Алексеев Ростислав Александрович	 Санкт-Петербургский государственный универси-тет информационных технологий, механики и оп-тики, аспирант, RostAlexeev@mail.ru
Котельников Юрий Петрович	 Санкт-Петербургский государственный универси-тет информационных технологий, механики и оп-тики, кандидат технических наук, доцент, kotel@mail.ifmo.ru

УДК 621.317.7.027.3; 621.319.027.3 ПОСТРОЕНИЕ ВЫСОКОВОЛЬТНОГО МОДУЛЯТОРА С НАНОСЕКУНДНЫМ ФРОНТОМ ДЛЯ УПРАВЛЕНИЯ ЭЛЕКТРООПТИЧЕСКИМ ЗАТВОРОМ В СОСТАВЕ ТВЕРДОТЕЛЬНОГО ЛАЗЕРА Д.С. Терновский, В.В. Тогатов

Рассмотрен режим сверхбыстрого включения МОП-транзистора, при которых время переключения при-бора не превышает единиц наносекунд. Дано объяснение механизма сверхбыстрого переключения. При-ведены результаты экспериментов, подтверждающих механизм сверхбыстрого переключения. Рассмот-рена возможность построения высоковольтного модулятора с наносекундным фронтом на основе эффек-та сверхбыстрого переключения МОП-транзистора. Приведены структурная схема и характеристики разработанного высоковольтного импульсного модулятора для управления электрооптическими затворами с амплитудой импульса до 6 кВ и фронтом, не превышающим 5 нс.

Ключевые слова: высоковольтная техника, импульсная техника, техника наносекундного диапазона, электрооптический затвор.

Введение

При формировании высоковольтных импульсов напряжения с наносекундным фрон-том используются электронные коммутаторы, построенные на основе различных физиче-ских механизмов [1–3]. В последнее время появилась информация о разработке высоковольтных модуляторов с наносекундным фронтом, построенных на основе высоковольтных МОП-транзисторов [4]. Известно, что типовые времена переключения этих транзисторов составляют десятки наносекунд, в то время как фронт импульсов напряжения на выходе мо-дуляторов не превышает единиц наносекунд. В известной нам литературе объяснения меха-низма такого быстрого переключения МОП-транзисторов не дано.

Данная статья посвящена анализу режима сверхбыстрого переключения МОПтранзистора, его реализации при включении полевого прибора и построению на его основе высоковольтного модулятора с наносекундным фронтом.

Анализ режима сверхбыстрого включения

Исследуется процесс включения МОП-транзистора в схеме, приведенной на рис. 1. Силовая часть схемы, помимо исследуемого транзистора *T*₂, включает сопротив-ление нагрузки *R*₃ и высоковольтный источник *V*_H. Схема дополнена элементами *L*_C и *L*_U, учитывающими индуктивности выводов транзистора и токоподводящих дорожек в цепях стока и истока, а также емкостями *C*₃ и *C*₃с. Схема управления состоит из стан-дартного драйвера M_1 и усилительного каскада на *p*-канальном транзисторе T_1 . Схема дополнена цепью отрицательного смещения, подаваемого на затвор T_2 . Она включает регулируемый источник U_{05P} и резистор R_2 .

На вход исследуемого транзистора T_2 со стока T_1 подаются прямоугольные им-пульсы напряжения с амплитудой $U_{\Pi P}$. Так как сопротивление канала T_1 равно 0,02 Ом, а импульсный ток стока, идущий на перезаряд емкостей C_{3u} и C_{3c} , может достигать 50 А, то источник входного напряжения в первом приближении можно рассматривать как идеальный источник э.д.с. На этапе задержки емкость C_{3u} , заряженная к моменту включения до обратного напряжении U_{OEP} , резонансно перезаряжается через индуктивность в цепи истока Lu. Если напряжение, подаваемое в цепь затвора, равно $U_{\Pi P}$ и сопротивление в цепи затвора близко к нулю, то ток истока в момент окончания задержки ($t = t_3$) оказывается равным

$$i_{\rm M}(t_3) = \sqrt{\frac{C_{\rm 3H}}{L_{\rm M}}} \left[\left(U_{\rm HP} + U_{\rm OBP} \right)^2 - \left(U_{\rm HP} - U_{\rm HOP} \right)^2 \right]$$
(1)

Здесь Ипор – пороговое напряжение, определяющее момент окончания задержки

 $u_{34}(t_3) = U_{пор}$. Оценим величину $i_{II}(t_3)$, если в качестве коммутирующего МОП-транзистора используется IRFBE30 со следующими параметрами: крутизна s = 3 A/B, пороговое напряжение $U_{пор} = 4$ B, емкость затвор-исток $C_{34} = 1,3$ нФ и индуктивность в цепи истока $L_{4} = 5$ нГн. При максимальном размахе входного напряжения $U_{пр} = U_{oбp} = 20$ B величина оказывается равной 18,7 А. Этот ток резко возрастает, если индуктивность в цепи истока L_{4} становится ниже 5 нГн. Как будет показано ниже, увеличение принципиально важно

)

для реализации режима сверхбыстрого вклю-чения МОП-транзистора. $i_{\text{M}}(t_3)$ о $i_{\text{M}}(t_3)$

Рис. 1. Схема для исследования процесса включения МОП-транзистора: *M*₁ – MIC4421ABM, *T*₁ – IRF7416, *T*₂ – IRFBE30

После окончания этапа задержки начинается рост тока стока. Как и в работе [5], при анализе процесса включения будем использовать кусочно-линейную аппроксима-цию передаточной характеристики МОП-транзистора. Согласно этой аппроксимации, ток стока равен

$$i_{\rm C} = \begin{cases} 0 & \text{при } U_{_{\rm 3H}} \leq U_{_{\rm пор}} \\ s \left(U_{_{\rm 3H}} - U_{_{\rm пор}} \right) & \text{при } U_{_{\rm 3H}} > U_{_{\rm пор}} \end{cases},$$
, (2)

где *s* – крутизна транзистора, *U*_{зи} и *U*_{пор} – напряжение затвор-исток и пороговое, соответственно. Можно показать, что при сформулированных допущениях процесс нарас-

тания тока стока при включении МОП-транзистора описывается выражением

$$i_{\rm c}(t) = I_{\rm np} \left(1 - e^{-\frac{t}{sL_{\rm H}}} \right) + i_{\rm H}(t_3) e^{-\frac{t}{sL_{\rm H}}}.$$
(3)

Здесь – установившееся значение тока стока в активном режиме, определено в (1). При выводе уравнения (3) за начало отсчета t = 0 принят мо-мент окончания этапа задержки. $I_{\rm np} = s \left(U_{\rm np} - U_{\rm nop} \right) i_{\rm H} \left(t_{\rm s} \right)$ (

пр (пр пор / н (з) Из выражения (3) следует, во-первых, что рост тока стока при включении проис-ходит с постоянной времени . Во-вторых, при t = 0 ток стока скачком увеличи-вается до значения $\tau = sL_{\rm B}i_{\rm H}(t_3)$. Этот результат является принципиальным, так как определяет режим сверхбыстрого включения полевого прибора. Физический смысл такого режима заключается в том, что до тех пор, пока ток стока не достигнет величины , отри-цательная обратная связь, обусловленная индуктивностью $L_{\rm H}$, в приборе отсутствует. При этом рост

тока стока вплоть до значения $i_{\mu}(t_3), i_{\mu}(t_3)$ не превышает единиц наносекунд и

определяется темпом заряда емкости C_{34} большим током $i_{\rm H}(t_3)$. В дальнейшем рост то-ка стока осуществляется в соответствии с уравнением (3) с постоянной включения. В наибольшей степени режиму сверхбыстрого включения отвечают МОП-транзисторы с малой индуктивностью в цепи истока, имеющие отрицательное смеще-ние в цепи затвора в момент включения. Отрицательное смещение увеличивает время заряда емкости C_{34} до напряжения $U_{\rm пор}$. При этом ток в цепи истока к моменту оконча-ния этапа задержки

соответственно возрастает. $\tau = sL_{\rm e}i_{\rm H}(t_{\rm s})$

Очевидно, что режим сверхбыстрого включения может быть реализован только при условии незначительной индуктивности в цепи стока.

Возможность реализации режима сверхбыстрого включения полевого прибора подтверждена нами прямыми экспериментами. На рис. 2 приведены три осциллограммы включения высоковольтного транзистора IRFBE30 на омическую нагрузку 5,5 Ом при напряжении источника питания 400 В. Осциллограмма 1 соответствует включению транзистора прямоугольным импульсом затворного напряжения с амплитудой 10 В без предварительного обратного смещения на затворе. Осциллограммы 2 и 3 соответствуют включению транзистора, при котором импульс затворного напряжения с той же амплитудой пода-вался на затвор, предварительно смещенный обратным напряжением 10 В и 20 В соответ-ственно. Каждая из трех осциллограмм имеет два явно выраженных участка. Первый – ре-жим сверхбыстрого включения, не превышающий 3 нс, второй – установление стационар-ного состояния с постоянной *sL*и. Зависимость тока истока в момент окончания задержки от обратного напряжения *U*обр дается выражением (1). При

указанных выше значе-ниях параметров транзистора IRFBE30 величины тока $i_{\text{M}}(t_3)$, рассчитанные по формуле (1) для трех значений обратного напряжения 0, 10, 20 В,

оказались равными 4,2, 9,75 и 15 А. Соответствующие экспериментальные значения $i_{\rm H}(t_3)$, найденные из осциллограмм на рис. 2, составили 7,2, 14,4 и 21,6 А. Отмеченное различие связано с тем, что время пере-ключения транзистора в этом режиме хоть и мало, но конечно. Поэтому к моменту, когда ток стока достигает тока истока, последний успевает существенно возрасти относительно своего значения в момент окончания задержки. На рис. 3 приведены три осциллограммы включения того же транзистора IRFBE30 на нагрузку 43 Ом при напряжении источника 400 В и прямом затворном на-пряжении $U_{\rm ПP} =$ 10 В. Так как крутизна этого транзистора составляет s = 3 A/B, то он заведомо включался с заходом в режим насыщения. При этом ограничение тока стока осуществлялось на уровне 9 А. Осциллограмма 1 снималась при отсутствии напряже-ния обратного смещения в цепи затвора, а осциллограммы 2 и 3 – при наличии предва-рительного обратного смещения 10 и 20 В соответственно. Как и в предшествующем случае (рис. 2), расчетные значения тока $i_{\rm H}(t_{\rm s})$, соответствующие обратным напряже-ниям в цепи затвора 0, 10 и 20 В, равны 4,2, 9,75 и 15 А. Два последних значения тока превосходят ток, определяемый внешней цепью и равный 9 А. Поэтому на осцилло-граммах 2 и 3 режим сверхбыстрого включения реализуется вплоть до ограничения то-ка. При этом время включения составляет 2–3 нс.

На осциллограмме 1 эксперименталь-ное значение тока $i_{\mathbb{H}}(t_3)$ равно 6 А, что близко к расчетному значению. После достиже-ния этой величины темп роста тока резко снижается, и дальнейшее изменение тока вплоть до ограничения осуществляется в соответствии с постоянной установления . Таким образом, рассмотренные экспериментальные зависимости тока стока на рис. 2 и 3 хорошо укладываются в

концепцию сверхбыстрого включения транзистора. $\tau = sL_{\rm H}$

Рис. 2. Осциллограмма напряжения при включении транзистора IRFBE30 на резистивную нагрузку *R*₃ = 5,5 Ом, *V*_H = 400 B, *U*_{ПP} = 10 B; 1 − *U*_{OEP} = 0 B; 2 − *U*_{OEP} = 10 B; 3 − *U*_{OEP} = 20 B

В рамках общепринятых представлений длительность процесса включения опре-деляется зарядом собственных емкостей транзистора. В этом смысле при подаче в цепь затвора предварительного обратного смещения время включения должно увеличиться, так как при включении происходит дополнительный перезаряд емкостей транзистора. Однако в режиме сверхбыстрого включения, согласно сказанному выше, имеет место обратная картина, что и подтверждается результатами прямых экспериментов. Смысл режима сверхбыстрого включения можно пояснить и иначе. Максималь-ная скорость роста тока в полевом транзисторе ограничена величиной

$$\left(\frac{di}{dt}\right)_{\rm max} = \frac{U_{\rm _{3H}} - U_{\rm _{100p}}}{L_{\rm _{H}}}. \label{eq:max}$$

В кремниевых МОП-транзисторах $U_{3\mu} \le 20$ В, так как при больших напряжениях возможен пробой диэлектрика (оксида). Если принять $U_{3\mu} - U_{nop} = 15$ В, а $L_{\mu} = 10$ нГн, то А/нс. Режим сверхбыстрого включения позволяет обойти это ограничение за счет предварительной накачки тока в индуктивности истока, осуществляемой по цепи затвора. $(di/dt)_{max} = 1.5$

Схема модулятора

Режим сверхбыстрого включения использован нами при создании высоковольт-ных модуляторов с наносекундными фронтами для управления электрооптическими затворами. Импульсы напряжения, формируемые этими модуляторами, при амплитуде 2–6 кВ характеризуются длительностью фронта 2–4 нс [6].

Рис. 4. Схема модулятора

Схема модулятора представлена на рис. 4. Нагрузкой является емкость электрооптического затвора C_3 . Модулятор включает в себя источник высокого напряжения U_{HV} . Функции коммутирующего элемента выполняет последовательное соединение высоковольтных МОП-транзисторов $Q_1 - Q_6$. Каждый транзистор имеет независимую схему управления $CV_1 - CV_6$. Подача синхроимпульсов осуществляется с помощью трансформатора управления ТУ.

В паузе между импульсами высокое напряжение блокируется транзисторами Q_1-Q_6 , напряжение на затворе C_3 равно нулю. При подаче синхроимпульса на вход мо-дулятора трансформатор управления ТУ передает команду на включение каждой схеме управления СУ. Схемы управления одновременно включают высоковольтные МОП-транзисторы в режиме сверхбыстрого включения. Это позволяет зарядить емкость электрооптического затвора C_3 большим импульсный током за единицы наносекунд. Ток заряда замыкается по контуру (+) $U_{HV} - Q_6 - Q_1 - C_3 - C_1 - OIII((-)U_{HV})$. Емкость кон-денсатора C_1 много больше емкости затвора C_3 .

В схеме предусмотрена подача уставки высокого напряжения при помощи вы-ключателя SQ. Этот выключатель также обеспечивает работу модулятора в режимах «switch-on» (с положительным фронтом) и «switch-off» (с отрицательным фронтом).

В отличие от существующих, разработанный модулятор выполнен в виде единой печатной платы, на которой расположен и высоковольтный источник. Для работы в режиме «switch-off» на плате предусмотрен разъем, к которому подключается дополни-тельный высоковольтный источник. Этот источник разработан нами и может постав-ляться в комплекте с модулятором. Модулятор (рис. 5) включает следующие основные компоненты: быстродействующий электронный коммутатор, блок накопительных конденсаторов, заряжаемых в паузе между импульсами, управляющие драйверы, трансформатор, с помощью которого осуществляется запуск модулятора, высоковольтный источник питания для формирования выходных импульсов в режиме «switch-on» и низковольтный – для цепей управления. Модулятор управляется внешними синхроимпульсами с частотой до 10 кГц. Регулировка амплитуды выходного импульса осуществляется либо встроенным потенциометром, либо дистанционно через входной разъем. Для контроля состояния платы используется светодиодная индикация, а при отсутствии высокого напряжения генерируется логический сигнал «Error». Питание платы осуществляется от низковольтного источника 5–30 В.

Рис. 5. Электрическая плата модулятора

Импульс напряжения, формируемый модулятором, приведен на рис. 6. Длитель-ность фронта составляет не более 3 нс при амплитуде 4 кВ.

Проведены испытания разработанного высоковольтного импульсного модулятора в составе лазерного излучателя, установленного в технологический комплекс, предназначенный для объемной лазерной маркировки внутри прозрачных диэлектриков. В качестве нагрузки использовался электрооптический затвор типа *QDN3* («*VITRO LASER» GmbH*) на кристалле *BBO*, работающий на поперечном электрооптическом эффекте. Емкость затвора составляла 6 пФ, рабочее четвертьволновое напряжение 3,6 кВ. Излучатель представлял собой одномодовый лазер на основе кристалла *Nd3+:YVO4* с продольной импульсной диодной накачкой. Импульсы накачки с энергией до 7 мДж имели длительность 90 нс и частоту повторения до 2,5 кГц.

Рис. 6. Осциллограмма импульса напряжения, формируемого высоковольтным импульсным модулятором

Рис. 7. Осциллограмма импульсов напряжения (1) на затворе и лазерного излучения (2). Масштаб: напряжение на затворе – 1кВ на деление, время – 5 нс на деление

U, В

t, нс

По окончанию импульса накачки с импульсного модулятора на затвор подавался открывающий импульс длительностью до 200 нс. Время развития генерации находи-лось в пределах 30–60 нс. В результате на выходе излучателя генерировались световые импульсы на длине волны 1064 нм с энергией до 1 мДж. Отношение энергетической эффективности работы лазера в режиме модуляции добротности к соответствующему значению эффективности в режиме свободной генерации составило величину 76 %. Длительность импульса при максимальной энергии накачки составила 3,8 нс (рис. 7). Нестабильность энергии от импульса к импульсу не превышала 2,5 %. Девиация

изменений средней мощности излучения при частоте повторения 2 кГц по измерению в течение 16 часов непрерывной работы составила ± 1,6 %, что практически совпало со значением девиации в режиме свободной генерации. В результате проведения ресурс-ных испытаний не выявлено каких-либо изменений в работоспособности модулятора в течение 109 импульсов.

амплитуда выходного импульса	2-6 кВ
– стабильность амплитуды –	5 %
– максимальный ток в импульсе	. 30 A
максимальная емкость нагрузки	100 пФ
 длительность фронта	. 3–8 нс
– длительность плоской части импульса	0.2–2 мкс
время спада	0.5 мкс
- максимальная частота повторения импульсов	10 кГц
– амплитуда входного синхроимпульса	. 3–15 B
напряжение источника питания платы	5–30 B
– потребляемая мощность	2 Вт
 рабочий температурный диапазон	. (-40)-(+60)°C
 габаритные размеры	. 50.80.24 ммз

Основные технические характеристики модулятора

Заключение

1. Показано, что основным фактором, ограничивающим быстродействие МОПтранзисторов, является индуктивность в цепи истока транзистора.

2. Сформулирован режим сверхбыстрого включения МОП-транзистора, позво-ляющий обойти существующее ограничение по скорости переключения транзистора за счет предварительной накачки тока в индуктивности цепи истока.

3. На основе режима сверхбыстрого включения разработана схема и конструкция высоковольтного модулятора с наносекундным фронтом для управления электрооптическим затвором в составе твердотельных лазеров.

4. Разработанный модулятор используется на фирме *VITRO LASER* (Германия) в составе технологического комплекса для 3D-гравировки в прозрачных диэлектриках и в Институте общей физики академии наук (ИОФАН) (г. Москва.).

Литература

1.

Аристов Ю.В., Воронков В.Б., Грехов И.В., Козлов А.К., Коротков С.В. Мощный

полупроводниковый переключатель высоковольтных импульсов с наносекундным фронтом нарастания // ПТЭ. – 2007. – № 2. – С. 87–90. 2.

Грехов И.В., Ефанов В.М., Кардо-Сысоев А.Ф., Шендерей С.В. Формирование киловольтных наносекундных перепадов напряжения дрейфовыми диодами с резким восстановлением // ПТЭ. – 1984. – № 5. – С. 103–105. 3.

Грехов И.В., Ефанов В.М., Кардо-Сысоев А.Ф., Шендерей С.В. Мощный полупроводниковый генератор наносекундных импульсов // ПТЭ. – 1986. – № 1. – С. 93–94. 4.

Behlke Power Electronics (GmbH). Fast high voltage solid-state switches. – Режим дос-тупа: http://www.behlke.de, своб.

5.

Clemente S., Pelly B.R., Insidori L. Силовые полупроводниковые приборы. – Воро-неж, 1995. – С. 195–215.

6.

Тогатов В.В., Гнатюк П.А., Терновский Д.С. Высоковольтный импульсный модуля-тор с наносекундным фронтом // ПТЭ. – 2007. – № 6. – С. 134–135.

Терновский Дмитрий Сергеевич	 Санкт-Петербургский государственный универ-ситет информационных технологий, механики и оптики, аспирант, dm-ternovsky@mail.ru
Тогатов Вячеслав Вячеславович	 Санкт-Петербургский государственный универ-ситет информационных технологий, механики и оптики, доктор технических наук, профессор, dm- ternovsky@mail.ru