
11998 Morgan Kaufmann Publishers

Chapter 3
MIPS Assembly Language

21998 Morgan Kaufmann Publishers

Review

• MIPS instruction:fixed instruction size(32bit) and 3 simple formats
• bne or beq: R type or I-type?
• Using slt and beq to simulate ‘branch if less than’
• pseudo instruction

31998 Morgan Kaufmann Publishers

Compiling a While Loop

• C Source Code:

assuming that I,j,k corresponds to $s3,$s4,$s5 and the base address
of the array save is in $s6 (How is this example different from the
previous ones?)

• MIPS assembly code:

while (save[i] == k) i=i+j;

Loop: add $t1,$s3,$s3 #reg $t1 = 2*i
add $t1,$t1,$t1 #reg $t1 = 4*i
add $t1,$t1,$s6 #$t1 = address of save[i]
lw $t0,0($t1) #$t0 = save[i]
bne $t0,$s5, Exit # goto Exit if save[i]!=k
add $s3,$s3,$s4 # i= i + j
j Loop # goto Loop

Exit:

41998 Morgan Kaufmann Publishers

Another Example

• See page 126 of text.
• The loop modifies I, we must multiply its value by 4 each time

through the loop.
• Exists a more efficient method (See section 3.11, the pointer version)

51998 Morgan Kaufmann Publishers

Case/Switch Statement

• C source code:

• What is the MIPS assembly code assuming f-k correspond to
registers $s0-$s5 and $t2 contains 4 and $t4 contains base address
of JumpTable?

switch(k){
case 0: f=i+j;break;
case 1: f=g+h;break;
case 2: f=g-h;break;
case 3: f=i-j;break;
}

61998 Morgan Kaufmann Publishers

MIPS Assembly Code for Case/Switch

Slt $t3,$s5,$zero # test if k<0
bne $t3,$zero,Exit # go to Exit if k<0
slt $t3,$s5,$t2 # test if k<4
beq $t3,$zero,Exit # go to Exit if k>=4
add $t1,$s5,$s5 #$t1 =2*k
add $t1,$t1,$t1 #$t1 =4*k
add $t1,$t1,$t4 #$t1=address of JumpTable[k]
lw $t0,0($t1) #$to=JumpTable[k]
jr $t0 #jump based on register $t0
L0: add $s0,$s3,$s4

j Exit
L1: add $s0,$s1,$s2

j Exit
L2: sub $s0,$s1,$s2

j Exit
L3: sub $s0,$s3,$s4
Exit:

71998 Morgan Kaufmann Publishers

Supporting Procedures

• Basic steps:
– Place parameters in a place where the procedure can access

them
– Transfer control to the procedure
– Acquire the storage resources needed for the procedure
– Perform desired task
– Place the result in a place where the calling program can access

it
– Return control to the point of origin

81998 Morgan Kaufmann Publishers

Registers for Procedure Calling

• $a0-$a3: four argument registers
• $v0-$v1: two value registers
• $ra: return address register

• jump-and-link: jal ProcedureAddress
• jal instruction actually saves PC+4 in the register $ra
• return jump: jr $ra

91998 Morgan Kaufmann Publishers

Using more registers

• What if more than four arguments and two return values are needed?
• Spill register to memory
• use a stack data structure (last-in-first-out) to do this
• that’s why there is another register called $sp (stack pointer)
• Example on page 134 of text shows how a procedure call works.
• Nested procedures.

101998 Morgan Kaufmann Publishers

Procedure Frame

• The segment of the stack containing a procedure’s saved registers
and local variables is called a procedure frame.

• Some MIPS software uses a frame pointer ($fp) to point to the first
word of the frame of a procedure. (more stable)

Saved argument
registers (if any)

Local arrays and
structures (if any)

Saved saved
registers (if any)

Saved return address

b.

$sp

$sp

$sp

c.

$fp

$fp

$fp

a.

High address

Low address

111998 Morgan Kaufmann Publishers

MIPS Register Convention

Name Reg# Usage Preserved on call?
$zero 0 the constant value 0 n.a.
$v0-$v1 2-3 values for results no
$a0-$a3 4-7 arguments yes
$t0-$t7 8-15 temporaries no
$s0-$s7 16-23 saved yes
$t8-$t9 24-25 more temporaries no
$gp 28 global pointer yes
$sp 29 stack pointer yes
$fp 30 frame pointer yes
$ra 31 return address yes

Register 1, $at is reserved for assembler, registers 26-27,
called $k0-$k1, is reserved for the operating system.

121998 Morgan Kaufmann Publishers

Beyond Numbers

• ASCII code
• Loading and saving bytes:

• Example: strcpy (page 143)

lb $t0,0($sp) # Read byte from source

sb $t0,0($gp) # Write byte to dest.

131998 Morgan Kaufmann Publishers

• Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4 != $t5
beq $t4,$t5,Label Next instruction is at Label if $t4 = $t5
j Label Next instruction is at Label

• Formats:

• Addresses are not 32 bits
— How do we handle this with load and store instructions?

 op rs rt 16 bit address

 op 26 bit address
I

J

Addresses in Branches and Jumps

141998 Morgan Kaufmann Publishers

• Instructions:
bne $t4,$t5,Label Next instruction is at Label if $t4!=$t5
beq $t4,$t5,Label Next instruction is at Label if $t4=$t5

• Formats:

• Could specify a register (like lw and sw) and add it to address
– use Instruction Address Register (PC = program counter)
– most branches are local (principle of locality)

• Jump instructions just use upper 4 bits of PC
– address boundaries of 256 MB

 op rs rt 16 bit addressI

Addresses in Branches

151998 Morgan Kaufmann Publishers

To summarize:
MIPS operands

Name Example Comments
$s0-$s7, $t0-$t9, $zero, Fast locations for data. In MIPS, data must be in registers to perform

32 registers $a0-$a3, $v0-$v1, $gp, arithmetic. MIPS register $zero always equals 0. Register $at is
$fp, $sp, $ra, $at reserved for the assembler to handle large constants.

Memory[0], Accessed only by data transfer instructions. MIPS uses byte addresses, so

230 memory Memory[4], ..., sequential words differ by 4. Memory holds data structures, such as arrays,
words Memory[4294967292] and spilled registers, such as those saved on procedure calls.

MIPS assembly language
Category Instruction Example Meaning Comments

add add $s1, $s2, $s3 $s1 = $s2 + $s3 Three operands; data in registers

Arithmetic subtract sub $s1, $s2, $s3 $s1 = $s2 - $s3 Three operands; data in registers

add immediate addi $s1, $s2, 100 $s1 = $s2 + 100 Used to add constants
load w ord lw $s1, 100($s2) $s1 = Memory[$s2 + 100]Word from memory to register
store w ord sw $s1, 100($s2) Memory[$s2 + 100] = $s1 Word from register to memory

Data transfer load byte lb $s1, 100($s2) $s1 = Memory[$s2 + 100]Byte from memory to register
store byte sb $s1, 100($s2) Memory[$s2 + 100] = $s1 Byte from register to memory
load upper
immediate

lui $s1, 100 $s1 = 100 * 216 Loads constant in upper 16 bits

branch on equal beq $s1, $s2, 25 if ($s1 == $s2) go to
PC + 4 + 100

Equal test; PC-relative branch

Conditional

branch on not equal bne $s1, $s2, 25 if ($s1 != $s2) go to
PC + 4 + 100

Not equal test; PC-relative

branch set on less than slt $s1, $s2, $s3 if ($s2 < $s3) $s1 = 1;
else $s1 = 0

Compare less than; for beq, bne

set less than
immediate

slti $s1, $s2, 100 if ($s2 < 100) $s1 = 1;
else $s1 = 0

Compare less than constant

jump j 2500 go to 10000 Jump to target address
Uncondi- jump register jr $ra go to $ra For sw itch, procedure return
tional jump jump and link jal 2500 $ra = PC + 4; go to 10000 For procedure call

161998 Morgan Kaufmann Publishers

MIPS Addressing Mode

• Register addressing: operand is a register
• Base or displacement addressing: example: lw $t0,1200($t1)
• Immediate addressing: addi
• PC-relative addressing: address is the sum of the PC and a constant

in the instruction (conditional branch)
• Pseudodirect addressing: the jump address is the 26 bits of the

instruction concatenated with the upper bits of the PC (jump)

171998 Morgan Kaufmann Publishers

Byte Halfword Word

Registers

Memory

Memory

Word

Memory

Word

Register

Register

1. Immediate addressing

2. Register addressing

3. Base addressing

4. PC-relative addressing

5. Pseudodirect addressing

op rs rt

op rs rt

op rs rt

op

op

rs rt

Address

Address

Address

rd . . . funct

Immediate

PC

PC

+

+

MIPS Addressing Mode (Cont’d)

181998 Morgan Kaufmann Publishers

Decoding Machine Code

• With the help of Figure 3.18, you should be able to decode the
following code:

0000 0000 1010 1111 1000 0000 0010 0000

• add $s0,$a1,$t7

191998 Morgan Kaufmann Publishers

Starting a Program

Assembler

Assembly language program

Compiler

C program

Linker

Executable: Machine language program

Loader

Memory

Object: Machine language module Object: Library routine (machine language)

201998 Morgan Kaufmann Publishers

Using PCSPIM For Windows

• Messages: SPIM messages
• Text Segments (instruction)
• Data Segments: displays the data load to the program’s memory and

data on the program’ stack.
• Registers
• Console

	page1
	page2
	page3
	page4
	page5
	page6
	page7
	page8
	page9
	page10
	page11
	page12
	page13
	page14
	page15
	page16
	page17
	page18
	page19
	page20

