix A

Revision History

Revision Date Description

1.0 August, 1999 « First released version

* Re-organization to be more of a SoftWare User’s Manual.
Removed System Interface chapter.

« Count register no longer stops incrementing in DebugMode -
New bit added to Debug register to indicate this: CountDM

« New Bits added to Debug register for handling of imprecise
exceptions: IEXI, DBUSEP, IBuUsgP

« Added description of SubBlock ordering

« New MDU timing. Updated pipeline diagrams and text in Chap.
2 to reflect new timing

* Modified Reset description. SoftReset cannot be masked by the
core. SoftReset does not need to be asserted when Reset is
asserted

« ASID is not used in EJTAG breakpoint comparisons if the TLB
is not implemented

* Added MT Compare to Timer Interrupt cleared to list of Hazard
conditions

» Fixed Hazard from setting of SW Interrupt to Interrupted
instruction

« Changed SPECIAL opcode map to reflect MOVCI FP instn as a
Coprocessor Instn rather than a Reserved Instn

11 November, 1999 « L2 Cache encodings of CACHE instn are reserved.

¢ Added note that | Fill CACHE instn will cause a re-fetch even if
the line is in the cache

* MUL instn description reiterates that the contents of HI/LO are
unpredictable after the MUL operation.

« Added ERL=1 as possible reason for being in kernel mode in the
kseg descriptions

» Swapped priority of Rl and CU exceptions

« Changed general exception code pseudo-code to have correct
vector offset of 0x180

» Fixed typo in bus error description: stores OR non-critical
words... not stores of non-critical words

* Changed TLBWI to TLBWR in Random register description

» Added note that behavior is undefined if illegal page mask value
is used

» Added note that Statys Statugg, and Statyg,, bits and
Causg,p cannot be set by software

» Noted undefined behavior if Staggg is set while executing
code in useg/kuseg

+ Added Confighc and Config¢a bits. Both wired to 0

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18 205

Copyright © 2000-2002 MIPS Technologies Inc. All right reserved.

Appendix A Revision History

Revision Date Description

» Changed Reset state of WatdWatclg, and Watcly, to 0 from
undefined

* Removed some false statements about WAIT induced sleep mode

e CLOJ/CLZ instn description changed to reflect use of rd as
destination register instead of rt

1.1, continue November, 1999 « Add sel field to format statements in MFCO/MTCO instns

* Removed redundant statement about writeback invalidate from
PREF instn

« Add programming note to multiply instructions that smaller
source value should be placed in rt

» Updated listing of HW initialized CopO bits in Reset chapter

* Removed implication of internal mux for SI_TimerInt from
12 December, 1999 description of Compare register

» Cleaned up old references to ‘both’ cores

 Fixed some typos

« Fixed pipe stages in figure 2-12

* Added details on D-side micro TLB
01.03 January 28, 2000

e Cleaned up usage of trademarks

* Renamed title tdtIPS32 4k™ Processor Core Family Software
User's Manual

« Changed revision numbering to xx.yy format for consistency
with other documents

« Cleaned up some old paragraph leftovers

» Changed look of Table of Contents, List of Figures and List of
Tables

< Added timing information regarding Early In to divide algorithm
for 4Kc and 4Km

» Fixed CLO/CLZ description in section 10.7 to reflect rt -> rd
change in definition

01.04 March 23,2000, (|eaned up Config register definition. Defined BM field, defined

reset state of several fields. Changed reserved fields to O fields

« Cleaned up decode tables - fixed font problems and multi-line
instn text

¢ Updated PREF description
+ Made reset state of Stapy)

» Fixed some Spell-check issues.
 Clarified “Fetch and Lock” CACHE description.

01.05 May 8, 2000 * Removed text saying that the upper bits of PrID were available

for implementors.

* Rephrased field description of Datalo register.
01.06 June 8, 2000
» Updated copyright and trademark notices.

 Clarified initialization of Status.RP and WatchLo.{l,R,W} bits
during Cold Reset in Chapters 4 and 5.

01.07 June 19, 2000

206 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All right reserved.

Revision

Date

Description

01.08

July 18, 2000

Added bit numbering tdable 10-1 on page 1@fescribing the
active bytes in various access types

Reformatted Cover sheet, added MD #

Removed PrID column from this table

01.09

October 27, 2000 ,

Corrected PrRst bit in EJTAG Control Register to control
EJ_PrRst pin (was EJ_PerRst pin).

Clarified use ol_Reseinput in the Soft Reset description.

Clarified effective address calculation in the description of the
CACHE instruction.

Small wording updates in the entire document.

Added Scratch Pad bullet in Feature list.

Added Multiply/divide bullet for 4Kp core in Feature list.
Added Data-bypass section to Pipeline chapter.

Added abbreviation explanation Fgure 2-1 Figure 2-2and
Figure 2-3

Corrected latency numbers for DivideTable 2-1
Modified Figure 2-8 to make it more obvious what goes on.

Corrected clock numbers for divide fiigure 2-11Figure 2-12
andFigure 2-13

Re-arrange®€hapter 3, “Memory Management,” on page 31
Modes of operation is moved first, and JTLB entry contents is
now included in the TLB translation section.

Changed SR to Status when CPO Status register was referenced
in Chapter 4, “Exceptions.”

Changed some references from “instruction” to “data” in the data
breakpoint section d€hapter 9, “EJTAG Debug Support.”

Moved instruction Hazard section fro@hapter 11, “MIPS32 4K
Processor Core Instructionsd Chapter 2, “Pipeline.”

Changed all references of Block Address Translation (BAT) to
Fixed Mapping (FM) for consistency with other MIPS
documents.

01.10

October 31, 2000

« Converted document to new template.

01.11

December 4, 2000

Fixed typo in opcod@able 11-2 on page 1{MUTLU ->
MULTU).

Changed MFCz/MTCz iffable 11-5 on page 1106
MFCO/MTCO.

01.12

January 3, 2001

* Made CountDM bit in Debug register read/write, so software can

control whether Count register increments in Debug Mode.

01.13

March 3, 2001

Miscellaneous minor text tweaks based on review feedback.

Tagged source to make core specific document.

MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All right reserved.

207

Appendix A Revision History

Revision Date Description
» Fixed some core specific tagging.

» Updated to document template revision 01.04

» Updated the instruction descriptions from the Architecture
Manual.

« Added missing footnote ifiable 2-6 on page 28

* Fixed typo in description of LSNM field ifable 5-26 on page
102

» Correct name of ASIDsup field in IBSgble 9-7 on page 131
and DBS Table 9-13 on page 1Bregisters.

« Correct name of ASIDuse field in IBCiigble 9-11 on page 135
01.14 June 20, 2001 and DBCn Table 9-17 on page 1)tegisters.

» Updated reset state of Doze and Halt bits in EJTAG Control
register Table 9-23 on page 1h3

« First collom in sub-table for Psz field is changed from PA to PAA
(Table 9-23 on page 153

» Added a better Restriction examp&e¢tion 11.1.6,
"Restrictions Field" on page 1).2

» Added B, BAL and NOP to list of instruction®able 11-7 on
page 171L

« In functions fields for LWL, LWR, SWL, SWR, SYNC, TLBWI,
TLBWR, TLBP and TLBR. Pointed reader to see instruction
description Table 11-7 on page 1)1

Added details on new core features - Index Store Data CACHE
instn, ErrCtl Cop0 register, EJTAG FASTDATA instruction

» Updated EJTAG Version in Debug register

01.15 September 25, 2001

« Added description of constant fields in Debug register - NODCR,
NoSSt, MCheckP, CacheEP, DDBSImpr, DDBLImpr

01.16 March 13, 2002, Document SB bit in Config - indicates whether SimpleBE mode
is active or not
e Added ISP,DSP bhits in Config register. Indicate whether
ISPRAM or DSPRAM are present.
01.17 September 25, 2002
01.18 November 15, 2004 « Correction to copyright year
208 MIPS32® 4K™ Processor Core Family Software User’'s Manual, Revision 01.18

Copyright © 2000-2002 MIPS Technologies Inc. All right reserved.

	MIPS32® 4K™ Processor Core Family Software User’s Manual
	Table of Contents
	List of Figures
	List of Tables
	Introduction to the MIPS32 4K™ Processor Core Family
	1.1� Features
	1.2� Block Diagram
	1.3� Required Logic Blocks
	1.3.1� Execution Unit
	1.3.2� Multiply/Divide Unit (MDU)
	1.3.3� System Control Coprocessor (CP0)
	1.3.4� Memory Management Unit (MMU)
	1.3.5� Cache Controllers
	1.3.6� Bus Interface Unit (BIU)
	1.3.7� Power Management

	1.4� Optional Logic Blocks
	1.4.1� Instruction Cache
	1.4.2� Data Cache
	1.4.3� EJTAG Controller

	Pipeline
	2.1� Pipeline Stages
	2.1.1� I Stage: Instruction Fetch
	2.1.2� E Stage: Execution
	2.1.3� M Stage: Memory Fetch
	2.1.4� A Stage: Align/Accumulate
	2.1.5� W Stage: Writeback

	2.2� Instruction Cache Miss
	2.3� Data Cache Miss
	2.4� Multiply/Divide Operations
	2.5� MDU Pipeline (4Kc and 4Km Cores)
	2.5.1� 32x16 Multiply (4Kc and 4Km Cores)
	2.5.2� 32x32 Multiply (4Kc and 4Km Cores)
	2.5.3� Divide (4Kc and 4Km Cores)

	2.6� MDU Pipeline (4Kp Core Only)
	2.6.1� Multiply (4Kp Core)
	2.6.2� Multiply Accumulate (4Kp Core)
	2.6.3� Divide (4Kp Core)

	2.7� Branch Delay
	2.8� Data Bypassing
	2.8.1� Load Delay
	2.8.2� Move from HI/LO and CP0 Delay

	2.9� Interlock Handling
	2.10� Slip Conditions
	2.11� Instruction Interlocks
	2.12� Instruction Hazards

	Memory Management
	3.1� Introduction
	3.2� Modes of Operation
	3.2.1� Virtual Memory Segments
	3.2.1.1� Unmapped Segments
	3.2.1.2� Mapped Segments

	3.2.2� User Mode
	3.2.3� Kernel Mode
	3.2.3.1� Kernel Mode, User Space (kuseg)
	3.2.3.2� Kernel Mode, Kernel Space 0 (kseg0)
	3.2.3.3� Kernel Mode, Kernel Space 1 (kseg1)
	3.2.3.4� Kernel Mode, Kernel Space 2 (kseg2)
	3.2.3.5� Kernel Mode, Kernel Space 3 (kseg3)

	3.2.4� Debug Mode
	3.2.4.1� Conditions and Behavior for Access to drseg, EJTAG Registers
	3.2.4.2� Conditions and Behavior for Access to dmseg, EJTAG Memory

	3.3� Translation Lookaside Buffer (4Kc Core Only)
	3.3.1� Joint TLB
	3.3.2� Instruction TLB
	3.3.3� Data TLB

	3.4� Virtual to Physical Address Translation (4Kc Core)
	3.4.1� Hits, Misses, and Multiple Matches
	3.4.2� Page Sizes and Replacement Algorithm
	3.4.3� TLB Instructions

	3.5� Fixed Mapping MMU (4Km & 4Kp Cores)
	3.6� System Control Coprocessor

	Exceptions
	4.1� Exception Conditions
	4.2� Exception Priority
	4.3� Exception Vector Locations
	4.4� General Exception Processing
	4.5� Debug Exception Processing
	4.6� Exceptions
	4.6.1� Reset Exception
	4.6.2� Soft Reset Exception
	4.6.3� Debug Single Step Exception
	4.6.4� Debug Interrupt Exception
	4.6.5� Non-Maskable Interrupt (NMI) Exception
	4.6.6� Machine Check Exception (4Kc core)
	4.6.7� Interrupt Exception
	4.6.8� Debug Instruction Break Exception
	4.6.9� Watch Exception — Instruction Fetch or Data Access
	4.6.10� Address Error Exception — Instruction Fetch/Data Access
	4.6.11� TLB Refill Exception — Instruction Fetch or Data Access (4Kc core)
	4.6.12� TLB Invalid Exception — Instruction Fetch or Data Access (4Kc core)
	4.6.13� Bus Error Exception — Instruction Fetch or Data Access
	4.6.14� Debug Software Breakpoint Exception
	4.6.15� Execution Exception — System Call
	4.6.16� Execution Exception — Breakpoint
	4.6.17� Execution Exception — Reserved Instruction
	4.6.18� Execution Exception — Coprocessor Unusable
	4.6.19� Execution Exception — Integer Overflow
	4.6.20� Execution Exception — Trap
	4.6.21� Debug Data Break Exception
	4.6.22� TLB Modified Exception — Data Access (4Kc core)

	4.7� Exception Handling and Servicing Flowcharts

	CP0 Registers
	5.1� CP0 Register Summary
	5.2� CP0 Registers
	5.2.1� Index Register (CP0 Register 0, Select 0)
	5.2.2� Random Register (CP0 Register 1, Select 0)
	5.2.3� EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0)
	5.2.4� Context Register (CP0 Register 4, Select 0)
	5.2.5� PageMask Register (CP0 Register 5, Select 0)
	5.2.6� Wired Register (CP0 Register 6, Select 0)
	5.2.7� BadVAddr Register (CP0 Register 8, Select 0)
	5.2.8� Count Register (CP0 Register 9, Select 0)
	5.2.9� EntryHi Register (CP0 Register 10, Select 0)
	5.2.10� Compare Register (CP0 Register 11, Select 0)
	5.2.11� Status Register (CP0 Register 12, Select 0)
	5.2.12� Cause Register (CP0 Register 13, Select 0)
	5.2.13� Exception Program Counter (CP0 Register 14, Select 0)
	5.2.14� Processor Identification (CP0 Register 15, Select 0)
	5.2.15� Config Register (CP0 Register 16, Select 0)
	5.2.16� Config1 Register (CP0 Register 16, Select 1)
	5.2.17� Load Linked Address (CP0 Register 17, Select 0)
	5.2.18� WatchLo Register (CP0 Register 18)
	5.2.19� WatchHi Register (CP0 Register 19)
	5.2.20� Debug Register (CP0 Register 23)
	5.2.21� Debug Exception Program Counter Register (CP0 Register 24)
	5.2.22� ErrCtl Register (CP0 Register 26, Select 0)
	5.2.23� TagLo Register (CP0 Register 28, Select 0)
	5.2.24� DataLo Register (CP0 Register 28, Select 1)
	5.2.25� ErrorEPC (CP0 Register 30, Select 0)
	5.2.26� DeSave Register (CP0 Register 31)

	Hardware and Software Initialization
	6.1� Hardware Initialized Processor State
	6.1.1� Coprocessor Zero State
	6.1.2� TLB Initialization (4Kc core only)
	6.1.3� Bus State Machines
	6.1.4� Static Configuration Inputs
	6.1.5� Fetch Address

	6.2� Software Initialized Processor State
	6.2.1� Register File
	6.2.2� TLB (4Kc Core Only)
	6.2.3� Caches
	6.2.4� Coprocessor Zero state

	Caches
	7.1� Introduction
	7.2� Cache Protocols
	7.2.1� Cache Organization
	7.2.2� Cacheability Attributes
	7.2.3� Replacement Policy

	7.3� Instruction Cache
	7.4� Data Cache
	7.5� Memory Coherence Issues

	Power Management
	8.1� Register-Controlled Power Management
	8.2� Instruction-Controlled Power Management

	EJTAG Debug Support
	9.1� Debug Control Register
	9.2� Hardware Breakpoints
	9.2.1� Features of Instruction Breakpoint
	9.2.2� Features of Data Breakpoint
	9.2.3� Overview of Registers for Instruction Breakpoints
	9.2.4� Registers for Data Breakpoint Setup
	9.2.5� Conditions for Matching Breakpoints
	9.2.5.1� Conditions for Matching Instruction Breakpoint
	9.2.5.2� Conditions for Matching Data Breakpoints

	9.2.6� Debug Exceptions from Breakpoints
	9.2.6.1� Debug Exception by Instruction Breakpoint
	9.2.6.2� Debug Exception by Data Breakpoint

	9.2.7� Breakpoint used as Triggerpoint
	9.2.8� Instruction Breakpoint Registers
	9.2.8.1� Instruction Breakpoint Status (IBS) Register
	9.2.8.2� Instruction Breakpoint Address n (IBAn) Register
	9.2.8.3� Instruction Breakpoint Address Mask n (IBMn) Register
	9.2.8.4� Instruction Breakpoint ASID n (IBASIDn) Register
	9.2.8.5� Instruction Breakpoint Control n (IBCn) Register

	9.2.9� Data Breakpoint Registers
	9.2.9.1� Data Breakpoint Status (DBS) Register
	9.2.9.2� Data Breakpoint Address n (DBAn) Register
	9.2.9.3� Data Breakpoint Address Mask n (DBMn) Register
	9.2.9.4� Data Breakpoint ASID n (DBASIDn) Register
	9.2.9.5� Data Breakpoint Control n (DBCn) Register
	9.2.9.6� Data Breakpoint Value n (DBVn) Register

	9.3� Test Access Port (TAP)
	9.3.1� EJTAG Internal and External Interfaces
	9.3.2� Test Access Port Operation
	9.3.2.1� Test-Logic-Reset State
	9.3.2.2� Run-Test/Idle State
	9.3.2.3� Select_DR_Scan State
	9.3.2.4� Select_IR_Scan State
	9.3.2.5� Capture_DR State
	9.3.2.6� Shift_DR State
	9.3.2.7� Exit1_DR State
	9.3.2.8� Pause_DR State
	9.3.2.9� Exit2_DR State
	9.3.2.10� Update_DR State
	9.3.2.11� Capture_IR State
	9.3.2.12� Shift_IR State
	9.3.2.13� Exit1_IR State
	9.3.2.14� Pause_IR State
	9.3.2.15� Exit2_IR State
	9.3.2.16� Update_IR State

	9.3.3� Test Access Port (TAP) Instructions
	9.3.3.1� BYPASS Instruction
	9.3.3.2� IDCODE Instruction
	9.3.3.3� IMPCODE Instruction
	9.3.3.4� ADDRESS Instruction
	9.3.3.5� DATA Instruction
	9.3.3.6� CONTROL Instruction
	9.3.3.7� ALL Instruction
	9.3.3.8� EJTAGBOOT Instruction
	9.3.3.9� NORMALBOOT Instruction
	9.3.3.10� FASTDATA Instruction

	9.4� EJTAG TAP Registers
	9.4.1� Instruction Register
	9.4.2� Data Registers Overview
	9.4.2.1� Bypass Register
	9.4.2.2� Device Identification (ID) Register
	9.4.2.3� Implementation Register
	9.4.2.4� EJTAG Control Register

	9.4.3� Processor Access Address Register
	9.4.3.1� Processor Access Data Register

	9.4.4� Fastdata Register (TAP Instruction FASTDATA)

	9.5� Processor Accesses
	9.5.1� Fetch/Load and Store from/to the EJTAG Probe through dmseg

	Instruction Set Overview
	10.1� CPU Instruction Formats
	10.2� Load and Store Instructions
	10.2.1� Scheduling a Load Delay Slot
	10.2.2� Defining Access Types

	10.3� Computational Instructions
	10.3.1� Cycle Timing for Multiply and Divide Instructions

	10.4� Jump and Branch Instructions
	10.4.1� Overview of Jump Instructions
	10.4.2� Overview of Branch Instructions

	10.5� Control Instructions
	10.6� Coprocessor Instructions
	10.7� Enhancements to the MIPS Architecture
	10.7.1� CLO - Count Leading Ones
	10.7.2� CLZ - Count Leading Zeros
	10.7.3� MADD - Multiply and Add Word
	10.7.4� MADDU - Multiply and Add Unsigned Word
	10.7.5� MSUB - Multiply and Subtract Word
	10.7.6� MSUBU - Multiply and Subtract Unsigned Word
	10.7.7� MUL - Multiply Word
	10.7.8� SSNOP- Superscalar Inhibit NOP

	MIPS32 4K Processor Core Instructions
	11.1� Understanding the Instruction Descriptions
	11.2� CPU Opcode Map
	11.3� Instruction Set
	CACHE
	LL
	PREF
	SC
	SYNC
	TLBR
	TLBWI
	TLBWR
	WAIT

	Revision History

