
EE108b Lecture 3C. Kozyrakis 1

EE108B – Lecture 3

MIPS Assembly Language II

Christos Kozyrakis

Stanford University

http://eeclass.stanford.edu/ee108b

EE108b Lecture 3C. Kozyrakis 2

Announcements

• Urgent: sign up at EEclass and say if you are taking 3 or 4 units

• Homework #1 is available

– Due on Tue 1/23, 5pm outside Gates 310

• Lab #1 is available

– Due on Tuesday 1/30, midnight

– Lab orientation after the class at Packard Hall

–

• Programming assignment #1 will be available on Thursday

• EE108B Review Session

– Friday: 2:15pm-3:05pm in Thornton 102

EE108b Lecture 3C. Kozyrakis 3

Review of MIPS Assembly Language I

• Instruction Set Architecture (ISA)
– HW/SW interface
– Multiple HW implementations of same interface

• Introduction to MIPS ISA and assembly programming
– Register-register or load-store or RISC ISA

• Arithmetic (ALU) operations
– Register & immediate operands
– add, sub, addu, subu
– addi, addiu

• Quick reminders
– What is the difference between add and addu?
– What is the difference between addi and addu?
– Why don’t we have subi or subiu instructions?

EE108b Lecture 3C. Kozyrakis 4

Review of MIPS Assembly Language I

• Memory data transfer

– displacement based addressing mode

– lw, sw

EE108b Lecture 3C. Kozyrakis 5

Today’s Menu

• Finish Memory data transfer

– Stores

– Data alignment

– Memory mapped I/O

• Control transfer instructions

– Branches and jumps

• Machine language design

– Binary encoding of assembly instructions

– 3 MIPS instruction formats

EE108b Lecture 3C. Kozyrakis 6

Storing Data

• Storing data is just the reverse and the instruction is nearly identical

• Use the sw instruction to copy a word from the source register to an

address in memory

sw src, offset(base)

• Offset value is signed

EE108b Lecture 3C. Kozyrakis 7

Storing Data Example

• Consider the example

*a = b + c;

• Use the sw instruction to store

add $t0, $s1, $s2 # $t0 = b + c

sw $t0, 0($s0) # Memory[s0] = b + c

EE108b Lecture 3C. Kozyrakis 8

Storing to an Array

• Consider the example

a[3] = b + c;

• Use the sw instruction offset

add $t0, $s1, $s2 # $t0 = b + c

sw $t0, 12($s0) # Memory[a[3]] = b + c

EE108b Lecture 3C. Kozyrakis 9

Complex Array Storage

• Consider the example

a[i] = b + c;

• Use the sw instruction offset

add $t0, $s1, $s2 # $t0 = b + c

sll $t1, $s3, 2 # $t1 = 4 * i

add $t2, $s0, $t1 # $t2 = a + 4*i

sw $t0, 0($t2) # Memory[a[i]] = b + c

EE108b Lecture 3C. Kozyrakis 10

A “short” Array Example

• ANSI C requires a short to be at least 16 bits and no longer than an
int, but does not define the exact size

• For our purposes, treat a short as 2 bytes

• So, with a short array c[7] is at c + 7 * 2, shift left by 1

c[7]

c[6]

c[5]

c[4]

c[3]

c[2]

c[1]

c[0]1000 2 bytes

c

1014

1004

1008

1012

1016

1002

1006

1010

EE108b Lecture 3C. Kozyrakis 11

MIPS Integer Load/Store

Instruction Example Meaning Comments

load word lw $1, 8($2) $1=Mem[8+$2] Load word

load halfword lh $1, 6($2) $1=Mem[6+$2] Load half; sign extend

load half unsign lhu $1, 6($2) $1=Mem[8+$2] Load half; zero extend

load byte lb $1, 5($2) $1=Mem[5+$2] Load byte; sign extend

load byte unsign lbu $1, 5($2) $1=Mem[5+$2] Load byte; zero extend

store word sw $1, 8($2) Mem[8+$2]=$1 Store word

store half sh $1, 6($2) Mem[6+$2]=$1 Stores only lower 16 bits

store byte sb $1, 5($2) Mem[5+$2]=$1 Stores only lowest byte

EE108b Lecture 3C. Kozyrakis 12

Alignment Restrictions

• In MIPS, data is required to fall on addresses that are even multiples of
the data size

• Consider word (4 byte) memory access

0 1 2 3

Aligned

Not

Aligned

0 4 8 12 16

0 4 8 12 16

0 1 2 30

0 1 2 3 register

memory

4 5 6 71

8 9 a b2

c d e f3

EE108b Lecture 3C. Kozyrakis 13

Alignment Restrictions (cont)

• C Example

• Historically

– Early machines (IBM 360 in 1964) required alignment

– Removed in 1970s to reduce impact on programmers (e.g IBM 370, Intel x86)

– Reintroduced by RISC to improve performance

• Also introduces challenges with memory organization with virtual memory, etc.

struct foo {

char sm; /*1 Byte*/

short med; /*2 Byte*/

char sm1; /*1 Byte*/

int lrg; /* 4 Bytes*/

}

med sm1 X lrgsm X

Byte offset 0 1 2 3 4 5 7 8 11

What is the size of

this structure?

EE108b Lecture 3C. Kozyrakis 14

Memory Mapped I/O

• Data transfer instructions can be used to move data to and from I/O
device registers

• A load operation moves data from a an I/O device register to a CPU
register and a store operation moves data from a CPU register to a I/O
device register

Memory

27 Bytes
CPU

address (8)

data (8)

I/O register

I/O register at address 0x80 (128)

EE108b Lecture 3C. Kozyrakis 15

Changing Control Flow

• One of the distinguishing characteristics of computers is the ability to
evaluate conditions and change control flow

– If-then-else

– Loops

– Case statements

• Control flow instructions

– Conditional branch instructions are known as branches

– Unconditional changes in the control flow are called jumps

• The target of the branch/jump is a label

EE108b Lecture 3C. Kozyrakis 16

Conditional: Equality

• The simplest conditional test is the beq instruction for equality

beq reg1, reg2, label

• Consider the code

if (a == b) goto L1;

// Do something

L1: // Continue

• Use the beq instruction

beq $s0, $s1, L1

Do something

. . .

L1: # Continue

EE108b Lecture 3C. Kozyrakis 17

Conditional: Not Equal

• The bne instruction for not equal
bne reg1, reg2, label

• Consider the code
if (a != b) goto L1;

// Do something

L1: // Continue

• Use the bne instruction
bne $s0, $s1, L1

Do something

L1: # Continue

EE108b Lecture 3C. Kozyrakis 18

Unconditional: Jumps

• The j instruction jumps to a label

j label

EE108b Lecture 3C. Kozyrakis 19

If-then-else Example

• Consider the code

if (i == j) f = g + h;

else f = g – h;

Exit

i == j?

f=g+h f=g-h

(false)

i != j
(true)

i == j

EE108b Lecture 3C. Kozyrakis 20

If-then-else Solution

• Create labels and use equality instruction

beq $s3, $s4, True # Branch if i == j

False: subu $s0, $s1, $s2 # f = g – h

j Exit # Go to Exit

True: add $s0, $s1, $s2 # f = g + h

Exit:

EE108b Lecture 3C. Kozyrakis 21

Other Comparisons

• Other conditional arithmetic operators are useful in evaluating
conditional expressions using <, >, <=, >=

• Use compare instruction to “set” register to 1 when condition met

• Consider the following C code
if (f < g) goto Less;

• Solution
slt $t0, $s0, $s1 # $t0 = 1 if $s0 < $s1

bne $t0, $zero, Less # Goto Less if $t0 != 0

EE108b Lecture 3C. Kozyrakis 22

MIPS Comparisons

Instruction Example Meaning Comments

set less than slt $1, $2, $3 $1 = ($2 < $3) comp less than signed

set less than imm slti $1, $2, 100 $1 = ($2 < 100) comp w/const signed

set less than uns sltu $1, $2, $3 $1 = ($2 < $3) comp < unsigned

set l.t. imm. uns sltiu $1, $2, 100 $1 = ($2 < 100) comp < const unsigned

• C

if (a < 8)

• Assembly

slti $v0,$a0,8 # $v0 = a < 8

beq $v0,$zero, Exceed # goto Exceed if $v0 == 0

EE108b Lecture 3C. Kozyrakis 23

C Example

1:int sum_pow2(int b, int c)

2:{

3: int pow2 [8] = {1, 2, 4, 8, 16, 32, 64, 128};

4: int a, ret;

5: a = b + c;

6: if (a < 8)

7: ret = pow2[a];

8: else

9: ret = 0;

10: return(ret);

11:}

EE108b Lecture 3C. Kozyrakis 24

sum_pow2: # $a0 = b, $a1 = c

addu $a0,$a0,$a1 # a = b + c, $a0 = a

slti $v0,$a0,8 # $v0 = a < 8

beq $v0,$zero, Exceed # goto Exceed if $v0 == 0

addiu $v1,$sp,8 # $v1 = pow2 address

sll $v0,$a0,2 # $v0 = a*4

addu $v0,$v0,$v1 # $v0 = pow2 + a*4

lw $v0,0($v0) # $v0 = pow2[a]

j Return # goto Return

Exceed: addu $v0,$zero,$zero # $v0 = 0

Return: jr ra # return sum_pow2

EE108b Lecture 3C. Kozyrakis 25

C Example Revised

1:int sum_pow2(int b, int c)

2:{

3: int pow2 [8] = {1, 2, 4, 8, 16, 32, 64, 128};

4: int a, ret;

5: a = b + c;

6: if (a >= 0 && a < 8)

7: ret = pow2[a];

8: else

9: ret = 0;

10: return(ret);

11:}

EE108b Lecture 3C. Kozyrakis 26

sum_pow2: # $a0 = b, $a1 = c

addu $a0,$a0,$a1 # a = b + c, $a0 = a

bltz $a0, Exceed # goto Exceed if $v0 < 0

slti $v0,$a0,8 # $v0 = a < 8

beq $v0,$zero, Exceed # goto Exceed if $v0 == 0

addiu $v1,$sp,8 # $v1 = pow2 address

sll $v0,$a0,2 # $v0 = a*4

addu $v0,$v0,$v1 # $v0 = pow2 + a*4

lw $v0,0($v0) # $v0 = pow2[a]

j Return # goto Return

Exceed: addu $v0,$zero,$zero # $v0 = 0

Return: jr ra # return sum_pow2

EE108b Lecture 3C. Kozyrakis 27

MIPS Jumps & Branches

Instruction Example Meaning

jump j L goto L

jump register jr $1 goto value in $1

jump and link jal L goto L and set $ra

jump and link register jalr $1 goto $1 and set $ra

branch equal beq $1, $2, L if ($1 == $s2) goto L

branch not eq bne $1, $2, L if ($1 != $2) goto L

branch l.t. 0 bltz $1, L if ($1 < 0) goto L

branch l.t./eq 0 blez $1, L if ($1 <= 0) goto L

branch g.t. 0 bgtz $1, L if ($1 > 0) goto L

branch g.t./eq 0 bgez $1, L if ($1 >= 0) goto L

EE108b Lecture 3C. Kozyrakis 28

Support for Simple Branches Only

• Notice that there is no branch less than instruction for comparing two
registers?

– The reason is that such an instruction would be too complicated
and might require a longer clock cycle time

– Therefore, conditionals that do not compare against zero take at
least two instructions where the first is a set and the second is a
conditional branch

• As we’ll see later, this is a design trade-off

– Less time per instruction Vs. fewer instructions

• How do you decide what to do?

– Other RISC ISAs made a different choice (e.g. HP’s PA-RISC)

EE108b Lecture 3C. Kozyrakis 29

While loop in C

• Consider a whileloop

while (A[i] == k)

i = i + j;

• Assembly loop

• Assume i = $s0, j = $s1, k = $s2
Loop: sll $t0, $s0, 2 # $t0 = 4 * i

addu $t1, $t0, $s3 # $t1 = &(A[i])

lw $t2, 0($t1) # $t2 = A[i]

bne $t2, $s2, Exit # goto Exit if !=

addu $s0, $s0, $s1 # i = i + j

j Loop # goto Loop

Exit:

• Basic block :

– Maximal sequence of instructions with out branches or branch targets

EE108b Lecture 3C. Kozyrakis 30

Improve Loop Efficiency

� Code uses two
branches/iteration:

� Better structure:

Cond?

Body of loop Cond?

Body of loop

EE108b Lecture 3C. Kozyrakis 31

Improved Loop Solution

• Remove extra jump from loop body

j Cond # goto Cond

Loop: addu $s0, $s0, $s1 # i = i + j

Cond: sll $t0, $s0, 2 # $t0 = 4 * i

addu $t1, $t0, $s3 # $t1 = &(A[i])

lw $t2, 0($t1) # $t2 = A[i]

beq $t2, $s2, Loop # goto Loop if ==

Exit:

• Reduced loop from 6 to 5 instructions

– Even small improvements important if loop executes many times

EE108b Lecture 3C. Kozyrakis 32

Machine Language Representation

• Instructions are represented as binary data in memory

• “Stored program” - Von Neumann

– Simplicity

• One memory system

• Same addresses used for branches, procedures, data, etc.

– The only difference is how bits are interpreted

• What are the risks of this decision?

• Binary compatibility (backwards)

– Commercial software relies on ability to work on next generation
hardware

– This leads to a very long life for an ISA

EE108b Lecture 3C. Kozyrakis 33

MIPS Instruction Encoding

• MIPS Instructions are encoded in different forms, depending upon the
arguments

– R-format, I-format, J-format

• MIPS architecture has three instruction formats, all 32 bits in length

– Regularity is simpler and improves performance

• A 6 bit opcode appears at the beginning of each instruction

– Control logic based on decoded instruction type

• See “green card” and Page 103 for a list

EE108b Lecture 3C. Kozyrakis 34

R-Format

• Used by ALU instructions

• Uses three registers: one for destination and two for source

• Function code specifies which operation

OP=0 rs rt rd sa funct

Bits 6 5 5 5 5 6

First
Source
Register

Second
Source
Register

Result
Register

Shift
Amount

Function
Code

EE108b Lecture 3C. Kozyrakis 35

R-Format Example

• Consider the addu instruction

addu $t0, $s1, $s2

• Fill in each of the fields

OP=0 17 18 8 0 33

Bits 6 5 5 5 5 6

First
Source
Register

Second
Source
Register

Result
Register

Shift
Amount

Function
Code

000000 10001 10010 01000 00000 100001

EE108b Lecture 3C. Kozyrakis 36

R-Format Limitations

• The R-Format works well for ALU-type operations, but does not work
well for some of the other instructions types

• Consider for example the lw instruction that takes an offset in addition
to two registers

– R-format would provide 5 bits for the offset

– Offsets of only 32 are not all that useful!

EE108b Lecture 3C. Kozyrakis 37

I-Format

• The immediate instruction format

– Uses different opcodes for each instruction

– Immediate field is signed (positive/negative constants)

– Used for loads and stores as well as other instructions with
immediates (addi, lui, etc.)

– Also used for branches

OP rs rt imm

Bits 6 5 5 16

First
Source
Register

Second
Source
Register
or dest

Immediate

EE108b Lecture 3C. Kozyrakis 38

I-Format Example

• Consider the addi instruction

addi $t0, $t1, 1 # $t0 = $t1 + 1

• Fill in each of the fields

001000 01001 01000 0000000000000001

8 9 8 1

Bits 6 5 5 16

First
Source
Register

Second
Source
Register

Immediate

EE108b Lecture 3C. Kozyrakis 39

Another I-Format Example

• Consider the while loop

Loop: addu $t0, $s0, $s0 # $t0 = 2 * i

addu $t0, $t0, $t0 # $t0 = 4 * i

add $t1, $t0, $s3 # $t1 = &(A[i])

lw $t2, 0($t1) # $t2 = A[i]

bne $t2, $s2, Exit # goto Exit if !=

addu $s0, $s0, $s1 # i = i + j

j Loop # goto Loop

Exit:

• Pretend the first instruction is located at address 80000

EE108b Lecture 3C. Kozyrakis 40

I-Format Example (Incorrect)

• Consider the bne instruction

bne $t2, $s2, Exit # goto Exit if $t2 != $s2

• Fill in each of the fields

• This is not the optimum encoding

000101 01010 10010 0000000000001000

5 10 18 8

Bits 6 5 5 16

First
Source
Register

Second
Source
Register

Immediate

EE108b Lecture 3C. Kozyrakis 41

PC Relative Addressing

• How can we improve our use of immediate addresses when branching?

• Since instructions are always 32 bits long and word addressing requires
alignment, every address must be a multiple of 4 bytes

• Therefore, we actually branch to the address that is PC + 4 + 4 ×
immediate

EE108b Lecture 3C. Kozyrakis 42

I-Format Example

• Re-consider the bne instruction

bne $t2, $s2, Exit # goto Exit if $t2 != $s2

• Use PC-Relative addressing for the immediate

000101 01010 10010 0000000000000010

5 10 18 2

Bits 6 5 5 16

First
Source
Register

Second
Source
Register

Immediate

EE108b Lecture 3C. Kozyrakis 43

I-Format Example: Load/Store

• Consider the lw instruction

lw $t2, 0($t1) # $t2 = Mem[$t1]

• Fill in each of the fields

001000 01001 01010 0000000000000000

35 9 10 0

Bits 6 5 5 16

First
Source
Register

Second
Source
Register

Immediate

EE108b Lecture 3C. Kozyrakis 44

Branching Far Away

• If the target is greater than -215 to 215-1 words away, then the
compiler inverts the condition and inserts an unconditional jump

• Consider the example where L1 is far away
beq $s0, $s1, L1 # goto L1 if S$0=$s1

• Can be rewritten as
bne $s0, $s1, L2 # Inverted

j L1 # Unconditional jump

L2:

• Compiler must be careful not to cross 256 MB boundaries with
jump instructions

EE108b Lecture 3C. Kozyrakis 45

J-Format

• The jump instruction format

– Different opcodes for each instruction

– Examples include j and jal instructions

– Absolute addressing since long jumps are common

– Based on word addressing (target × 4)

– Pseudodirect addressing where 28 bits from target, and remaining
4 bits come from upper bits of PC

OP target

Bits 6 26

Jump Target Address

Jump PC = PC31..28||target||00

EE108b Lecture 3C. Kozyrakis 46

Complete Example

35 9 10 0

0 16 16 8 0 33

0 8 8 8 0 33

0 8 19 9 0 33

0 16 17 16 0 33

5 10 18 2

80000

80004

80008

80012

80016

80020

80024

80028 …

Now we can write the complete example for our while loop

2 20000

EE108b Lecture 3C. Kozyrakis 47

MIPS Machine Instruction Review:
Instruction Format Summary

EE108b Lecture 3C. Kozyrakis 48

sum_pow2: # $a0 = b, $a1 = c

addu $a0,$a0,$a1 # a = b + c, $a0 = a

bltz $a0, Exceed # goto Exceed if $a0 < 0

slti $v0,$a0,8 # $v0 = a < 8

beq $v0,$zero, Exceed # goto Exceed if $v0 == 0

addiu $v1,$sp,8 # $v1 = pow2 address

sll $v0,$a0,2 # $v0 = a*4

addu $v0,$v0,$v1 # $v0 = pow2 + a*4

lw $v0,0($v0) # $v0 = pow2[a]

b Return # goto Return

Exceed: addu $v0,zero,zero # $v0 = 0

Return: jr ra # return sum_pow2

EE108b Lecture 3C. Kozyrakis 49

sum_pow2 Revised Machine and DisAssembly

sum_pow2:

0x400a98: 00 85 20 21 addu a0,a0,a1

0x400a9c: 04 80 00 08 bltz a0,0x400abc

0x400aa0: 28 82 00 06 slti v0,a0,6

0x400aa4: 10 40 00 06 beq v0,zero,0x400abc

0x400aa8: 27 a3 00 08 addiu v1,sp,8

0x400aac: 00 04 10 80 sll v0,a0,2

0x400ab0: 00 43 10 21 addu v0,v0,v1

0x400ab4: 8c 42 00 00 lw v0,0(v0)

0x400ab8: 10 00 00 01 j 0x400ac0

0x400abc: 00 00 10 21 addu v0,zero,zero

0x400ac0: 03 e0 00 08 jr ra

EE108b Lecture 3C. Kozyrakis 50

Addressing Modes Summary

• Register addressing

– Operand is a register (e.g. ALU)

• Base/displacement addressing (ex. load/store)

– Operand is at the memory location that is the sum of

– a base register + a constant

• Immediate addressing (e.g. constants)

– Operand is a constant within the instruction itself

• PC-relative addressing (e.g. branch)

– Address is the sum of PC and constant in instruction (e.g. branch)

• Pseudo-direct addressing (e.g. jump)

– Target address is concatenation of field in instruction and the PC

EE108b Lecture 3C. Kozyrakis 51

Addressing Modes Summary

Byte Halfword Word

Registers

Memory

Memory

Word

Memory

Word

Register

Register

1. Immediate addressing

2. Register addressing

3. Base addressing

4. PC-relative addressing

5. Pseudodirect addressing

op rs rt

op rs rt

op rs rt

op

op

rs rt

Address

Address

Address

rd . . . funct

Immediate

PC

PC

+

+

EE108b Lecture 3C. Kozyrakis 52

Logical Operators

• Bitwise operators often useful for bit manipulation

• Always operate unsigned except for arithmetic shifts

31 22 6

0

31 16

0

0 • • • 0

sll $t0, $t3, 9 # shift $t3 left by 9, store in $t0

srl $t0, $t0, 15 # shift $t0 right by 15

9 bits 17 bits 6 bits

EE108b Lecture 3C. Kozyrakis 53

MIPS Logical Instructions

Instruction Example Meaning Comments

and and $1, $2, $3 $1 = $2 & $3 Logical AND

or or $1, $2, $3 $1 = $2 | $3 Logical OR

xor xor $1, $2, $3 $1 = $2 Q$3 Logical XOR

nor nor $1, $2, $3 $1 = ~($2 | $3) Logical NOR

and immediate andi $1, $2, 10 $1 = $2 & 10 Logical AND w. constant

or immediate ori $1, $2, 10 $1 = $2 | 10 Logical OR w. constant

xor immediate xori $1, $2, 10 $1 = ~$2 & ~10 Logical XOR w. constant

shift left log sll $1, $2, 10 $1 = $2 << 10 Shift left by constant

shift right log srl $1, $2, 10 $1 = $2 >> 10 Shift right by constant

shift rt. Arith sra $1, $2, 10 $1 = $2 >> 10 Shift rt. (sign extend)

shift left var sllv $1, $2, $3 $1 = $2 << $3 Shift left by variable

shift right var srlv $1, $2, $3 $1 = $2 >> $3 Shift right by variable

shift rt. arith srav $1, $2, $3 $1 = $2 >> $3 Shift right arith. var

load upper imm lui $1, 40 $1 = 40 << 16 Places imm in upper 16b

EE108b Lecture 3C. Kozyrakis 54

Loading a 32 bit Constant

• MIPS only has 16 bits of immediate value

• Could load from memory but still have to generate memory address

• Use lui and ori to load 0xdeadbeef into $a0

– lui $a0, 0xdead # $a0 = dead0000

– ori $a0, $a0, 0xbeef # $a0 = deadbeef

