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Announcements

• Urgent: sign up at EEclass and say if you are taking 3 or 4 units

• Homework #1 is available

– Due on Tue 1/23, 5pm outside Gates 310

• Lab #1 is available

– Due on Tuesday 1/30, midnight

– Lab orientation after the class at Packard Hall

–

• Programming assignment #1 will be available on Thursday

• EE108B Review Session

– Friday: 2:15pm-3:05pm in Thornton 102 
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Review of MIPS Assembly Language I

• Instruction Set Architecture (ISA)
– HW/SW interface
– Multiple HW implementations of same interface

• Introduction to MIPS ISA and assembly programming
– Register-register or load-store or RISC ISA

• Arithmetic (ALU) operations
– Register & immediate operands
– add, sub, addu, subu
– addi, addiu

• Quick reminders
– What is the difference between add and addu? 
– What is the difference between addi and addu? 
– Why don’t we have subi or subiu instructions? 
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Review of MIPS Assembly Language I

• Memory data transfer

– displacement based addressing mode

– lw, sw
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Today’s Menu

• Finish Memory data transfer

– Stores

– Data alignment

– Memory mapped I/O

• Control transfer instructions

– Branches and jumps

• Machine language design

– Binary encoding of assembly instructions

– 3 MIPS instruction formats
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Storing Data

• Storing data is just the reverse and the instruction is nearly identical

• Use the sw instruction to copy a word from the source register to an 

address in memory

sw src, offset(base)

• Offset value is signed
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Storing Data Example

• Consider the example

*a = b + c;

• Use the sw instruction to store

add $t0, $s1, $s2 # $t0 = b + c

sw $t0, 0($s0) # Memory[s0] = b + c
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Storing to an Array

• Consider the example

a[3] = b + c;

• Use the sw instruction offset

add $t0, $s1, $s2 # $t0 = b + c

sw $t0, 12($s0) # Memory[a[3]] = b + c
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Complex Array Storage

• Consider the example

a[i] = b + c;

• Use the sw instruction offset

add $t0, $s1, $s2 # $t0 = b + c

sll $t1, $s3, 2 # $t1 = 4 * i

add $t2, $s0, $t1 # $t2 = a + 4*i

sw $t0, 0($t2) # Memory[a[i]] = b + c
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A “short” Array Example

• ANSI C requires a short to be at least 16 bits and no longer than an 
int, but does not define the exact size

• For our purposes, treat a short as 2 bytes

• So, with a short array c[7] is at c + 7 * 2, shift left by 1

c[ 7]

c[ 6]

c[ 5]

c[ 4]

c[ 3]

c[ 2]

c[ 1]

c[ 0]1000 2 bytes

c

1014

1004

1008

1012

1016

1002

1006

1010
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MIPS Integer Load/Store

Instruction Example Meaning Comments

load word lw $1, 8($2) $1=Mem[8+$2] Load word

load halfword lh $1, 6($2) $1=Mem[6+$2] Load half; sign extend

load half unsign lhu $1, 6($2) $1=Mem[8+$2] Load half; zero extend

load byte lb $1, 5($2) $1=Mem[5+$2] Load byte; sign extend 

load byte unsign lbu $1, 5($2) $1=Mem[5+$2] Load byte; zero extend

store word sw $1, 8($2) Mem[8+$2]=$1 Store word

store half sh $1, 6($2) Mem[6+$2]=$1  Stores only lower 16 bits

store byte sb $1, 5($2) Mem[5+$2]=$1 Stores only lowest byte
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Alignment Restrictions

• In MIPS, data is required to fall on addresses that are even multiples of 
the data size

• Consider word (4 byte) memory access

0      1      2      3

Aligned

Not

Aligned

0 4 8 12 16

0 4 8 12 16

0 1 2 30

0 1 2 3 register

memory

4 5 6 71

8 9 a b2

c d e f3
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Alignment Restrictions (cont)

• C Example

• Historically

– Early machines (IBM 360 in 1964) required alignment

– Removed in 1970s to reduce impact on programmers (e.g IBM 370, Intel x86)

– Reintroduced by RISC to improve performance

• Also introduces challenges with memory organization with virtual memory, etc.

struct foo {

char sm; /*1 Byte*/

short med; /*2 Byte*/

char sm1; /*1 Byte*/

int lrg; /* 4 Bytes*/

}

med sm1 X lrgsm X

Byte offset   0  1 2   3 4  5  7 8     11

What is the size of 

this structure?
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Memory Mapped I/O

• Data transfer instructions can be used to move data to and from I/O 
device registers

• A load operation moves data from a an I/O device register to a CPU 
register and a store operation moves data from a CPU register to a I/O 
device register

Memory

27  Bytes
CPU

address (8)

data (8)

I/O register

I/O register at address 0x80 (128)
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Changing Control Flow

• One of the distinguishing characteristics of computers is the ability to 
evaluate conditions and change control flow

– If-then-else

– Loops

– Case statements

• Control flow instructions

– Conditional branch instructions are known as branches

– Unconditional changes in the control flow are called jumps

• The target of the branch/jump is a label
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Conditional: Equality

• The simplest conditional test is the beq instruction for equality

beq reg1, reg2, label

• Consider the code

if (a == b) goto L1;

// Do something

L1: // Continue

• Use the beq instruction

beq $s0, $s1, L1

# Do something

# . . . 

L1: # Continue
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Conditional: Not Equal

• The bne instruction for not equal
bne reg1, reg2, label

• Consider the code
if (a != b) goto L1;

// Do something

L1: // Continue

• Use the bne instruction
bne $s0, $s1, L1

# Do something

L1: # Continue
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Unconditional: Jumps

• The j instruction jumps to a label

j label
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If-then-else Example

• Consider the code

if (i == j) f = g + h;

else f = g – h;

Exit

i == j?

f=g+h f=g-h

(false)

i != j
(true)

i == j
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If-then-else Solution

• Create labels and use equality instruction

beq $s3, $s4, True # Branch if i == j

False: subu $s0, $s1, $s2 # f = g – h

j Exit # Go to Exit

True: add $s0, $s1, $s2 # f = g + h

Exit:
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Other Comparisons

• Other conditional arithmetic operators are useful in evaluating 
conditional expressions using <, >, <=, >=

• Use compare instruction  to “set” register to 1 when condition met

• Consider the following C code
if (f < g) goto Less;

• Solution
slt $t0, $s0, $s1 # $t0 = 1 if $s0 < $s1

bne $t0, $zero, Less # Goto Less if $t0 != 0
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MIPS Comparisons

Instruction Example Meaning Comments

set less than slt $1, $2, $3 $1 = ($2 < $3) comp less than signed

set less than imm slti $1, $2, 100 $1 = ($2 < 100)    comp w/const signed

set less than uns sltu $1, $2, $3 $1 =  ($2 < $3) comp < unsigned

set l.t. imm. uns sltiu $1, $2, 100 $1 =  ($2 < 100)    comp < const unsigned

• C

if (a < 8)

• Assembly

slti $v0,$a0,8 # $v0 = a < 8

beq $v0,$zero, Exceed # goto Exceed if $v0 == 0
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C Example

1:int sum_pow2(int b, int c)

2:{

3: int pow2 [8] = {1, 2, 4, 8, 16, 32, 64, 128};

4: int a, ret;

5: a = b + c;

6: if (a < 8)  

7: ret = pow2[a];

8: else 

9: ret = 0;

10: return(ret);

11:}
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sum_pow2: # $a0 = b, $a1 = c

addu $a0,$a0,$a1 # a = b + c, $a0 = a 

slti $v0,$a0,8 # $v0 = a < 8

beq $v0,$zero, Exceed # goto Exceed if $v0 == 0

addiu $v1,$sp,8 # $v1 = pow2 address

sll $v0,$a0,2 # $v0 = a*4

addu $v0,$v0,$v1 # $v0 = pow2 + a*4

lw $v0,0($v0) # $v0 = pow2[a]

j Return # goto Return

Exceed: addu $v0,$zero,$zero # $v0 = 0

Return: jr ra # return sum_pow2
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C Example Revised

1:int sum_pow2(int b, int c)

2:{

3: int pow2 [8] = {1, 2, 4, 8, 16, 32, 64, 128};

4: int a, ret;

5: a = b + c;

6: if (a >= 0 && a < 8)  

7: ret = pow2[a];

8: else 

9: ret = 0;

10: return(ret);

11:}
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sum_pow2: # $a0 = b, $a1 = c

addu $a0,$a0,$a1 # a = b + c, $a0 = a

bltz $a0, Exceed # goto Exceed if $v0 < 0

slti $v0,$a0,8 # $v0 = a < 8

beq $v0,$zero, Exceed # goto Exceed if $v0 == 0

addiu $v1,$sp,8 # $v1 = pow2 address

sll $v0,$a0,2 # $v0 = a*4

addu $v0,$v0,$v1 # $v0 = pow2 + a*4

lw $v0,0($v0) # $v0 = pow2[a]

j Return # goto Return

Exceed: addu $v0,$zero,$zero # $v0 = 0

Return: jr ra # return sum_pow2



EE108b Lecture 3C. Kozyrakis 27

MIPS Jumps & Branches

Instruction Example Meaning

jump j L goto L

jump register jr $1 goto value in $1

jump and link jal L goto L and set $ra

jump and link register jalr $1 goto $1 and set $ra

branch equal beq $1, $2, L if ($1 == $s2) goto L

branch not eq bne $1, $2, L if ($1 != $2)  goto L

branch l.t. 0 bltz $1, L if ($1 < 0) goto L

branch l.t./eq 0 blez $1, L if ($1 <= 0) goto L

branch g.t. 0 bgtz $1, L if ($1 > 0) goto L 

branch g.t./eq 0 bgez $1, L if ($1 >= 0) goto L
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Support for Simple Branches Only

• Notice that there is no branch less than instruction for comparing two 
registers?

– The reason is that such an instruction would be too complicated 
and might require a longer clock cycle time

– Therefore, conditionals that do not compare against zero take at
least two instructions where the first is a set and the second is a 
conditional branch

• As we’ll see later, this is a design trade-off

– Less time per instruction Vs. fewer instructions

• How do you decide what to do?

– Other RISC ISAs made a different choice (e.g. HP’s PA-RISC)
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While loop in C

• Consider a whileloop

while (A[i] == k)

i = i + j;

• Assembly loop

• Assume i = $s0, j = $s1, k = $s2
Loop: sll $t0, $s0, 2 # $t0 = 4 * i

addu $t1, $t0, $s3 # $t1 = &(A[i])

lw $t2, 0($t1) # $t2 = A[i]

bne $t2, $s2, Exit # goto Exit if !=

addu $s0, $s0, $s1 # i = i + j

j Loop # goto Loop

Exit:

• Basic block : 

– Maximal sequence of instructions with out branches or branch targets
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Improve Loop Efficiency

� Code uses two 
branches/iteration:

� Better structure:

Cond?

Body of loop Cond?

Body of loop
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Improved Loop Solution

• Remove extra jump from loop body

j Cond # goto Cond

Loop: addu $s0, $s0, $s1 # i = i + j

Cond: sll $t0, $s0, 2 # $t0 = 4 * i

addu $t1, $t0, $s3 # $t1 = &(A[i])

lw $t2, 0($t1) # $t2 = A[i]

beq $t2, $s2, Loop # goto Loop if ==

Exit:

• Reduced loop from 6 to 5 instructions

– Even small improvements important if loop executes many times
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Machine Language Representation

• Instructions are represented as binary data in memory 

• “Stored program” - Von Neumann

– Simplicity

• One memory system

• Same addresses used for branches, procedures, data, etc.

– The only difference is how bits are interpreted

• What are the risks of this decision? 

• Binary compatibility (backwards)

– Commercial software relies on ability to work on next generation
hardware

– This leads to a very long life for an ISA
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MIPS Instruction Encoding

• MIPS Instructions are encoded in different forms, depending upon the 
arguments

– R-format, I-format, J-format

• MIPS architecture has three instruction formats, all 32 bits in length

– Regularity is simpler and improves performance

• A 6 bit opcode appears at the beginning of each instruction

– Control logic based on decoded instruction type

• See “green card” and Page 103 for a list
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R-Format

• Used by ALU instructions

• Uses three registers: one for destination and two for source

• Function code specifies which operation

OP=0 rs rt rd sa funct

Bits 6 5 5 5 5 6

First
Source
Register

Second
Source
Register

Result
Register

Shift
Amount

Function
Code
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R-Format Example

• Consider the addu instruction

addu $t0, $s1, $s2

• Fill in each of the fields

OP=0 17 18 8 0 33

Bits 6 5 5 5 5 6

First
Source
Register

Second
Source
Register

Result
Register

Shift
Amount

Function
Code

000000 10001 10010 01000 00000 100001
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R-Format Limitations

• The R-Format works well for ALU-type operations, but does not work 
well for some of the other instructions types

• Consider for example the lw instruction that takes an offset in addition 
to two registers

– R-format would provide 5 bits for the offset

– Offsets of only 32 are not all that useful!



EE108b Lecture 3C. Kozyrakis 37

I-Format

• The immediate instruction format

– Uses different opcodes for each instruction

– Immediate field is signed (positive/negative constants)

– Used for loads and stores as well as other instructions with 
immediates (addi, lui, etc.)

– Also used for branches

OP rs rt imm

Bits 6 5 5 16

First
Source
Register

Second
Source
Register
or dest

Immediate
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I-Format Example

• Consider the addi instruction

addi $t0, $t1, 1 # $t0 = $t1 + 1

• Fill in each of the fields

001000 01001 01000 0000000000000001

8 9 8 1

Bits 6 5 5 16

First
Source
Register

Second
Source
Register

Immediate
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Another I-Format Example

• Consider the while loop

Loop: addu $t0, $s0, $s0 # $t0 = 2 * i

addu $t0, $t0, $t0 # $t0 = 4 * i

add $t1, $t0, $s3 # $t1 = &(A[i])

lw $t2, 0($t1) # $t2 = A[i]

bne $t2, $s2, Exit # goto Exit if !=

addu $s0, $s0, $s1 # i = i + j

j Loop # goto Loop

Exit:

• Pretend the first instruction is located at address 80000
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I-Format Example (Incorrect)

• Consider the bne instruction

bne $t2, $s2, Exit # goto Exit if $t2 != $s2

• Fill in each of the fields

• This is not the optimum encoding

000101 01010 10010 0000000000001000

5 10 18 8

Bits 6 5 5 16

First
Source
Register

Second
Source
Register

Immediate
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PC Relative Addressing

• How can we improve our use of immediate addresses when branching?

• Since instructions are always 32 bits long and word addressing requires 
alignment, every address must be a multiple of 4 bytes

• Therefore, we actually branch to the address that is PC + 4 + 4 ×
immediate
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I-Format Example

• Re-consider the bne instruction

bne $t2, $s2, Exit # goto Exit if $t2 != $s2

• Use PC-Relative addressing for the immediate

000101 01010 10010 0000000000000010

5 10 18 2

Bits 6 5 5 16

First
Source
Register

Second
Source
Register

Immediate
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I-Format Example: Load/Store

• Consider the lw instruction

lw $t2, 0($t1) # $t2 = Mem[$t1]

• Fill in each of the fields

001000 01001 01010 0000000000000000

35 9 10 0

Bits 6 5 5 16

First
Source
Register

Second
Source
Register

Immediate
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Branching Far Away

• If the target is greater than -215 to 215-1 words away, then the 
compiler inverts the condition and inserts an unconditional jump

• Consider the example where L1 is far away
beq $s0, $s1, L1 # goto L1 if S$0=$s1

• Can be rewritten as
bne $s0, $s1, L2 # Inverted

j L1 # Unconditional jump

L2:

• Compiler must be careful not to cross 256 MB boundaries with 
jump instructions
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J-Format

• The jump instruction format

– Different opcodes for each instruction

– Examples include j and jal instructions

– Absolute addressing since long jumps are common

– Based on word addressing (target × 4)

– Pseudodirect addressing where 28 bits from target, and remaining 
4 bits come from upper bits of PC

OP target

Bits 6 26

Jump Target Address

Jump PC = PC31..28||target||00
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Complete Example

35 9 10 0

0 16 16 8 0 33

0 8 8 8 0 33

0 8 19 9 0 33

0 16 17 16 0 33

5 10 18 2

80000

80004

80008

80012

80016

80020

80024

80028 …

Now we can write the complete example for our while loop

2 20000
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MIPS Machine Instruction Review:
Instruction Format Summary
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sum_pow2: # $a0 = b, $a1 = c

addu $a0,$a0,$a1 # a = b + c, $a0 = a

bltz $a0, Exceed # goto Exceed if $a0 < 0

slti $v0,$a0,8 # $v0 = a < 8

beq $v0,$zero, Exceed # goto Exceed if $v0 == 0

addiu $v1,$sp,8 # $v1 = pow2 address

sll $v0,$a0,2 # $v0 = a*4

addu $v0,$v0,$v1 # $v0 = pow2 + a*4

lw $v0,0($v0) # $v0 = pow2[a]

b Return # goto Return

Exceed: addu $v0,zero,zero # $v0 = 0

Return: jr ra # return sum_pow2
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sum_pow2 Revised Machine and DisAssembly

sum_pow2:

0x400a98:  00 85 20 21  addu a0,a0,a1

0x400a9c:  04 80 00 08  bltz a0,0x400abc

0x400aa0:  28 82 00 06  slti v0,a0,6

0x400aa4:  10 40 00 06  beq v0,zero,0x400abc

0x400aa8:  27 a3 00 08  addiu v1,sp,8

0x400aac:  00 04 10 80  sll v0,a0,2

0x400ab0:  00 43 10 21  addu v0,v0,v1

0x400ab4:  8c 42 00 00  lw v0,0(v0)

0x400ab8:  10 00 00 01  j 0x400ac0

0x400abc:  00 00 10 21  addu v0,zero,zero

0x400ac0:  03 e0 00 08  jr ra
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Addressing Modes Summary

• Register addressing 

– Operand is a register (e.g. ALU)

• Base/displacement addressing (ex. load/store)

– Operand is at the memory location that is the sum of 

– a base register + a constant

• Immediate addressing (e.g. constants)

– Operand is a constant within the instruction itself 

• PC-relative addressing (e.g. branch)

– Address is the sum of PC and constant in instruction (e.g. branch)

• Pseudo-direct addressing (e.g. jump)

– Target address is concatenation of field in instruction and the PC
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Addressing Modes Summary

Byte Halfword Word

Registers

Memory

Memory

Word

Memory

Word

Register

Register

1. Immediate addressing

2. Register addressing

3. Base addressing

4. PC-relative addressing

5. Pseudodirect addressing

op rs rt

op rs rt

op rs rt

op

op

rs rt

Address

Address

Address

rd . . . funct

Immediate

PC

PC

+

+
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Logical Operators

• Bitwise operators often useful for bit manipulation

• Always operate unsigned except for arithmetic shifts

31                          22                                  6             

0

31                                          16                  

0

0            • • •             0

sll $t0, $t3, 9  # shift $t3 left by 9, store in $t0

srl $t0, $t0, 15 # shift $t0 right by 15

9 bits                            17 bits                       6 bits
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MIPS Logical Instructions

Instruction Example Meaning Comments

and and $1, $2, $3 $1 = $2 & $3 Logical AND

or or $1, $2, $3 $1 = $2 | $3 Logical OR

xor xor $1, $2, $3 $1 = $2 Q$3 Logical XOR

nor nor $1, $2, $3 $1 = ~($2 | $3) Logical NOR

and immediate andi $1, $2, 10 $1 = $2 & 10 Logical AND w. constant

or immediate ori $1, $2, 10 $1 = $2 | 10 Logical OR w. constant

xor immediate xori $1, $2, 10 $1 = ~$2 & ~10 Logical XOR w. constant

shift left log sll $1, $2, 10 $1 = $2 << 10 Shift left by constant

shift right log srl $1, $2, 10 $1 = $2 >> 10 Shift right by constant

shift rt. Arith sra $1, $2, 10 $1 = $2 >> 10 Shift rt. (sign extend) 

shift left var sllv $1, $2, $3 $1 = $2 << $3 Shift left by variable

shift right var srlv $1, $2, $3 $1 = $2 >> $3 Shift right by variable

shift rt. arith srav $1, $2, $3 $1 = $2 >> $3 Shift right arith. var

load upper imm lui $1, 40 $1 = 40 << 16 Places imm in upper 16b
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Loading a 32 bit Constant

• MIPS only has 16 bits of immediate value

• Could load from memory but still have to generate memory address

• Use lui and ori to load 0xdeadbeef into $a0

– lui $a0, 0xdead # $a0 = dead0000

– ori $a0, $a0, 0xbeef # $a0 = deadbeef


